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ABSTRACT

Unsupervised Domain Adaptation is an important machine learning problem that
aims at mitigating data distribution shifts, when transferring knowledge from one
labeled domain to another similar and unlabeled domain. Optimal transport has
been shown in previous works to be a powerful tool for comparing and matching
empirical distributions. As such, we propose a novel approach for Multi-Source
Domain adaptation which consists on learning a Wasserstein Dictionary of labeled
empirical distributions, as a means of interpolating distributional shift across sev-
eral related domains, and inferring labels on the target domain. We evaluate this
method on Caltech-Office 10 and Office 31 benchmarks, where we show that our
method improves the state-of-the-art of 1.96% and 2.70% respectively. We pro-
vide further insight on our dictionary, exploring how interpolations of atoms pro-
vide useful predictors for target domain data, and how it can be used to study the
geometry of data distributions. Our framework opens interesting perspectives for
fitting and generating datasets based on learned probability distributions.

1 INTRODUCTION

Dictionary Learning (DiL) is a representation learning technique that seeks to express a set of vectors
in Rd as the linear weighted combinations of elementary elements named atoms. When vectors
represent histograms, this problem is known as Nonnegative Matrix Factorization (NMF). Optimal
Transport (OT) previously contributed to this case, either through a metric over histograms (Rolet
et al., 2016) or by defining a non-linear way of aggregating atoms (Schmitz et al., 2018) through
Wasserstein barycenters (Agueh & Carlier, 2011).

In parallel, different problems in Machine Learning (ML) can be analyzed through a probabilistic
view, e.g., generative modeling (Goodfellow et al., 2014) and Domain Adaptation (DA) (Pan &
Yang, 2009). For instance, in Multi-Source Domain Adaptation (MSDA), one wants to adapt data
from heterogeneous domains or datasets to a new setting. In this case, the celebrated Empirical Risk
Minimization (ERM) principle cannot be correctly applied due to the non-i.i.d. character of the data.
However, we assume that the domain shifts have regularities that can be learned and leveraged for
MSDA. Thus, in this paper, we take a novel approach to MSDA, using distributional DiL: we learn
a dictionary of empirical distributions. As such, we reconstruct domains using interpolations in the
Wasserstein space, also known as Wasserstein barycenters. As we explore in section 3, this offers a
principled framework for MSDA.

We take inspiration from the works of Bonneel et al. (2016) and Schmitz et al. (2018) for defining
our novel DiL framework. Indeed, these authors consider DiL over histograms, while we propose a
DiL over datasets, understood as point clouds, which enables its application to DA. We summarize
our contributions as follows,

• Dictionary Learning. To the best of our knowledge, we are the first to propose a DiL
problem over point clouds.

• Empirical Distributions Embedding. As a by-product, we get embeddings of the DiL
datasets as their barycentric coordinates w.r.t. the dictionary. We build on this new rep-
resentation to define a (semi-)metric called Wasserstein Embedding Distance (WED). We
explore the WED theoretically (theorems 3.2 and 3.3) and in experiments (section 4.2).

1



Under review as a conference paper at ICLR 2023

• Domain Adaptation. We propose two novel ways for performing MSDA. The first relies
on reconstructing labeled samples in the support of the target distribution. The second relies
on weighting predictors learned on each atom, thus defining a new classifier that works on
the target domain. We offer theoretical justification for both methods (section 3.1). We
further explore, in section 4.1.3, general interpolations in the latent space of our dictionary.

Notation. We denote as ∆N = {a ∈ RN
+ :

∑N
i=1 ai = 1} the N probability simplex. We consider

nP i.i.d. samples X(P ) = {x(P )
i }nP

i=1 ∈ RnP×d from an unknown distribution P : x(P )
i ∼ P .

The samples X(P ) yield an empirical approximation, P̂ of P as a sum of delta Diracs, P̂ =∑nP

i=1 piδx(P )
i

, with pi = 1/nP unless stated otherwise. Similarly, Q̂ =
∑nQ

i=1 qiδx(Q)
i

, with

qi = 1/nQ, is an empirical approximation of a probability distribution Q on Rd. Additionally,
each x

(P )
i may have a label y(P )

i ∈ {1, · · · , nc} or Y(P )
i ∈ ∆nc for its one-hot encoding. In this

case P̂ =
∑nP

i=1 piδ(x(P )
i ,y

(P )
i )

is an empirical approximation for the joint P (X,Y ).

Paper Structure. Section 2 covers brief introductions to OT, DA, and DiL. Section 3 introduces
our view on dictionary learning. Section 4 covers experiments in manifold learning of distributions
and domain adaptation. Section 5 presents our conclusions.

2 PRELIMINARIES

2.1 OPTIMAL TRANSPORT

In this section, we focus on the computational treatment of OT (Peyré et al., 2019), which predom-
inantly relies on empirical approximations of distributions. There are two discretization strategies.
First, known as Eulerian discretization, one seeks to bin Rd into a fixed grid {x(P )

i }nP
i=1 so that pi

corresponds to how many samples are assigned to the i−th bin. The second, known as Lagrangian
discretization, assume x

(P )
i i.i.d. according to P . Henceforth, contrary to Bonneel et al. (2016);

Schmitz et al. (2018), we use the Lagrangian discretization.

For P̂ , Q̂, in the formulation of Kantorovich (1942) OT seeks a transport plan π ∈ RnP×nQ , where
πi,j represents how much mass transported from x

(P )
i to x

(Q)
j . π is required to preserve mass, that

is,
∑nP

i=1 πi,j = qj and
∑nQ

j=1 πi,j = pi, or π ∈ U(p,q), the set of bi-stochastic matrices with
marginals p ∈ ∆nP

,q ∈ ∆nQ
. Therefore,

π⋆ = OT(p,q,C) = argmin
π∈U(p,q)

nP∑
i=1

nQ∑
j=1

Ci,jπi,j = ⟨C, π⟩F , (1)

is the OT problem between P̂ and Q̂. In Equation 1, Ci,j = c(x
(P )
i ,x

(Q)
j ) is called ground-cost

matrix. When c is a distance, OT defines a distance between distributions (Peyré et al., 2019) called
Wasserstein distance, Wc(P̂ , Q̂) = ⟨C, π⋆⟩F . For P = {P̂k}Kk=1 and α ∈ ∆K , the Wasserstein
barycenter (Agueh & Carlier, 2011) is a solution to,

B⋆ = B(α;P) = inf
B

K∑
k=1

αkWc(Pk, B). (2)

Henceforth we call B(·;P) barycentric operator. For empirical P̂k, estimating B̂⋆ is done through
the fixed-point iterations of Álvarez-Esteban et al. (2016),

(Ck)i,j = ∥x(Pk)
i − x

(B)
j ∥22; πk = OT(pk,b,Ck); X

(B) =

K∑
k=1

αkdiag(b)−1πT
k X

(Pk), (3)

until convergence. In this case b ∈ ∆n (e.g., bj = 1/n). We further discuss iterations in equation 3
in appendix A.
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2.2 EMPIRICAL RISK MINIMIZATION AND DOMAIN ADAPTATION

In traditional ML, the classification problem can be formalized through the ERM principle of Vapnik
(1991), which consists in finding ĥ⋆, which verifies

ĥ⋆ = argmin
h∈H

R̂P (h) =
1

n

n∑
i=1

L(h(x(P )
i ), y

(P )
i ),

where L is a loss function and h : Rd → {1, · · · , nc} is a classifier, chosen among a family
H. Under the i.i.d. hypothesis between training and real application data, the classification error
expectation quantified as

RP (h, h0) = Ex∼P [l(h(x), h0(x))], (4)

where h0 is the unknown ground-truth labeling function. Given that enough samples are available
RP and R̂P are close with high probability (Redko et al., 2020, Theorem 1).

