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ABSTRACT

We present a simple yet effective method to implement the rejection option for
a pre-trained classifier. Our method is based on a sound mathematical frame-
work, enjoys good properties, and is hyperparameter free. It is lightweight, since
it does not require any re-training of the network, and it is flexible, since it can
be used with any model that outputs soft-probabilities. We compare our so-
lution to state-of-the-art methods considering popular benchmarks (CIFAR-10,
CIFAR-100, SVHN), and various models (VGG-16, DenseNet-121, ResNet-34).
At evaluation time, our method, which is applied post-training to any classifica-
tion model, achieves similar or better results with respect to its competitors that
usually require further training and/or tuning of the models.

1 INTRODUCTION

Deep Neural Networks (DNN) have gained a position of preference in many applications related
to automated decision making. Consequently, extensive efforts are being made in several fields to
make these systems more reliable as they prove to be error-prone (e.g., in computer vision (Gao et al.,
2022; Cobb & Looveren, 2022), in autonomous driving (Amodei et al., 2016; Bicer et al., 2020), in
NLP (Jin et al., 2022; Carlini et al., 2021), and in medical analysis (Subbaswamy & Saria, 2020;
Bernhardt et al., 2022)). Due to the dramatic impact wrong decisions have in various applications,
detecting them and avoiding them is of the essence.

Abstention as a way to avoid wrong decisions has been considered since the dawn of artificial intel-
ligence (cf. Chow (1957)). The idea of a detector-based rejection strategy capable of distinguishing
between ‘secure’ and ‘non-secure’ decision has been applied to multiple tasks. For instance, novelty
detection and out-of-distribution (OOD) detection (Pimentel et al., 2014) focus on identifying sam-
ple which belongs to a novel class or are far from the training distribution, i.e. samples on which the
decision should not be trusted; misclassification detection (Granese et al., 2021) focuses on detect-
ing whether a prediction of a classifier is likely to be correct or not at test time, and therefore should
be trusted or rejected respectively; adversarial attack detection (Szegedy et al., 2014) focuses on
detecting whether a given input sample is a natural sample or a malicious one (i.e., if it has been
perturbed with the purpose of fooling the target model), opting for rejection in the latter case.

In this paper we consider the problem of increasing the reliability of a model by equipping it with
a rejection option. While standard models always give an answer related to the task they have
learned when they are presented with an input samples, the rejection option enables them to reject
the decision and abstain. Clearly, abstention raises the question of the trade-off between reducing
the risk of making wrong decisions while keeping the number of abstentions as low as possible,
therefore maintaining data coverage. Selective classification (Geifman & El-Yaniv, 2017) is one of
the main areas of research invested in finding the aforementioned trade-off, by enabling basic models
to express a confidence for their decision. Many works have been focusing on this problem and they
have improved on the seminal paper (Geifman & El-Yaniv, 2019; Liu et al., 2019; Corbière et al.,
2019). Learning how to achieve a given target coverage while maintaining a good classification
accuracy is indeed a natural and powerful way to tackle the problem of finding the aforementioned
trade-off. However, most of the times this means that standard classifiers cannot be used, since they
need to be re-trained or tuned. This requires computational resources, time to fit the new parameters
of the models and a (usually large) amount of samples.

To address this problem, we make the following contributions:
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1. Training-free rejection option. We propose a new method to implement training-free
rejection option for a given classifier neural network. We base our model on the Gini Im-
purity Score (Gini, 1912) which can been intented as an approximation of true probability
of error classification. Up to our knowledge, we are the first to propose such a function in
the selective context.

2. Mathematically grounded lightweight and flexible selector. Our proposed method is
based on a state-of-the-art method for misclassification detection Granese et al. (2021)),
which has been shown to improve on Geifman & El-Yaniv (2017). We revisit Granese
et al. (2021)), underlining a connection between the score proposed in it and the Rényi
divergence, and showing how such score can be used to implement the rejection option
for a given pre-trained classifier. Our method is lightweight since it does not require any
expensive re-training/fine-tuning of the network, and so flexible that any architecture can
be used out of the shelf as long as it outputs a soft-distribution;

3. Extensive experimental benchmark. We evaluate the proposed method and we compare it
with state-of-the art rejection option methods and selective classification frameworks. Our
evaluation includes popular models (VGG-16, DenseNet-121, ResNet-34) and benchmark
datasets (CIFAR-10, CIFAR-100, SVHN). Overall, we show that with our post-training
method we achieve a performance which is comparable to state-of-the-art methods that
require further training and/or tuning of the model and sometimes outperform them without
requiring expensive and ad-hoc tuning of the network. We also showcase performance on
the ImageNet dataset, demonstrating great scalability and ease of use out of the shelf.

