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Abstract
Large Language Models (LLMs) have revolution-
ized artificial intelligence with capabilities in rea-
soning, coding, and communication, driving in-
novation across industries. Their true potential
depends on effective alignment to ensure correct,
trustworthy and ethical behavior, addressing chal-
lenges like misinformation, hallucinations, bias
and misuse. While existing Reinforcement Learn-
ing (RL)-based alignment methods are notori-
ously complex, direct optimization approaches
offer a simpler alternative. In this work, we in-
troduce a novel direct optimization approach for
LLM alignment by drawing on established In-
formation Retrieval (IR) principles. We present
a systematic framework that bridges LLM align-
ment and IR methodologies, mapping LLM gener-
ation and reward models to IR’s retriever-reranker
paradigm. Building on this foundation, we pro-
pose LLM Alignment as Retriever Preference
Optimization (LARPO), a new alignment method
that enhances overall alignment quality. Exten-
sive experiments validate LARPO’s effectiveness
with 38.9 % and 13.7 % averaged improvement
on AlpacaEval2 and MixEval-Hard respectively.
Our work opens new avenues for advancing LLM
alignment by integrating IR foundations, offering
a promising direction for future research.

1. Introduction
Large Language Models (LLMs) (Achiam et al., 2023; Team
et al., 2024a) have demonstrated remarkable capacities in
a wide range of fields including conversational modeling
(Zhao et al., 2023a), reasoning (Wei et al., 2022) and code
generation (Jiang et al., 2024). Unlocking the full poten-
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tial of LLMs while ensuring their ethical, safe, and high-
quality performance hinges on effective alignment (Wang
et al., 2023). However, existing reinforcement learning-
based LLM alignment methods (e.g., PPO (Ouyang et al.,
2022)) involve multi-stage training and are challenging to
optimize. To this end, direct LLM preference optimization
methods (e.g., DPO (Rafailov et al., 2024)) are proposed to
simplify the alignment process.

In this work, we further enhance direct LLM preference op-
timization, focusing on bringing Information Retrieval (IR)
perspectives (Tay et al., 2022). Striking parallels exist be-
tween IR methodologies and LLM alignment techniques
(Lin et al., 2022). For example, IR’s retriever-reranker
framework, which uses a retriever for broad semantic match-
ing to generate a candidate set and a reranker for fine-
grained refinement, offers a compelling analogy to the Best-
of-N approach in LLM alignment (Dong et al., 2023; Sessa
et al., 2024). In this analogy, the LLM acts as the retriever,
while the reward model serves as the reranker. Further-
more, the common use of dual-encoder architectures in both
LLM generation and IR retrievers, coupled with the reliance
on cross-encoder architectures in reward models and IR
rerankers, further underscores this synergy. Leveraging es-
tablished IR techniques offers the potential to develop novel,
easily implementable LLM alignment methods grounded in
IR principles, leading to improved alignment quality.

Despite the promising connections between LLM alignment
and IR, a systematic exploration of this synergy remains
lacking. Specifically, three key gaps exist: (1) a clear map-
ping between LLM alignment mechanisms and core IR prin-
ciples has not been established; (2) empirical evaluations
of LLMs through an IR lens are scarce; and (3) proven IR
techniques like retriever optimization, hard negative mining,
and candidate list construction are underutilized for LLM
alignment. This paper directly addresses these gaps by sys-
tematically bridging LLM alignment and IR methodologies.
Our contributions are fourfold:

• We introduce a comprehensive framework that connects
LLM alignment techniques with the established IR princi-
ples, providing a new perspective on LLM alignment.

• We demonstrate the significance of three key IR prin-
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ciples - retriever optimization objectives, hard negative
mining, and candidate list construction - for improving
LLM alignment.

• Building on these insights, we propose a novel align-
ment method, LLM Alignment as Retriever Preference
Optimization (LARPO), which demonstrably enhances
alignment quality, with 38.9 % and 13.7 % relative aver-
aged improvement on AlpacaEval2 and MixEval-Hard.

• We conduct further empirical studies to evaluate LLM
performance using IR metrics, analyzing the impact of
various post-training techniques.

In summary, this work establishes a crucial link between
IR and LLM alignment, offering both novel insights and
practical methods for advancing the field.

2. An Information Retrieval Perspective on
LLMs

2.1. Primer on information retrieval

Information retrieval systems (Zhu et al., 2023) typically
employ a two-stage process involving retrievers (Zhao et al.,
2024) and rerankers (Lin et al., 2022). The retriever, often
implemented as a bi-encoder (Figure 1), efficiently identifies
a large set of (K) potentially relevant passages, denoted as
Dretrieval, from a corpora C given a query q. This is achieved
using a coarse-grained similarity function, pretrievalpd|qq “

EncTq pqq¨Encdpdq, where Encq and Encd represent the query
and passage encoders respectively:

Dretrievalpqq “ td P C | max
top-K

pretrievalpd|qqu. (1)

However, due to the scale of the corpus, retrievers might
not accurately capture fine-grained query-passage similarity
with the simple dot production interaction function. There-
fore, rerankers, typically implemented with cross-encoder
(Figure 1), are employed to refine the ranking of the re-
trieved passages Dretrieval. The reranker produces a smaller
set (k) of top-ranked passages, Drank, using a fine-grained
similarity function, rrankpq, dq “ w ¨ Encpq, dq, where w
is a learnable linear layer. Here, reranker adopts cross-
encoder with both query/passage as inputs and encoded
together while retriever adopts dual encoder for separate
query/passage encoding.

Drankpqq “ td P Dretrievalpqq | max
top-k

rrankpq, dqu. (2)

The resulting ranked passages are ordered such that
Drankpqq “ td1, d2, . . . , dku where rrankpq, d1q ě

rrankpq, d2q ě ¨ ¨ ¨ ě rrankpq, dkq.

2.2. LLMs as retrievers. Reward models as rerankers

During inference, an LLM generates a response y given
an input prompt x by modeling the probability distribu-
tion pLLMpy|xq. Assuming a fixed maximum sequence
length L and a vocabulary space V (Li et al., 2024), the
set of all possible responses can be defined as Y “ ty :
yp1qyp2q...ypLq|ypiq P V u Ď V L.

We can conceptualize this process through an IR lens (Tay
et al., 2022). The prompt x can be viewed as analogous
to a query q, the set of all possible responses Y can be
treated as the corpus C, and the generated response y can be
considered as the retrieved passage d. Thus, given a prompt
x, the LLM effectively acts as a retriever, searching for the
most probable responses DLLMpxq from response space Y :

DLLMpxq “ ty P Y | max
top-K

pLLMpd|xqu. (3)

where pLLMpy|xq is analogous to pretrievalpd|qq in IR.

This analogy is further supported by the LLMs’ architec-
ture. As illustrated in Figure 1, the generative modeling
with LLMs can be interpreted as the matching process of
a bi-encoder model. The prompt is encoded into a vector
representation by LLM, while response tokens are repre-
sented as token embedding vectors. For each token position
decoding, prompt embedding (obtained often from the hid-
den state of the last layer of the LLM) and vocabulary token
embeddings are compared with a dot product, to determine
the likelihood of a selected token for the response.