Nonetheless, the i.i.d. assumption is restrictive since real-world data may be acquired under different
regimes. In this case, train and test data may follow different distributions (Quinonero-Candela et al.
(2008)). DA (Kouw & Loog, 2019) is a framework for non-standard cases.

Following Pan & Yang (2009), a domain D = (X , Q(X)) is a pair of a feature space X (e.g., Rd)
and its distributionQ(X). In DA, one has DS ̸= DT due to different distributions, that is,QS ̸= QT .
The goal is thus adapting a classifier learned with labeled data from DS , using unlabeled data from
DT . When NS > 1 sources are available, {DSℓ

}NS

ℓ=1 (resp. QSℓ
), one has MSDA. DA can be further

divided into shallow and deep DA. In the first case, one leverages feature extractors (e.g., pre-trained
convolutional layers). In contrast, in the second, one uses unlabeled target data during training for
learning features invariant to distributional shifts.

OT has contributed to DA in various ways. For instance, in the seminal works of Courty et al. (2016),
the authors proposed transporting source domain samples using X̂(QS) = diag(qS)

−1πX(QT ). In
this sense X̂(QS) ∼ QT , thus their method generates labeled data on the target domain. OT has been
applied for MSDA as well. For instance, Montesuma & Mboula (2021a;b) proposes to aggregate
{QSℓ

}NS

ℓ=1 using the Wasserstein barycenter B̂, then transporting B̂ to Q̂T . Otherwise, Turrisi et al.
(2022) estimate domain importance coefficients α for weighting source domain distributions.

2.3 DICTIONARY LEARNING

DiL is a representation learning technique that tries to express a collection of N vectors {xℓ}Nℓ=1,
xℓ ∈ Rd through a set of K atoms P = {pk}Kk=1, pk ∈ Rd and N weights A = {αℓ}Nℓ=1,
αℓ ∈ RK . Mathematically, DiL corresponds to,

(P⋆,A⋆) = argmin
P,A

1

N

N∑
i=1

L(xℓ,PTαℓ) + λAΩA(A) + λPΩP (P), (5)

where L is a suitable loss, whereas ΩA and ΩP are regularization terms of representations and
atoms. OT has previously contributed to DiL, when the vectors are histograms, that is xℓ ∈ ∆d. In
this sense, these contributions assume an Eulerian discretization paradigm. For instance Rolet et al.
(2016) considered using the Sinkhorn divergence (Cuturi, 2013) as a loss in 5, and Schmitz et al.
(2018) proposed substituting PTαℓ for the Wasserstein barycenter.

3 DATASET DICTIONARY LEARNING

We seek to learn a dictionary over point clouds. As such, Q = {Q̂ℓ}Nℓ=1, where each Q̂ℓ has support
{x(Qℓ)

i }nQℓ
i=1 or {(x(Qℓ)

i , y
(Qℓ)
i )}nQℓ

i=1 , corresponding to whether Qℓ is labeled or not. In this setting,
we rewrite equation 5 as,

(P⋆,A⋆) = argmin
P,A

L(P,A) =
1

N

N∑
ℓ=1

Wc(Q̂ℓ,B(αℓ;P)), (6)
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where P = {P̂k}Kk=1 is our set of atoms, and A = {αℓ}Nℓ=1 with αℓ ∈ ∆K , αℓ,k denotes how much
Q̂ℓ is composed by P̂k in the Wasserstein distance sense. Each P̂k a points cloud parametrized by its
support X(Pk) and labels Y(Pk) when desired. Hence, we use the fixed-point iterations of Álvarez-
Esteban et al. (2016), and differentiate B(α;P) w.r.t. α and x

(Pk)
i using the Envelope theorem (Bert-

sekas, 1997). More on this matter is discussed in appendix A.

In addition, optimizing 6 over entire datasets might be untractable due the time and memory com-
plexity of Wc, which are, given n samples, O(n3 log n) and O(n2), respectively. We thus employ
mini-batch OT (Fatras et al., 2021). For M mini-batches of size nb ≪ n, this reduces complexity to
O(Mn3

b log nb) and O(n2b), respectively.

Algorithm 1 Dataset Dictionary Learning (DaDiL)
learning loop.

Require: Q = {Q̂ℓ}Nℓ=1, number of iterations Niter , num-
ber of atoms K, number of batches M , batch size nb

1: Initialize x
(Pk)
i ∼ N (0, Id), aℓ ∼ N (0, IK).

2: for it = 1 · · · , Niter do
3: for batch = 1, · · · ,M do
4: for ℓ = 1, · · · , N do
5: ∀k, sample X(Pk) = {x(Pk)

i }nb
i=1,

6: sample X(Qℓ) = {x(Qℓ)
j }nb

j=1,
7: change variables αℓ = softmax(aℓ)

8: calculate X(Bℓ) = B(αℓ;P)
9: end for

10: L = (1/N)
∑N

ℓ=1 Wc(B̂ℓ, Q̂ℓ)

11: ∀k, i, update x
(Pk)
i using ∂L/∂x

(Pk)
i

12: ∀ℓ, update aℓ using ∂L/∂aℓ.
13: end for
14: end for
Ensure: Dictionary P⋆ and weights A⋆.

As the Q̂ℓ can be either marginal over fea-
tures, or feature-label joint distributions in
equation 6, the atoms P̂k are joint features-
labels distributions, and the ground-cost
must take into account both labels and fea-
tures. We propose using,

Ci,j = ∥x(P )
i − x

(Q)
j ∥22

+ β∥Y(P )
i −Y

(Q)
j ∥22,

(7)

for β = maxi,j∥x(P )
i − x

(Q)
j ∥22. This

ground-cost allows us to determine X(B)

using iterations 3 and to formally justify
the label propagation approach of Redko
et al. (2019),

Y(B) =

K∑
k=1

αkdiag(b)−1πT
k Y

(Pk), (8)

for labeling the samples in X(B). Simi-
larly to Bonneel et al. (2016) and Schmitz
et al. (2018), we optimize w.r.t A =
{aℓ,k} ∈ RN×K , then perform a change of variables αℓ = softmax(aℓ). The overall procedure
is shown in algorithm 1, which is implemented using Pytorch (automatic differentiation) of Paszke
et al. (2019) and Python Optimal Transport of Flamary et al. (2021).

In the following, we present the derived MSDA approaches.

3.1 DOMAIN ADAPTATION

We assume that NS > 1 labeled source distributions, Q̂S1
, · · · , Q̂SNS

, are available. The goal
is to improve performance on an unlabeled target distribution, Q̂T . Hence, in eq. 6, Q =

{Q̂Sℓ
(X,Y )}NS

ℓ=1 ∪ {Q̂T (X)} with P = {P̂k(X,Y )}Kk=1 and A = {αℓ}NS+1
ℓ=1 . By definition of

Q, αNS+1 corresponds to the weights of the target distribution, i.e., αT . We now discuss our two
strategies, DaDiL-R and DaDiL-E. An overview is shown in figure 1.