The paper is organized as follows. In Sec. 2 we review the literature on the rejection option. In Sec. 3
we introduce our proposed selective model and we focus on the selector function on which it relies.
In Sec. 4 we describe the evaluation setting with a particular attention to the metrics used to assess
the performances of the proposed selective model. In Sec. 5 we present the results of the numeri-
cal experiments. The discussion to the limitation of this work and the final remarks are relegated
to Sec. 5.3 and Sec. 6, respectively.

2 RELATED WORKS

Rejection option has been studied since the dawn of artificial intelligence (cf. Flores (1958); Chow
(1970)) as a way to avoid low-confidence decisions (Pudil et al., 1992), and miclassifications. Re-
jections can be split into two main groups (Hendrickx et al., 2021): ambiguity, i.e., when the learned
model is not able to replicate the optimal decision in some areas of the input space (Hellman, 1970;
Fukunaga & Kessell, 1972), and novelty, i.e., when inputs at test time are too dissimilar from those
at train time (Vasconcelos et al., 1995; Seo et al., 2000; Vailaya & Jain, 2000)).

More recently, interest in the rejection option has increased again due to the popularity of deep
learning. Among the most influential works, Hendrycks & Gimpel (2017) established a standard
baseline for deep neural networks which relies on considering the maximum of the softmax distri-
bution output by a model. Jiang et al. (2018) introduced a new confidence measure, which measures
the agreement between the considered classifier and a modified nearest-neighbor classifier on an
evaluation dataset. Gal & Ghahramani (2016) proposed using Monte Carlo Dropout (MCDropout)
to estimate the posterior predictive network distribution by sampling several stochastic network pre-
dictions.

Corbière et al. (2019) and Geifman & El-Yaniv (2019) improved on the previous works suggesting
to combine new architectures and new ad-hoc loss functions in the training process. In particular,
the former introduced the training of an additional network to predict the confidence of a pre-trained
model. Such additional network can observe the input representation produced by the pre-trained
model before its decision layer. Geifman & El-Yaniv (2019) proposed to achieve selective classifi-
cation by training a neural network with three heads: a classification head, and auxiliary head, and
one head to estimate the confidence of the classification decision. Moreover a new loss in introduced
in order to control coverage and risk at training time. Liu et al. (2019) presented another method for
implementing selective classification by introducing the gambler’s loss derived from general port-
folio theory in the training. Such a loss is aimed at maximizing the double rate of a gambler that
gambles the payoffs of previous bets. It is important to notice that these methods require data and
resources to train/tune complex models.
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Huang et al. (2020) proposed a method to improve the generalization empirical risk minimization of
deep models, focusing on the task of learning from corrupted data and showing how calibrating the
model at training time improves the models’ performance for selective classification. A similar re-
sults is also reaffirmed in Fisch et al. (2022). Recently, Feng et al. (2022) have noticed that complex
training techniques involving ad-hoc loss functions do not necessarily imply dramatic improvements
for decision making with rejection option. They have revisited Hendrycks & Gimpel (2017), and
they have proposed to further regularize popular objective functions with entropy-minimization at
training time. Rabanser et al. (2022) introduced a framework that, for a given test input, monitors
the disagreement with the final predicted label over intermediate models obtained during training.
Although no active training is required, this frameworks need all the side information contained in
the training dynamics, which are used after being discretized. Einbinder et al. (2022) show how
conformal predictors can enjoy smaller conformal prediction sets with higher conditional coverage,
after exact calibration with hold-out data. Gangrade et al. (2021a) studied the problem of selective
classification in a game-like context where a family of selective classifiers is available. In such con-
text, an adversary produces features and labels, but the labels are only visible to the classifiers in
case of abstention creating a trade-off between numbers of abstention and classification accuracy.
Lin et al. (2022); Schreuder & Chzhen (2021); Gangrade et al. (2021b) focus on the effect of selec-
tive classification on each individual class, introducing an interesting fairness related perspective in
the field.

More recently, Granese et al. (2021) have introduced a new simple state-of-the-art framework for
misclassification detection which builds and improves on Hendrycks & Gimpel (2017). They applied
a modified version of the Rényi Entropy to obtain a score for each input sample which is then used
to decide whether to accept or reject the decision relative to the sample itself. This method does
not require any training and only looks at the soft-probabilities output by the model, making it very
appealing w.r.t. popular but more computationally heavy methods such as Geifman & El-Yaniv
(2019), Corbière et al. (2019), and Liu et al. (2019).