Furthermore, reward models rrmpx, yq (Lambert et al.,
2024), which take both the prompt and response as in-
put, function similarly to cross-encoders (i.e., rerankers
rrankpq, dq (Zhuang et al., 2023)) in IR. To enhance LLM
performance, various inference-time strategies have been
developed, including Best-of-N sampling (Stiennon et al.,
2020) and majority voting (Wang et al., 2022). These can
be interpreted as different configurations of retrievers and
rerankers, as summarized in Appendix Table 5.

2.3. LLM tuning as retriever optimization

Supervised fine-tuning as direct retriever optimization.
Retriever training, aiming for accurate retrieval, often em-
ploys contrastive learning with the InfoNCE loss (Oord et al.,
2018) to maximize P pdgold|qq of retrieving the ground truth
passage dgold given a query q. This can be expressed as:

max logP pdgold|qq “ max log
Encdpdgoldq ¨ Encqpqq

ř|C|

j“1 Encdpdjq ¨ Encqpqq
.

In the context of LLM alignment, supervised fine-tuning
(SFT) aims to quickly adapt the model to a target task us-
ing prompt-response pairs (x, ygold). SFT maximizes the
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Figure 1. Architecture connection between retriever/LLM (bi-encoder) and reranker/reward model (cross-encoder). Bi-encoder models
process each query/prompt and passage/response separately and often calculate their alignment score via a dot product operator, while
cross-encoder models take both query/prompt and passage/response as input and score them directly. Bi-encoder models can be more
efficient (i.e., large-scale text matching) but the interaction between the two information unit is only captured by a dot production operation
where their effectiveness can be constrained. Cross-encoder models can be more effective (i.e., deeper interaction calculation with
transformer architecture (Vaswani, 2017)) but less efficient. Although LLM involves auto-regressive token matching, which is different
from retriever, some insights from IR can be borrowed to enhance LLM alignment as shown in the following sections.

conditional probability P pygold|xq as:

max logP pygold|xq “ max log

|ygold|
ź

i

P pygoldpiq|ziq

“ max

|ygold|
ÿ

i

log
Embpygoldpiqq ¨ LLMpziq
ř|V |

j“1 Embpvjq ¨ LLMpziq
,

where ypiq is the i-th token of y, zi “ rx, ygoldp1 : i ´

1qs represent the concatenation of the prompt x and the
preceding tokens of ygold, LLMp¨q produces a contextualized
representation, and Embp¨q is the token embedding function.
We assume vocab embeddings and LLM hidden states share
the same dimension, as in most LLMs.

Consequently, the SFT objective can be interpreted as a
composite of multiple retrieval optimization objectives. In
this analogy, LLMp¨q acts as the query encoder and Embp¨q

serves as the passage (or, in this case, token) encoder.

Preference optimization as reranker-retriever distilla-
tion. In retriever training, optimizing solely based on
query/ground-truth document pairs can be suboptimal, par-
ticularly when using in-batch negatives for efficiency. Per-
formance can be enhanced by distilling knowledge from a
more powerful reranker to retriever (Qu et al., 2020; Zeng
et al., 2022). This distillation process can be represented

as frerankp¨q
c

Ñ data
gp¨q
Ñ fretrievalp¨q, where new data, gener-

ated by the reranker frerankp¨q based on a rule c, is used to
optimize the retriever fretrievalp¨q with an objective gp¨q.

Similarly, in LLM alignment, a preference alignment phase
often follows supervised fine-tuning (SFT) to further en-
hance the model using an external reward model to ab-
sorb preferential supervision effectively. Methods like PPO

(Schulman et al., 2017) and iterative DPO (Guo et al., 2024)
exemplify this approach. Here, the LLM (considered acting
as the retriever) generates responses that are then scored
by the reward model (considered acting as the reranker).
These scores are used to create new training data, effectively
performing distillation from the reward model into the LLM:

freward-modelp¨q
c

Ñ data
gp¨q
Ñ fLLMp¨q. Thus, preference opti-

mization can be viewed as a form of reranker-to-retriever
distillation, analogous to the process used in traditional IR.

We conduct empirical studies to understand SFT and prefer-
ence optimization from IR perspective in Appendix B and
have further discussion in Appendices C and D.

2.4. Empirical insights into LLMs as IR models

Evaluating LLMs as retrievers. A common metric for
evaluating retrievers is Recall@N , which assesses whether
the top-N retrieved passages include any relevant passages
for a given query. In the context of LLMs, this translates to
evaluating whether the top-N generated responses contain
a suitable response to the prompt, analogous to Pass@N
(Chen et al., 2021).

To draw the empirical connection between LLM and re-
trievers, we conduct an experiment on the GSM8K dataset
(Cobbe et al., 2021) using Mathstral-7b-it (Mistral AI, 2025)
and an experiment on the NQ dataset (Kwiatkowski et al.,
2019) using e5 retriever. Figure 2 illustrates that increasing
N can contribute to improved performance for both retriever
and LLM. Detailed analysis can be found in Appendix E.

Greedy decoding, equivalent to N “ 1, is a prevalent LLM
inference strategy. However, as shown in Figure 2(b), allow-
ing multiple attempts (N ą 1) can substantially improve the
chance of producing a correct answer, suggesting that per-
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Table 1. LLM alignment objectives of LARPO. In the table, γpy | xq “ β log πθpy|xq

πref py|xq
. All the proofs can be found in Appendix F.

Method Assumption of rpx, yq Objective

DPO Prpyw ľ ylq “ σprpx, ywq ´ rpx, ylqq Lpair “ ´E
„

log σ
´

β log πθpyw|xq

πref pyw|xq
´ β log πθpyl|xq

πref pyl|xq

¯

ȷ

LARPO (Contrastive) Prpyw ľ y
p1q

l , ..., yw ľ y
pmq

l q “ softmaxprpx, ywqq Lcon “ ´E
„

log
exp

`

γpyw|xq

˘

exp
`

γpyw|xq

˘

`
řm

i“1 exp
`

γpy
piq

l |xq

˘

ȷ

LARPO (LambdaRank) Prpy1 ľ ... ľ ymq “
ś

1ăiăjăm σprpx, yiq ´ rpx, yjqq Llamb “ ´E
„

ř

1ăiăjăm log σ
´

γpyi | xq ´ γpyj | xq

¯

ȷ

LARPO (ListMLE) Prpy1 ľ ... ľ ymq “
śm

i“1 softmaxmi prpx, yiqq Llmle “ ´E
„

řm
i“1 log

exp
`

γpyi|xq

˘

exp
`

γpyi|xq

˘

`
řm

j“i exp
`

γpyj |xq

˘

ȷ
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Figure 2. Analogy between evaluating retriever with Recall@N
and LLM with Pass@N. As the number (N) of retrieved pas-
sages/generated responses increases, the retriever and LLM have a
similar increasing trend. This highlights the importance of infer-
ence time scaling (e.g., Best-of-N) for LLM similar to retriever-
reranker scaling in IR. Retriever: e5; LLM: Mathstral-7b-it.

formance under N “ 1 may underestimate the model’s full
potential. This highlights the importance of inference-time
scaling techniques like Best-of-N (Stiennon et al., 2020)
in LLM similar to retriever-reranker scaling (Zhuang et al.,
2023) in IR. More results and analyses can be found in
Appendix E.

