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ABSTRACT

We consider a class of structured, nonconvex, nonsmooth optimization problems
under orthogonality constraints, where the objectives combine a smooth function,
a nonsmooth concave function, and a nonsmooth weakly convex function. This
class of problems finds diverse applications in statistical learning and data science.
Existing methods for addressing these problems often fail to exploit the specific
structure of orthogonality constraints, struggle with nonsmooth functions, or re-
sult in suboptimal oracle complexity. We propose OADMM, an Alternating Di-
rection Method of Multipliers (ADMM) designed to solve this class of problems
using efficient proximal linearized strategies. Two specific variants of OADMM
are explored: one based on Euclidean Projection (OADMM-EP) and the other on
Riemannian Retraction (OADMM-RR). Under mild assumptions, we prove that
OADMM converges to a critical point of the problem with an ergodic convergence
rate of O(1/€%). Additionally, we establish a super-exponential convergence rate
or polynomial convergence rate for OADMM, depending on the specific setting,
under the Kurdyka-Lojasiewicz (KL) inequality. To the best of our knowledge,
this is the first non-ergodic convergence result for this class of nonconvex nons-
mooth optimization problems. Numerical experiments demonstrate that the pro-
posed algorithm achieves state-of-the-art performance.

Keywords: Orthogonality Constraints; Nonconvex Optimization; Nonsmooth
Composite Optimization; ADMM; Convergence Analysis

1 INTRODUCTION

This paper focuses on the following nonsmooth composite optimization problem under orthogonal-
ity constraints (‘2 means define):
min  F(X) 2 f(X) — g(X) + h(A(X)), s.t. XX =1,. (1)
XERPXT
Here,n > r, A(X) € R™ is a linear mapping of X, and I, is a r xr identity matrix. For conciseness,

the orthogonality constraints X" X = I,. in Problem @) is rewritten as X € M € R™*", with M
representing the Stiefel manifold in the literature (Edelman et al., | 1998 |Absil et al., |2008b).

We impose the following assumptions on Problem throughout this paper. (A-i) f(X) is Ly-
smooth, satisfying |V f(X) — Vf(X')||[r < Ly||X — X'||r holds for all X, X’ € R"*". This
implies: |f(X) — f(X') = (Vf(X'),X = X')| < %HX — X'||2 (cf. Lemma 1.2.3 in (Nesterov,
2003)). We also assume that f(X) demonstrates C'y-Lipschitz continuity, with |V f(X)||g < C for
all X € M. The convexity of f(X) is not assumed. (A-ii) The function g(-) is convex, proper, and
C,-Lipschitz continuous, though it is not necessarily smooth. (A-iii) The function h(-) is proper,
lower semicontinuous, C},-Lipschitz continuous, and potentially nonsmooth. Also, it is weakly
convexity with constant W, > 0, which implies that the function h(y) + Y& ||y |3 is convex for all

y € R™. (A-iv) The proximal operator, P,,(y’) £ arg miny, 2% ly — ¥'||2 + h(y), can be computed
efficiently and exactly for any given i > 0 and y’ € R™.
Problem (I)) represents an optimization framework that plays a crucial role in a variety of statisti-

cal learning and data science models. These models include sparse Principal Component Analysis
(PCA) (Journée et al.,|2010; Lu & Zhang, 2012), deep neural networks (Cho & Lee}, 2017; | Xie et al.,
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2017; Bansal et al.| 2018} |Cogswell et al.,[2016; Huang & Gaoj, |2023)), orthogonal nonnegative ma-
trix factorization (Jiang et al., |2022)), range-based independent component analysis (Selvan et al.,
2013)), and dictionary learning (Zhai et al.l 2020).

1.1 RELATED WORK

» Optimization under Orthogonality Constraints. Solving Problem (I is challenging due to
the computationally expensive and non-convex orthogonality constraints. Existing methods can be
divided into three classes. (i) Geodesic-like methods (Edelman et al., |[1998; |/Abrudan et al., 2008}
Absil et al. [2008b; Jiang & Dai, 2015). These methods involve calculating geodesics by solv-
ing ordinary differential equations, which can introduce significant computational complexity. To
mitigate this, geodesic-like methods iteratively compute the geodesic logarithm using simple lin-
ear algebra calculations. Efficient constraint-preserving update schemes have been integrated with
the Barzilai-Borwein (BB) stepsize strategy (Wen & Yin, [2013; Jiang & Dail, [2015)) for minimizing
smooth functions under orthogonality constraints. (ii) Projection and retractions methods (Absil
et al.| [2008b}; |Golub & Van Loan, 2013)). These methods maintain orthogonality constraints through
projection or retraction. They reduce the objective value by using its current Euclidean gradient
direction or Riemannian tangent direction, followed by an orthogonal projection operation. This
projection can be computed using polar decomposition or singular value decomposition, or approx-
imated with QR factorization. (iii) Multiplier correction methods (Gao et all |2018 2019} Xiao
et al.}2022). Leveraging the insight that the Lagrangian multiplier associated with the orthogonality
constraint is symmetric and has an explicit closed-form expression at the first-order optimality con-
dition, these methods tackle an alternative unconstrained nonlinear objective minimization problem,
rather than the original smooth function under orthogonality constraints.

» Optimization with Nonsmooth Objectives. Another challenge in addressing Problem (] stems
from the nonsmooth nature of the objective function. Existing methods for tackling this challenge
fall into three main categories. (i) Subgradient methods (Ferreira & Oliverra, |1998; [Hwang et al.,
20155 |Li et al} [2021)). Subgradient methods, analogous to gradient descent methods, can incorpo-
rate various geodesic-like and projection-like techniques. However, they often exhibit slower con-
vergence rates compared to other approaches. (if) Proximal gradient methods (Chen et al.l [2020).
These methods use a semi-smooth Newton approach to solve a strongly convex minimization prob-
lem over the tangent space, finding a descent direction while preserving the orthogonality constraint
through a retraction operation. (iii) Operator splitting methods (Lai & Osher, |2014; |Chen et al.,
2016; Zhang et al.| 2020b). These methods introduce linear constraints to break down the original
problem into simpler subproblems that can be solved separately and exactly. Among these, ADMM
is a promising solution for Problem due to its capability to handle nonsmooth objectives and
nonconvex constraints separately and alternately. Several ADMM-like algorithms have been pro-
posed for solving nonconvex problems (Bot & Nguyen, [2020; Bot et al.,[2019;Wang et al., 2019; [Li
& Pong, 20155 He & Yuan,|2012;|Yuan, [2024} Zhang et al.,|2020b), but these methods fail to exploit
the specific structure of orthogonality constraints or cannot be adapted to solve Problem (I)). (iv)
Other methods. OBCD (Yuan, 2023) has been proposed to solve a specific class of our problems,
while the exact augmented Lagrangian method ManlAL was introduced in (Deng et al., [2024).

» Detailed Discussions on Operator Splitting Methods. We list some popular variants of operator
splitting methods for tackling Problem (T)). Initially, two natural splitting strategies are used in the
literature:

minx y Fi(X,y) £ f(X) = g(X) + h(y) + Zm(X), s.t. AX) =y 2)

minx v F2(X,Y) £ f(X) — g(X) + h(AX)) + Zm(Y), st. X =Y. 3)

(@) Smoothing Proximal Gradient Methods (SPGM, (Beck & Rosset, 2023; Bohm & Wright,
2021)) incorporate a penalty (or smoothing) parameter ;1 — 0 to penalize the squared error in
the constraints, resulting in the subsequent minimization problem (Beck & Rosset, [2023; Bohm
& Wright|, 2021; [Chen, 2012): minx , F1(X,y) + ﬁHA(X) — yl||5. During each iteration,
SPGM employs proximal gradient strategies to alternatively minimize w.rt. X and y. (b)
Splitting Orthogonality Constraints Methods (SOCM, (Lai & Osher, 2014)) use the following
iteration scheme: X‘*! ~ argminx Fo(X,Y?) + (Z4,X — Y*) + 2||X — Y|[& Y'*! €
arg miny Fo (X!, Y) + (Z8, X YY) + 2| XM — Y|, and Z1H! = ZF + B(XTH - Y,
where 3 is a fixed penalty constant, and Z! is the multiplier associated with the constraint X = Y at
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Table 1: Comparison of existing methods for solving Problem .

Reference h(A(X)) 9(X) Notable Features Complexity | Conv. Rate

SOCM (Lai & Osher|[2014) convex h(-) empty [o=1,a=0 unknown unknown

MADMM (Kovnatsky et al.|[2016} | convex A(:) empty |c=1,a=0 unknown unknown

RSG (Li et al.[2021] weakly convex h(-) | empty | — () unknown

ManPG (Chen et al.|[2020] hA(X)) = || X]l1 | empty | hard subproblem 0(e?) unknown

OBCD (Yuan[[2023} separable h(-) empty | hard subproblem 0(e?) unknown

RADMM (Li et al.|[2022) convex h(-) empty |o=1a=0 () unknown

ManlAL (Deng et al.[|2024) convex h(-) empty | inexact subproblem | O(e~?) unknown

SPGM (Beck & Rosset][2023) convex h(-) empty | — O(e7?) unknown
OADMM-EPJours] weakly convex h(-) | convex | 0 € [1,2),a>0 | O(e?) O(1/exp(T%)), i € (0,2]
OADMM-RR]ours] weakly convex h(-) | convex | o € [1,2), MBB O(e?) or O(1/T%),ii € (0, +00)

Note : This is known as super-exponential convergence, please refer to Theorem a) for more details.
Note I: This is known as polynomial convergence, please refer to Theorem b) for more details.

iteration ¢. (¢) Similarly, Manifold ADMM (MADMM, (Kovnatsky et al.,[2016)) iterates as follows:
X! ~ arg mink Fy (X, y?)+(z!, A(X)—yt>+§ [|AX)—y? H%, yitl € arg miny, Fy (XL y)+
(2!, AX"H) — y) + S| AXHY) — y||2, and 2! = 2t + B(A(X!!) — y'*1), where 2" is the
multiplier associated with the constraint A(X) — y = 0 at iteration ¢. (d) Like MADMM, Rieman-
nian ADMM (RADMM, (Li et al.| 2022)) operates using the first splitting strategy in Equation (2).
In contrast, it employs a Riemannian retraction strategy to solve the X-subproblem and a Moreau
envelope smoothing strategy to solve the y-subproblem.

Contributions. We compare existing methods for solving Problem (1)) in Table|l} and our main con-
tributions are summarized as follows. (f) We introduce OADMM, a specialized ADMM designed for
structured nonsmooth composite optimization problems under orthogonality constraints in Problem
(1). Two specific variants of OADMM are explored: one based on Euclidean Projection (OADMM-
EP) and the other on Riemannian Retraction (OADMM-EP). Notably, while many existing works
primarily address cases where g(X) = 0 and h(-) is convex, our approach considers a more gen-
eral setting where h(-) is weakly convex and g(X) is convex. (ii) OADMM could demonstrate fast
convergence by incorporating Nesterov’s extrapolation (Nesterov, 2003) into OADMM-EP and a
Monotone Barzilai-Borwein (MBB) stepsize strategy (Wen & Yin, [2013)) into OADMM-RR to po-
tentially accelerate primal convergence. Both variants also employ an over-relaxation strategy to
enhance dual convergence (Goncalves et al., [2017; [Yang et al., 2017 |L1 et al., [2016)). (iii) By in-
troducing a novel Lyapunov function, we establish the convergence of OADMM to critical points of
Problem (1)) within an oracle complexity of O(1/¢?), matching the best-known results to date (Beck
& Rosset, 2023; Bohm & Wright, [2021). This is achieved through a decreasing step size for up-
dating primal and dual variables. In contrast, RADMM employs a small constant step size for such
updates, resulting in a sub-optimal oracle complexity of O(e~*) (Li et al., 2022). (iv) We establish
a super-exponential convergence rate or polynomial convergence rate for OADMM, depending on
the specific setting, under the Kurdyka-Lojasiewicz (KL) inequality, providing the first non-ergodic
convergence result for this class of non-convex nonsmooth optimization problems.

2 TECHNICAL PRELIMINARIES

This section provides some technical preliminaries on Moreau envelopes for weakly convex func-
tions and manifold optimization.

Notations. We define [n] £ {1,2,...,n}. We use A" (-) to denote the adjoin operator of .A(-) with
(A(X),z) = (X, AT(z)) forall X € R"*" and z € R™. We define A = maxv ||[AV)|e/| V.
We use Zn(X) to denote the indicator function of orthogonality constants. Further notations, tech-
nical preliminaries, and relevant lemmas are detailed in Appendix Section [A]

2.1 MOREAU ENVELOPES FOR WEAKLY CONVEX FUNCTIONS

We provide the following useful definition.

Definition 2.1. For a proper convex, and Lipschitz continuous function h(y) : R™ +— R, the Moreau
envelope of h(y) with the parameter j > 0 is given by h,,(y) = ming h(¥) + i Iy — yli3
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We show some useful properties of Moreau envelope for weakly convex functions.

Lemma 2.2. Let h : R™ — R to be a proper, Wy-weakly convex, and lower semicontinuous
Sunction. Assume p € (0, Wh_ ). We have the following results (Bohm & Wright, |2021)). (a) The
function h,(-) is Cp-Lipschitz continuous. (b) The function h,,(-) is continuously differentiable with

gradient Vh,(y) = %L(y ]P’ .(y)) for all y, where P,(y) £ argming h(y) + 2%”5’ vl

This gradient is max (=1, - uW )-Lipschitz continuous. In particular, when p € (0, 2W ), the
condition =" > 5 VZ*{,V ensures that hy,(y) is (™ ')-smooth and ( YY-weakly convex.

Lemma 2.3. (Proof in Appendlx Assume 0 < ps < py < 37—, and fixing'y € R™. We have:
0 < iy () =y (y) < min{ £ 1} - (1 — ) C.