For completeness, we mention important theoretical results Herbei & Wegkamp (2006); Franc et al.
(2021); Fischer et al. (2016), and we observe how the interesting topic of rejection option crossed
the boundaries of other well-established research areas such as certified robustness (cf.Cohen et al.
(2019); Tramèr (2022)) and adversarial examples detection (cf.Aldahdooh et al. (2021)). Lastly, for
a comprehensive look at the topic of machine learning with reject option we reference Hendrickx
et al. (2021).

3 MATHEMATICAL BACKGROUND

We start by introducing the mathematical definition of selective model in Sec. 3.1; we provide
the justification of the rejection function we base the proposed method in Sec. 3.2 which is then
introduced in Sec. 3.3.

3.1 THE SELECTIVE MODEL

Assume that X ⊆ R is the feature space and Y = {1, . . . , C}, is the label space related to some
relevant task. The training setDn = {(xi, yi)}ni=1 ∼ pXY is a random realization of n i.i.d. samples
according to pXY , the underlying and unknown probability density function over X × Y .

Throughout the paper we call selective model the pair (fDn
,S) where fDn

: X → Y is the predictor
(e.g. the classifier) defined as fDn

(x) = argmaxy∈Y PŶ |X(y|x;Dn) where PŶ |X is the soft-
prediction of the class posterior probability given a sample; S : X → {0, 1} is the selector (i.e. the
rejection condition). The selective model is then generally defined as:

(fDn ,S)(x) .
=

{
fDn

(x) if S(x)
∅ otherwise,

(1)

where ∅ indicates that fDn
abstains from the prediction. Geifman & El-Yaniv (2017) base the

selector on a confidence-rate function. The interpretation is that given any (x1, y1) ∼ pXY

and (x2, y2) ∼ pXY , and denoting the ideal confidence-rate function as κfDn
: X → R+ ,

κfDn
(x1) ≥ κfDn

(x2) if and only if ℓ(fDn
(x1), y1) ≤ ℓ(fDn

(x2), y2), where ℓ : Y × Y → R+ is
a given loss function (e.g., the 0-1 loss).
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3.2 GINI IMPURITY SCORE BASED SELECTOR

We recall that, the probability of classification error for a given x ∈ X w.r.t. the true posterior
probability PY |X is defined as Pe(x) .

= 1 − PY |X(fDn
(x)|x). Normally, we do not know PY |X ,

and all we can observe are samples drawn from the joint distribution pXY from which we can learn
an empirical soft-distribution PŶ |X . Interestingly, it is possible to derive a bound to the unknown
function x 7→ Pe(x) through the Gini Impurity Score (Gini, 1912; Granese et al., 2021):√

Gini(x)−∆(x) ≤ Pe(x) ≤ Gini(x) + ∆(x),

where

∆(x)
.
= 2

√
2 DKL

(
PY |X(·|x)||(PŶ |X(·|x)

)
,

Gini(x) .
=
∑
y∈Y

PŶ |X(y|x) Pr(Ŷ ̸= y|x) = 1−
∑
y∈Y

P 2
Ŷ |X(y|x), (2)

and DKL(·||·) denotes the Kullback-Leibler divergence between two distributions. The Gini Im-
purity represents the probability that the input sample would be classified incorrectly if randomly
labeled according to the distribution PŶ |X .

Interestingly, Eq. (2) can be linked to a much popular information theoretic measure, i.e. the Rényi
divergence, which in our scenario, is defined as:

Dα

(
PŶ |X(·,x)||QY

)
.
=

1

α− 1
log

∑
y∈Y

(
Pα
Ŷ |X(y|x)Q(1−α)

Y (y)
) , (3)

where PŶ |X(·,x) is the model soft-distribution for a fixed input sample x, and QY is a distribution
over the labels set Y . Indeed, by fixing α = 2, and QY as a uniform over the labels, we can derive a
strong connection to Gini(x). We reference Appendix A.1 for a more in-depth analysis.

3.3 OUR PROPOSED SELECTIVE MODEL

We leverage the results presented in Section 3.2 to build our Gini-based selective model.

Definition 3.1 (Implementing the rejection option with Gini(·))

(fDn
,Gini, γ)(x) .

=

{
fDn

(x) if Gini(x) ≤ γ

∅ if Gini(x) > γ,
(4)

where γ ∈ [0, 1] is the threshold parameter and ∅ indicates that fDn
abstains from the prediction.

Clearly, in our scenario, and w.r.t. Eq. (1), it holds true that

S(x) = Gini(x) ≤ γ.

Further details on the calibration of the parameter γ can be found in Section 4.4.

4 EXPERIMENTAL SETTING

This section describes the experiments we run and the evaluation settings. Specifically, in Sec. 4.1
we begin by listing the datasets and the classifiers involved in our evaluation; in Sec. 4.2 we move on
with the explanation of the risk and coverage metrics; in Sec. 4.3 we give more details on the meth-
ods to which we compare, and we conclude with the analysis of the coverage calibration in Sec. 4.4.