DaDiL-R. Our first strategy is based on the reconstruction B̂T (X,Y ) = B(αT ;P) of Q̂T . Features
X(BT ) and labels Y(BT ) are generated with equations 3 and 8 respectively. Using (Redko et al.,
2017, Theorem 2), we can theoretically bound the risks on these domains using,

RQT
(h) ≤ RBT

(h) +W1(Q̂T , B̂T ) +

√
2
log(

1
δ )

ζ

(√
1

nQT
+
√

1
n

)
+ λ. (9)

As such, a classifier trained with data from a distribution B̂T close to Q̂T is likely to perform well on
Q̂T . The other terms in 9 are related to the sample size and the joint error λ = argminh∈HRQT

(h)+

RBT
(h). Since Q̂T is unlabeled, λ cannot be controlled directly. Similarly to Redko et al. (2017),
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Figure 1: Illustration of DaDiL for MSDA. (Upper left) set of datasets Q. (Upper middle) learned
atoms P̂k and their corresponding classifiers ĥk (color map). (Upper right) learned weights. (Bottom
left) reconstruction B̂T of Q̂T = Q̂4. (Bottom middle) Ensembled classifier ĥαT

(color map) and
the true labels of Q̂T (scatter plot).

we hypothesize that the inclusion of labels in the ground-cost and the presence of labels in the other
sources help control λ.

DaDiL-E. Our second strategy is based on ensembling. Each atom P̂k has a labeled support, i.e.
{(x(Pk)

i , y
(Pk)
i )}Kk=1, for which we learn a classifier ĥk = argminh∈HR̂Pk

(h). To predict target
labels, we use the predictor ĥαT

(x
(QT )
j ) =

∑K
k=1 αT,kĥk(x

(QT )
j ). We theoretically justify this

method as follows,
Theorem 3.1. Let {X(Pk)}Kk=1 and X(QT ) be samples of size n and nQT

from Pk and QT . Let hk
be the minimizer of RPk

. Then, for any d′ > d and ζ >
√
2 there exists N0, depending on d′ such

that for any δ > 0 and min(n, nQT
) > N0max(δ−d′+2, 1) and α ∈ ∆K , with probability at least

1− δ, the following holds,

RQT
(hα) ≤ Rα(hα) +

K∑
k=1

αk(W1(P̂k, Q̂T ) + λk + c), (10)

where hα =
∑K

k=1 αkhk, λk = minimize
h∈H

RPk
(h) +RQT

(h),

Rα(h) =

K∑
k=1

αkRPk
(h) and c =

√
2 log(1/δ)

ζ

(√
1

n
+

√
1

nQT

)
.

The bound in Equation 10 is very similar to that of equation 9, but it takes into account how the atom
classifiers are weighted to form hα. In addition, αT minimizes the r.h.s. in equation 10. Similarly
to DaDiL-R, we assume that using equation 7 helps controlling λk.

In the next subsection, we introduce a proxy for the Wasserstein distance based on the barycentric
weights in the learnt dictionary.
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3.2 A PROXY FOR THE EMPIRICAL WASSERSTEIN DISTANCE

We propose approximating distributions by their projection on the set MP = {B(α;P) : α ∈ ∆K}.

Thus, we introduce the following proxy for W2, called WED,

WED(Q̂1, Q̂2) = argmin
π∈U(α1,α2)

K∑
k1=1

K∑
k2=1

πk1,k2
Wc(P̂k1

, P̂k2
), (11)

which relies on the notion of Barycentric Coordinate Regression (BCR) (Bonneel et al., 2016, Defi-
nition 2), defined as,

α⋆ = argmin
α∈∆K

Wc(B(α;P), Q̂). (12)

Theorem 3.2. Let Q̂1 and Q̂2 be 2 empirical distributions, and P = {P̂k}Kk=1 be a set of atoms
learned by minimizing equation 6. In this case, the WED is a pseudo-metric over M (proof in A.3).

Calculating the WED is simpler than Wc since one needs to: (i) compute and store the pairwise
Wc(P̂k1

, P̂k2
); (ii) solve a small K ×K OT problem. Especially if the distributions P̂k have much

fewer samples than Q̂ℓ, calculating the WED is faster than Wc. We present a theoretical result
bounding the WED by the Wasserstein distance of different terms in our dictionary learning problem,

Theorem 3.3. Let Q̂1 and Q̂2 be 2 empirical distributions, and P = {P̂k}Kk=1 be a set of learned
atoms. For α1 (resp. α2), the barycentric coordinates (e.g., equation 12) of Q̂1 (resp. Q̂2) and
B̂1 = B(αℓ;P) (resp. B̂2) the WED is bounded as follows,

WED(Q̂1, Q̂2) ≤Wc(Q̂1, Q̂2) +

K∑
k=1

α1,kWc(P̂k, B̂1) + α2,kWc(P̂k, B̂2)

+Wc(B̂1, Q̂1) +Wc(B̂2, Q̂2).

This theorem bounds our proxy by the Wasserstein distance, plus two kinds of terms. The first corre-
spond to the geometry of the learned dictionary, whereas the second correspond to the approximation
error (e.g., Wc(B̂1, Q̂1)), which is explicitly minimized in our algorithm.

4 EXPERIMENTS

4.1 MULTI-SOURCE DOMAIN ADAPTATION

4.1.1 SHALLOW DOMAIN ADAPTATION

Table 1: Classification accuracy (in %) of DA
methods. Each column represents a target domain
for which we report mean ± standard deviation
over 5 folds. ∗ denote results from Montesuma
& Mboula (2021a), while † denotes results from
Turrisi et al. (2022).

Method A D W C Avg

Baseline 92.36 ± 1.21 98.33 ± 1.56 93.26 ± 1.88 86.58 ± 1.92 92.63

SA 88.61 ± 1.72 92.08 ± 3.82 79.33 ± 3.67 73.00 ± 2.31 83.26
TCA⋆ 86.83 ± 4.71 89.32 ± 1.33 97.51 ± 1.18 80.79 ± 2.65 88.61
OTDA 88.26 ± 1.36 90.41 ± 3.86 88.09 ± 3.80 83.02 ± 1.67 87.44

WJDOT† 94.23 ± 0.90 100.00 ± 0.00 89.33 ± 2.91 85.93 ± 2.07 92.37
WBT⋆

reg 92.74 ± 0.45 95.87 ± 1.43 96.57 ± 1.76 85.01 ± 0.84 92.55
DaDiL-R 93.26 ± 1.53 97.50 ± 2.43 98.88 ± 0.71 86.65 ± 1.13 94.07
DaDiL-E 93.89 ± 1.81 98.33 ± 0.83 98.88 ± 0.71 87.00 ± 1.42 94.52

We compare our MSDA methods with five
other (shallow) DA algorithms: (i) Subspace
Alignment (SA) (Fernando et al., 2013); (ii)
Transfer Component Analysis (TCA) (Pan
et al., 2010); (iii) Optimal Transport Do-
main Adaptation (OTDA) (Courty et al.,
2016); (iv) Wasserstein Barycenter Trans-
port (WBT) (Montesuma & Mboula, 2021a);
(v) Weighted JDOT (WJDOT) (Turrisi et al.,
2022). (i) and (ii) are standard algorithms in
DA, (iii) is in general the OT baseline, and (iv)
and (v) are the State-of-the-Art (SOTA) in shal-
low MSDA. We further consider the baseline
case, which corresponds to training a classifier
with the concatenation of source domain data,
and evaluating on target domain data.