Lemma 2.4. (Proof in Appendlx Assume 0 < po < p1 <
VA, (y) = Vi, (¥)Il < (42 = 1)Ch.

Lemma 2.5. (Proof in Appendix Assume that h(y) is Wy,-weakly convex, u € (0, 2W; l, B>
p~t. Consider the following strongly convex optimization problem: y = arg miny h,(y) + g lly —
b||3, which is equivalent to: (¥,y) = argminy y h(y’) + ﬁ Iy’ = yl3+ 2|y —b||3. We have: (a)
y = BEEE2 where § = arg miny, h(y)+ g [y —blI3 = Plus1/s(b). (B) B(b—y) € Ih(¥).
() ||y =¥l < uCh.

Remark 2.6. (i) Lemmas and presented in this paper are novel. (ii) The upper bound in

Lemma is slightly better than the bound established in Lemma 4.1 of (Bohm & Wright, |2021).
(iii) Lemma 2.5]is very critical in our algorithm development and theoretical analysis.

< 2W , and fixing y € R™. We have:

2.2 MANIFOLD OPTIMIZATION

We define the e-stationary point of Problem (1} as follows.

Definition 2.7. (First-Order thimality Cq‘nditions, (Chen et al., 2020; [L1 et al., 2022} Beck &
Rosset, 2023))) The solution (X, ¥, Z) with X € M is called an e-stationary point of Problem (1)) if:
Crit(X, §,%) < e, where Crit(X,y,z) £ ||A(X) = y|| + [|0h(y) — 2l| + || Projp, p(VF(X )
99(X) + A"(z))||r. Here, according to (Absil et al., [2008a), for all X € M and A € R™ ", w
have: Projp, (A) = A — IX(ATX +XTA).

The proposed algorithm is an iterative procedure. After shifting the current iterate X € M in the
search direction, it may no longer reside on M. Therefore, we must retract the point onto M to
form the next iterate. The following definition is useful in this context.

Definition 2.8. A retraction on M is a smooth map (Absil et al.| |2008a): Retrx (A) € M with
X € M and A € R " satisfying Retrx (0) = X, and limry m5a—0 HRetrX(HAA)”_FX_AHF =0
forany X € M.

Remark 2.9. Several retractions on the Stiefel manifold have been explored in literature (Absil &
Malick, 2012 |Absil et al., |2008b)). We present two examples below. (i) Polar Decomposition-Based
Retraction: Retrx(A) = (X + A)(I, + ATA)~2 (ii) QR-Decomposition-Based Retraction:
Retrx (A) = qf (X 4+ A), where qf (X) is the Q-factor in the thin QR-decomposition of X.

The following lemma concerning the retraction operator is useful for our subsequent analysis.

Lemma 2.10. ((Boumal et al.,[2019)) Let X € M and A € Tx M. There exists positive constants
{k, k} such that || Retrx (A) — X||¢ < k|| Al|r, and || Retrx (A) — X — Allr < 1k[|A|E

Furthermore, we present the following three insightful lemmas.

Lemma 2.11. (Proofin Appendzx.) B.4) Let X € M and A € R"*", we have || Projp, p(A)|F <
A

Lemma 2.12. (Proof in Appendix Let p > 0, G € R™*", and X € M. We define G, £ G —
pXGTX —(1—p)XXTG. It follows that: (a) max(1,2p)-(G,G,) > ||G,||2 > min(1, p*)||G1 3.
(b) min(1,2p)[[G12llF < [|Gy[lF < max(1,2p)[|Gy 2.
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Lemma 2.13. (Proof in Appendix [B.6) Consider the following optimization problem:
minxenm f(X), where f(X) is differentiable. For all X € M, we have: dist(0,90Ix(X) +
V(X)) < VFAX) = XV (X)X

Remark 2.14. The matrix G, € R"*" in Lemma ﬂ] is closely related to the search descent
direction of the proposed OADMM-RR algorithm. While one can set p to typical values such as 1

or 1/2, we consider the setting p € (0, 00) to enhance the versatility of OADMM-RR, aligning with
(Liu et al.| 2016} Jiang & Dai, |2015)).

3 THE PROPOSED OADMM ALGORITHM

This section provides the proposed OADMM algorithm for solving Problem (T)), featuring two vari-
ants, one is based on Euclidean Projection (OADMM-EP) and the other on Riemannian Retraction
(OADMM-RR).

Using the Moreau envelope smoothing technique, we consider the following optimization problem:

tin £(X) — 9(%X) + hu(y) + Tu(X), s:t. AX) =y, @

)

where ¢ — 0, and h,(y) is the Moreau Envelope of h(y). Importantly, h,(y) is (1 ~')-smooth
when g < ﬁh, according to Lemma It is worth noting that similar smoothing techniques have
been used in the design of augmented Lagrangian methods (Zeng et al., |2022), and minimax opti-
mization (Zhang et al.,2020a), and ADMMs (Li et al.} [2022). We define the augmented Lagrangian

function of Problem (@) as follows:
L(X,y32.1) = F(X) + (2, AX) = y) + FIAX) =y ~9(X) + hu(y) + Zu(X). ()

£ S(X,y;2:8)

Here, z is the dual variable for the equality constraint, u is the smoothing parameter linked to the
function h(y), S is the penalty parameter associated with the equality constraint, and Zp4(X) is the
indicator function of the set M.

In simple terms, OADMM updates are performed by minimizing the augmented Lagrangian function
L(X,y,z; 3, 1) over the primal variables {X*, y'} at each iteration, while keeping all other primal
and dual variables fixed. The dual variables are updated using gradient ascent on the dual problem.

For updating the primal variable X, we use different strategies, resulting in distinct variants of
OADMM. We first observe that the function S(X,y?;zt; %) is £(8%)-smooth w.rt. X, where

(B = 5tK2 + L;. In OADMM-EP, we adopt a proximal linearized method based on Euclidean
projection (Lai & Osher}, 2014)), while in OADMM-RR, we apply line-search methods on the Stiefel
manifold (Liu et al.,[2016).

We detail iteration steps of OADMM in Algorithm|[1} and have the following remarks.

(a) To achieve possible faster dual convergence, we apply an over-relaxation step size with o €
(1, 2) for updating the dual variable z, as suggested by previous studies (Gongalves et al., 2017}
Yang et al.| 2017 Li et al.| 2016} [2023)).

(b) To accelerate primal convergence in OADMM-EP, we incorporate a Nesterov extrapolation
strategy with parameter a € (0, 1).

(¢) To enhance primal convergence in OADMM-RR, we use a Monotone Barzilai-Borwein (MBB)
strategy (Wen & Yin, 2013) with a dynamically adjusted parameter b' to capture the problem’s
curvature ['} The parameters {~, 6} represent the decay rate and sufficient decrease parameter,
commonly used in line search procedures (Chen et al., 2020)).

(d) The X-subproblem is solved as: X't! = argminxep | X — X'||2 = UVT, where X’ =
X! — G'/(00(")), and Udiag(x)VT = X' is the using singular value decomposition of X',

(e) The y-subproblem can be solved using the result from Lemma[2.3]

(f) For practical implementation, we recommend the following default parameters: p = 1/3, 6 =
1.0l,c=11,p=1,7v=1/2,§ =103, =1,a = (e)ﬁ)% — 10712,

"Following (Wen & Yin, 2013), one can set b° = (S’ S*)/(S* Z*) or b* = (S', Z")/(Z",Z"), where
St=X'-X""1tand Z' = thl — G}, with G} being the Riemannian gradient.
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Algorithm 1: OADMM: The Proposed ADMM for Solving Problem (1J.
Initialization:
Choose {X°,y?,z°}. Choose p € (0,1), £ € (0,00), 6 € (1,00), 0 € [1,2).
Choose x € (1 + 4wé, o0), where w £ +%+ .52 (0/(2—0))% e =¢
Choose (Y sufficiently large such that QB >2
1
For OADMM-EP, choose o € [0, W)
For OADMM-RR, choose o = 0, p € (0,00), 7 € (0,1), 8 € (0, sraiizyy)-
for ¢t from 0 to 7" do
S1) Set 7 = BO(1 + &%), ut = x /B,
S2) Update the primal variable X: if OADMM-EP then
Set X! = X! + (X! — X1, G € VxS(XL, yt; zt; 58) — 9g(X?).

X € arg ming e pm (X — X, GP) + %\\X — X1||2, where £(3t) & AR’ + Ly.

1
o
0

end
if OADMM-RR then

Set G € VxS(X!,y'; 2! f) — 9g(X?), L(X) £ L(X,y"; z; 8, ut). Set
Gl 2 G' — pX'[G]TX! — (1 — p)X'[X!]TG". Set b € (b, 5) as the BB step size,
where b, b € (0,00). Set X1 = Retrx: (—n'G}), where n* £ £ 5, ’ . and
JE€ {0,1,2,...}is the smallest integer that:
L(Retrx: (—n'G})) — L(X') < —n*[|G} 2.

end

S3) Update the primal variable y: y'*! = argminy, h,,« (y) + ; |y — bl|3, where

t+1
btiyt — %VyS(XHl,yt, z*; B). It can be solved as: y*t! = % where

y = P[p«“rl/ﬁ‘](b)'
S4) Update the dual variable z: z' 7! = 2zt + o8t (A(X!T1) — yttl)

end

4 ORACLE COMPLEXITY

This section details the oracle complexity of Algorithm [I]
Wedefinee, = &, ¢, £ J(1-H29) 6 £ (6-1)/(2-0),5 £ (0/(2-0))%,w & L+ 35+ 5.
We define the potential function (or Lyapunov function) for all ¢ > 1, as follows:
CH O(X" X"y 25, 8 Tt
L(X',yt 2% 85 ™) + O + T + 28 + X, (6)

A
L

where Tt 2 4waC}2L1’ 7t 2 woa? B A(XY) — yt|2, and Xt £ a(9+12)€(ﬁ ) Xt — X112,
Additionally, we define:

ta Hyt—yt_ilIHIA(X) Y "+ IX* = X7t|lr, OADMM-EP; 7
Iy =y 7+ IAX) = ¥l + 1 7:GL 2 lIF, OADMM-RR.

We have the following useful lemma, derived using the first-order optimality condition of y**!
Lemma 4.1. (Proof in Section Bounding Dual using Primal) We have: (@) Vt > 0, z" — (2" —
z'H) = Vhy (y'™1) € OMy*™). () vt > 1, |27 — 2|3 < 6(||z" —2' 1[5 — ||z —2]|3) +
26(B*/x)? Iy =y 13 +26CR (3 — #5)-

Remark 4.2. Here, for OADMM-RR, we set o = 0, resulting in Xt = 0 for all t. (i) With the
choice o = 1, we have: Vh -1 (y') =z, and ||z'T' — z*|| < ||Vhe(y") = Vi (yh)]).
Lfmma 4.3. (Proofin Appendix (a) It holds that B'T < BY(1 + £). (b) There exists constant
{, £} such that B*¢ < ¢(B) < BUL.
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The subsequent lemma demonstrates that the sequence {©!}2°, is always lower bounded.

Lemma 4.4. (Proof in Section For all t > 1, there exists constants {X,7,y,0} such that
X le <X, [z <7 [ly']| < ¥, and ©° > ©.

The following lemma is useful for our subsequent analysis, applicable to both OADMM-EP and
OADMM-RR.

Lemma 4.5. (Proof in Appendix Sufficient Decrease for Variables {y,z, 3, u}) We have
L(xt+1,yt+1,zt+1; t+1”ut) _ (X +1,yt’zt;ﬂt’ut71)+(ﬂt *Ht71)02+Tt+1 _ Tt 7t
7'+ e B AXTY) —y ™3 < ey By -y I3

In the remaining content of this section, we provide separate analyses for OADMM-EP and
OADMM-RR.

4.1 ANALYSIS FOR OADMM-EP

Using the optimality condition of X**!, we derive the following lemma.

Lemma 4.6. (Proof in Appendix Sufficient Decrease for Variable X) We define £, £
1ell, where e, £ 0 —1 — a2+ &1 +6) > 0. We have L(X" yt 2% gt =) —
L(Xt,yt,zt;ﬂt,‘util) S 7€mﬂt||Xt+1 _ Xt||l2: + Xt _ Xt+1.

Combining the results from Lemmas 4.5 and[4.6] we arrive at the following lemma.
Lemma 4.7. (Proof in Appendix|C.6) We have: (a) B*{c.|| A(X*1) —y! 13 +¢, [yt — y! |3+
|| X+ — XtHI%} < et —ottl () % 23;1 Btettl < O(T(pfl)/Q)_

Finally, we have the following theorem regarding the oracle complexity of OADMM-EP.

Theorem 4.8. (Proof in Appendix Letp = 1/3. We have: - Z?:l Crit(XHL gt zi+l) <
O(T=Y/3). In other words, there exists t < T such that: = >°[_ Crit(X!*1, g1, 2t+1) < ¢
provided that T > O(1/€3).

Remark 4.9. The oracle complexity of OADMM-EP matches the best-known complexities currently
available to date (Beck & Rosset, 2023} |Bohm & Wright, |2021).

4.2 ANALYSIS FOR OADMM-RR

Using the properties of the line search procedure for updating the variable X‘*!, we deduce the
following lemma.

Lemma 4.10. (Proof in Appendix Sufficient Decrease for Variable X) We define ¢, =
§¥ybmin(1,2p)* > 0, where ¥ £ 2(1/max(1,2p) — §)/(¢kb + gkb/B°) > 0. We have: (a)
For any ¢t > 0, if j is large enough such that 47 € (0,7), then the condition of the line search proce-
dure is satisfied. (b) It follows that: L(X‘+_1,¥t,zt;ﬂt,ut) — L(Xt yt 2t gt ut) < —%||£G§/2H%
Here, g is a constant that ||G!|¢ < g, {k,k} are defined in Lemma [2.10| and {p,~, ,b,b} are
defined in Algorithm

Remark 4.11. By Lemma a ), since 7 is a universal constant and ~J decreases exponentially,
the line search procedure of OADMM-RR will terminate in log(7)/log(y) + 1 = O(1) time.