3. Iterative LLM alignment as retriever
optimization

retriever

passagesreranker processing

Optimization (e.g., pairwise, 
constrastive, listwise)

(candidate list)

LLM

responsesreward 
model

selection

Optimization

(a) Iterative retriever optimization (b) Iterative LLM alignment

Queries /
Corpora

prompts /
responses

Figure 3. The connection between iterative LLM alignment (Xiong
et al., 2024) and iterative retriever optimization (Xiong et al., 2020)

Iterative learning is a common technique in retriever opti-
mization (Xiong et al., 2020), where results from the newly-
trained model are used to generate new training data, as
illustrated in Figure 3(a). Similarly, for LLM alignment,
iterative preference optimization has been shown to enhance

performance (Xiong et al., 2024; Xu et al., 2024b; Guo et al.,
2024) (Figure 3(b)). Drawing inspirations from retriever
optimization, we re-examine iterative LLM preference opti-
mization, focusing on three key aspects: (1) the optimization
objective; (2) the use of hard negatives; and (3) the candi-
date list construction. Based on these aspects, we propose a
new LLM alignment with an IR perspective, LARPO.

3.1. Retriever optimization objective

Typical objectives for retriever optimization include pair-
wise, contrastive and listwise objectives (Zhao et al., 2024).
In this section, we discuss preference optimization vari-
ants (Wang et al., 2023) corresponding to different retriever
optimization objectives. The optimization objective for pref-
erence optimization is given as:

max
πLLM

Ex,y∼πLLMp¨|xqrrpx, yqs ´ βKLpπLLMp¨|xq||πrefp¨|xqq.

As discussed in Rafailov et al. (2024), the equation above
has the optimal solution as:

rpx, yq “ βlog
πLLMpy|xq

πrefpy|xq
` βlogZ, (4)

where Z “
ř

y1 πrefpy
1|xqexpp 1

β rpx, y1qq is the normaliza-
tion constant and rp¨q is the reward model which can also
be seen as a reranker. According to different assumption for
rpx, yq from IR, we can obtain different training objectives
as shown in Table 1, with proofs in Appendix F.

Pairwise ranking. Under the pairwise (Bradley-Terry)
assumption Prpyw ľ ylq “ σprpx, ywq ´ rpx, ylqq, the
policy objective becomes DPO (Rafailov et al., 2024) Lpair.

Contrastive ranking. Another widely used objective for
ranking is contrastive learning (Oord et al., 2018):

Prpyw ľ y
p1q

l , ..., yw ľ y
pmq

l q “ softmaxprpx, ywqq

“
expprpx, ywqq

expprpx, ywqq `
řm

i“1 expprpx, y
piq
l qq

.
(5)

It handles multiple negatives in a single step, allowing the
model to learn more robust representations for retrieval
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and ranking. It is widely used for dense retriever training
(Karpukhin et al., 2020). Under this ranking assumption,
the policy objective becomes Lcon as shown in Table 1.

LambdaRank. In addition to pairwise and contrastive
learning, list-wise ranking is widely adopted to sufficiently
utilize the comprehensive information in candidate list. In-
spired by LambdaRank (Burges, 2010; Zeng et al., 2022):

Prpy1 ľ ... ľ ymq “
ź

1ăiăjăm

σprpx, yiq ´ rpx, yjqq,

(6)

the policy optimization objective becomes Llamb (Table 1).

ListMLE. Another list-wise ranking assumption is the
ListMLE assumption (Xia et al., 2008), which provides
theoretical grounding and global optimization perspective:

Prpy1 ľ ... ľ ymq “

m
ź

i“1

softmaxm
i prpx, yiqq

“

m
ź

i“1

expprpx, yiqq

expprpx, yiqq `
řm

j“i`1 expprpx, yjqq

(7)

In this case, the objective becomes Llmle shown in Table 1.

3.2. Hard negatives

Hard negatives are crucial for effective retriever training
(Zhan et al., 2021; Qu et al., 2020), as learning to distin-
guish harder negatives potentially lead to more powerful
retrievers (Xiong et al., 2020). In LLM alignment, negatives
correspond to unpreferred responses (yl) for a given prompt
(x). In iterative on-policy training, various types of nega-
tives can be identified, ordered by increasing difficulty: (1)
Easiest: A random, unrelated response to x; (2) Easy: A
response to a related but different prompt (x1); (3) Hard: An
incorrect response to x generated with a high temperature;
(4) Hardest: An incorrect response to x generated with a
low temperature.

Note that, assuming a well-initialized policy LLM, as in-
dicated by Figure 2(b) (N “ 1), low temperatures tend to
produce harder negatives, yielding the above ranking. To be
specific, lower temperatures yield more similar generated
responses, increasing overlap between positive and negative
samples. This effectively makes the negatives harder. Ac-
cording to Zhan et al. (2021), hardest negatives could be
most important to LLM alignment.

3.3. Candidate list

In iterative retriever optimization, construction of the can-
didate list rd1, ..., dms, which is used by the reranker to
generate data for the next iteration, is crucial. Prior re-
search (Zeng et al., 2022) has identified factors such as list

Algorithm 1 LARPO: LLM alignment as iterative retriever
preference optimization.
Require: Number of iterations T , number of new data per

annotation phase M , number of generated responses for
each prompt k, temperature for each iteration ttiu

T
i“0,

prompt dataset DX “ txiu
N
i“1, policy LLM πθ0 , reward

model r, learning rate γ, a ranking-based objective
function Lrank.

Ensure: Aligned LLM πθT .
1: for s :“ 0 to T do
2: Update behavior LLM: πβ Ð πθs

3: Preference dataset Ds “ tu

4: for i :“ 1 to M do
5: Sample prompt x „ DX
6: // candidate list construction
7: Sample y1, ..., yk „ πβp¨|xqts
8: // hard negatives
9: Rank tyiu with r: Yx “ ty

prq

j u, where prpy
prq
a q ą

rpy
prq

b qq, a ă b
10: Ds Ð Ds Y tpx, Yxqu

11: end for
12: // candidate list construction
13: D Ð Mergesk“0Dk

14: while D ‰ H do
15: Sample a batch px, Yxq from D
16: Update D Ð Dztpx, Yxqu

17: // retriever optimization objective
18: θs Ð θs ´ γ ¨ ∇θLrankpx, Yx, πθ;πβq

19: end while
20: θs`1 Ð θs
21: end for

size and candidate selection as being particularly important.
Similarly, in iterative preference optimization, construction
of the candidate response list Y “ ry1, ..., yms is critical.
We identify two key factors influencing the quality of Y :
inclusiveness and memorization.

(1) Inclusiveness (Qu et al., 2020) refers to the size of the
response list Y . A larger Y potentially encompasses
more information.

(2) Memorization (Zeng et al., 2022) refers whether previ-
ously generated responses Y 1 are included in the current
list Y to preserve past results.