We experiment on the Caltech-Office 10 benchmark, which is the intersection of the Caltech 256
dataset of Griffin et al. (2007) and the Office 31 dataset of Saenko et al. (2010). This benchmark
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consists of four domains: Amazon (A), dSLR (D), Webcam (W) and Caltech (C). More information
on these can be found in appendix B. A summary of our experiments is presented in table 1.

We focus on our analysis w.r.t. the SOTA. Our method improves average performance over WJDOT
and WBT, being especially better on Webcam and Caltech domains. W.r.t. WJDOT, Turrisi et al.
(2022) show in their experiments that their algorithm chooses one source domain (optimal w.r.t.
domain similarity) for the adaptation. This yields the best performance on domains A and D. On
the other hand, ours combine information learned through the atoms for predicting on the target
domain, which proves to be better for domains W and C. Note that a similar method to ours,
WBT, also performs well on these domains. Nonetheless, as we learn to direct reconstruct the target
distribution, we manage to outperform their method.

4.1.2 DEEP DOMAIN ADAPTATION

Table 2: Classification accuracy (in %) of DA
methods on the Office 31 benchmark. Each col-
umn represents a target domain for which we re-
port mean ± standard deviation over 5 folds.

Method A D W Avg

Baseline 57.45 98.00 92.45 82.63

DANN 58.69 98.00 93.08 83.25
WDGRL 59.75 98.00 94.34 84.03
MCD 62.23 98.00 94.34 84.85

MOST 64.01 97.00 96.23 85.74
M3SDA 50.35 100.00 98.74 83.03
WBTreg 65.78 91.00 89.94 82.24
DaDiL-R 72.52 95.00 98.11 88.54
DaDiL-E 73.58 96.00 96.23 88.60

For deep DA, we compare six methods from
the SOTA; (i) Domain Adversarial Neural Net-
work (DANN) (Ganin et al., 2016); (ii) Wasser-
stein Distance Guided Representation Learning
(WDGRL) (Shen et al., 2018); (iii) Maximum
Classifier Discrepancy (MCD) (Saito et al.,
2018); (iv) MOST (Nguyen et al., 2021); (v)
Moment Matching for MSDA (M3SDA) (Peng
et al., 2019) and (vi) WBT (Montesuma &
Mboula, 2021a). MOST and WBT consti-
tute the OT-based MSDA SOTA. In our ex-
periments we consider the Office 31 dataset
of Saenko et al. (2010) (see appendix B). As
the the backbone, we fine-tune a ResNet-50 (He
et al., 2016) on the concatenation of source do-
main data, then perform adaptation with target
domain data. A summary of our experiments is
shown in table 2.

On average, our method is SOTA, primarily due to its outstanding performance on the Amazon
domain, surpassing other methods by a margin of 7.80%. On average, it presents an increase of
2.70% in accuracy. Nonetheless, the transfer towards the dSLR domain is negative. In this domain,
deep methods such as Margin Disparity Discrepancy (MDD) and M3SDA perform better. Overall,
the main difference between our method and the deep methods in the SOTA is that we cannot update
the parameters of convolutional layers, thus decreasing performance on this domain.

4.1.3 ADAPTATION USING ATOM INTERPOLATIONS

Besides using the inferred target domain weights αT = αNS+1 for DaDiL-E and DaDiL-R, our
method has the potential to generate infinitely many domains, by interpolating atoms using an arbi-
trary α ∈ ∆K , that is, through MP = {B(α;P) : α ∈ ∆K}. We thus explore the performance
on Caltech-Office 10 and Office 31 benchmarks in terms of hα =

∑K
k=1 αkĥk and B̂α = B(α;P),

we call these interpolation models. This is shown in figure 2 for K = 3, which allows for a nice
visualization of the latent space. First, in some cases, the atoms themselves provide good predictors
for the target domain (e.g., column 2, rows 2 and 3 in figure 2). This implies that DaDiL learns
distributions that can discriminate between classes. Second, the reconstruction loss is correlated to
the performance of DaDiL-R, as regions with low reconstruction error tend to give better predictions
on target. This remark agrees with our theoretical discussion (e.g., eq. 9). Further experiments on
this idea can be found in appendix B.2.2.

To give an overview of the performance of interpolations in the latent space we show in figure 3 box
plots corresponding to the adaptation performance of DaDiL-E and DaDiL-R on the Caltech-Office
10 benchmark, for each target and arbitrary α. For domains A,C and W , the choice αT (dotted red
line) is clearly above average. Surprisingly, for D, this choice is sub-optimal, indicating that other
interpolations in the latent space can be useful for adaptation.
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Figure 2: DA performance of interpolations in the latent space of DaDiL. Columns represent re-
construction loss Wc(B̂α, Q̂T ), and classification accuracy (Acc) of DaDiL-E and DaDiL-R, for
Caltech-Office 10 (left) and Office 31 (right) benchmarks.
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Figure 3: Performance analysis of latent space interpolations on the Caltech-Office 10 benchmark.
The red dotted line corresponds to the results reported in Table 1 for DaDiL.

4.2 TOY EXAMPLE: LEARNING THE MANIFOLD OF GAUSSIAN DISTRIBUTIONS

In this section we propose to learn a dictionary over the Gaussian distributions. Let Qℓ = N (µℓ, I),
where µℓ ∈ [0, 8]2 ⊂ R2 is the mean vector. We discretize [0, 8]2 using 25 uniformly spaced points.
For each Qℓ, we sample n = 512 points, generating datasets Q̂ℓ. In a first moment, we learn a
dictionary for K = 2, · · · , 6, which is shown in Figure 4. Except for K = 2, all dictionaries
provide good reconstructions for the manifold. Furthermore, since µ = [µ1, µ2] is a coordinate
system for Q, one needs at least three atoms to recover faithful reconstructions.
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Figure 4: Overview of DiL on the space of Gaussian distributions.

We focus on K = 3 for better visualization. α0 = (1/3, 1/3, 1/3) and calculate and analyze the W2

and the WED on MP = {B(α;P) : α ∈ ∆3}. This is shown in Figures 4 (d) and (e). Since
each Qℓ ∈ Q is Gaussian, so is B ((Agueh & Carlier, 2011, Section 6.3)). Therefore W2(B̂0, B̂) =
∥∑k(α0,k − αk)µk∥22, which explains the quadratic contours. Moreover, the WED contours are
associated with the positions of the learned atoms and the polytope U(α0,α), since the ground-cost
matrixCk1,k2

=W2(P̂k1
, P̂k2

) does not depend on α0 or α. Indeed, for each α, the WED is defined
by a 3 × 3 OT problem, which has less degrees of freedom (w.r.t. α ∈ ∆3) than W2, which is a
512× 512 OT problem. Finally, figure 4 (e) shows that the WED is highly correlated to W2. This is
mainly due the fact that our dictionary perfectly reconstructs distributions in Q.