Combining the results from Lemmas and 4.10} we obtain the following lemma.

Lemma 4.12. (Proof in Appendix|C.9) We have: (a) B*{c.||A(X!) —y* 1|3 +e, |y —y! |3+
T _

exl 3Gl pllF} < O = O (b) 137, BTt <O(TW=1/2),

Finally, we derive the following theorem on the oracle complexity of OADMM-RR.

Theorem 4.13. (Proof in Appendix Let p = 1/3. We  have:
T SO Crit(XPH gt gty < O(T=Y/3). In other words, there exists T < T such that:
ST Crit(X L 31 21 < ¢, provided that T > O(1/€).

Remark 4.14. Theorem[4.13|mirrors Theorem[d.8 and OADMM-RR shares the same oracle com-
plexity as OADMM-EP.
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5 CONVERGENCE RATE

This section provides convergence rate of OADMM-EP and OADMM-RR. Our analyses are based
on a non-convex analysis tool called KL inequality (Attouch et al.| [2010; [Bolte et al., 2014} |[Li &
Linl 2015; |L1 et al.} [2023).

We define the Lyapunov function as: O(X,X™,y,z; 8,6 ,u",t) 2 L(X,y,z;8,u") +
wio?B | AX) — y|2 + MHX X~ ||F 468021 + C2u, where we let o = 0 for
OADMM-RR. We define w = {X, X~ ,y,z}, wt & {X!, X*" 1 y' z'},u 2 {3,87,u",t}, and
ut £ {Bt, B, ut=1 t}. Thus, we have ©F = O(w';ut). We denote w™ as a limiting point of
Algorithm T

We make the following additional assumptions.

Assumption 5.1. (Kurdyka-Lojasiewicz Inequality (Attouch et all 2010)). Consider a semi-
algebraic function ©(wt;ut) w.rt. wt for all t, where w' is in the effective domain of ©(w?; ut).
There exist 7 € (0,400), ¢ € [0,1), a neighborhood Y of w*, and a continuous and con-
cave desingularization function ¢(s) = és'=% with ¢ > 0 and s € [0,7) such that, for
all wt € Y satisfying O(w',u') — O(w>,u>) € (0,7), it holds that: ¢'(O(w';u’) —
O(w™;u™)) - dist(0, 00 (wt; ut)) > 1. Here, dist(0, 90 (w';ut)) 2 {dist*(0, 9xO(wt; u?)) +
dist?(0, 9x - O(wt; ut)) + dist?(0, 8, O (wt; ut)) + dist*(0, 8,0 (wt; ut))}1/2.

Assumption 5.2. The function g(X) is Lg-smooth such that ||V g(X)—Vg(X')|lr < Lg||X—X||¢
holds for all X € M and X' € M.

Remark 5.3. Semi-algebraic functions, including real polynomial functions, finite combinations,
and indicator functions of semi-algebraic sets, commonly exhibit the KL property and find extensive
use in applications (Attouch et al.| | 2010).

We present the following lemma regarding subgradient bounds for each iteration.

Lemma 5.4. (Proof in Section|D.] Subgradlent Bounds) (@) For OADMM-EP, there exists a con-
stant K > 0 such that: dist(0, 90 (w!; u )) BK (et + e!=1). (b) For OADMM- RR, there exists
a constant X > 0 such that: dist(0, 8@(W u')) < gtKe'.

Remark 5.5. Lemma significantly differs from prior work that used a constant penalty due to
the crucial role played by the increasing penalty.

The following theorem establishes a finite length property of OADMM.

Theorem 5 6. (Proof in Section A Finite Length Property) We define d* = Y72, e't1. We
define ¢t = o(O(wh;ut) — O(w™>; u™)), where @(-) is the desingularization function defined in
Assumptzonﬂ (a) We have the following recursive inequality for both OADMM-EP and OADMM-
RR: (e!t1)? < (ef + et 1) - K(¢f — @t1), where K = —35 - and K is defined in Lemma

) min(e;,ey,6q)’°
(b) It holds that ¥t > 1, d* < e + e~ + 4K . The sequence {w'}°, has the finite length
property that d* < e' + e + 4K o' < +o0.
Remark 5.7. The finite length property in Theorem represents much stronger convergence re-
sults compared to those outlined in Theorems .8 and{d. 13|

We prove a lemma demonstrating that the convergence of d* £ 302 e+ is sufficient to establish
the convergence of || X" — X||g.

Lemma 5.8. (Proof in Section We define dt £ oo, et For both OADMM-EP and
OADMM-RR, we have: (a) There exists a constant & such that ||Xt X®|g < é-d'. (b) We
have dt < dt=2 — dt + K[BH(d!=2 — d")]'57, where K 2 4Ké- [¢(1 — 6)K] 5"

Finally, we establish the convergence rate of OADMM with exploiting the KL exponent &.

Theorem 5.9. (Proof in Section|D.4] Convergence Rate) We fix p = 1/3. There exists t' such that
forallt > t', we have:

() If5 € (3,1), then we have: | X! — X>®||g < O(1/(t1=P)/7)), where T = (0, 00).

(@) If 5 € (1, 3], then we have | X! — X ||[p < O(1/ exp(t' ™)), where u = Ll&_&) €3, 1)
1
5,1
2

fed
1-6
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Remark 5.10. (i) To the best of our knowledge, Theorem represents the first non-ergodic con-
vergence rate for solving this class of nonconvex and nonsmooth problem in Problem (). It is worth
noting that the work of (Li et al., |2023)) establishes a non-ergodic convergence rate for subgradi-
ent methods with diminishing stepsizes by further exploring the KL exponent. (ii) Under the KL
inequality assumption, with the desingularizing function chosen in the form of o(s) £ ¢s'=% with
& € (0,1), OADMM converges with a super-exponential rate when & € (3, 5|, and converges with a
polynomial convergence rate when 6 € (%, 1) for the gap | Xt —X°°||r. Notably, super-exponential
convergence is faster than polynomial convergence. (iii) Our result generalizes the classical find-
ings of (Attouch et al.,|2010; Bolte et al.||2014), which characterize the convergence rate of proximal
gradient methods for a specific class of nonconvex composite optimization problems.

6 APPLICATIONS AND NUMERICAL EXPERIMENTS

In this section, we assess the effectiveness of the proposed algorithm OADMM on the sparse PCA
problem by comparing it against existing non-convex, non-smooth optimization algorithms.

» Application to Sparse PCA. Sparse PCA is a method to produce modified principal components
with sparse loadings, which helps reduce model complexity and increase model interpretation (Chen
et al.,[2016). It can be formulated as:

min g [XXTD = D + 5(IX s~ [X), . XX =L,

where D € R™*"™ is the data matrix, ri2 is the number of data points, and || X[ is the ¢; norm
the the k largest (in magnitude) elements of the matrix X. Here, we consider the DC /;-largest-k

function (Gotoh et al.,|2018)) to induce sparsity in the solution. One advantage of this model is that
when j is sufficient large, we have ||X||; = || X[|[), leading to a k-sparsity solution X.

» Compared Methods. We compare OADMM-EP and OADMM-RR against four state-of-the-art
optimization algorithms: (/) RADMM: ADMM using Riemannian retraction with fixed and small
stepsizes (Li et all, 2022), tested with two different penalty parameters V¢, 3t ¢ {100, 10000},
leading to two variants: RADMM-I and RADMM-IL. (ii) SPGM-EP: Smoothing Proximal Gradient
Method using Euclidean projection (Bohm & Wright, [2021). (iii)) SPGM-EP: SPGM utilizing
Riemannian retraction (Beck & Rosset,2023)). (iv) Sub-Grad: Subgradient methods with Euclidean
projection (Davis & Drusvyatskiyl[2019; [Li et al., 2021).

» Experiment Settings. All methods are implemented in MATLAB on an Intel 2.6 GHz CPU with
64 GB RAM. For all retraction-based methods, we use only polar decomposition-based retraction.
We evaluate different regularization parameters p € {10, 50, 100, 500, 1000}. For OADMM, default
parameters are used, with 3° = 10/ and corresponding values £ = {1,2,5,8,10} for each p. For
simplicity, we omit the Barzilai-Borwein strategy and instead use a fixed constant b = 1 for all
iterations. All algorithms start with a common initial solution x°, generated from a standard normal
distribution. Our code for reproducing the experiments is available in the supplemental material.

» Experiment Results. We report the objective values for different methods with varying param-
eters p. The experimental results presented in Figures [I] and [2] reveal the following insights: (i)
Sub-Grad essentially fails to solve this problem, as the subgradient is inaccurately estimated when
the solution is sparse. (if) SPGM-EP and SPGM-RR, which rely on a variable smoothing strategy,
exhibit slower performance than the multiplier-based variable splitting method. This observation
aligns with the commonly accepted notion that primal-dual methods are generally more robust and
faster than primal-only methods. (iif) The proposed OADMM-EP and OADMM-RR demonstrate
similar results and generally achieve lower objective function values than the other methods.

7 CONCLUSIONS

This paper introduces OADMM, an Alternating Direction Method of Multipliers (ADMM) tailored
for solving structured nonsmooth composite optimization problems under orthogonality constraints.
OADMM integrates either a Nesterov extrapolation strategy or a Monotone Barzilai-Borwein (MBB)
stepsize strategy to potentially accelerate primal convergence, complemented by an over-relaxation
stepsize strategy for rapid dual convergence. We adjust the penalty and smoothing parameters at
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Figure 1: The convergence curve of the compared methods with p = 50.
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Figure 2: The convergence curve of the compared methods with p = 500.

a controlled rate. Additionally, we develop a novel Lyapunov function to rigorously analyze the
oracle complexity of OADMM and establish the first non-ergodic convergence rate for this method.
Finally, numerical experiments show that our OADMM achieves state-of-the-art performance.

10
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Appendix

The appendix is organized as follows.

Appendix [A] provides notations, technical preliminaries, and relevant lemmas.
Appendix [B|contains the proofs for Section 2}

Appendix [C]includes the proofs for Section ]

Appendix [D]encompasses the proofs for Section 3]

Appendix [E] presents additional experiments details and results.

A NOTATIONS, TECHNICAL PRELIMINARIES, AND RELEVANT LEMMAS

A.1 NOTATIONS

In this paper, lowercase boldface letters signify vectors, while uppercase letters denote real-valued
matrices. The following notations are utilized throughout this paper.

e [n): {1,2,....,n}

|Ix||: Euclidean norm: ||x|| = ||x[|2 = v/(x, %)

+ XT : the transpose of the matrix X

* 0, : A zero matrix of size n x r; the subscript is omitted sometimes

e I.: I. € R™*", Identity matrix

s M: Orthogonality constraint set (a.k.a., Stiefel manifold: M = {X € R™*" | XTX =1I,}.
* X > 0(or > 0) : the Matrix X is symmetric positive semidefinite (or definite)

* tr(A) : Sum of the elements on the main diagonal A: tr(A) =>", A;;

* || X]| : Operator/Spectral norm: the largest singular value of X

* X[ : Frobenius norm: (3, X2)/2

* [IX[l1: Absolute sum of the elements in X with X = 3, |X;|

* |[X||{x): ¢1 norm the the k largest (in magnitude) elements of the matrix X

* J¢(X) : (limiting) Euclidean subdifferential of g(X) at X

¢ Proj=(X’) : Orthogonal projection of X’ with Proj=(X') = argarg minxez || X’ — X||2
» dist(Z,Z') : the distance between two sets with dist(Z, =) £ infxez x ez | X — X/||F

* 199(X)lr: 109(X)[lF = infyeagx) [IY[[F = dist(0, dg(X)).

* {(8"): the smoothness parameter of the function S(X,y*; z*; %) w.rt. X.

* Zam(x) : Indicator function of M with Zy(x) = 0 if x € M and otherwise +oo.

We employ the following parameters in Algorithm [I]

* @: proximal parameter
: correlation coefficient between ui! and 8¢, such that ut 3t = y
: over-relaxation parameter with o € [1, 2)

: Nesterov extrapolation parameter with o € [0, 1)

: decay rate parameter in the line search procedure with v € (0, 1)

X
o)
«a
* p: search descent parameter with p € (0, c0)
gl
d: sufficient decrease parameter in the line search procedure with § € (0, 00)
p

: exponent parameter used in the penalty update rule with p € (0, 1)
* ¢: growth factor parameter used in the penalty update rule with £ € (0, 00)
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A.2 TECHNICAL PRELIMINARIES

Non-convex Non-smooth Optimization. Given the potential non-convexity and non-smoothness of
the function F'(-), we introduce tools from non-smooth analysis (Mordukhovich} 2006; Rockafellar
& Wets., 2009). The domain of any extended real-valued function F' : R"*" — (—o0,+00] is
defined as dom(F) £ {X € R"*" : |F(X)| < +o0}. At X € dom(F), the Fréchet subdifferential

of F s defined as OF(X) £ {£ € R™*" : limz_x infzux TETIOEZX) > 0} while the

limiting subdifferential of F(X) at X € dom(F) is denoted as OF(X) £ {¢ € R : IX! —
X, F(X!) — F(X),&" € OF(X') — &,Vt}. The gradient of F'(-) at X in the Euclidean space
is denoted as VF(X). The following relations hold among dF(X), dF(X), and VF(X): (i)
OF(X) C OF(X). (i) If the function F(-) is convex, dF(X) and OF (X) represent the classical
subdifferential for convex functions, i.e., dF(X) = dF(X) = {¢€ € R™" : F(Z) > F(X) +
(¢,Z — X),VZ € R™ "}, (iii) If the function F(-) is differentiable, then OF (X) = OF(X) =
{VF(X)}.