Given their importance in IR (Qu et al., 2020; Zeng et al.,
2022), the impact of these factors on LLM alignment, how-
ever, remains largely under-explored.

4. The Proposed Solution: LARPO
Motivated by iterative retriever optimization pipeline as
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Table 2. Evaluations on AlpacaEval 2 and MixEval. LC WR and WR denote length-controlled win rate and win rate respectively. Offline
baseline performances on AlpacaEval 2 are from Meng et al. (2024b). We use LLM-blender (Jiang et al., 2023b) as the reward model for
a fair comparison with the baselines and also report the result with a stronger reward model FsfairX (Dong et al., 2024)

Model Mistral-Base (7B) Mistral-Instruct (7B)

Alpaca Eval 2 MixEval MixEval-Hard Alpaca Eval 2 MixEval MixEval-Hard

LC WR WR Score Score LC WR WR Score Score

SFT 8.4 6.2 0.602 0.279 17.1 14.7 0.707 0.361

Reward model: LLM-Blender (Jiang et al., 2023b)

RRHF 11.6 10.2 0.600 0.312 25.3 24.8 0.700 0.380
SLiC-HF 10.9 8.9 0.679 0.334 24.1 24.6 0.700 0.381
DPO 15.1 12.5 0.686 0.341 26.8 24.9 0.702 0.355
IPO 11.8 9.4 0.673 0.326 20.3 20.3 0.695 0.376
CPO 9.8 8.9 0.632 0.307 23.8 28.8 0.699 0.405
KTO 13.1 9.1 0.704 0.351 24.5 23.6 0.692 0.358
RDPO 17.4 12.8 0.693 0.355 27.3 24.5 0.695 0.364
SimPO 21.5 20.8 0.672 0.347 32.1 34.8 0.702 0.363
Iterative DPO 18.9 16.7 0.660 0.341 20.4 24.8 0.719 0.389

LARPO (Contrastive) 31.6 30.8 0.703 0.409 32.7 38.6 0.718 0.418
LARPO (LambdaRank) 34.9 37.2 0.695 0.452 32.9 38.9 0.720 0.417
LARPO (ListMLE) 31.1 32.1 0.669 0.390 29.7 36.2 0.709 0.397

Reward model: FsfairX (Dong et al., 2024)

LARPO (Contrastive) 41.5 42.9 0.718 0.417 43.0 53.8 0.718 0.425
LARPO (LambdaRank) 35.8 34.1 0.717 0.431 41.9 48.1 0.740 0.440
LARPO (ListMLE) 36.6 37.8 0.730 0.423 39.6 48.1 0.717 0.397

shown in Figure 3(a) and the three key points in IR, we
introduce LARPO, a novel approach to LLM alignment for-
mulated as iterative retriever preference optimization. The
algorithmic details are provided in Algorithm 1. Specif-
ically, our experimental setup explores the following key
aspects: (1) Optimization objective: We evaluate three
distinct loss functions as the ranking objective (Lrank): Lcon,
Llamb, and Llmle. (2) Hard negatives: For a given prompt,
hard negative samples are constructed by selecting less pre-
ferred responses generated with an appropriate temperature
through parameter search. More details of the temperature
are available in Appendix H.1. (3) Candidate list: In each
iteration, we generate multiple (10) candidate responses
considering inclusiveness. In terms of memorization, the
candidate pool for subsequent iterations includes all previ-
ously generated responses.

5. Main Results
Baselines. We evaluate the performance of LARPO
against a range of established preference optimization meth-
ods, encompassing both offline and online approaches. Our
offline comparison set includes RRHF (Yuan et al., 2023),
SLiC-HF (Zhao et al., 2023b), DPO (Guo et al., 2024), IPO
(Azar et al., 2024), CPO (Xu et al., 2024a), KTO (Ethayarajh
et al., 2024), RDPO (Park et al., 2024) and SimPO (Meng
et al., 2024b). For online methods, we compare with iter-
ative DPO (Xiong et al., 2024). The baseline checkpoints

are from Meng et al. (2024b). Further details regarding
these baselines and our experimental setup are provided
in Appendix G. Both baselines and LARPO are trained on
Ultrafeedback dataset (Cui et al., 2024) for fair comparison.

Datasets. We conduct evaluation on two widely used
benchmarks AlpacaEval2 (Dubois et al., 2024) and Mix-
Eval (Ni et al., 2024). These benchmarks are designed
to assess the conversational capabilities of models across
a diverse range of queries. AlpacaEval2 comprises 805
questions sourced from five datasets, while MixEval in-
cludes 4000 general and 1000 hard questions. Evaluation
follows the established protocols for each benchmark. For
AlpacaEval 2, we report both the raw win rate (WR) and the
length-controlled win rate (LC). These benchmarks collec-
tively provide a comprehensive assessment of the models’
instruction-following and problem-solving capabilities.

Results. The baseline performances on AlpacaEval 2 are
directly from Meng et al. (2024b), while the performances
on MixEval is evaluated by ourselves with the opensourced
checkpoints. We adopt the same LLM-Blender (Jiang et al.,
2023b) reward model for a fair comparison with the base-
lines and also explore stronger reward model: FsfairX (Dong
et al., 2024). The results, presented in Table 2, show that
LARPO consistently outperforms the competitive baseline
methods on both datasets, with 38.9 % and 13.7 % aver-
aged relative improvements, on AlpacaEval2 and MixEval-
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Hard respectively, with the same reward model as the base-
lines. With a stronger reward model, we can further im-
prove LARPO by 25.8 % on the challenging AlpacaEval2
dataset. Additional details regarding our experimental setup
are available in Appendix H.1.

6. Analyses
This section provides empirical analyses of the three factors
identified in Section 3.

6.1. Retriever optimization objective

Experimental setting. Iterative preference optimization
is performed on LLMs using the different learning objec-
tives outlined in Section 3.1. Alignment experiments are
conducted using the Gemma2-2b-it (Team et al., 2024b)
and Mistral-7b-it (Jiang et al., 2023a) models, trained on
the Ultrafeedback dataset (Cui et al., 2024). Following the
methodology of (Dong et al., 2024), we conduct three iter-
ations of training and report the performance of the final
checkpoint in Table 3. Model evaluations are performed on
AlpacaEval2 (Dubois et al., 2024) and MixEval (Ni et al.,
2024). Detailed settings can be found in Appendix H.2.

Table 3. Preference optimization objective study on AlpacaEval2
and MixEval. SFT corresponds to the initial chat model.

AlpacaEval 2 MixEval MixEval-Hard

Method LC Winrate Winrate Score Score

G
em

m
a2

-2
b-

it SFT 36.39 38.26 0.6545 0.2980

pairwise 41.39 54.60 0.6740 0.3375
contrastive 43.41 56.83 0.6745 0.3315
ListMLE 49.77 62.05 0.6715 0.3560
LambdaRank 43.76 60.56 0.6750 0.3560

M
is

tr
al

-7
b-

it SFT 21.14 14.22 0.7070 0.3610

pairwise 36.43 41.86 0.7175 0.4105
contrastive 38.44 42.61 0.7260 0.4340
ListMLE 38.02 43.03 0.7360 0.4200
LambdaRank 40.29 46.21 0.7370 0.4400

Observation. Table 3 presents the results, from which
we make the following observations: (1) Contrastive opti-
mization generally outperforms pairwise optimization (e.g.,
DPO), likely due to its ability to incorporate more negative
examples during each learning step. (2) Listwise optimiza-
tion methods, including ListMLE and LambdaRank, gen-
erally demonstrate superior performance compared to both
pairwise and contrastive approaches. This is attributed to
their utilization of a more comprehensive set of preference
information within the candidate list.