5 CONCLUSION

We present a novel probabilistic framework, based on DiL, for learning dictionaries over datasets
understood as point clouds, Q = {Q̂ℓ}Nℓ=1. We learn a dictionary of labeled points clouds P =

{P̂k}Kk=1 and weights A = {αℓ}Nℓ=1, where each distribution Q̂ℓ is expressed as a Wasserstein
barycenter of atoms, i.e. B(αℓ;P). We propose two novel ways of applying our dictionary for
MSDA, by either reconstructing the target domain as the combination of atom distributions, or by
ensembling classifiers learned on the atoms P̂k. We show that interpolations in the latent space
of our dictionary provide good predictors for the target distribution as well. Finally, we define a
pseudo-metric for empirical distributions, based on their barycentric coordinates in the dictionary
which is a valuable approximation of the exact Wasserstein distance.

Limitations and perspectives: first, in DA, our method relies on the quality of feature extractors
or embedding functions. In comparison with deep DA, DaDiL is not able to guide representation
learning. We plan to pursue this line of work in future research. Second, similarly to Bonneel
et al. (2016), our framework is not able to represent distributions outside MP . This may lead to
inconsistent reconstructions, which could actually be leveraged for novelty detection.
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Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Joaquin Quinonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence.
Dataset shift in machine learning. Mit Press, 2008.

Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation with
optimal transport. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pp. 737–753. Springer, 2017.
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A THEORETICAL DETAILS

A.1 DIFFERENTIATION

In this section, we discuss the derivatives of (i) P̂ 7→ Wc(P̂ , Q̂), (ii) α 7→ B(α;P), and (iii)
P 7→ B(α;P). Since we parametrize empirical distributions by their support, taking derivatives of
distribution-valued functionals (e.g., the Wasserstein distance) is equivalent to differentiating w.r.t.
the support of the free distribution (e.g., P̂ ).

Considering the Wasserstein distance, one has two alternatives: (i) using the Sinkhorn algorithm
(Cuturi (2013)) for calculating π⋆

ϵ ≈ π⋆, where ϵ is a parameter that controls the amount of entropic
regularization. Since the Sinkhorn algorithm relies on differentiable operations, one can backprop-
agate through its iterations. (ii) Differentiating through the min/inf using the Envelope or Danskin’s
Theorem Afriat (1971); Bertsekas (1997) at optimality.

The Sinkhorn algorithm has mainly two drawbacks. First, it is unstable numerically for low regu-
larization values, leading to problematic optimization. As remarked by Xie et al. (2020), a possible
workaround would be using stabilized versions of the algorithm, but these come with costly expo-
nential/logarithmic operations. The second issue is that the computed OT plans are no longer sparse,
which may lead to degenerated distributions (e.g., take the extreme case when ϵ → ∞). For those
reasons, we decide to use exact OT between mini-batches.

A second approach is using the Envelope theorem, which, as advocated by Feydy et al. (2019), can
be faster than differentiating through Sinkhorn’s iterations. For completeness, we state the Envelope
theorem in the following,
Theorem A.1. (Envelope Theorem Bertsekas (1997)) Let Z ⊂ Rm be a compact set and let ϕ :
Rn ×Z → R be continuous and such that ϕ(·, z) : Rn → R is convex for each z ∈ Z. The function
f : Rn → R given by,

f(x) = max
z∈Z

ϕ(x, z),

is convex. When Z(x) = {z̄ : ϕ(x, z̄) = maxz ϕ(x, z)} consists on an unique point z̄, then

∂f

∂xi
=
∂ϕ(x, z̄)

∂xi
. (13)

The application of this theorem for OT is straightforward. In this case Z = U(a,b) ⊂ Rm=nP×nQ

which is compact. Naturally, the variable z = π, whereas ϕ(C, π) = ⟨C, π⟩F . This is a linear
function of C, hence convex. Finally, the uniqueness of π⋆ depends on the regularity of the ground-
cost. This property is particularly true for the Euclidean distance. In this case, the Wasserstein
distance’s derivative reads as,

W2(P̂ , Q̂) =

n∑
i=1

m∑
j=1

π⋆
i,j∥x(P )

i − x
(Q)
j ∥22 → ∂W2

∂X(P )
(P̂ , Q̂) =

2

nP
X(P ) − 2(π⋆)TX(Q),

Here, it is essential to note that due to equation 13, to be able to evaluate ∂W2/∂x(P )
i , one needs

to compute π⋆ = OT(p,q,C) at optimality. This calculation poses a problem for the Sinkhorn
algorithm since the number of iterations needed to converge is inversely proportional to ϵ. Thus, in
some cases, it is more efficient to compute exact OT.

Now, we may apply the Envelope theorem to the iterations of Álvarez-Esteban et al. (2016) in
equation 3. Let πk be the OT plan between X(Pk) and X(B) at convergence. The barycentric
operator is thus,

X(B) = B(α;P) =
∑
k

αkπ
T
k X

(Pk),

which is linear w.r.t. αk and x
(Pk)
i . The derivatives are, therefore,

∂X(B)

∂αk
= πkX

(Pk) ∈ Rn×d and
∂x

(B)
j

∂x
(Pk)
i

= αkdiag((πk)i,j) ∈ Rd×d.

13



Under review as a conference paper at ICLR 2023

A.2 WASSERSTEIN BARYCENTERS WITH FIXED-POINT ITERATIONS

In previous work (Montesuma & Mboula, 2021a;b), authors have used the iterations of Cuturi &
Doucet (2014) for calculating the support X(B) of Wasserstein barycenters. A similar approach
is using the fixed-point approach of Álvarez-Esteban et al. (2016). Let Tk,it be the barycentric

mapping between P̂k and B̂(it), that is, Tk,it(x
(B(it))
j ) =

1

bj

∑n
i=1(πk)ijx

(Pk)
i , where πk is the OT

plan between X(Pk) and X(B(it)). Moreover, let Tit(x) =
∑K

k=1 αkTk,it(x). Álvarez-Esteban et al.
(2016) introduce the following mapping,

ψ(P̂ ) = Tit,♯P̂ =
1

n

n∑
i=1

δTit(x).

In this setting, Álvarez-Esteban et al. (2016) prove that the Wasserstein barycenter is a fixed-point
solution to ψ, namely, ψ(B̂) = B̂. Their procedure is then equivalent to B̂(it+1) = ψ(B̂(it)). This
iteration corresponds exactly to those in Equation 3. These are summarized in Algorithm 2.

In section 3, Equation 7 introduced a supervised ground-cost between pairs of samples (x(P )
i , y

(P )
i )

and (x
(Q)
i , y

(Q)
i ), Ci,j = ∥x(P )

i −x
(Q)
j ∥22+β∥Y(P )

i −Y
(Q)
j ∥22, where β ≥ 0 defines how costly it is

to transport samples from different classes. For one-hot encoded vectors Y ∈ Rn×nc , the Euclidean
distance is equivalent to the 0-1 loss, ∥Y(P )

i −Y
(Q)
j ∥22 = δ(y

(P )
i − y

(Q)
j ). This makes a direct link

between our proposed ground-cost, and the semi-supervised regularization proposed by Courty et al.
(2016).