Optimization with Orthogonality Constraints. We introduce some prior knowledge of optimiza-
tion involving orthogonality constraints (Absil et al.l [2008b)). The nearest orthogonality matrix to
any arbitrary matrix Y € R"*" is determined as Pr¢(Y) = UVT, where Y = UDiag(s)V" rep-
resents the singular value decomposition of Y. We use N (X) to denote the limiting normal cone
to M at X, thus defined as Ny((X) = 0Zm(X) = {Z € R"*" : (Z,X) > (Z,Y), VY € M}
Moreover, the tangent and normal space to M at X € M are respectively denoted as Tx M and
Nx M. We have: Tx M = {Y € R"™*"|Ax(Y) =0} and Nx M = 2XA |A = AT A € R"™*"},
where Ax(Y) £ XTY + Y X for Y € R"*" and X € M.

Weakly Convex Functions. The function h(y) is weakly convex if there exists a constant W, > 0
such that h(y) + 2 Wy ||y |13 is convex; the smallest such W}, is termed the modulus of weak convex-
ity. Weakly convex functions encompass a diverse range, including convex functions, differentiable
functions with Lipschitz continuous gradient, and compositions of convex, Lipschitz-continuous
functions with C''-smooth mappings having Lipschitz continuous Jacobians (Drusvyatskiy & Pa-
quettel 2019).

A.3 RELEVANT LEMMAS

Lemma A.1. Leta,b € R", and a > 0 be any constant. We have: —||a — ab||3 < (a —1)]|al|3 —
(o? — a)[blf5.

Proof. We have: —lla—ab|3 = —[a]3 - [lab]|3 +2ala,b) < —[la|j3 — [lab||3 + 2a - (3 ]al]3 +
3Ibl3) = (e — Dall3 — (a? — a)[|b]3. O
Lemma A.2. Assumet > 1andp € (0,1). We have: % <1

Proof. Welett > 1andp € (0,1).

First, we define f(t) £ t? — 2(t — 1)? — 1. We have Vf(t) = pt? — 2p(t — 1)P~1 = p(t —
DPH(HZ)Pt =2 < p(t— 1)PH{(+5) — 2} < p(t — 1)P71{4 — 2} < 0. This implies that
f(¢) is decreasing. Noting that f(1) = 0, we conclude that

f&) 2P —2(t—1)P -1 <0. ®)

Second, we have:

GO R - (1P S (1 = ((1- 1) - (1 1)) 2o, ©)

where step @ uses % > % ast > tP; step @uses a < aP foralla € (0,1) and p € (0, 1).

Finally, we derive the following results:

tP—(t—1)P

1+tP @ 1+tP g 1
1+(t71)1" =~ 4

@
<
= t+1 0 I+(—1)P = 242(t—1)?
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where step @ uses Inequality @); step @ uses < %; step @ uses Inequality .

_t
t+1
O

Lemma A.3. Let 3¢ = B°(1 + &tP), where t > 0, B° > 0, £,p € (0,1). Forall t > 1, we have:

B 2 2 2
(= - " <7 - &1

g P_¢(4_1\P @ P_ (4 _1\P 6] @
Proof. We derive: (g — 1)> £ (58 —1)% = (022 < (W22 < (1) <

T+E(t—1)P TFE(t—1)P TH(t—1)7

2 t_%l where step @ uses 3t = B°(1 + &£tP); step @ uses 1+55a < H%a for all @ > 0 when
£ €(0,1); step ® uses Lemma step @ uses the fact that t% < % — H—% forallt > 1.

O
Lemma A.4. Assume a™ = pa + b, where a,b,a™ € R™, and o € [0,1). We have: ||a*t]||3 <
% (lall3 = [la*]3) + =5z Ibli3:
Proof. We have: [|a™ |3 = [lea +bll3 = [lea + (1 — o) - 5[5 < ellall3 + (1 — o) - 11253 =
ol|all3 + 1= [Ib|13, where the inequality holds due to the convexity of || - [|3.

O

Lemma A.5. Assume that a* < ga'~! + ¢, where o € [0,1), ¢ > 0, and {a’ o Is a non-negative
sequence. We have: at < a’ + CQ forallt > 0.

1—

Proof. Using basic induction, we have the following results:
t=1, a'<pa’+c¢
t=2, a®<pa' +c<p(ea’ +¢)+c=p%" +c(l+0)
t=3, a3<pa?+c<o(p?a’+ (c+ oc)) +c=o%a + c(1+ o0+ 0?)

t=n, a"<pa" '4+c<g"al+c-(1+o+...+0" ).

Therefore, we obtain: a™ < g"a0+c~(1+g+. . .+Q”*1) 2 aOJrfcg, where step @ uses p™ < p < 1,

and the summation formula of geometric sequences that 1 + o' + 0? + ... + o'~ = % < 1%9.
O

Lemma A.6. Assume X! = X! + (X! — X'71), where o € [0, 1), and X, X'~ € M. We have:

(@) | X" = X{lF < X" =X Jr,

(b) X = Xgflp < [|XF = XFJp 4 | XF = X

(e) IAXE) = ¥ < JAXY) = y'[| + AIXE = X

®
Proof. Part (a). We have: | X! — Xt[|lr £ o X! — X! 1|r < [|Xt — Xt~|¢, where step @ uses
X! = X! + (X! — X!71); step @ uses a € [0, 1).

®
Part (b). We have: [ X1 — Xt[lp 2 [[ Xt — Xt — (X! — Xt~ 1)[p < [ X+ — X5 + X!
Xt~ |, where step @ uses X! = X! + o(X! — X*~1); step @ uses the triangle inequality and
a€l0,1).

)
Part (¢). We have: [|A(X() — y'|| < [|AXY) = y'|| + AKX) = AXY < [|AXT) =y +

_ ® _
AIXE = X¢f| < [JAXT) = y'| + AXF = X1
@ uses Claim (a) of this lemma.

, where step @ uses the triangle inequality; step

O
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Lemma A.7. Let P,P € R"™", and X, X € M. We have:
| Projepy i (P) = Projp u(P)lF < 2[|P = Plle + 2v/7[|P ||| X — X[
Proof. First, we obtain:
[XPTX — XPTX||¢
[(X-=X)PTX+XPT(X - X)+X(P—-P)'X|r

IX = Xl [PTX] + [XPT|[IX — X[ + |X(P — P)TX]r

IN® INe |l

2V7|[PIIIX = X[le + [P = P, (10)
where step @ uses the triangle inequality; step @ uses || AB||r < ||A| - |B]|¢, and || X]| < 1.
Second, we have:

|IXXTP — XX"P|¢

(X -X)XTP+X(X-X)"P+XX"(P-P)|r

IX = X[ XTPI + X[ X~ X]e - [P+ |XXT] - [P — Pl

IN® INe |l

2V7(IPIIX = X + [P = P, (11
where step @ uses the triangle inequality; step @ uses | AB||r < ||A]| - | B||r, and || X]| < 1.

Finally, we derive:

I Proje ad (P) — Projr i (P)lIF

2 [P -iXPTX - IXXTP] - [P — 1XPTX — LXXTP||
@ ~ o~ ~ o~
< P - P+ LIXPTX - XPTXl¢ + 1|XX"P - XX"P||r
® ~ ~ ~

< P -Plr+2V7|PlIX - X]r + [P - Pl

where step @ uses Projp, 1 (A) = A — $X(ATX + XTA) for all A € R™7" (Absil et al.|
2008a); step @ uses the triangle inequality; step ® uses Inequalities (I0) and (TT).

O
Lemma A.8. Weletp € (0,1). We define g(t) = ﬁ(t +1)=p) — ilp — (1 = p)t(=P). We have
g(t) > 0forallt > 1.

Proof. We assume p € (0,1).

First, we show that h(p) £ (1 — p)¥/P < - (1) Recall that it holds: lim,, o+ (1 + p)'/? = exp(1)
and lim,, o+ (1—p)'/? = 1/ exp(1). leen the function h(p) is a decreasing function on p € (0,1),
we have h(p) < lim,, o+ (1 — p)'/P = m

Second, we show that f(q ) =27—-1—¢?>>0forall g € (0,1). We have V f(q) = log(2)27 — 2gq,
and V2 f(q) = 29(log(2))? — 2 < 2(log(2))? — 2 < 0, implying that the function f(q) is concave
onq € (0,1). Noticing f(0) = f(1) = 0, we conclude that f(g) > 0.

Third, we show that g(¢) is an increasing function. We have: Vg( )=({t+1)"P—(1—p)3*tP=
o ®

(t+1)77- (1= (1=-p?(5H7) = (t+1)77- (1 (1 - PP 2 (t41)77- (1 (spmz)?) 2 0

where step @ uses t“ < 2forallt > 1;step @uses 1 — p < ( L<)P forall p € (0,1); step ®

p(1)
uses (1)2 =~ 0. 2707 < 1.

®
Finally, we have: Vt > 1, g(t) > g(1) = (1—p)~*-{207P) -1 — (1 —p)?
2

@
)*} > 0, where step @ uses
the fact that g(¢) is an increasing function; step @ uses 27 — 1 — ¢# > 0 for

allg=1-pe (0,1).
O
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Lemma A.9. Assume p € (0,1). We have: (1 — p)T(l—p) < Zthl Lp < Til:p’”_
Proof. We define g(t) £ 2 and h(t) £ ﬁt(l_l’),
Using the integral test for convergence, we obtain: f T+ ( )dx < Z 1 9(t 1)+ fl

Part (a). We first consider the lower bound. We obtain: Y, ¢77 > Zt 1ff+1 zPdr =

®
1T+1 x~Pdx 2 T +1)—h(1) = E(T +1)P — ﬁ > (1 — p)T'~P, where step @ uses

Vh(z) =z P; step @ uses Lemma

Part (b). We now consider the upper bound. We have: Zt TP < h(1) + f aPdr 1+
hT)—h(1) =1+ E(T)l p_ 1 _ 10 P < T(l_p , where step @uses Vh(z) = z~P.

1-p 1-p 1
O
Lemma A.10. Assume (e/t1)? < (e! + '~ 1)(p' — p'*') and p' > p'*t, where {e', p'}2,
two nonnegative sequences. For all i > 1, we have: Y ;= e < el 4 ef ! + 4p'.
Proof. We define w, £ pt — p'tt. Welet1 <i < T.
First, for any ¢ > 1, we have:
T pit! P Tl S
Zt:i Wy = Zt ’L( ) p =D S b, (12)

where step @ uses p* > 0 for all i.

Second, we obtain:

®
ettt < (et + et~ Dw,
®
< VS e+ (w)?/(2a), Vo> 0
®
< VE (et et +wi/1/(2a), Va > 0. (13)

Here, step @ uses (eft12 < (et + et~ 1)(pt — ptt1) and wy £ pt — p!+; step @ uses the fact that
ab < 2a + 50 L b2 for all a > 0; step @ uses the fact that v/a + b < \/a + Vb forall a,b > 0.

Assume the parameter « is sufficiently small that 1 — 2\/§ > (. Telescoping Inequality over t
from 7 to I', we obtain:

S wi/1/(20)
T =T =T
> {Zt:i et+1} - \/E{Zt:i et} - \/E{Zt:i e’ 1}
= {67 T T2 - B o 4 D)

— /e e+ et
=6T+€T+1—\/g(ei+eT+6i_1+e 1_2\/> T2t+1
T(1—/F)— Vo +e T +e)+(1-2F) X ettt

—2/F(e + e )+ (1-2/F) S ettt
where step @ uses e’ 1 > 0; step @ uses 1 — V5 >1—2,/% > 0. This leads to:
(1-2/5) " {2/5(e +e7) )y o S, we)
(et +ei=1) + 42:&:2‘ wy
(€ + 1) 4 4

Ve Ve

T2t+1
t=1

e IA

e
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step @ uses the fact that (1 —2,/5)7"-2,/$ =1land (1 -2\/5)"' - /55 =4 whena = 1/8;

step @ uses Inequalities . Letting T' — oo, we conclude this lemma.
O

Lemma A.11. Assume °/_,(1/B") > O(T%), where a > 0 is a constant, and {F'}L_, is a

nonnegative increasing sequence. If T' is an even number, we have: T/ 2(1 / 32ty > o(T).

) = i — = +

B2T+1 Bl

T/2 T/2 @ T/2
Proof. We have: Zt/lﬁl =1 t:/1(@+@)22 t/1(52t+

Zthl é = (Zt 1 B’) > O(T*), where step @ uses the fact that {3*}7_, is increasing.

th+1

O

gt+2 nd Zl 0(1/51) > O(T*), where a > 0 is a positive

constant, {d'}32, and {'}2, are two nonnegative sequences. Assume that {31}, is increasing.
We have: d* < O(1/exp(T?)).

Lemma A.12. Assume tha dd,

Proof. We define v* = ﬁt+2 € (0,1).
Given dt g 5 2 , we have dfl s <1 -7, leading to:
P < 1= =1 =70 (1 =A%) (14)

Part (a). When 7' is an even number, we have:

d' = exp(log(d”))
< expllog(d - [T72(1 —121))
2 exp(log(d®) + 31 7 log(1 — 7))
< expllog(d) + Y2 (—42))
< expllog(d)) x fexp(ST/2 (1))}
< & x {exp(O(T)} = O(1/exp(T™)),

where step @ uses Inequality (14); step @ uses log(ab) = log(a) + log(b) for all @ > 0 and
b > 0; step ® uses log(l — z) < —z forall z € (0,1), and 1 — 4" € (0,1) for all ¢; step
@ uses exp(a + b) = exp(a)exp(b) for all @ > 0 and b > 0; step ® uses Lemma with

Bt=1/v"=p"+2.
Part (b). When T is an odd number, analogous strategies result in the same complexity outcome.
O

Lemma A.13. Assume that [d")™+' < f8(d"=2 — d*), and S, (1/57) > O(T*), where T,a > 0
are positive constants, {d'}{2, and {B'}°, are two nonnegative sequences. Assume that {5¢}5°,
is increasing. We have: dT < O(1/(T%/7)).