6.2. Hard negatives

Experimental setting. The Mathstral-7b-it model is
trained on the GSM8k training set and evaluated its per-
formance on the GSM8k test set. Iterative DPO is employed
as the RLHF method, with the gold or correct response

designated as the positive example. The impact of differ-
ent hard negative variants is investigated, as described in
Section 3.2, with the results presented in Figure 4(a). Addi-
tionally, the influence of temperature on negative hardness
with Lambdarank objective are examined using experiments
on the AlpacaEval 2 dataset, with results shown in Figure
4(b). Detailed settings are in Appendix H.5 and H.6.

Observation. Figure 4(a) illustrates that the effectiveness
of the final LLM is directly correlated with the hardness
of the negatives used during training. Harder negatives
consistently lead to a more performant LLM. Figure 4(b)
further demonstrates that, within a specific range, lower
temperatures generate harder negatives, resulting in a more
effective final trained LLM. However, much lower tempera-
ture could lead to less diverse responses and finally lead to
LLM alignment performance drop.

6.3. Candidate List

Experimental setting. To investigate the impact of inclu-
siveness and memorization on LLM alignment, experiments
are conducted using Gemma2-2b-it, employing the same
training settings as in our objective study. For the inclusive-
ness study, the performance of the trained LLM is evaluated
using varying numbers of candidates in the list. For the
memorization study, three approaches are compared: (i)
using only the current iteration’s responses, (ii) using re-
sponses from the current and previous iteration, and (iii)
using responses from the current and all previous iterations.
Detailed settings can be found in Appendix H.7 and H.3.

Table 4. Candidate list study with Lpair on Gemma2-2b-it. Previous
iteration responses enhance performance.

Alpaca Eval 2

Method LC Winrate Winrate

SFT 47.03 48.38

Alignment (w. current) 55.06 66.56
Alignment (w. current + prev) 55.62 70.92
Alignment (w. current + all prev) 56.02 72.50

Observation. Figure 4(c) illustrates the significant impact
of candidate list size on LLM alignment performance. As
the candidate list size increases, performance improves, al-
beit with a diminishing rate of return. This is intuitive, given
that a bigger candidate list size can contribute to more hard
negatives and potentially benefit the model learning (Qu
et al., 2020). Table 4 demonstrates that incorporating re-
sponses from previous iterations can enhance performance.
This is potentially because introducing previous responses
can make the candidate list more comprehensive and lead
to better preference signal capturing. More explanations are
in Appendix H.3.
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Figure 4. Hard negative and candidate list study. (a) Hard negative study with Lpair on GSM8K with Mathstral-7b-it model. We explore
four negative settings: (1) a random response not related to the given prompt; (2) a response to a related prompt; (3) an incorrect
response to the given prompt with high temperature; (4) an incorrect response to the given prompt with suitable temperature. Hardness:
(4)ą(3)ą(2)ą(1). The harder the negatives are, the stronger the trained LLM is. (b) Training temperature study with Lpair on Mistral-7b-it
and Alpaca Eval 2. Within a specific range (ą 1), lower temperature leads to harder negative and benefit the trained LLM. However, much
lower temperature could lead to less diverse responses and finally lead to LLM alignment performance drop. (c) Candidate list size study
with Lcon on Mistral-7b-it. As the candidate list size increases, alignment performance improves.

7. Related works
LLM alignment. Pretrained LLMs demonstrate remark-
able capabilities across a broad spectrum of tasks (Brown
et al., 2020). Their performance at downstream tasks,
such as conversational modeling, is significantly enhanced
through alignment with human preferences (Ouyang et al.,
2022; Bai et al., 2022). RLHF (Christiano et al., 2017) has
emerged as a foundational framework for this alignment,
typically involving learning a reward function via a prefer-
ence model, often using the Bradley-Terry model (Bradley
& Terry, 1952), and tuning the LLM using reinforcement
learning (RL) to optimize this reward. Despite its success,
RLHF’s practical implementation is notoriously complex,
requiring multiple LLMs, careful hyperparameter tuning,
and navigating challenging optimization landscapes.

Recent research has focused on simplifying this process. A
line of works studies the direct alignment algorithms (Zhao
et al., 2023b; Rafailov et al., 2024; Azar et al., 2024), which
directly optimize the LLM in a supervised manner without
first constructing a separate reward model. In particular, the
representative DPO (Rafailov et al., 2024) attracts signifi-
cant attention in both academia and industry. After these,
SimPO (Meng et al., 2024b) simplifies DPO by using length
regularization in place of a reference model.

Although LLMs are adopted for IR (Tay et al., 2022), there
is a lack of study to improve direct LLM alignment with IR
principles. This paper fills this gap by establishing a system-
atic link between LLM alignment and IR methodologies,
and introducing a novel iterative LLM alignment approach
that leverages insights from retriever optimization to ad-
vance the state of the art. The most related work is LiPO
(Liu et al., 2024), which applies learning-to-rank objectives.
However, LiPO relies on off-the-shelf listwise preference

data, which is hard to satisfy in practice.

Language models for information retrieval. Language
models (LMs) have become integral to modern IR sys-
tems (Zhu et al., 2023), particularly after the advent of
pretrained models like BERT (Devlin, 2019). A typical
IR pipeline employs retrievers and rerankers, often based
on dual-encoder and cross-encoder architectures, respec-
tively (Humeau, 2019). Dense Passage Retrieval (DPR)
(Karpukhin et al., 2020) pioneered the concept of dense
retrieval, laying the groundwork for subsequent research.
Building on DPR, studies have emphasized the importance
of hard negatives in training (Zhan et al., 2021; Qu et al.,
2020) and the benefits of online retriever optimization
(Xiong et al., 2020).

In the realm of reranking, Nogueira & Cho (2019) were
among the first to leverage pretrained language models for
improved passage ranking. This was followed by MonoT5
(Nogueira et al., 2020), which scaled rerankers using large
encoder-decoder transformer architectures, and RankT5
(Zhuang et al., 2023), which introduced pairwise and list-
wise ranking objectives. Recent work has also highlighted
the importance of candidate list preprocessing before rerank-
ing (Meng et al., 2024a).