4.1 DATASETS AND CLASSIFIERS

We run our experiments on CIFAR-10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009) and
SVHN (Netzer et al., 2011) image datasets. For all of them, we have considered as classifiers
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VGG-16 (Simonyan & Zisserman, 2015), ResNet-34 (He et al., 2016) and DenseNet-121 (Huang
et al., 2017) architectures. They have been trained with the cross entropy loss for 300 epochs, using
as optimizer the stochastic gradient descent (SGD) with a learning rate of 0.1, a cosine annealing
learning rate scheduler, weight decay of 0.0005, and momentum of 0.9. The accuracy achieved by
the classifiers on the original testing data for VGG-16 are 94.01 ± 0.14% on CIFAR-10, 74.75 ±
0.31% on CIFAR-100, and 95.67± 0.12% on SVHN; for ResNet-34 are 95.62± 0.13% on CIFAR-
10, 79.41± 0.43% on CIFAR-100, and 96.14± 0.1% on SVHN; and for DenseNet-121 are 94.10±
0.23% on CIFAR-10, 74.02± 0.27% on CIFAR-100, and 95.80± 0.22% on SVHN.

4.2 EVALUATION METRICS

We measure the performances of the selective model post coverage calibration in terms of
empirical coverage (Geifman & El-Yaniv, 2017; 2019) (the higher the better):

ϕ̂(S;Dm)
.
=

1

m

m∑
i=1

1[S(xi)], (5)

and in terms of empirical selective risk (Geifman & El-Yaniv, 2017; 2019) (the lower the better):

r̂ (fDn ,S;Dm)
.
=

∑m
i=1 1[fDn (xi )̸=yi] · 1[S(xi)]∑m

i=1 1[S(xi)]
, (6)

whereDm = {(xi, yi)}mi=1 is the test or evaluation set and 1[·] denote the indicator function. In par-
ticular, the effectiveness of a selective model are expressed by drawing the risk-coverage curve (El-
Yaniv & Wiener, 2010) of its induced rejection function.

Note that, the empirical selective risk value is usually multiplied by 100.

4.3 BENCHMARK DETAILS

The method we propose relies on a state-of-the-art misclassification detection method to implement
the rejection option. As a consequence it can be used jointly with many popular out of the shelf
pre-trained models which are available nowadays. Compared to SelectiveNet (cf. Geifman & El-
Yaniv (2019)), ConfidNet (cf. Corbière et al. (2019)), and DeepGambler (cf. Liu et al. (2019)), our
method provides a solution to the selective classification problem that is less demanding in terms
of resources and that requires less parameters to be tuned. This is a clear advantage, especially for
scenarios in which it is hard to collect extra samples for parameter optimization.

For the three datasets, we used the entire training set for training the methods. We follow the
corresponding training recipe for each method as proposed in the original works1. For SelectiveNet,
a model is fit for every target coverege, and the practitioner should implement a custom loss that
might not be so easy to optimize depending on the task in hand. For ConfidNet, the auxiliary
confidence network adds a considerable overhead, specially for inference. The proposed architecture
has 1M extra parameters, which is already bigger that a DenseNet-121 model, which could limit
some applications, e.g., ML applications on the edge Murshed et al. (2022). For DeepGamblers,
there is a considerable amount of optimization needed on top of the basic cross entropy training,
which would require an extensive search of hyperparameters. In contrast, we propose a selector
with zeros hyperparameters and zero extra training or architectural changes.

From the methodology point of view, for every model, dataset, and method, we ran experiments with
5 different random seeds and we report error bars for all of our results. Also, the methods share the
same backbone architecture for the neural network, except for VGG in SelectiveNet, where we added
dropout layers at each block as in Geifman & El-Yaniv (2019). Compared to previous works, we
propose two extra neural network architectures, the ResNet and DenseNet, and a more challenging
benchmark with CIFAR-100. We uniformed the procedure of coverage calibration across methods,
which is unclear in some of the previous works.

1SelectiveNet: https://github.com/geifmany/selectivenet; ConfidNet: https:
//github.com/valeoai/ConfidNet; DeepGamblers: https://github.com/Z-T-WANG/
NIPS2019DeepGamblers.
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4.4 COVERAGE CALIBRATION DETAILS

For the three datasets, we partition the test dataset into two sets, one for coverage calibration only
and another for evaluation only. We refer to the first as calibration set and the second one as test
set. The calibration set corresponds to 10% of the original partition, note that we select the data
randomly for each of the five seeds. The coverage calibration algorithm is given in Algorithm 1
where Dm′ denotes the calibration dataset of size m′. Following previous works, we set as target
coverages τ ∈ {0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00}. Intuitively, in order to guarantee the target
coverage, we compute the Gini Impurity Score for all the samples in the calibration set and we order
these values in ascending order. Then, we select as final threshold the score value at position ⌈τ ·m′⌉
as this guarantee that at least ⌈τ ·m′⌉ samples will be classified.