In addition, using an Euclidean cost for the labels allows us to interpolate distributions P (X,Y ) and
Q(X,Y ), with respect to features and labels. Indeed, taking derivatives as in the previous section,

Wc(P̂ , Q̂) =

n∑
i=1

m∑
j=1

π⋆
i,j(∥x(P )

i − x
(Q)
j ∥22 + β∥Y(P )

i −Y
(Q)
j ∥22),

→ ∂Wc/∂X(P )(P̂ , Q̂) =
2

nP
X(P ) − 2(π⋆)TX(Q), (14)

→ ∂Wc/∂Y(P )(P̂ , Q̂) =
2β

nP
Y(P ) − 2β(π⋆)TY(Q). (15)

Equating the derivatives in 14 and 15 to 0 yields, respectively, the barycentric mapping of Courty
et al. (2016) and the label propagation formula of Redko et al. (2019). This allows us to reformulate
the fixed-point iterations for joint distributions. Algorithms 2 and 3 show the proposed iterations for
barycenters of features and features-labels distributions respectively.

Algorithm 2 Free-Support Wasserstein
Barycenter of Unlabeled Distributions

Require: {X(Pk)}Kk=1, α ∈ ∆K , τ > 0, n.
1: X(B(0)) = initialize({X(Pk)}Kk=1)

2: while ∥X(B(it))−X(B(it−1))∥F ≤ τ has not
converged do

3: for k = 1, · · ·K do
4: (Ck)i,j = ∥x(Pk)

i − x
(B(it))
j ∥22.

5: πk = OT(unk ,un,Ck)
6: end for
7: X(B(it+1)) = n

∑K
k=1 αkπ

T
k X

(Pk)

8: end while
Ensure: Barycenter support samples X(B).

Algorithm 3 Free-Support Wasserstein Barycenter
of Labeled Distributions
Require: {X(Pk),Y(Pk)}Kk=1 , α ∈ ∆K , τ > 0, n, β ≥ 0.

1: X(B(0)),Y(B(0)) = initialize({X(Pk),Y(Pk)}Kk=1)

2: while ∥X(B(it)) − X(B(it−1))∥F ≤ τ has not converged do
3: for k = 1, · · ·K do

4: (Ck)i,j = ∥x(Pk)
i − x

(B(it))
j ∥22 + β∥Y(Pk)

i −

Y
(B

(it)
j

)
∥22 .

5: πk = OT(unk
,un,Ck)

6: end for
7: X(B(it+1)) = n

∑K
k=1 αkπ

T
k X(Pk)

8: Y(B(it+1)) = n
∑K

k=1 αkπ
T
k Y(Pk)

9: end while
Ensure: Barycenter support samples X(B) and labels Y(B) .

Remark 1: in Algorithms 2 and 3 we use the routine initialize to get the initial barycenter sup-
port X(B(0)), Y(B(0)). In our experiments we sub-sample n points from the concatenated matrices
{X(Pk),Y(Pk)}Kk=1. Alternatively, one could do as Montesuma & Mboula (2021a;b) and initialize
the barycenter support randomly.
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A.3 APPROXIMATION PROPERTIES OF WED

Proof of Theorem 3.2: our proof is done in 4 steps: (i) WED(Q̂1, Q̂2) ≥ 0, ∀Q̂1, Q̂2,
(ii) WED(Q̂1, Q̂1) = 0, ∀Q̂1, (iii) WED(Q̂1, Q̂2) = WED(Q̂2, Q̂1) (iv) WED(Q̂1, Q̂3) ≤
WED(Q̂1, Q̂2) + WED(Q̂2, Q̂3).

(i) Since πk1,k2
and Wc(P̂k1

, P̂k2
) are non-negative, ∀Q̂1, Q̂2 one has WED(Q̂1, Q̂2) ≥ 0.

(ii) First, note thatWc(Q̂1, Q̂1) = 0. Now, since equation 12 is a convex optimization problem,
to each Q̂1 one has a single solution α1. Hence, IK ∈ U(α1,α1), and WED(Q̂1, Q̂1) = 0.

(iii) If π ∈ U(α1,α2), then πT ∈ U(α2,α1). Due to commutativity of the summation,
WED(Q̂1, Q̂2) = WED(Q̂2, Q̂1).

(iv) Let π(1), π(2) and π(3) be the solutions to WED(Q̂1, Q̂3), WED(Q̂1, Q̂2) and
WED(Q̂2, Q̂3), respectively. In this case,

WED(Q̂1, Q̂3) =

K∑
k1=1

K∑
k2=1

π
(1)
k1,k2

Wc(P̂k1
, P̂k2

),

≤
K∑

k1=1

K∑
k2=1

π
(2)
k1,k2

Wc(P̂k1 , P̂k2),

since π(2) is sub-optimal for the pair (Q̂1, Q̂3). Now,

WED(Q̂1, Q̂3) ≤
K∑

k1=1

K∑
k2=1

π
(2)
k1,k2

Wc(P̂k1 , P̂k2),

≤
K∑

k1=1

K∑
k2=1

(π
(2)
k1,k2

+ π
(3)
k1,k2

)Wc(P̂k1
, P̂k2

)

= WED(Q̂1, Q̂2) + WED(Q̂2, Q̂3).

since π(3) is non-negative.

Proof of Theorem 3.3: our proof relies on the successive application of the triangle inequality for
the Wasserstein distance. Let π ∈ U(α1, α2) be the minimizer in equation 11. Then,

WED(Q̂1, Q̂2) =

K∑
k1=1

K∑
k2=1

πk1,k2Wc(P̂k1 , P̂k2),

≤
K∑

k1=1

K∑
k2=1

πk1,k2
(Wc(P̂k1

, Q̂2) +Wc(P̂k2
, Q̂2)),

≤
K∑

k1=1

K∑
k2=1

πk1,k2
(Wc(P̂k1

, Q̂1) +Wc(Q̂1, Q̂2) +Wc(P̂k2
, Q̂2)).

We now break this sum in 3 parts. First, let us consider W2(P̂k1 , Q̂1):
K∑

k1=1

K∑
k2=1

πk1,k2
Wc(P̂k1

, Q̂1) =

K∑
k1=1

Wc(P̂k1
, Q̂1)

( K∑
k2=1

πk1,k2

)
,

=

K∑
k1=1

α1,k1
Wc(P̂k1

, Q̂1),

≤
K∑

k=1

α1,k(Wc(P̂k, B̂1) +Wc(B̂1, Q̂1)),
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where we used the triangle inequality in the last line. As consequence,

K∑
k1=1

K∑
k2=1

πk1,k2
Wc(P̂k1

, Q̂1) ≤Wc(B̂1, Q̂1) +

K∑
k=1

α1,kWc(P̂k, B̂1).

The exact same process can be repeated for the term involving W2(P̂k2
, Q̂2), that is,

K∑
k1=1

K∑
k2=1

πk1,k2
Wc(P̂k2

, Q̂2) ≤Wc(B̂2, Q̂2) +

K∑
k=1

α1,kWc(P̂k, B̂2).

The final term follows from the fact that W2(Q̂1, Q̂2) is independent of both k1 nor k2. Therefore,

K∑
k1=1

K∑
k2=1

πk1,k2
Wc(Q̂1, Q̂2) =Wc(Q̂1, Q̂2)

( K∑
k1=1

K∑
k2=1

πk1,k2

)
=Wc(Q̂1, Q̂2).