Despite the pervasive use of LMs in IR, the interplay be-
tween LLM alignment and IR paradigms remains largely
unexplored. This work aims to bridge this gap, establishing
a strong connection between LLM alignment and IR, and
leveraging insights from both fields to advance our under-
standing of LLM alignment from an IR perspective.
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8. Conclusions
This paper has forged a novel link between LLM alignment
and IR, offering a systematic framework to enhance the
LLM alignment performance. Expanding upon this basis,
we introduced LARPO, a new direct preference optimiza-
tion method that integrates the IR principles to significantly
enhance alignment quality. The effectiveness of LARPO
is strongly supported by our comprehensive experiments
across widely-used benchmarks, demonstrating its potential
as a significant advancement in LLM alignment. Further-
more, our IR-focused analysis highlights the crucial role
of retriever optimization objectives, hard negatives, and
candidate list construction in achieving effective alignment.
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A. LLM inference strategy and IR pipelines

Table 5. Correspondence between LLM inference and IR pipelines.
Method Retriever Reranker Pipeline

Greedy decoding LLM H Retriever-only

Best-of-N (Stiennon et al., 2020) LLM Reward model Retriever-reranker

Majority voting (Wang et al., 2022) LLM Majority Retriever-reranker

Iterative refinement (Madaan et al., 2024) LLM H Iterative retrieval w. query rewriting

B. How can SFT and preference optimization help the LLM from an IR perspective?
We assess how well LLMs perform at two tasks: fine-grained reranking (using greedy decoding accuracy) and coarse-grained
retrieval (using Recall@N ). We focus on how SFT and DPO, affect these abilities. Using the Mistral-7b model, we evaluate
on the GSM8k and MATH datasets with two approaches: SFT-only, and SFT followed by DPO (SFT Ñ DPO).

In the SFT phase, the model is trained directly on correct answers. For DPO, we generate 20 responses per prompt and
created preference pairs by randomly selecting one correct and one incorrect response. We use hyperparameter tuning and
early stopping to find the best model checkpoints (see Appendix H.4 for details).

Table 6. Retrieval (Recall@N) and reranking (greedy accuracy) metrics across dataset and training strategies, with Mistral-7b as the LLM.
0.7 is used as the temperature. Recall@N can also be denoted as pass@N.

Metric init model SFT SFT Ñ DPO

G
SM

8K

Greedy Acc 0.4663 0.7680 0.7991
Recall@20 0.8347 0.9462 0.9545
Recall@50 0.9090 0.9629 0.9727
Recall@100 0.9477 0.9735 0.9826

M
at

h

Greedy Acc 0.1004 0.2334 0.2502
Recall@20 0.2600 0.5340 0.5416
Recall@50 0.3354 0.6190 0.6258
Recall@100 0.4036 0.6780 0.6846

The results are shown in Table 6. We observe that both SFT and DPO improve both retrieval and reranking, with SFT being
more effective. Adding DPO after SFT further improves performance on both tasks. This is consistent with information
retrieval principles that both direct retriever optimization and reranker-retrieval distillation can enhance the retriever
performance, while the latter on top of the former can further improve the performance. Further discussions can be found in
Appendices C and D.

C. Discussion on the connection and difference between SFT and direct retriever optimization
As discussed in Section 2.3, the direct retriever optimization goal with InfoNCE is shown as:

max logP pdgold|qq “ max log
Encdpdgoldq ¨ Encqpqq

ř|C|

j“1 Encdpdjq ¨ Encqpqq
,

while the SFT optimization goal is shown as:

max logP pygold|xq “ max log

|ygold|
ź

i

P pygoldpiq|ziq “ max

|ygold|
ÿ

i

log
Embpygoldpiqq ¨ LLMpziq
ř|V |

j“1 Embpvjq ¨ LLMpziq
. (8)

As a result, the SFT objective can be seen as a summation of multiple retrieval optimization objectives, where LLMp¨q and
word embedding Embp¨q are query encoder and passage encoder respectively.
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However, for direct retriever optimization with InfoNCE, Encdp¨q is usually a large-scale pretrained language model which
is computationally expensive on both time and memory. In this case, it is unrealistic to calculate the Encdpdjq for all dj P C,
when C is large, because of the time constrain and GPU memory constrain. As a result, a widely-adopted technique is to
adopt “in-batch negatives” with “hard negatives” to estimate the logP pdgold|qq function:

max logP pdgold|qq “ max log
Encdpdgoldq ¨ Encqpqq

ř|C|

j“1 Encdpdjq ¨ Encqpqq
„ max log

Encdpdgoldq ¨ Encqpqq
ř|B|

i“1 Encdpdiq ¨ Encqpqq `
ř|H|

j“1 Encdpdjq ¨ Encqpqq
,

where B is the in-batch negative set and H is the hard negative set. Note that B
Ť

H Ă C. This objective is more efficient
to optimize but is not the original optimization goal. As a result, the learned model after direct retriever optimization is not
optimal. It is also found that the hard negatives H is the key to estimate the original optimization goal (Zhan et al., 2021).
Thus, reranker-retriever distillation can further improve the retriever by introducing more hard negatives.

On the other hand, LLM optimization, as shown in Eq. (8), can be seen as a summation of multiple retrieval optimization
function. In each retrieval step, the passage can be seen as a token and the corpus is the vocabulary space V . Given that the
passage encoder Embp¨q (word embedding) here is cheap to compute and the vocabulary space V (ă100k) is usually not as
large as C (ą1M) in IR, the objective in Eq. (8) can be directly optimized without any estimation. In this case, the LLM as
a retriever is more sufficiently trained compared with the retriever training in IR.

D. Discussion on the connection and difference between preference optimization and
reranker-retriever distillation

As discussed in Section 2.3, preference optimization with an online reward model freward-modelp¨q
r

Ñ data
gp¨q
Ñ fLLMp¨q can be

seen as a reranker to retriever distillation process frerankp¨q
r

Ñ data
gp¨q
Ñ fretrievalp¨q, where the reward model is the reranker

(i.e., cross-encoder) and the LLM is the retriever (i.e., bi-encoder).

However, there are two slight differences here:

• The LLM after SFT is more sufficiently trained compared to a retriever after direct optimization. As discussed in Appendix
C, the SFT optimization function is not an estimated retriever optimization goal compared with the direct retrieval
optimization. As a result, the LLM after SFT is suffienctly trained. In this case, if the reward model (reranker) cannot
provide information other than that already in the SFT set (e.g., using the SFT prompts), this step may not contribute to
significant LLM capability improvement.

• The reward model may introduce auxiliary information than the reranker in IR. For a reranker in IR, it captures a same
semantic with the retriever: semantic similarity between the query and the passage. However, in LLM post-training, the
goal and data in SFT and preference optimization can be different. For example, the SFT phase could have query/response
pairs which enable basic chat-based retrieval capability for the LLM. While the reward model may contain some style
preference information or safety information which do not exist in SFT data. In this case, the preference optimization
which is the reranker to retriever distillation step could also contribution to performance improvement.

E. Evaluate LLMs as retrievers
In addition to Mathstral-7b-it on GSM8K in Figure 2, we conduct extensive experiments to both Mistral-7b-it and Mathstral-
7b-it on GSM8K and MATH. The results are shown in Figure 5. We have similar findings as in Figure 2 that: (1) As
N increases, Recall@N improves significantly, indicating that retrieving a larger number of documents increases the
likelihood of including a correct one within the set. (2) For smaller values of N (e.g., N “ 1), lower temperatures yield
higher Recall@N . This is because lower temperatures reduce response randomness, favoring the selection of the most
relevant result. (3) Conversely, for larger N (e.g., N ą 10), higher temperatures enhance Recall@N . Increased temperature
promotes greater response diversity, which, when combined with a larger retrieval set, improves the chances of capturing the
correct answer within the results.