Proof. We let k > 1 be any constant. We define h(s) = s~ 7!, where 7 > 0.
We consider two cases for h(d?)/h(d!=2).
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Case (1). h(d") < rh(d"~2). We define h(s) £ —1 . s~7. We derive:

1 2 BH(dP2 — db) - h(d?)
@ .
S 6t(dt72 o dt) . Iih(dtiQ)
@ . Jt—2
< B[ h(s)ds
2 Fe (A(d2) — h(d"))

[l

Bl g ([T = [d]7),

where step @ uses [d]7T! < t(d'~2 —d?); step @ uses h(d') < kh(d'~?); step ® uses the fact that
h(s) is a nonnegative and increasing function that (a — b)h(a) < [;" h(s)ds for all a,b € [0,00);
step @ uses the fact that VA (s) = h(s); step ® uses the definition of A(-). This leads to:

[dt]—T _ [dt—Q]—T > néz‘r. (15)
Case (2). h(d") > rh(d'=?). We have:

h(d) > kh(d™2) 2 (@70 > g @m0

:®> ([dt]f(‘l"‘rl))%_i_l > /{TL—H . ([dt72}7(r+1))77—?
= [d77 > kT [dTR, (16)
where step @ uses the definition of h(-); step @ uses the fact thatif @ > b > 0, then a” > b” for any

exponent 7 = 1 € (0,1). We further derive:

e e I e N

Ve Ve

(k7THL = 1) - [d%]77, amn
where step @ uses Inequality ; step @ uses 7 > 0 and d'~2 < d° for all ¢.
In view of Inequalities (I5)) and (I7), we have:

[d]77 = [@?77 > min(S5T, (k71 — 1) - [d°]7)
> é ~min(k 7, (KTL‘H —1) - [d]773°). (18)

Ho
We now focus on Inequality (T8).

Part (a). When 7T’ is an even number, telescoping Inequality overt = {2,4,...,T}, we have:
@
—T —T T/2 a
(7] = (A7 2 o 13 A = O(T),

where step @ use Lemmal[A.T1] This leads to:
d" = ([d"]7)7T <o)V = 0(1/(TV7)).

Part (b). When 7' is an odd number, analogous strategies result in the same complexity outcome.

O

B PROOFS FOR SECTION

B.1 PROOF OF LEMMA[2.3]

Proof. Assume 0 < 15 < 1 < -, and fixing y € R™.
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We define /., (y) £ miny h(v) + g [v = y|3, and P, (y) = argminy A(v) + 5 [|v — y|f3.

We define h,,, (y) £ min, h(v) + |v —yl||3, and P, (y) = argmin, h(v) + ﬁ”v —yl3.

2#2

By the optimality of P,,, (y) and P,,, (y), we obtain:

y—Pu,(y) € moh(P,(y)) (19
Yy —Pu(y) € udh(Pu(y)). (20)

Part (a). We now prove that 0 < h,, (y)—hy, (y). Forany s; € Oh(P,, (y)) and sy € Oh(P,,(y)),
we have:

h}h (y) - huz (Y)

®
= 5 lly =P 3 = 551 = Pua (0113 + AL, (v)) — ~(Pu, (y))

< s Iy =P N3 = g5 1y = Pua )3 + (Puy (v) = Pra (v),81) + 2 Py (y) — Pry ()13
> 251 y 1 \Y)ll2 242 Yy u2\Y)ll2 u \Y u2\Y)sS1 2 u2\Y 1 \Y)ll2
®

= gllmsil3 = gz llnese]l3 + (ose — pasi,s1) + B3 sy — pasa |3

®

< gllmsills = gz lmesal3 + (uese — pasi,s1) + 5oz lwast — pose |3

= —|soll3- (1 52)

®

< 0,

where step @ uses the definition of h,,, (y) and &, (y); step @ uses weakly convexity of A(-); step
@ uses the optimality of P,,, (y) and P,,, (y) in Equations and ; step @ uses W, < i; step
® uses 1 > %

Part (b). We now prove that %, (y) — hy, (y) < min{g2-, 1} - (11 — p2)C?. For any s; €
Oh(P,, (y)) and sy € Oh(P,,(y)), we have:

hltz (Y) - hul (Y)

®
= 5y =P 3 — 55 1Y = Puy 013 + APy () — A(Py, ()
@
< sz ly =P WE = g Iy = Puy 03 + (Pua(y) = Py (v),81) + 52| Py (v) = Py ()13
[€)
= %”51”3 - ﬂ||S2||§ + (p1S2 — pas1,s1) + Wh H182 — H251||2
= —2s1]13 — B{Is2l|3 + pa (s, s2) + T [|prse — pasi]l3
2 inf— s, 12 1 _ 2 _ o (12
< min{—5[[so]l3 + pa(s1, s2) + 5 [lHas2 — pesillz — & lsal3,
— B {Is2]13 + pa(s1,82) + g luase — pasi |3 — ”72”51”%}
= min{(—p2 +m) - FL 823, (1 — p2)(s1,82) — sl + 52 2 113}
®
< min{gL[[soll3 - (1 — p2), (1 — p2){s1,82)}
®
< min{gl - (u — p2), (u — p2)} - G

mln{gﬂ 71} : (,U/l - /1'2) . C}%a

where step @ uses the definition of h,, (y) and h,,,(y); step @ uses the weakly convexity of A(-);
step @ uses the optimality of IP,,, (y) and P,,, (y) in Equations and ; step @ uses Wy, < i
and W, < i; step ® uses po < pui; step ® uses [|si]| < Ch, ||s2]] < Ch, and (s1,82) <
lIsal - lIsall < C.

O
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B.2 PROOF OF LEMMA[2. 4]

1

Proof. Assume 0 < po < p1 < S

and fixing y € R™.
Using the result in Lemma we establish that the gradient of h,,(y) w.r.t y can be computed as:

Vhu(y) =p"y —Pu(y)).

The gradient of the mapping Vh,,(y) w.r:. the variable 1/ can be computed as: V;/, (Vh,u(y)) =
y — P, (y). We further obtain:

191/ (V) | = lly = Pu()| £ s OR(P )| < uCh.

Here, step @ uses the optimality of P,,(y) that: 0 € 0h(P,(y)) + %L(]P,,, (y) —y). Therefore, for all
1

u e (0, m], we have:

IVhu(y) = Vi (y)ll2

]
Letting p1 = pi1 and p" = pip, we have: [|Vhy, (y) = Vi, (¥)ll2 < [1=p1/p2|Cr = (41/p2—=1)Ch.
O
B.3 PROOF OF LEMMA[2.3]
Proof. We consider the following optimization problem:
y = argminh,(y) + 3[ly - b|3. @1)

Given h,,(y) being (.~ ')-weakly convex and 3 > 11—, Problem becomes strongly convex and
has a unique optimal solution, which leads to the following equivalent problem:

(7,¥) = argminy v h(y') + 5 |ly = ¥'[13 + 51y — blI3.
We have the following first-order optimality conditions for (¥,y):

(y-%) = Bb-y) 22)
Ly %) € Oh) 23)

0 € OhF) +1F-y)
2 OnE) + L — k5 (25 + 8b)
= () + 25 — D), (24)

where step @ uses Equality ; step @ uses Equality thaty = W%ﬁ(i}uf—f—ﬂb). The inclusion
in (24) implies that:

oo . o 1. B o 2
y = argmin A(y) + 3 - 1151y — bll2-

Part (b). Combining Equalities and (23), we have: (b —y) € Oh(y).
Part (c). In view of Equation (23), we have: y — y = pdh(y), leading to: ||y — y|| < puCh.
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B.4 PROOFS FOR LEMMA [2.11]

Proof. Welet A € R™ " and X € M. We define U £ ATX € R"*".

We derive the following results:

I Projmy p (A)IF — | AIR

[©)

= Aa—-3X(ATX+XTA)[E - [lA]

= IIX(ATX+XTA)F - (A, X(ATX +XTA))
£ LATX +XTAZ - (A, X(ATX + XTA))

S HU+UTE-(U+UTU)

[l®

HUu+UuT)g-(w+uT,u+U") -1
= “HuUu+UuTE<o,

where step @ uses Projp, 1 (A) = A — $X(ATX + XTA) for all A € R™" (Absil et al.,
2008a); step @ uses the fact that | XP||2 = tr(PXTXPT) = ||P||2 for all X € M; step ® uses the
definition of U £ ATX; step @ uses the symmetric properties of the matrix (U + UT).

O

B.5 PROOF OF LEMMA[2.12]

Proof. Weletp > 0,G € R"*", and X € M.
We define U 2 G™X,and G, £ G — pXGTX — (1 — p)XXTG.
First, we have the following equalities:
(G,G,) (G,G - pXG'X — (1-p)XX'G)
(G,G) — ptr(GTXG™X) — (1 — p) tr(GTXXTG)

(G,G) — ptr(UU) — (1 — p)tr(UUT), (25)

1)

where step @ uses U £ GTX.

Second, we derive the following equalities:

IG, 17

(PXGTX + (1 - p)XXT'G - G, pXG'X + (1 - p)XX'G - G)

P tr(UTU) + p(1 — p)tr(UTUT) — ptr(UTUT)

+(1 = p)ptr(UU) + (1 — p)?tr(UUT) — (1 — p) tr(UUT)

—ptr(UU) — (1 — p)tr(UUT) 4+ (G, G)

(2p% —1) - tr(UTU) — 2p? - tr(UU) + (G, G), (26)

)

e

where step @ uses U 2 GTX and XX = I,.; step @ uses tr(UTUT) = tr(UU).
Third, we have:
®
tr(GTG) — tr(UTU) £ (GG™, I, - XXT) > 0, 27)

where step @ uses U £ GTX; step @ uses the fact that the matrix (I, — XXT) only contains
eigenvalues that are 0 or 1.

Part (a-i). We now prove that max(1,2p)(G,G,) > ||G,||2. We discuss two cases. Case (i):
p € (0, 1]. We have:
2 @ 2 T 2
1GpllF = (G, Gp) = (20" = p) - (tr(UU) — tr(UV)) <0,
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where step @ uses Inequalities and ; step @ uses 2p? — p < 0 for all p € (0, %], and
tr(UU) < tr(UUT) forall U € R™*".
Case (ii): p € [, 00). We have:
@ ®
G, = 20(G, Gp) = (2p — D(t2(UUT) — (G, G)) <0,

where step @ uses Inequalities and (26)); step @ uses 2p — 1 > 0 for all p € [$,00), and
Inequality. Therefore, we conclude that: max(1,2p)(G,G,) > |G, |2

Part (a-ii). We now prove that ||G,||? > min(1, p?)||G||2. We consider two cases. Case (i):
p € (0,1]. We have:

® @
PG = IGllf = (1 = p*)(tx(UTU) - (G, G)) <0,

where step @ uses Inequalities and ; step @ uses 1 — p? > 0, and Inequality .
Case (if): p € (1,00). We have:

IG1 |2 — G, |12 2 (2 — 20%)(tr(UTU) — t2(UV)) <0,

where step @ uses Inequality ; step @ uses 4p? — 1 < 0 for all p € (0, %], and the fact that

tr(UU) — tr(UUT) < 0 for all U € R"™*". Therefore, we conclude that: min(1, p?)||G, ||z <
IGII?-

Part (b-i). We now prove that ||G,||r > min(1,2p)||G /2||[r. We consider two cases. Case (i):
p € (0, 1]. We have:
® @
201G 2]l = G, = (4p° = 1) - (11(GTG) = t2(UTU)) <0,
where step @ uses Inequality ; step @ uses 4p? — 1 < 0 forall p € (0, %], and Inequality .
Case (ii): p € (1, 00). We have:
® ®
IG1 /2l = IG,lIF = (20 = 3) - (tr(UU) — t2(UTU)) <0,

where step @ uses Inequalities (25) and (26); step @ uses 2p? — 3 > 0 for all p € (%, 00), and
)

2
the fact that tr(UU) — tr(UU") < 0 for all U € R"*". Therefore, we conclude that |G,||r >
min(L, 29) Gyl

Part (b-ii). We now prove that ||G,||r < max(1,2p)||G /2[|[r. We consider two cases. Case (i):
p € (0, ]. We have:

@ @
IG1p2llf = G, IIF = (2 — 3) - (t2(UU) — tx(UTU)) > 0,

where step @ uses Inequality ; step @ uses 2p? — % < 0 for all p € (0, %], and the fact that
tr(UU) — tr(UUT) < 0 forall U € R™*".
Case (ii): p € (1, 00). We have:

@
(20)2]1G1 21 = 1Bl £ (40> = 1) - ((GTG) — tr(UTU)) > 0,

where step @ uses Inequalities and ; step @ uses 4p2 —1 > 0 for all p € (%, 00), and
Inequality . Therefore, we conclude that: |G, ||r > min(1,2p)[|G /2 ||r.

O

B.6 PROOF OF LEMMA[2.13]

Proof. Recall that the following first-order optimality conditions are equivalent for all X € R™*":

(0 € 0Z\(X) + Vf(X)) & (0 € Projp, m(Vf(X))) . (28)
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Therefore, we derive the following results:

dist(0,0Zu(X) + V(X)) = | infR|e
£ i IR
€Projry (VX))
= [ Projpy p (VF(X))e
2 IVAX) - IXXTVFX) + VAX)X)r
= @ - $XXT)(VH(X) - XVF(X)"X)|r
< IVIX) - XVX) X,

where step © uses Formulation (IZ_EI); step @ uses Projp, y(A) = A — IX(ATX + XTA) for
all A € R™*" (Absil et al.,2008a); step ® uses the norm inequality || AB||r < ||A|[|||B||, and fact
that the matrix I — 5XX" only contains eigenvalues that are 5 or 1.