We calibrated all of the methods with this same procedure to achieve fair and comparable results.

Algorithm 1: Coverage calibration algorithm for our proposed method

Data: Dm′ = {(xi, yi)}m
′

i=1, with m′ < m and m′ < n; target coverage τ ∈ [0, 1]
Result: γ⋆ threshold value that guarantees the target coverage on Dm′

SList← [ ] ▷ Initialize an empty list of Scores
for i← 1 to m′ do

SList.append(Gini(xi))

sort(SList, ascend=True) ▷ Sort SList in ascending order
return γ∗ = SList[⌈τ ·m′⌉]

5 MAIN RESULTS AND DISCUSSION

We discuss the empirical results obtained with our methods, and we compare them to the results
obtained with SelectiveNet, ConfidNet, and DeepGambler. Tab. 1 and Tab. 2 report the achieved
calibrated risk and calibrated coverage respectively, on CIFAR-10, across the different architectures
which we included in our evaluation. Fig. 1 and Fig. 2 report the performance achieved by the VGG-
16 architectures over all the considered benchmark datasets for each considered method. Extended
results for CIFAR-100 and SVHN are available in Appendix A.2, reported in Tab. 4 and Tab. 5
respectively. Moreover, additional plots are reported in Figs. 4 and 5, and Figs. 6 and 7, for DenseNet
and ResNet respectively.

(a) Calibrated risk on CIFAR-10. (b) Calibrated risk on CIFAR-100. (c) Calibrated risk on SVHN.

Figure 1: Calibrated risk versus target coverage for the VGG-16 model. Our post-training method
has superior performance on CIFAR-100 and comparable performance on CIFAR-10 and SVHN.

Crucially, our simple method, whose performance is consistently comparable to that of its competi-
tors, is able to outperform them in more challenging task such as classification on CIFAR-100. For
the sake of fairness, it is important to notice that this benchmark was not considered in Liu et al.
(2019) and in Geifman & El-Yaniv (2019). As a consequence, the optimized training procedures
for CIFAR-100 are not published alongside the aforementioned papers, and we resorted to using
the same training settings released for CIFAR-10. Clearly, it can be claimed that this would lead to
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(a) Calibrated coverage on CIFAR-
10.

(b) Calibrated coverage on CIFAR-
100.

(c) Calibrated risk on SVHN
placeholder

Figure 2: Calibrated coverage for the VGG-16 model, highlighting that every method tested can be
calibrated with a few extra data post-training training.

Table 1: Empirical selective risk in percentage for the classification benchmark with three models
for various target coverages on the CIFAR-10 benchmark. Bold font indicates best result for the
line.

Target
Coverage

Calibrated Risk

SelectiveNet ConfidNet DeepGamblers Ours

VGG-16
(CIFAR-10)

1.00 6.74±0.11 6.01±0.15 6.54±0.29 5.99±0.14
0.95 4.78±0.22 3.85±0.25 4.20±0.20 3.77±0.27
0.90 3.06±0.37 2.31±0.17 2.56±0.08 2.35±0.14
0.85 1.83±0.22 1.46±0.14 1.75±0.09 1.38±0.12
0.80 1.27±0.13 1.07±0.05 1.50±0.09 0.99±0.09
0.75 0.94±0.09 0.94±0.07 1.39±0.11 0.88±0.07
0.70 0.76±0.06 0.84±0.13 1.32±0.09 0.83±0.06

ResNet-34
(CIFAR-10)

1.00 7.42±0.36 4.37±0.15 4.79±0.10 4.38±0.13
0.95 5.21±0.51 2.24±0.22 2.66±0.20 2.24±0.25
0.90 3.69±0.29 1.28±0.09 1.58±0.09 1.26±0.11
0.85 2.17±0.24 0.82±0.09 0.99±0.10 0.79±0.11
0.80 1.37±0.26 0.62±0.07 0.76±0.18 0.57±0.09
0.75 0.87±0.22 0.5±0.06 0.67±0.18 0.48±0.06
0.70 0.68±0.07 0.46±0.06 0.62±0.17 0.39±0.06

DenseNet-121
(CIFAR-10)