F. LARPO retriever optimization objective
We provide the proof for different variants of LARPO’s objective functions.
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(a) Mistral-7b-it on GSM8k
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(b) Mistral-7b-it on GSM8k
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(c) Mathstral-7b-it on MATH
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(d) Mistral-7b-it on MATH

Figure 5. Evaluate the LLM as a retriever with Recall@N (Pass@N). As the number (N) of retrieved responses increases, the retrieval
recall increases. The higher the temperature is, the broader spectrum the retrieved responses are, and thus the higher the recall is.

F.1. Contrastive ranking

Theorem F.1. Let x be a prompt and pyw, y
p1q

l , ..., y
pmq

l q be the responses for x under the contrastive assumption (Eq.(5)).
Then the objective function to learn the LLM πθ:

Lcon “ ´E
„

log
exp

`

γpyw | xq
˘

exp
`

γpyw | xq
˘

`
řm

i“1 exp
`

γpy
piq
l | xq

˘

ȷ

,

where γpy | xq “ β log
πθpy | xq

πrefpy | xq
.

(9)

Proof. From (Rafailov et al., 2024), we know that

rpx, yq “ βlog
πllmpy|xq

πrefpy|xq
` βlogZ, (10)

where Z “
ř

y1 πrefpy
1|xqexpp 1

β rpx, y1qq.
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Then,
Prpyw ľ y

p1q

l , ..., yw ľ y
pmq

l q “ softmaxprpx, ywqq

“
expprpx, ywqq

expprpx, ywqq `
řm

i“1 expprpx, y
piq
l qq

“
1

1 `
řm

i“1 expprpx, y
piq
l q ´ rpx, ywqq

“
1

1 `
řm

i“1 exppγpy
piq
l | xq ` βlogZ ´ γpyw | xq ´ βlogZq

“
1

1 `
řm

i“1 exppγpy
piq
l | xq ´ γpyw | xqq

“
exp

`

γpyw | xq
˘

exp
`

γpyw | xq
˘

`
řm

i“1 exp
`

γpy
piq
l | xq

˘

(11)

We can learn πθ by maximizing the logarithm-likelihood:

max logPrpyw ľ y
p1q

l , . . . , yw ľ y
pmq

l q ô min´ logPrpyw ľ y
p1q

l , . . . , yw ľ y
pmq

l q “ L, (12)

6 Lcon “ ´E
„

log
exp

`

γpyw | xq
˘

exp
`

γpyw | xq
˘

`
řm

i“1 exp
`

γpy
piq
l | xq

˘

ȷ

, (13)

where γpy | xq “ β log
πθpy | xq

πrefpy | xq
. (14)

F.2. LambdaRank ranking

Theorem F.2. Let x be a prompt and py1, ..., ymq be the responses for x under the LambdaRank assumption (Eq.(6)). Then
the objective function to learn the LLM πθ:

Llamb “ ´E
„

ÿ

1ăiăjăm

log σ
´

γpyi | xq ´ γpyj | xq

¯

ȷ

. (15)

Proof.
Prpy1 ľ ... ľ ymq “

ź

1ăiăjăm

σprpx, yiq ´ rpx, yjqq

“
ź

1ăiăjăm

σpγpx, yiq ` βlogZ ´ γpx, yjq ´ βlogZq

“
ź

1ăiăjăm

σpγpyi | xq ´ γpyj | xqq.

(16)

We can learn πθ by maximizing the logarithm-likelihood:

max logPrpyw ľ y
p1q

l , . . . , yw ľ y
pmq

l q ô min´ logPrpyw ľ y
p1q

l , . . . , yw ľ y
pmq

l q “ L, (17)

6 Llamb “ ´E
„

ÿ

1ăiăjăm

log σ
´

γpyi | xq ´ γpyj | xq

¯

ȷ

, (18)

where γpy | xq “ β log
πθpy | xq

πrefpy | xq
. (19)

F.3. ListMLE ranking

Theorem F.3. Let x be a prompt and py1, ..., ymq be the responses for x under the ListMLE assumption (Eq.(7)). Then the
objective function to learn the LLM πθ:
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Llmle “ ´E
„ m

ÿ

i“1

log
exp

`

γpyi | xq
˘

exp
`

γpyi | xq
˘

`
řm

j“i exp
`

γpyj | xq
˘

ȷ

. (20)

Proof. From Eq.(11),

Prpy1 ľ ... ľ ymq “

m
ź

i“1

Prpyi ľ yi`1, ..., yi ľ ymq

“

m
ź

i“1

exppγpyi | xqq

exppγpyi | xqq `
řm

j“i`1 exppγpyj | xqq

. (21)

We can learn πθ by maximizing the logarithm-likelihood:

max logPrpyw ľ y
p1q

l , . . . , yw ľ y
pmq

l q ô min´ logPrpyw ľ y
p1q

l , . . . , yw ľ y
pmq

l q “ L, (22)

6 Llmle “ ´E
„ m

ÿ

i“1

log
exp

`

γpyi | xq
˘

exp
`

γpyi | xq
˘

`
řm

j“i exp
`

γpyj | xq
˘

ȷ

, (23)

where γpy | xq “ β log
πθpy | xq

πrefpy | xq
. (24)

G. Baselines
We conduct detailed illustrations on the baselines compared with LARPO in Section 5 below.

• RRHF (Yuan et al., 2023) scores responses via a logarithm of conditional probabilities and learns to align these probabilities
with human preferences through ranking loss.

• SLiC-HF (Zhao et al., 2023b) proposes a sequence likelihood calibration method which can learn from human preference
data.

• DPO (Guo et al., 2024) simplifies the PPO (Ouyang et al., 2022) algorithms into an offline direct optimization objective
with the pairwise Bradley-Terry assumption.

• IPO (Azar et al., 2024) theoretically grounds pairwise assumption in DPO into a pointwise reward.

• CPO (Xu et al., 2024a) adds a reward objective with sequence likelihood along with the SFT objective.

• KTO (Ethayarajh et al., 2024) adopts the Kahneman-Tversky model and proposes a method which directly maximizes the
utility of generation instead of the likelihood of the preferences.

• RDPO (Park et al., 2024) modifies DPO by including an additional regularization term to disentangle the influence of
length.

• SimPO (Meng et al., 2024b) further simplifies the DPO objective by using the average log probability of a sequence as the
implicit reward and adding a target reward margin to the Bradley-Terry objective.

• Iterative DPO (Xiong et al., 2024) identifies the challenge of offline preference optimization and proposes an iterative
learning framework.