O

C PROOFS FOR SECTION 4]

C.1 PROOF OF LEMMA [4.1]
Proof. We define L(X,y;2; 3, 1) 2 f(X) — g(X) + hyu(y) + (2, AX) — y) + 2| AX) — y|l3.
We define ¢ 2 (0 —1)/(2—0),and 6 2 (6/(2 — 0))2.

Part (a-i). Using the first-order optimality condition of y**! € arg miny, L(X**!,y, z%; 3%, u') in
Algorithm [I] for all ¢ > 0, we have:

0 = th( 4+ By =y + VyS(X v 2t 8Y)
L iy BT YY) - B AXTY)
_ (y 1)—Z _’_575( t+1_A(Xt+l))

I|®

hue (Y1) = 2" + 1 (2" — 2", (29)

where step @ uses VyS(Xt“,y; z ;Bt) = —z! + By — A(X!H1)); step @ uses z!T! = z! +
oS (AXTH) =y,

Part (a-ii). We obtain:

ah(yfrl»l) - Zt g Bt(b - yt+1) o Zt
2 ﬁtyt v St(Xt+17yt, Zt;ﬂt) o ﬂtyt-p-l _ gt
= By - By - AXT) - By
— 6t( (Xt+1) . yt+1)

[|l®

%(ZtJrl - Zt)z

where step @ uses the result in Lemma [2.5[ that 5¢(b — y'™1) € Oh(y'!); step @ uses b =
y' = VySUXE yt 2t 8Y) /BY, as shown in Algorithm |1} step ® uses V,S* (X' y; z'; 1) =
—z! + By — A(X!TL)); step @ uses z! T — zt = o BH(A(XIT) — yt“).

Part (b). First, we derive:

IV A1 (y") = Vhye (v

IV Ry (7°) = Vhye (9 + Ve (v°) = Vi (v )|
VR (y*) = Vi (v + Selly™ =yl

t—1

On(tm =D+ Syt =yl (30)

IN® |IN® INe

26



Under review as a conference paper at ICLR 2025

where step @ uses [|a — b|| < [la — c|| + [|c — b]|; step @ uses the fact that the function h¢(y) is
i—smooth w.rt. y that: [|[Vh,: (y) — Vi, (y")| < ﬁ”ytJrl — y'||; step ® uses the fact that
[Vhy (y*) = Vh—(y")|| < (0'=1/p* — 1)C), which holds due to Lemma and the equality
ppt=x.
Second, we have from Equality (29):
Yt >0, 0 € oVh,(y'™) — oz' + (2" — 2"1),
Vt>1,0€ oVhi(y') —oz' ™! + (2" —2").
Combining these two equalities yields:
VE> 1,2 — 2" = (0 — 1) (2" = 2') + o (Vhu (y'™!) — Vi (yh).
Applying LemmalA 4 with a™ = z'™! — 2!, a = 2!~ — 2", b = 6{Vh, (y'™!) — V1 (y")},
and p =0 — 1€ [0,1), we have:
|2+t — 213

< el =2 — 1l = 2 3) + s o (Vhye () = Vhyes (913
L o(llz" — 2 7YE — 2 = 2'3) + 6 Ve (v = Vi (v9)|3

&) t\2

< o2 =23 - 12 =2t 3) + 26{ Sy - v I3 + CR (Tt - 1))
g ot o t=12 il )2 2--(,6”)2 L 12 4 9502(2 _ 2

< oz =2 — = z'l|3) + 26 = lly y ||2+ 6CL(F — 57)

where step @ uses the definitions of {&, 5}; step @ uses Inequahty , and the 1nequa11ty (a+b)? <

2a? + 2b? for all a, b € R; step @ uses Lemmathat (£ — 1) <2 2 forallt>1;

Bi=T t+1

C.2 PROOF OF LEMMA[4.3]

Proof. Part (a). We have:

® ®
B B'(L46) 2 B%(t+ 1P - Bt — B'E < 8% — B <0,
where step @ uses 3¢ = B°(1 + £tP); step @ uses (t + 1)P — tP < 1 for all p € (0, 1); step @ uses
B0 < Btand € > 0.

Part (b). It holds with £ = A~ and / = A~ + L /°.

C.3 PROOF OF LEMMA [£4]
Proof. We define X £ \/r,z 2 ||2°|| + 352, 7 2 A/r + Z 50, where o € [1,2).
Welet© 2 F(X) — pu°C2 — Oy (AT +75) — fw, where X is the optimal solution of Problem .

Part (a). Given X**! € M, we have: | X[ <X £ /1.
Part (b). We show that ||z’|| < 7. For all ¢ > 0, we have:

[l I(e = Dz'[| + (e — Dz’ + 2"

(o =iz + [looh(y" )]
(e =Dz + oCh,

step @ uses the triangle inequality; step @ uses z'*! + (o — 1)z’ € cOh(y**!), as shown in Lemma
a); step @ uses Cj-Lipschitz continuity of i(y). Applying Lemma with a; = ||zt*!,
¢c=0Cp,and p =0 — 1 € [0,1), we have:

C _
vt 20, 2 < [12°) + 15 = |12°) + 5% 2 7.

l® INe

l|®
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Part (c). We show that ||y*|| <. For all ¢ > 0, we have:

i+l _ gt ||

1
JAX!H) - 20

Iy

MAX T + g2 — 2|

IN® |IN®

AVt 552227,

where step @ uses the triangle inequality, o > 1, and % < %; step @ uses || A(X) s < Al X]|r <

A/r,and ||Z'|| < 7.
Part (d). We show that ©' > ©. For all t > 1, we have:

o' & L(Xy 25 Bt ) + T ICR + T+ 2P+ XE
@ t
> fF(XY) = g(XY) + by (vh) + (25, AXY) — y') + S AXY) — y'|13
= (X") = g(X") + hyes (y") + S JAXY) — y' +2 /813 — & |12 /5813
FXE) = g(XE) + hymr (A(XD) = CulAXY) = 3| = 55 12113

FX') = g(X*) + h(AX)) = ' 7' CF = ChJAX) |+ lIy*1) = o3¢ 12113

Ve Ve Ve

F(X) = p°C} — CL(AVr +3) — 25 2 6,

where step @ uses the definition of L(X,y;z; 3; 1) and the positivity of {ut, Tt Z! X'}; step @
uses the Ly,-Lipschitz continuity of h,,:—1(y), ensuring he-1 (y") > hye-1(y) — Chlly" — y||, with
the specific choice of y = A(X?); step ® uses h(y) — h,(y) < pCZ, which has been shown in
Lemmafl step @ uses pf < p, gt > BY [JAX)|| < Al X|r < Ayrforall X € M; |ly?| <7,
and ||z*|| < zZ.

O

C.4 PROOF OF LEMMA[4.3]

Proof. We define L(X,y;z; 8, 1) £ f(X) = 9(X) + hu(y) + (2, AX) —y) + 5 AX) —yl3.

We define w £ 1 %—&—%

o
We define Z! £ woo?f|AXY) — yt|3 = B“{fl ||zt — z'~1||2, where we use z'T! — z! =
Blo(AX) —y**).

Part (a). We focus on the sufficient decrease for variables {, y }. First, we have:

(1>

t t
(v =y ) + Gyt - AR - Sy - AXTY
t
(v =yt + B AXT) =y ) = Sy -y

—
—

lle

) t

= =Syt =y 3+ v -yt e - 2)

® t

= = Sly" =Y+ -y Vhe (r')

®

< {3 = B5ly™ = Y3 + R (v") = b (v, 31)
where step @ uses the Pythagoras Relation that %HyJr —all3 - %Hy —alj3 = —% lyt—yl3+{y—

yT,a—yT) forally,yt,a e R™;step @ uses z! ! — z° = oS (A(X!TL) — y!T1); step @ uses
Vh,:(y') = z' + L(z'T! — 2'), as shown in Lemma a); step @ uses the fact that the function
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hy(y)is (1/p')-weakly convex w.rt y, and p' 3" = x. Furthermore, we have:

L(X* y"that g0 pf) — DXyt 2t 85, uf )

Ryt (Y1) = b (v) + (v =y ") + Sy - AXTYI - Syt - AKX
LBy =y )3 4 By (v') = By ()
My =y I3+ (ut - ) CE (32)

l®e IN®

where step @ uses the definition of L(X,y; z; 8, i); step @ uses Inequality ; step @ uses Lemma
that hye(y) = hye-(y) < min{”;; L}t — pt)C2 < (ut=t — pt)C2 forall .

Part (b). We focus on the sufficient decrease for variables {z, 5}. We have:

LXH y gt gt pf) — LXM y' 2t 81 0h) + e B AXY) — y' 3
DAY =yt g =gty 4 BB AT — 2 e AKX — y 2

@ t+1_ gt
= {5+ o + 25} gl 2
®
= {3 o+ 3} F e 2
—_—
2y
@ .. ..
< (2" — 27N — 12 = 2') + 2By -y + 2P CR(E - )
® . . .. ..
< glle' =25 - 2 -2+ 2R YT -V I+ BRCRG - ) 33
| S —

Lot =Tt _-Tt+1

where step @ uses the definition of L(X,y; z; 8; i1); step @ uses z! 1 —zt = o8 (A(XIHL) —yitl);
step ® uses B < (1 4 €)BY; step @ uses the upper bound for ||z'*! — z||3 as shown in Lemma
b); step ® uses Bt > 1 > g0,

Adding Inequalities (32)) and (33) together, we have:

LXHL y 2t g ) = LX yt 2% B0 =) + (uf = =10
+ Tt+1 _ Tt + Zt+1 _ Zt + Ezﬂt||A(Xt+l) _ yt—&-l”%

<HE -1+ 208y - y5

@ .

< H{—1 4 sy gyttt — g3,
—_—

Y
= —gy

where step @ uses y > 1.

O
C.5 PROOF OF LEMMA[4.6]
Proof. We define S(X,y";2%; ') £ f(X) + (2", A(X) — y') + G AX) - y*[5.
We let G' € VxS(XL, yt; 2zt 8) — 9g(X?).
We define X! £ 1 (a + fa)¢(8)[| X — X712,
We definee, 2 (0 — 1 —a —0a) — (1+&)(a+06a) > 0,and e, = Le/ 0> 0.
First, using the optimality condition of X!*! € M, we have:
t t
(X=X @)+ FEP X - X < (X - XL G+ X - X (34)
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Second, we have:
L(X" yt zhpt, 1) — L(X', y' 2t pt, BY)
=S(X* yhiz' fY) — S(XE,y'izh ) + g(XT) — g(X)

IN©

2(123 )HXt+1 _ XtH% + <Xt+1 _ Xt,VxS(Xt,yt;zt;ﬁt» + <Xt _ Xt+1,8g(Xt)>, (35)

where step @ uses the £(3?)-smoothness of S(X, y*; z?; 3) and convexity of g(X);

Third, we derive:

(X - X" VxS(X, y' 25 ') — VxS(XL, y's 2% 8Y))
X = X e - [[VxS(XF, y'5 2" 8Y) = VxS(Xe,y' 2% 8% I
X = X le - £(87) X" — Xl

al(B)[IXT = X e - IX* = X

IN® INe IN® INe

SEZXI XU 4 X X (36)

where step @ uses the norm inequality; step @ uses the £(3?)-smoothness of S(X, y; z¢; 5°); step
@ uses X! = X' + (X! — X'71); step @ uses ab < 1a? + 1% foralla € Rand b € R.

Summing Inequalities (34),(36), and (35)), we obtain:
L<Xt+17 yt7 Zt; IU/ta ﬂt) - L(Xt7 yt7 Zt; /j/ta ﬂt)

(8t _
< M1 4 a)| X - X2+ af| X - X R + 0] XE - XE|2 - 9| XE - XE2)
@] (Bt _ _
= (1 4 a) X - X2+ (o + 0a%) [ X — X2 - g)IXET - XE - oXE - X112}
@ t
= O H QX =X (0 00X - X

(e — 1)[IXT - X2 — fa(a — 1)[IXE — XITYR)
= La+68a)(phX! — X225 X - X2 {1 + o+ fa — 6}

Axt
= X' XU DX - X2 (0B (1 + a+ Oa — 0) + £(B) (o + Oa)}
&)
< XP- XM L IXE - X2 4B {(1 + a+ 0 — 6) + (14 &) (o + ba)}
L gt

@
< OXE-XH - DX X2 el - B
®

Xt _ XtJrl — &y 6t||xt+1 _ Xt|||2:,

where step @ uses X! = X! + a(X! — X!~1); step @ uses Lemma with a = X'+ — X,
and b = X' — X*~1; step @ uses the fact that £(31F1) < (1 + £)¢(B), which is implied by
B < (14 €)BY; step @ uses Lemmathat B < L(BY) < B; step ® uses e, = L&l £ > 0.