1.00 7.12±0.26 5.92±0.19 5.74±0.15 5.90±0.23
0.95 5.10±0.46 3.71±0.29 3.67±0.24 3.72±0.27
0.90 3.41±0.38 2.42±0.24 2.24±0.17 2.43±0.24
0.85 2.27±0.17 1.51±0.12 1.58±0.23 1.50±0.14
0.80 1.67±0.25 1.01±0.13 1.38±0.25 0.98±0.09
0.75 1.28±0.14 0.75±0.15 1.24±0.19 0.72±0.17
0.70 1.11±0.18 0.59±0.13 1.12±0.19 0.55±0.10

sub-optimal results, and we believe that further optimization would improve the competitors’ perfor-
mance. However, the main takeaway is that, our simple method, can achieve high performance
with off the shelf models requiring no further optimization. This means that our framework is
extensible to any new classification task without adding any optimization or hyper-parameters
search burden on top of the base model’s training. This is clearly a considerable advantage for
practitioners willing to integrate a rejection option to their classification systems.

Tab. 2 and Fig. 2 show that all the methods are consistently good in terms of achieved empirical
coverage after the coverage calibration on the held out samples. The main takeaway is therefore the
fact that our proposed method which does not enjoy any ad-hoc training and/or tuning achieves the
same performance as the competitors. Coverage calibration is important, because in critical appli-
cations we want to guarantee that the target coverage will be achievable in practice. Our procedure
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should satisfy this condition as long as there is not a large drift between the test and the calibration
data distributions.

Table 2: Experiment with the VGG16 (CIFAR-10) model. The same behavior is observed for all the
models and datasets studied in this work.

Target
Coverage

Calibrated Coverage

SelectiveNet ConfidNet DeepGamblers Ours

1.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
0.95 0.95±0.01 0.95±0.01 0.95±0.01 0.95±0.00
0.90 0.91±0.01 0.90±0.01 0.89±0.01 0.90±0.01
0.85 0.85±0.01 0.85±0.01 0.84±0.01 0.85±0.01
0.80 0.81±0.01 0.80±0.01 0.79±0.01 0.80±0.01
0.75 0.76±0.01 0.75±0.01 0.75±0.01 0.75±0.01
0.70 0.70±0.01 0.70±0.01 0.71±0.01 0.71±0.02

5.1 RESULTS ON IMAGENET

In order to study how accuracy impacts the risk of a rejection option on a large scale problem, we
draw the following experiment. We took five off-the-shelf pre-trained ResNet models with different
number of parameters and increasing accuracy (ResNet-18, ResNet-34, ResNet-50, ResNet-101,
and ResNet-152) from Paszke et al. (2019). We evaluated the performance of our Gini selector
on the ILSVRC2012, or ImageNet-1K dataset (Deng et al., 2009) validation partition for each of
the target coverages. We used 10% of this partition to coverage calibration and 90% to evaluation
purposes. Tab. 3 shows that the empirical risk our method decreases with the accuracy of the base
model on the same task. Of course this has the cost of increasing the number of parameters. These
results reassures a very deterministic and consistent performance for our Gini selector, which scales
perfectly well to tasks of any size.

Table 3: Calibrated risk for our Gini selector for residual deep neural networks of increasing accu-
racy on the ImageNet dataset.

Target
Coverage

Calibrated Risk

ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152

1.00 30.09 26.58 19.57 18.19 17.56
0.95 27.35 23.80 17.32 15.53 14.90
0.90 24.81 21.37 15.34 13.35 12.70
0.85 22.35 18.47 13.69 11.78 10.84
0.80 20.02 16.02 12.27 9.79 9.03
0.75 17.77 14.07 11.10 8.08 7.38
0.70 15.18 12.02 10.05 6.52 6.08

Accuracy 69.76 73.30 80.35 81.67 82.35

5.2 PER-CLASS ANALYSIS OF THE CALIBRATED RISK

In Fig. 3 we report the per-class calibrated risk results of the proposed method together with those
of competitors on CIFAR10 and ResNet-34. The fixed target coverage is τ = 0.75 in Fig. 3a
and τ = 0.95 in Fig. 3b. As can be seen, in both figures, the distribution of calibrated risk is not
uniform among the classes, regardless of the method used. The classes ‘cats’ and ‘dogs’ are the most
exposed to risk, while ‘frogs’ and ‘horses’ are the least exposed. For all classes, the proposed method
outperforms its competitors (or performs equally well). SelectiveNet, on the other hand, stands out
as the worst method. The best performance between ConfidNet and DeepGamblers depends on the
class chosen. However, the gap between the results of the two methods on the classes ‘cats’ and
‘dogs’ suggests ConfidNet as the more stable of the two.
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(a) τ = 0.75 (b) τ = 0.95

Figure 3: Per-class analysis of the calibrated risk on CIFAR10 and ResNet-34.