A.4 THEORETICAL BOUNDS FOR DOMAIN ADAPTATION

In what follows, we consider the theoretical results of Ben-David et al. (2010) and Redko et al.
(2017) for giving the theoretical guarantees of both DaDiL-E and DaDiL-R. For completeness, we
re-state Lemma 1 and Theorem 1 of Redko et al. (2017), and prove Theorem 3.1.
Lemma A.1. (Due to Redko et al. (2017)) Let P and Q be two probability distributions over Rd.
Assume that the cost function c(x(P ),x(Q)) = ∥ϕ(x(P ))−ϕ(x(Q))∥Hk

, where Hk is a reproducing
kernel Hilbert space equipped with kernel Φ : Rd × Rd → R induced by ϕ : Rd → Hk and
Φ(x(P ),x(Q)) = ⟨ϕ(x(P )), ϕ(x(Q))⟩HΦ . Assume that the loss function lh,h0 : x 7→ l(h(x), h0(x))
is convex, symmetric, bounded, obeys the triangular inequality and has the parametric form |h(x)−
h0(x)|q for some q > 0. Assume that the kernel Φ ∈ HΦ is square-root integrable w.r.t. both P and
Q and 0 ≤ Φ(x(P ),x(Q)) ≤M , ∀x(P ),x(Q) ∈ Rd. Then the following holds,

RQ(h, h
′) ≤ RP (h, h

′) +W1(P,Q). (16)

Lemma A.1 bounds the risk (recall equation 4) of h with respect to h′ under distribution Q by
the risk under distribution P , plus a term depending on the distance between those 2 distributions.
Intuitively, if P is close to Q, its samples are similar and thus the risk are similar. We are now
interested in acquiring bounds for the empirical risks R̂P and R̂Q in terms of W1(P̂ , Q̂), which are
quantities we can estimate from data. We start by stating Theorem 1.1 of Bolley et al. (2007),
Lemma A.2. (Due to Bolley et al. (2007)) Let P be a probability distribution over Rd, so that for
some α > 0 we have that

∫
Rd e

α||x||2dP < ∞ and P̂ be its associated empirical approximation
with support {x(P )

i }ni=1 drawn independently from P . Then, for any d′ > d and ζ <
√
2 there is a

constant n0 depending on d′ and some square exponential moment of P such that for any ϵ > 0 and
n ≥ n0max(ϵ−(d′+2), 1),

P[W1(P̂ , P ) > ϵ] ≤ exp

(
− ζ

2
nϵ2

)
,

where d′ and ζ ′ can be calculated explicitly.

Lemma A.2 states the conditions for which P̂ and P are close in the sense of Wasserstein. This last
bound is on the form P[quantity > ϵ] < δ, that is, with high probability quantity ≤ ϵ. These
types of bounds are ubiquitous in the theoretical analysis of learning algorithms. We can express ϵ
explicitly in terms of δ,

ϵ =

√
2

nζ
log( 1δ ), (17)

which will be useful in the following discussion. These results allowed Redko et al. (2017) to
provide theoretical guarantees for the OTDA framework of Courty et al. (2016),
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Theorem A.2. (Due to Redko et al. (2017)) Under the assumptions of Lemma A.1, let X(P ) and
X(Q) be 2 samples of size nP and nQ, drawn i.i.d. from P and Q. Let P̂ and Q̂ be the respective
empirical approximations. Then for any d′ > d and ζ <

√
2 there exists some constant N0, depend-

ing on d′ such that for any δ > 0 and min(nP , nQ) ≥ N0max(δ−d′+2, 1) with probability at least
1− δ for all h ∈ H, then,

RQ(h) ≤ RP (h) +W1(P̂ , Q̂) +
√
2log(1/δ)/ζ

(√
1/nP +

√
1/nQ

)
+ λ.

This last theorem effectively states that, besides constant terms that depend on the number of samples
nP and nQ, there are 2 factors that determine whether the risk under Q is similar to that under P :
(i) the distance in distribution between P̂ and Q̂, (ii) how well can a classifier in H work on both
domains. In practice, what OTDA does is minimizing W1(P̂ , Q̂) while keeping λ constant (e.g. by
enforcing class-sparsity).

Now, let us discuss how these concepts apply to DaDiL-R. Note that our strategy consists on learning
with samples obtained by the barycentric distribution B̂T = B(αT ;P), since it approximates the
target distribution Q̂T . In this sense,

RQT
(h) ≤ RBT

(h) +W1(Q̂T , B̂T ) +
√
2log(1/δ)/ζ

(√
1/nT +

√
1/n

)
+ λ.

In this last equation, the term W1(Q̂T , B̂T ) is the reconstruction error for the target domain, which
we directly minimize in our objective function (equation 6). The remaining term is λ, which we
cannot directly optimise since target domain labels are not available during training. Nonetheless our
algorithm leverages label information from source domains. If we suppose that their class structure
is similar to that of the target domain, the regularization term 7 ensures that λ remains bounded,
since transport plans will not mix classes.

We now focus on Theorem 3.1, which presents a theoretical guarantee for DaDiL-E.

Proof of Theorem 3.1 This proof relies on the triangle inequality for the risk. Let h⋆T,k =

argminh∈HRQT
(h) +RPk

(h) and hα =
∑

k αkRPk
(h⋆k) for h⋆k = argminh∈HRPk

(h). Then,

RQT
(hα) ≤ RQT

(h⋆T,k) +RQT
(h⋆T,k, hα),

= (RQT
(h⋆T,k, hα)−RPk

(h⋆T,k, hα)) + (RQT
(h⋆T,k) +RPk

(h⋆T,k, hα)),

≤ (RQT
(h⋆k, hα)−RPk

(h⋆k, hα))︸ ︷︷ ︸
≤W1(Pk,QT ) (Lemma A.1)

+(RQT
(h⋆T,k) +RPk

(h⋆T,k))︸ ︷︷ ︸
=λk

+RPk
(hα),

≤ RPk
(hα) +W1(Pk, QT ) + λk.

Summing over k, weighted by α,

RQT
(hα) =

∑
k

αkRQT
(hα) ≤

∑
k

αkRPk
(hα) +

∑
k

αk(W1(Pk, QT ) + λk),

= Rα(hα) +
∑
k

αk(W1(Pk, QT ) + λk),

≤ Rα(hα) +
∑
k

αk(W1(P̂k, Q̂T ) + λk + c1),

This theorem is similar to previous theoretical guarantees for MSDA, such as those of Ben-David
et al. (2010), Redko et al. (2017), and WBTreg (Montesuma & Mboula (2021a)). In particular,
DaDiL-E uses αT for weighting h⋆k. Furthermore this choice of α minimizes the r.h.s. of the last
equation.
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B TECHNICAL DETAILS

B.1 DATA PREPARATION

Caltech-Office 10: we use this dataset for shallow DA. As follows, we use the experimental setting
of Montesuma & Mboula (2021a), namely, the 5 fold cross-validation partitions and the features
(DeCAF 7th layer activations).

Office 31: we use this dataset for deep DA. To that end, we download the raw images from its
public repository1. We train the feature extractor ourselves, which consists on a ResNet50 (He et al.
(2016)). The preprocessing steps taken are: (i) resizing each image to (224, 224, 3), and (ii) apply-
ing tf.keras.applications.resnet50.preprocess input function. We initialize its
parameters with the weights trained on ImageNet, then fine-tune for 51 epochs on each combination
of source domains (e.g.,A,D). Fine-tuning was performed using the ADAPT library of de Mathelin
et al. (2021). We understand each epoch as a full pass through the entire dataset. We then use the
fine-tuned network to extract features (vectors x ∈ R2048) from the target domain only.

Remark 2: we use a ResNet backbone since we were not able to reproduce previous results on the
standard AlexNet backbone (e.g., Nguyen et al. (2021)).