O

C.6  PROOF OF LEMMA [4.7]
Proof. We define: ©! £ L(X!, y';zt; B, put 1) + pt~1C? + T* + Z + X,
We define &, 2 [ly* —y' !> + AX) — v + [|X* = X712
Part (a). Using Lemma[4.3] we have:
L(XUFL yt+l gl gttty XL ytigt Bty — (ut ) — ut) 2
< Tt _ Tt+1 4 Zt _ Zt+1 _ 6yﬁt|‘yt+1 _ yt”§ _ €Z,Bt||A(Xt+1) _ yt+1||§. (37)

30



Under review as a conference paper at ICLR 2025

Using Lemma[4.6] we have:
LX"™ yh2' B85 ') — LX yh 2 B, ) < XP = XM — g, g X — XP|I2.
Adding these two inequalities together and using the definition of ©f, we have:
O =0 > By~ yl 3+ e BX - XU+ e BAXH) — y

> min(gyagwagz) 'ﬁt 'ét+l-

Part (b). Telescoping this inequality over ¢ from 1 to T', we have:

Yo Ble < W POHRICIECES
1 . (@1 _ @T-H)

min(ey,e5,62)

A®

! (0! - 0), (38)

— min(ey,e5,62)

where step @ uses ©! > ©. Furthermore, we have:

T s T T
Yo Bl = 2 5 (8?81 2 gr i (BY)%€ > 3T5T(Zf Bl (39)
where step @ uses > | X7 > %(Z? 1 Ixi])? for all x € R". Combining Inequalities and
,We have: Zt Btett! < 3TpTIY2 = O(T(H+9)/2),

Er ek

O

C.7 PROOF OF THEOREM[4.§]
Proof. We define Crit(X,y,z) £ ||A(X) — y|| + |0h(y) — || + || Projp, s (V.f(X) — 99(X) +
AT(2))]lF-
We define G £ Vf(X?) — dg(X!) + AT(z").
We define G 2 Vf(X!) — 9g(X!) + AT(z" + BLAXL) — yt) + 00(84) (X! — X1).
We first derive the following inequalities:
IG - Gl
S VAKX = VAXE — BAT(AXY —y') = 08 (X = X
< LIX — Xe + SRIAXY — v + 008 X+ — XLl

® — —
< Lyl X =X le + BA{JJAX) = vl + AIXE = X le)
+O0(B) (X = X lp + [ X* = X )

@ 9 3 _

< (Ly + B'AT +00(8")[IX* = X He + BAJAXT) —y'|| + 06081 XT = X"
2Ol + OB, (40)
where step @ uses the definitions of {G, G}; step @ uses the triangle inequality; step @ uses the
fact that f(X) i = X{lF < X=X, X = X lF < X - XE|le £
X =X g, and AXE) — y?|| < [AXY) - y*||r +A[ X — X! ¢, as shown in LemmalA.6]

We derive the following inequalities:

IProjr, , amd(G)llF

@ . . . .

= [|Projp,, m(G) + Projr_,., m(G)lF

2 211G - G 271G - X — Xt

< 2 IF+2vr(|G - lF

® _

< O(Btflet) + O(Btet“) + 2\/77(Cf +Cy + AZ)HX“rl — Xt||F

O 1e!) + O(8et* ),
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where step @ uses the optimality of X‘*1 that:

0 = Projy (G);

xt+1 M
step @ uses the result of Lemma[A.7]by applying
X=X X=X"* P=G, andP = G;

step @ uses Inequality , and the fact that || G| = ||V f(X*) = 0g(X*)+ AT (2"))[| < ||V f(X")—
dg(Xt) + AT(z")||r < Cf + C, + AZ.

Finally, we derive:

% 23;1 Crit(Xt, yt, z")

AT {JAXY - 3t + 19h(FY) - 2| + || Projr., m(G)llF}

@ .

< AL AKX =yt 4+ (1= 1) — 2] + || Projr,, m(G) e}
= FEL{0F ) + Ot )

ll®

O(T®P=1/2) = O(T~1/3),

where step @ uses the definition of Crit(X, y, z); step @ uses z' T —Oh(y'T!) 3 (1-1)(z! T —2"),
as shown in Lemmald.1} step ® uses ||z —z'~!|| = [|o B L(AXY) —y?)|| < 268! AX?) —y!|| =
O(B'1et); step @ uses the choice p = 1/3 and Lemmal[4.7(b).

O

C.8 PROOF OF LEMMA 4101

Proof. We define S(X,y?; zt; 8) 2 f(X) + (z*, AX) — y*) + %tHA(X) -yt
We let G € VxS(Xt, yt;zt; 5Y) — 0g(X?).

We define 1t £ b;zj € (0, 00).

Part (a). Initially, we show that ||G!||r is always bounded for ¢ with X € M. We have:

G = [IVAX") —0g(X") + AT[z" + B (AX") — y)]|IF
VXY = ag(X!) + ATzt + 06‘1‘,1 (zt — 21|k
@ t t T t Bt t t—1
< IVFEX)e + 109X + A - {llz|| + sz= (ll2"[ + [z}
S OO+ R 201+67) 27,

where step @ uses 21! = z' + o' (A(X'T!) — y'!); step @ uses the triangle inequality; step @
wses [V4(X0)r < Oy, [Vg(X)r < Co [VAX e < [VAXY)] < & o] <72, L < 1
BE< B+ €); step D uses € < 1.
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We derive the following inequalities:

L(XM ytsahs 80 pt) — L(XE yh2's B, ) = LX) — £(X)

{S' (X yh2h 8Y) — g(XTh) — {S'(X" y"2% 87) — 9(X)}

FUBHIXT = X + (G X - XT)

38" Retrx: (—n'Gy) — X[|f + (G*, Retrx: (—1'G}) — X' +1'G}) — 7' (G*, G},)

e IN®

IN®

(B Retrxe (—n'Gy) — X'|[ +gl| Retrx: (—1'Gp) — X' +0'Gyllr — iy G 17

2 max(1,2p

IN®

SUBYEIN'GLIE + 39kIn' CLIIE — sty G

gt g _eptad
' IGLIIE - {348k 5 + 59k 5 — maxtrap )

ll®

@ Tz - .

< anthH% ' {(gkg + ﬁkg)q/y - max(11,2p)}

LI (b "
=7 H p”F { }7 ( )

where step @ uses the definitions of L(X,y;z; 8, 1t); step @ uses the fact that the function g(X)
is convex and the function S(X,y?;z'; 3) is £(B%)-smooth w.rt. X; step @ uses X!t =
Retrx: (—n'G); step @ uses the Cauchy-Schwarz Inequality, [|G*|[r < g, and Lemma a)

that (G*,G}) > mn@ﬂ Z; step ® uses Lemma with A £ —n'G?, given that X' € M

and A € Tx:M; step ® uses n £ b;{j; step @ uses (((t) < B, B0 < B, and bt < b; step

uses the fact that 4/ is sufficiently small such that:

)

1
i < Ximstrzg —9)
0kb + gkb/B°

AL

- (42)

Given Inequality coincides with the condition of the line search procedure, we complete the
proof.

Part (b). We derive the following inequalities:
L(X* y" 2t 50, u') — L(XE y's 2% 8%, 1)

@

< G |IEon'

2 t 28t e 2

< *||G1/2||F577 -min(1,2p)

® - .

= —5lGilF - 86"y 1y - min(1, 2p)?
@

AN
=€,

where step @ uses Inequality (41); step @ uses Lemma b) that ||G,|[r > min(1,2p)||G12||r;
step @ uses the definition n* £ b;f ; step @ uses b* > b, and the following inequality:

YTl > > 44,

which can be implied by the stopping criteria of the line search procedure.

C.9 PROOF OF LEMMA |4.12]
Proof. We define: ©f £ L(X! yt; 2zt 8, ut 1) + p!=1C2 + T + Z! + 0 x X,
We define & £ [ly" — y* 7| + AX") =y > + [ 5: G 1, lI7-
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Part (a). Using Lemma[4.5] we have:
LXH y" g gttty — DX yh 2t 85 ) — (' = ph)
< Tt o Tt+1 4 Zt o Zt+1 o EyﬂtHytJrl - yt”§ - EZIBt”A(XtJrl) - yt+1||§' (43)

Using Lemma[d.T0} we have:
L(Xt+1,yt,zt;ﬂt,ut71) o L(Xt,yt,zt;ﬂt,ﬂtil) < 0 x Xt —0x XtJrl o 5$6t”#Gi/2HI2:
Adding these two inequalities together and using the definition of ©¢, we have:

O O > Byt — v+ e G o2 e BIAXY) - y 3

> min(ey,eq,65) - Bt Eip1.

Part (b). Using the same strategy as in deriving Lemma b), we finish the proof.

C.10 PROOF OF THEOREM 4. 13|

Proof. We define Crit(X,y, z) £ [A(X) = y|| + [|0h(y) — || + [ Projp, p(V £(X) = 9g(X) +
AT(2))llF-

We define G £ Vf(X") — 9g(X*) + AT(z"), and G 2 BTAT(A(X?) — y?).

We let G = Gt € dx L(X!, yt; zt; Bt ut).

First, we obtain:

@
Gi, = G-iX'G'X'—{X'X']'G
£ (G- IXIGTX! - IXXYTG) + (G — IXIGTX! — IXI X7 @)

l®

Projr_, m(G) + Projr_, m(G)
where step @ uses the definition G, £ G — pX'GTX" — (1 — p)X*[X']T G, as shown in Algorithm
step @ uses G € G + G; step @ uses the fact that Projp, m(A) = A — IX(ATX + XTA)
for all A € R™*" (Absil et al., [2008a)). This leads to:

| Projp, m(G)le = |G}y — Projp_, (G|
® .
< |Gl ellF + 1 Projr, m(G)lIF
® . .
< Gl ellr + G
< 1Bl + FEIAKY - y'|
< Btet-‘rl 4 O(ﬁt_let),

where step @ uses the triangle inequality; step @ uses Lemma that || Projp o (A)[[F < [[Alf
forall A € R™*".

Finally, we derive:
LS Crit(X, 3, 2t)

LA {JAXY) - 3 + 19h(F) — 2| + || Projr._, w(G)lle}

@ .

< AT {JAXY -yt + 11— 1)@t — 21| + || Projp, ()¢}
L AyT {0ttt + OB et}

e

O(T®P=1/2) = O(T~1/3),

where step @ uses the definition of Crit(X, y, z); step @ uses z' T —Oh(y'T!) 3 (1-1)(z! T -2"),
as shown in Lemmald. 1} step ® uses ||z — 2!~} || = [|o B L(AXY) —y?)|| < 268! AX?) —y!|| =
O(B'1et); step @ uses the choice p = 1/3 and Lemmal[4.7b).

O
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D PROOFS FOR SECTION[3

D.1 PROOF OF LEMMA[5.4]

We begin by presenting the following four useful lemmas.

Lemma D.1. For both OADMM-EP and OADMM-RR, we have:

(dX7 dX_ ) dy7 dz) S a@(Xt7 Xt_lu ytu zt; Bta Bt_17 /J't_17 t)? (44)
where dx = A' 4+ {8t +2w5a? 1} AT (AXY) —yH) +a(0+1)(BH) (Xt -Xt1), dx- 2 a0+
DE(B)(XI1=X1), dy & Vhye1 (y') -zt +(y' — AXY))- (B +2w50? 8171, d, & AX) -y
Here, A' £ 0I\((X!) + Vf(X!) — Vg(X!) + AT(z!).

Proof. We define the Lyapunov function as: ©(X,X™,y,z; 3,87, 47 ,t) = L(X,y;2z; 8,47) +

.. — a0 14 _ WG —
wio? B[ AX) — vl + 2P X — X|[2 + 807 L + O

Using this definition, we can promptly derive the conclusion of the lemma.

O

Lemma D.2. For OADMM-EP, we define {dx,dx-,dy,d,} as in Lemma There exists a
constant K such that:

gellldxllr + ldx-[[r + [[dyl| + [[da]l} < K{X" + 2" + &171 4 207 1) (45)

Here, Xt 2 || Xt — X*71||g, and 2t 2 || A(X?) — yi||.

Proof. First, we obtain:

Fel A F = 0Im(X") + VF(X') = Vg(X') + AT (2")r

FVg(X'™1) = Vg(X') + VF(X') = VAXTH) — 008 (X = XE)
+AT(a =2 = AT A~y )

2

IN®

e Lol X! = X g + e (Ly +0L(B"™ 1) [X" = XM
+ 3Rl — 2+ B E(AKY) -y + BX X2
= O(|X" = X" e) + O(JAX") = ¥'[))

+O(IX T = X2[f) + O(JAXTH =y 7)), (46)

where step @ uses the optimality of X! for OADMM-EP that:
OIm(X) — Vg(XY)

> — 0B )(XTH = X7) — VxS(XE, y's 25 8Y)
= —00(B") (X" = X) — VA(XE) — AT[z" + B (AXE) — y")); 47)

step @ uses the triangle inequality, the L ;-Lipschitz continuity of V f(X) for all X; the L,-Lipschitz
continuity of Vg(X), and the upper bound of ||A(X!) — y*| as shown in Lemma c); step ©®
uses the upper bound of || X! — X!~ Y|f, and 2! — z'~! = 0B L (A(X?) — y?).

Part (a). We bound the term % |ldx||r. We have:

7 lldx|IF
gAY+ (B + w502 B AT(AXY) — y*) + a0 + DE(B) (XF = X H)|r
rll A + (14 20502 A AXY) — y'[[F + a6 + DEIX* = X e

O(IX* =X e) + O(JAX) = y*[l) + O(IX =1 = X2 [[) + O(JAXTH) =y 7)),
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where step @ uses the definition of dx in Lemma [D.1} step @ uses the triangle inequality, 4~ <
B, and £(BY) < BUY; step @ uses Inequality .

Part (b). We bound the term % |ldx- ||r- We have:
® _ ® _
Frlldx-llF = gra(0 + 1B IXT! = X |r = O(IX" = X lp), (48)

where step @ uses the definition of dx- in Lemma step @ uses £(B') < BUL.
Part (c¢). We bound the term % |dy ||F. We have:

Lyl £ V- (yh) -2+ (vt = AXD) - (8 + 2050251
2 LA - D -2 + (v - AXY) - (B + wia?BY)|

=)

O(JAXY) =yl

where step @ uses the definition of dy, in Lemma step @ uses the fact that z* — %(zt —z!tl) =
Vh,:(y"™™), as shown in Lemma step ® uses g7 (271 — 2') = o(AX'H!) — y**t!), and
—1

Bt =0(BY).