5.3 LIMITATIONS OF THIS WORK

All the methods empirically evaluated in this work have been validated using an held out calibration
set. Our method makes no difference and it relies on this extra data as well to fix a threshold (the
γ in Eq. (4)) to be used at evaluation time. At validation time, we select the threshold which most
closely achieves the target coverage over the held out data, and then we test the performance in terms
of risk using the selected threshold. Lack of extra samples to implement this validation step clearly
represents a limitation for our proposed method.

Granese et al. (2021) presents a version of their framework which includes scaling of the logits and
input perturbation. Although we did not try these techniques in this work2, the fact that Gini(·)
relies on the self-confidence of a model means that the extreme case in which the considered model
is equally confident when it correctly classifies a sample and when it incorrectly classifies a sample,
represents yet another limitation. In this case further calibration techniques could be implemented
to avoid such an unfavorable scenario (cf. Guo et al. (2017)).

At this time, the proposed selective model can only be applied to classification tasks since the selec-
tor is based on soft-probability. We leave as future work its extension to other tasks.

6 FINAL REMARKS

We have presented a new method that can be used to implement the rejection option for pre-trained
models, based on a state-of-the-art misclassification detection method. We have empirically shown
that the simple and inexpensive method we propose achieves comparable, and sometimes better per-
formance w.r.t. more complex methods for selective classification when tested on popular datasets
and popular deep learning models.

The appeal of our proposed solution rests in the fact that it does not require further training or ex-
pensive tuning of the models and it can be used with any standard model, provided that its output
can be interpreted as a soft-distribution. Although ad-hoc training and loss functions seem like a
fairly smart way to implement rejection options, they come at the cost of tuning more hyperparam-
eters and adding more parameters to popular neural network models. We are convinced that these
methods are powerful and deserve further analysis. At the same time we claim that for many popular
classification models and benchmark dataset our simple solution provides good performance while
enjoying a much lighter framework.

That said, we would like to invite the community to reflect on the question: should we use ad-
ditional data and computational resource to make the soft-distribution output by the model more
reliable before resorting to more complex training procedures, at least for many popular applica-
tions? Techniques such as calibration (cf. Guo et al. (2017)) are particularly useful to correct the
overconfidence of modern deep learning models and can be used to improve the quality of the soft
distribution outputs, which in turn are used for post-training methods like the one proposed in this
paper.

2One of the paper’s goals is to show that the proposed method, even if much less complex than the com-
petitors, is not inferior. Since the performances are already comparable and, in most cases, superior, we leave
further fine-tuning as future work.
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A APPENDIX

A.1 ON THE DERIVATION OF GINI(·) FROM THE RÉNYI DIVERGENCE

Let us define the Rényi divergence, as:

Dα

(
PŶ |X(·,x)||QY

)
.
=

1

α− 1
log

∑
y∈Y

(
Pα
Ŷ |X(y|x)Q(1−α)

Y (y)
) , (7)

where PŶ |X(·,x) is the model soft-distribution for a fixed input sample x, and QY is a distribution
over the labels set Y . By fixing α = 2, Eq. (7) becomes

D2

(
PŶ |X(·,x)||QY

)
= log

∑
y∈Y

(
P 2
Ŷ |X

(y|x)

QY (y)

) . (8)

Let us now take a closer look at the argument of the logarithm. Let us fix the reference distribution
QY as a uniform distribution over the classes, i.e. QY = q, ∀y ∈ Y . Then, the argument of the
logarithm writes

1

q

∑
y∈Y

(
P 2
Ŷ |X(y|x)

)
, (9)

which corresponds to 1− Gini(x) multiplied by a constant.

Table 4: Empirical selective risk in percentage for the classification benchmark with three models
for various target coverages on the CIFAR-100 benchmark. Bold font indicates best result for the
line.

Target
Coverages

Calibrated Risk

SelectiveNet ConfidNet DeepGamblers Ours

VGG-16
(CIFAR-

100)

1.00 28.98±0.23 25.3±0.29 27.31±0.18 25.25±0.31
0.95 26.55±0.28 23.35±0.47 24.73±0.16 22.26±0.72
0.90 23.57±0.74 21.22±0.55 22.24±0.35 19.56±0.75
0.85 20.77±0.43 19.07±0.54 19.75±0.59 17.56±0.89
0.80 18.58±0.65 16.83±0.63 17.26±0.85 14.94±0.65
0.75 16.26±0.70 14.34±0.75 14.69±0.51 12.68±0.63
0.70 13.67±0.88 12.01±0.76 12.73±0.84 10.27±0.47

ResNet-34
(CIFAR-100)