Remark 3: we give the specifics for the Caltech-Office and Office 31 datasets in Table 3. As follows,
we train our algorithms with all source domain data (train and test), and train target domain data.
For instance, when training a specific algorithm on Office 31 dataset with the setting A,D →W , at
training time the algorithm has 2817 labeled samples from A, 498 labeled samples from D and 636
unlabeled samples from W available. For evaluation, we use the target test set. In the context of our
example, 159 unlabeled samples from W .

Table 3: Details about the datasets considered for domain adaptation.

Dataset # Classes Domain # Training Samples # Test Samples

Caltech-Office 10 10

Amazon 748 210
dSLR 108 49

Webcam 224 71
Caltech 956 224

Office 31 31

Amazon 2253 564
dSLR 398 100

Webcam 636 159

Artworks dataset: we select a sub-set of 50 artworks from the Best Artworks of All Time2, from
authors Monet, Delacroix, Magritte, Caravaggio and Van Gogh, with 10 images from each. The
artworks were selected so that they group around 3 major color palettes (red, blue and somber).

B.2 ADDITIONAL EXPERIMENTS

B.2.1 TOY EXAMPLE: DICTIONARIES OVER COLOR PALETTES

One of the standard applications of OT is the analysis of color histograms (e.g., Ferradans et al.
(2014)). This analysis is done by considering RGB images Iℓ ∈ Rh×w×3 as point clouds of n = hw

samples in R3. Thus, to each Iℓ, one has Q̂ℓ with support X(Qℓ) ∈ Rhw×3. In this experiment, we
want to learn a dictionary over Q = {Q̂ℓ}Nℓ=1, N = 50 artworks of Monet, Delacroix, Magritte,
Caravaggio, and Van Gogh, based on their color histograms. We further investigate the geometry
induced by the latent codes A ∈ (∆K)N and the WED compared to the Wasserstein distance. Here
we discuss our results for K = 3, using Ntr = 35 images to train our dictionary, leaving the rest
Nts = 15 for test. We can map these images into the latent space using equation 12. We show the
result of DiL in figure 5.

1https://faculty.cc.gatech.edu/˜judy/domainadapt/
2https://www.kaggle.com/datasets/ikarus777/best-artworks-of-all-time
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Atom 1 Atom 2 Atom 3

(a) Atoms learned through dictionary learning.

Caravaggio

Delacroix

Magritte

Monet

Van Gogh

(b) Latent codes in the simplex ∆3.

(c) Wasserstein distance embeddings (d) WED embeddings.

Figure 5: Summary of DaDiL for palette learning. Our algorithm learns palettes that reflect different
palette clusters (a). These allow for an useful visualization on the latent space (b). The latent codes
can be used to approximate the Wasserstein geometry (c) through the proposed WED (d).

We compare the Wasserstein distance with DaDiL and the WED in (i) running time; (ii) their induced
geometry. For large-scale images, calculating W2(Q̂ℓ1 , Q̂ℓ2) is unfeasible due to the number of
pixels. We thus down-sample the support matrices by selecting n = 2048 points randomly, hence
X(Qℓ) ∈ R2048×3. This step is not necessary for DaDiL since we perform optimization in mini-
batches. Concerning running time, the 1225 pairwiseW2 distances took approximately 26 minutes3.
For DaDiL, training takes an overall of 15 minutes. We remark that, for new distributions, we only
need to solve 12 over Nts ×K variables. This is usually faster than calculating pairwise distances.

In Figure 5 (a) we show the learned atoms, which correspond to the predominant colors in the train-
ing images. Figure 5 (b) shows the latent codes. The embeddings lead to an intuitive description
of images, as they express each image as a combination of blue, yellow, and gray palettes. In Fig-
ure 5 (c) and (d), we compare the Wasserstein and WED embeddings using t-distributed Stochastic
Neighbor Embeddings (t-SNE) (Van der Maaten & Hinton (2008)), which shows that we are able to
capture the Wasserstein geometry faithfully.

B.2.2 SENSITIVITY ANALYSIS

We study how the number of components K, the batch size b, and the number of samples in the
atoms support n influence the performance of DiL. Our results are summarized in Figures 6 and 7.
We want to verify whether the DiL loss L(P,A) is a good predictor for the test score.

3experiments were performed on a Intel Xeon CPU 2.20 GHz with 12GB of RAM
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On one hand, for the Caltech-Office dataset, Figure 6 shows that increasing the number of samples
and batch sizes globally leads to a better approximation of the distributions manifold, as L(P,A)
shrinks. This, however, is not necessarily true for the test score, as b = 128 and n = 2048 leads
to better adaptation results. Figures 6 (d) and (e) shows that the DiL is a good proxy for DaDiL-E
and DaDiL-R, as it is strongly correlated with the test score. We further remark that L(P,A) is
more correlated with the test score of DaDiL-R, since this method directly relies on the goodness of
reconstructions.

On the other hand, for the Office 31 dataset, Figure 7 (a) shows that the dependence on these pa-
rameters is much more complex, showing that in general more samples or components do not lead
to better approximations. Moreover, Figures 7 (d) and (e) show that L(P,A) is not correlated with
neither DaDiL-R nor DaDiL-E. We believe that since this dataset encompasses more classes than
the Caltech-Office, one needs more atoms to model the particularities of each domain.

We now focus our attention on t-SNE embeddings of reconstructions B̂T . Figures 8 and 9 shows the
embeddings for the Caltech-Office and Office 31 datasets. For this first dataset, our reconstructions
are correctly aligned with the dataset’s classes, indicating that the atoms have correctly captured the
characteristics of the domains. For the second dataset, as the number of classes is large, we only
show a comparison between original and reconstructed samples.

20



Under review as a conference paper at ICLR 2023

2 4 6 8
Number of Components

11000

12000

13000

14000

L
(P
,A

)

b=128,n=512

b=256,n=512

b=128,n=1024

b=256,n=1024

b=128,n=2048

b=256,n=2048

(a) Loss.

2 4 6 8
Number of Components

92.5

93.0

93.5

94.0

94.5

95.0

T
es

t
S

co
re

b=128,n=512

b=256,n=512

b=128,n=1024

b=256,n=1024

b=128,n=2048

b=256,n=2048

(b) DaDiL-R validation accuracy.

2 4 6 8
Number of Components

91.5

92.0

92.5

93.0

93.5

94.0

94.5

T
es

t
S

co
re

b=128,n=512

b=256,n=512

b=128,n=1024

b=256,n=1024

b=128,n=2048

b=256,n=2048

(c) DaDiL-E validation accuracy.
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Figure 6: Study of how the batch size, number of samples and number of components impact DiL,
DaDiL-R and E performances on Caltech-Office 10 dataset.
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(c) DaDiL-E validation accuracy.
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Figure 7: Study of how the batch size, number of samples and number of components impact DiL,
DaDiL-R and E performances on Office 31 dataset.
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(b) dSLR.
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Figure 8: t-SNE visualization of DaDiL-R reconstructions of each target domain. Semi-transparent
circles correspond to points in the target domain, whereas triangles correspond to points in B̂T

support.
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Figure 9: t-SNE visualization of DaDiL-R reconstructions of each domain in the Office 31 dataset.
Semi-transparent circles correspond to points in the target domain, whereas triangles correspond to
points in B̂T support.
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