Part (d). We bound the term éHdZHF. We have: %Hdzﬂ < %HA(X’f) —y'.

Part (). Combining the upper bounds for the terms { 77 [|dx [, 3¢ || dx - |, g7 [|dy[IF, 3¢ | dallF},
we finish the proof of this lemma. O

Lemma D.3. For OADMM-RR, we define {dx,dx-,dy.d,} as in Lemma|D.1| There exists a
constant K such that :

grildxlle + lldx-[lF + Idyll + l|da [} < K{x* + 27},

Here, X' £ || Gy jolr, and 2t £ |AX') — 3.

Proof. We define Gt 2 V f(X?) — Vg(X?) + AT(z! + BH(A(X?) — y?)).
We define £(X) £ L(X,y"; z'; 8, ut), we have: VL(X?) = G,
First, given X! € M, we obtain:

. @ . .
FlOIm(X) + VLX) [f < VLX) = X [VLEX)]TX! ¢
@
= #lIG' =X"GX'|[r = 5 |Gilr
®
< grmax(1,1/p) - |Gy polle = O(XY), (49)

where step @ uses Lemma 2.13} step @ uses the definitions of {G*, D!} as in Algorithm step @
uses ||G1||r < max(1,1/p)[|G,||r, as shown in Lemma2.12(b).

Part (a). We bound the term % |ldx ||e. We have:

L ldxllr
L L)OIm(XY) + VEX?) + 2wio? B AT(AXY) - y)r
. .
< FlOIM(X!) + VLX) ||r + 20502 AT(AX) — y')]Ir
®
< O +0(2Y,

where step @ uses dx = Il (X!) + VF(X!) — Vg(X!) + AT(2") + {B + 2wso?pt71} -
AT(A(X?) — y?) with the choice o = 0 for OADMM-RR; step @ uses the triangle inequality and
Bt~ < BY step @ uses Inequality (49).

Part (b). We bound the term %def |le. Given v = 0, we conclude that ﬁ”dxf |[e=0.
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Part (c). We bound the terms %deﬂp and %HdZHF. Considering that the same strategies for
updating {y*,z'} are employed, their bounds in OADMM-RR are identical to those in OADMM-
ER.

Part (d). Combining the upper bounds for the terms {%HdXHF, %def Ile, %deHF, %HdzHF},
we finish the proof of this lemma.

O

Now, we proceed to prove the main result of this lemma.

Lemma D.4. (Subgradient Bounds) («) For OADMM-EP, there exists a constant X > 0 such that:
dist(0,00(wt;ut)) < BIK(e! + e'~1). (b) For OADMM-RR, there exists a constant K > 0
such that: dist(0, 90 (w*; ut)) < gt Ket. Here, dist(0, 00 (wt; u?)) £ {dist*(0, dxO(w'; u?)) +
dist?(0, 9x - O(wt; u?)) + dist?(0, 8,0 (wt; u?)) + dist?(0, 8,0 (wt; u?))}1/2.

Proof. For OADMM-EP, we have:

dist(0,00(w';u')) = \/Ildxllﬁ + ldx- I + [[dyIf + [Ida|I?
< lldxlle + ldx- llF + ldy lle + I dalle
gKﬂt{Xt_’_Zt_,'_Xt—l + 21y
gKﬂt(et_’_et—l)’

where step @ uses va + b < y/a + Vb forall a > 0 and b > 0; step @ uses Lemma step @
uses the definition of K.

For OADMM-RR, using Lemma and similar strategies, we have: dist(0,00(w';u’)) <
BtKet.
O

D.2 PROOF OF THEOREM[3.6]

Proof. We define K £ 3K/ min(e,, e, ¢.).
Firstly, using Assumption[5.1] we have:
¢ (O(whu') — O(w™;u™>)) - dist(0,00(w'; u’)) > 1. (50)

Secondly, given the desingularization function ¢(-) is concave, for any a,b € R, we have: ¢(b) +
(@ — b)¢'(a) < p(a). Applying the inequality above with a = O(w';u’) — O(w™;u>) and
b=0(w!Thultl) — O(w>;u>), we have:

(O(w'; 1) — O(w! s utH)) - ! (B! ) — O(w; ™))
< @O u!) ~ O(w5u%)) ~ p(O(w! ) — O(w i ux)) . G

A A
Lt L1

Third, we derive the following inequalities for OADMM-EP:
min(ez, ey, £) B {AXT) =y HE + ly™* = w3 + X - XY

B AXT) =y IS + e, By = 33 + e (8 IX - XU

@t o 9t+1 _ @(Wt; Mt) _ @(Wt-i-l; 1]_1t+1)

1
(‘pt - QOt_H) TP (O(whut)—O (W u™)))

(¢! — oiT1) - dist(0, 90 (w'; ut))

IN® IN® |INe IN® |INe

(" — ") - KBt (et + €71, (52)
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where step @ uses £(3%) > B'4; step @ uses Lemma[d.7} step ® uses Inequality (51); step @ uses
Inequality (50); step ® uses Lemma|[5.4] We further derive the following inequalities:

()2 & (JAXT) =y o+ Iy =yl + [XF = X [|f)?

3- {JAXSHY) =y HE + Iy =y 5 + X = X}

IN® IN©

{3K/min(e., ey, e.)} - (e +e'71) - (pf — p't), (53)

where step @ uses the norm inequality that (a + b+ ¢)? < 3(a? + b? + ¢?) for any a, b, ¢ € R; step
@ uses Inequality (52).

Fourth, we derive the following inequalities for OADMM-RR:
min(e;, ey, &) SHNAXT) =y HE + Iy ™ = '3 + [5G 217}

< e SYAXTY) =y S ey By = v+ FIGT 0 l1F

()

< @t o @t+1 _ @(\Wt; Ut) o @(WH—I; Ut-i—l)

2 ( t_ t+1) i 1

= =@ o (Owhut)—6(w=mu>)))

®

< (pf = 't - dist(0,00(w;ut))

@

< (pf =) K B(e! + et ), (54)

where step @ uses Lemma step @ uses Inequality (51); step ® uses Inequality (50); step @
uses Lemma|[5.4] We further derive the following inequalities:

(et £ (MAXT) =y + Iy =yl + [5G 2lF)?

N®

3-{AXSHY) =y HE + Iy =y 13 + 115G l17}

IN®

{3K/min(e., ey, e.)} - (0" — ") - (" + €71, (55)

where step @ uses the norm inequality that (a + b+ ¢)? < 3(a? + b2 + ¢?) for any a, b, ¢ € R; step
@ uses Inequality (54).

Part (a). Given Inequalities (33) and (53], we establish the following unified inequality applicable
to both OADMM-EP and OADMM-RR:

(e)? < (e +e'71) - 3K/ min(e., ey, 60)} (" — o). (56)
LK
Part (b). Considering Inequality and applying Lemma with pt £ K !, we have:
Vi, 30, et <el et 4Kt

Letting t = 1, we have: 00 et! < el 4+ €0 + 4K o'

D.3 PROOF OF LEMMA[3.8]
Proof. We define d* £ 372 e+l
® , ,
Part (a-i). For OADMM-EP, we have for all ¢ > 1: || X' — X*|[p < > ||IX? — X <

St XA =X |p + [y =y + A =y [} = 327, ! = d, where step @ use
the triangle inequality.

®
Part (a-ii). For OADMM-RR, we have: [Xi+! — Xt|p 2 [ Retrx:(—n'G!) — X*|l¢ <

. ® . @ . t_j ® . —
Kin'Gylle < kn' max(2p,1)[G pllF = kmax(2p,1)°57(IG] pllr < kmax(2p, 1)b7 -
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H%Gi/QHF - O(||%G§/QHF), where step @ uses the update rule of X**!; step @ uses Lemma
, step @ uses Lemma c); step @ uses the definition of 7’ £ b;f ; step ® uses bt < b, and
the fact that 7/ < 7. Furthermore, we derive for all ¢ > 1: [| X! — X>°||g < Y77 || X" — X[ <
O, ||%G11/2HF) SO et =0(d).

Part (b). We define ' £ (st), where s £ ©(w; ut) — ©(w>; u>). Using the definition of d?,
we derive:

dt é Z;’it 6i+1
) .
S et+et71 +4K¢t
2 et yetl 4 4KE - {[s71F
S ettt AKE {21 -6) - k)T
@ . —5
< el el 4 AKE- {E(1 - §) - dist(0, 00 (wh; ut))} 7
® . —G
< el tetl+AKE {6(1—5) BUK (! + et 1)} 5
St gtyAKe- {61 -6) - BEK(d2 — d))F

42 — dt + 4Ke - (61 — 5)K)'F {(BH(d? — d)) ),

A

where step @ uses Y oo, et < ef et 4 4K, as shown in Theorem b); step @ uses
the definitions that o' = ¢(s'), s* £ O(w';u’) — O(wW™;u™), and ¢(s) = és'~7; step @
uses ©'(s) = é(1 — ) - [s]79, leading to [s']° = é(1 — ) - ﬁ; step @ uses Assumption
that 1 < dist(0,00(wh;ut)) - ¢/(st); step ® uses dist(0, 90 (w';ut)) < K(e! + e'~1) for both
OADMM-EP and OADMM-RR, as shown in Lemma|5.4} step ® uses the fact that e’ = d~* — d¢,
which implies:

et +€t71 _ (dtfl o dt) + (dt72 o dtfl) _ dt72 o dt.

[
D.4 PROOF OF THEOREM[5.9]
Proof. Using Lemmal[5.8{b), we have:
d'<di~?—dt+ K- {(Bi(d2 —d")) " ) (57)
We consider two cases for Inequality (57).
Part (a). 5 € (%, %] We define u £ @ c [%, 1), where p = % is a fixed constant.
We define 3¢ 2 K(B¢)"F". We define t/ £ {i |di~2 — d' < 1}.
For all ¢ > ', we have from Inequality :
& < a2 — gt + (dtfz . dt)lg‘"’ .j’((ﬂt)lgf’
\—\{—/
23t
R S t—2 oty At
< d7F-d+(de=-d)-pB
< dt—2. Bt41 (58)

Bt+2’

where step @ uses the fact that [A1=9)/7]/A = A(1=20)/6 — A(/5=2) < A0 = 1 for all
A=d"=?—-d" e[0,1]and 5 € (0, 3].
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Furthermore, We derive:

5

SLE) 20 (SLirl ) 2oL, ) 2 o,

1-&

where step @ uses 3 £ K (") % and 8t £ 50(1 + £tP) = O(t?); step @ uses the definition of u;
step @ uses Lemmathat: S > (1 —w) T = O(T ) forall u € (0, 1).

Applying Lemma Lemma|A.12|with a = 1 — u, we have:

4" < O (b )

xp(TT %)

Part (b). 5 € (1,1). We definew = 152 € (0,1),and 7 £ 1/w — 1 € (0, 00).
We define f* = K1/t where K £ K + R'=*(3%) =", and R £ d°.
Notably, we have: d=2 — d* < d° £ Rforall t > 2.

For all ¢ > 2, we have from Inequality (57):

dt < dt72 —dt +K(ﬂt)%(dt72 o dt)%
g k{ﬂt(dt_Q _ dt)}w +dt—2 _ dt
@ ..
< K{Bt(dt—2 _ dt)}w + (dt—2 _ dt)w A Rl—w
® .. t
< K{ﬁt(dt72_dt)}w+(dt72_dt)w.lew.(%)w

{ﬂt(dt72 . dt)}w . (K+ lew . (60)711))7

A

LK

where step @ uses the the definition of w; step @ uses the fact that max,co,r) 75 < R~ if
w € (0,1) and R > 0; step ® uses 3° < B and w € (0,1). We further obtain:

[dt]l/w < (dt72 _ dt) ',Btkl/w.
—=[dt]T+1 L5t

Additionally, we have:

SLL0/39 2 O(SL,(1/59) 2 O(S L, 177) = 0(177),
where step @ uses 5! = K1/%3%; step @ uses 3¢ £ 80(1 + &tP) = O(P); step @ uses Lemma
that: 37 t7% > (1 — p)T'~* = O(T*~?) for all p € (0,1).
Applying Lemma[A.T3|with a = 1 — p, we have:
d" <o(1/(T!P/m)).
Part (c). Finally, using the fact [ X7 — X*||¢ < O(d") as shown in Lemma [D.3{b), we finish the

proof of this theorem.

O

E ADDITIONAL EXPERIMENTS DETAILS AND RESULTS

» Datasets. In our experiments, we utilize several datasets comprising both randomly generated
and publicly available real-world data. These datasets are structured as data matrices D € R4,
They are denoted as follows: ‘mnist-r-d’, “TDT2-m-d’’, ‘sector-m/-d"’, and ‘randn-ri-d’, where
randn(m,n) generates a standard Gaussian random matrix of size m x n. The construction

of D € R™ jnyolves randomly selecting ri examples and d dimensions from the original
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Figure 3: The convergence curve of the compared methods with p = 10.
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Figure 4: The convergence curve of the compared methods with p = 100.

real-world dataset, sourced from http://www.cad.zju.edu.cn/home/dengcai/Data/
TextData.html and https://www.csie.ntu.edu.tw/~cjlin/libsvm/. Subse-

quently, we normalize each column of D to possess a unit norm and center the data by subtracting
the mean, denoted as D < D — 11TD.

» Additional experiment Results. We present additional experimental results in Figures 3| @] and
The figures demonstrate that the proposed OADMM method generally outperforms the other

methods, with OADMM-EP surpassing OADMM-RR. These results reinforce our previous conclu-
sions.
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Figure 5: The convergence curve of the compared methods with p = 1000.
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