1.00 30.82±0.40 20.68±0.38 23.72±0.83 20.59±0.43
0.95 28.37±1.02 18.51±0.51 21.27±0.83 17.84±0.45
0.90 27.45±0.91 16.63±0.58 18.59±1.04 15.19±0.36
0.85 25.52±0.68 14.45±0.39 16.29±0.65 13.05±0.47
0.80 22.99±1.76 12.57±0.36 14.20±0.64 10.78±0.30
0.75 21.59±1.12 10.58±0.46 12.18±0.61 8.77±0.36
0.70 18.86±1.11 8.94±0.62 10.45±0.65 6.91±0.27

DenseNet-121
(CIFAR-100)

1.00 30.63±0.57 25.92±0.26 25.65±0.49 25.98±0.27
0.95 28.31±0.57 23.36±0.49 23.27±0.19 23.10±0.52
0.90 25.76±0.21 20.90±0.68 21.21±0.19 20.79±0.42
0.85 23.57±0.75 18.51±0.68 19.06±0.19 18.26±0.59
0.80 22.06±0.32 15.95±0.70 17.05±0.44 15.62±0.74
0.75 19.42±0.82 13.66±0.69 15.35±0.50 13.24±0.54
0.70 17.20±0.88 11.33±0.52 13.60±0.31 11.01±0.50

A.2 EXTENDED RESULTS

In this section we report extended results which complement the analysis of Tab. 1 and Tab. 2. In
particular, Tab. 4 and Tab. 5 report the achieved results in terms of calibrated risk when DenseNet-
121 and ResNet-34 are considered.
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Table 5: Empirical selective risk in percentage for the classification benchmark with three models
for various target coverages on the SVHN benchmark. Bold font indicates best result for the line.

Target
Coverages

Calibrated Risk

SelectiveNet ConfidNet DeepGamblers Ours

VGG-16
(SVHN)

1.00 3.64±0.15 4.32±0.12 20.63±1.16 4.33±0.12
0.95 1.64±0.10 2.46±0.18 17.42±1.10 2.13±0.14
0.90 1.01±0.08 1.50±0.22 14.20±0.73 1.14±0.13
0.85 0.78±0.06 1.13±0.34 11.02±0.71 0.73±0.06
0.80 0.67±0.05 1.01±0.43 7.90±0.84 0.58±0.05
0.75 0.60±0.03 1.00±0.45 5.36±0.86 0.56±0.05
0.70 0.62±0.03 0.99±0.45 3.28±0.58 0.55±0.05

ResNet-34
(SVHN)

1.00 3.93±0.20 3.87±0.10 24.07±1.71 3.86±0.10
0.95 2.32±0.27 1.78±0.09 21.19±1.80 1.74±0.17
0.90 0.95±0.10 0.96±0.08 18.23±2.17 0.92±0.06
0.85 0.66±0.04 0.70±0.05 14.85±2.27 0.66±0.03
0.80 0.56±0.05 0.68±0.05 11.13±1.95 0.63±0.02
0.75 0.55±0.04 0.66±0.04 7.92±1.77 0.62±0.03
0.70 0.54±0.06 0.65±0.03 5.08±1.41 0.62±0.02

DenseNet-121
(SVHN)

1.00 4.09±0.06 4.29±0.08 26.89±2.38 4.28±0.09
0.95 1.92±0.12 2.16±0.16 23.91±2.65 2.11±0.13
0.90 1.18±0.09 1.27±0.07 20.77±2.68 1.27±0.05
0.85 1.00±0.04 0.97±0.04 17.36±2.86 0.95±0.05
0.80 0.92±0.07 0.86±0.05 14.01±2.93 0.84±0.05
0.75 0.88±0.14 0.80±0.05 10.61±2.84 0.80±0.05
0.70 0.75±0.04 0.76±0.05 7.39±2.72 0.75±0.06

A.3 ADDITIONAL PLOTS

In this section we report additional plots which complement the analysis of Fig. 1 and Fig. 2 over
the other considered architectures, namely DenseNet-121 and ResNet-34.

(a) Calibrated risk on CIFAR-10 (b) Calibrated risk on CIFAR-100 (c) Calibrated risk on SVHN

Figure 4: Calibrated risk for DenseNet
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(a) Calibrated coverage on CIFAR-
10

(b) Calibrated coverage on CIFAR-
100

(c) Calibrated risk on SVHN
placeholder

Figure 5: Calibrated coverage for DenseNet

(a) Calibrated risk on CIFAR-10 (b) Calibrated risk on CIFAR-100 (c) Calibrated risk on SVHN

Figure 6: Calibrated risk for ResNet

(a) Calibrated coverage on CIFAR-
10

(b) Calibrated coverage on CIFAR-
100

(c) Calibrated risk on SVHN
placeholder

Figure 7: Calibrated coverage for ResNet
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