H. Experiment settings
H.1. Table 2

We conduct evaluation on two widely used benchmark: AlpacaEval2 (Dubois et al., 2024) and MixEval (Ni et al., 2024). We
consider two base models: Mistral-7b-base and Mistral-7b-it. For Mistral-7b-base, we first conduct supervised finetuning
following Meng et al. (2024b) before the preference optimization.
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Table 7. Preference optimization objective study on AlpacaEval2 and MixEval. For AlpacaEval2, we report the result with both opensource
LLM evaluator alpaca eval llama3 70b fn and GPT4 evaluator alpaca eval gpt4 turbo fn. SFT corresponds to the
initial chat model.

AlpacaEval 2 (opensource LLM) AlpacaEval 2 (GPT-4) MixEval MixEval-Hard

Method LC Winrate Winrate LC Winrate Winrate Score Score

G
em

m
a2

-2
b-

it SFT 47.03 48.38 36.39 38.26 0.6545 0.2980

pairwise 55.06 66.56 41.39 54.60 0.6740 0.3375
contrastive 60.44 72.35 43.41 56.83 0.6745 0.3315
ListMLE 63.05 76.09 49.77 62.05 0.6715 0.3560
LambdaRank 58.73 74.09 43.76 60.56 0.6750 0.3560

M
is

tr
al

-7
b-

it SFT 27.04 17.41 21.14 14.22 0.7070 0.3610

pairwise 49.75 55.07 36.43 41.86 0.7175 0.4105
contrastive 52.03 60.15 38.44 42.61 0.7260 0.4340
ListMLE 48.84 56.73 38.02 43.03 0.7360 0.4200
LambdaRank 51.98 59.73 40.29 46.21 0.7370 0.4400

The performance scores for offline preference optimization baselines are from SimPO (Meng et al., 2024b). To have a fair
comparison with these baselines, we adopt the same off-the-shelf reward model (Jiang et al., 2023b) as in SimPO for the
iterative DPO baseline and LARPO.

For the iterative DPO baseline, we generate 2 responses for each prompt, score them with the off-the-shelf reward model
and construct the preference pair data to tune the model.

For LARPO (contrastive Lcon), we generate 10 responses each iteration and score them with the reward model. The top-1
ranked response and the bottom-3 ranked responses are adopted as the chose response and rejected responses respectively.
Generation temperature is selected as 1 and 0.8 for Mistral-7b-base and Mistral-7b-it respectively (we search it among 0.8,
0.9, 1.0, 1.1, 1.2).

For LARPO (LambdaRank Llamb), we generate 10 responses each iteration and score them with the reward model. The top-2
ranked response and the bottom-2 ranked responses are adopted as the chose response and rejected responses respectively.
Generation temperature is selected as 1 and 0.8 for Mistral-7b-base and Mistral-7b-it respectively (we search it among 0.8,
0.9, 1.0, 1.1, 1.2).

For LARPO (ListMLE Llmle), we generate 10 responses each iteration and score them with the reward model. The top-2
ranked response and the bottom-2 ranked responses are adopted as the chose response and rejected responses respectively.
Generation temperature is selected as 1 and 0.8 for Mistral-7b-base and Mistral-7b-it respectively (we search it among 0.8,
0.9, 1.0, 1.1, 1.2).

LARPO can achieve even stronger performance with stronger off-the-shelf reward model (Dong et al., 2024).

H.2. Table 3

We conduct experiments on both Gemma2-2b-it (Team et al., 2024b) and Mistral-7b-it (Jiang et al., 2023a). Following
Tunstall et al. and Dong et al. (2024), we perform training on UltraFeedback dataset for 3 iterations and show the performance
of the final model checkpoint. We use the pretrained reward model from Dong et al. (2024). The learning rate is set as 5e-7
and we train the LLM for 2 epochs per iteration.

For the pairwise objective, we generate 2 responses for each prompt and construct the preference pair data with the reward
model. For the others, we generate 4 responses per prompt and rank them with the reward model. For the contrastive
objective, we construct the 1-vs-N data with the top-1 ranked response and the other responses. For the listMLE and
lambdarank objective, we take the top-2 as positives and the last-2 as the negatives. Experiments with opensource LLM as
the evaluator (alpaca eval llama3 70b fn) can be found in Table 7.
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Figure 6. Training temperature study with Lpair on Gemma2-2b-it and Alpaca Eval 2. Within a specific range (ą 0.9), lower temperature
leads to harder negative and benefit the trained LLM. However, temperature lower than this range can cause preferred and rejected
responses non-distinguishable and lead to degrade training.

H.3. Table 4

We adopt Gemma2-2b-it as the initial model. All the models are trained with iterative DPO for 3 iterations. We use the
off-the-shelf reward model (Dong et al., 2024). We generate 2 responses for each prompt in each iteration. For “w. current”,
we only use the scored responses in the current iteration for preference optimization data construction. For “w. current +
prev”, we rank the responses in the current iteration and the previous one iteration, and construct the preference pair data
with the top-1 and bottom-1 ranked responses. For “w. current + all prev”, we rank all the responses for the prompt in the
current and previous iterations and construct the preference pair data. For “single temperature”, we only adopt temperature 1
and generate 2 responses for reward model scoring. For “diverse temperature”, we generate 2 responses with temperature 1
and 0.5 respective and rank the 4 responses to construct the preference data with the reward model.

H.4. Table 6

We use mistral-7b-it (Jiang et al., 2023a) as the initial model to alleviate the influence of the math related post-training
data of the original model. For SFT, we conduct training on the meta-math dataset (Yu et al., 2023). For DPO, we use the
prompts in the training set of the two dataset and conduct online iterative preference optimization with the binary rule-based
reward (measure if the final answer is correct or not with string match). The evaluation is performed on the test set of MATH
and GSM8K respectively. For SFT, we follow the same training setting with Yu et al. (2023). For DPO, we search the
learning rate in 1e-7, 2e-7, 5e-7, 2e-8, 5e-8 and train the LLM for 5 iterations with early stop (1 epoch per iteration for
MATH and 2 epoch per iteration for GSM8K). The learning rate is set as 1e-7 and we select the checkpoint after the first
and fourth iteration for GSM8K and MATH respectively.

H.5. Figure 4(a)

We conduct training with the prompts in the training set of GSM8K and perform evaluation on GSM8K testing set. We
conduct learning rate search and finalize it to be 2e-7. The learning is performed for 3 iterations.

We make explanations of how we construct the four types of negative settings: For (1) a random response not related to the
given prompt, we select a response for a random prompt in Ultrafeedback. For (2) a response to a related prompt, we pick
up a response for a different prompt in the GSM8K training set. For (3) an incorrect response to the given prompt with high
temperature, we select the temperature to be 1. For (4) an incorrect response to the given prompt with low temperature, we
select the temperature to be 0.7.

H.6. Figure 4(b)

We conduct experiments on both Gemma2-2b-it and Mistral-7B-it models. For both LLMs, we conduct iterative
DPO for 3 iterations and report the performance of the final model. We perform evaluation on Alpaca Eval2 with
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alpaca eval llama3 70b fn as the evaluator.

For temperature study, we find that under a specific temperature threshold, repeatedly generated responses will be large
identical for all LLMs and cannot be used to construct preference data, while the threshold varies for different LLMs. The
“low” and “high” refer to the value of those selected temperatures. We also conduct experiments on Gemma2-2b-it model
and show the results in Figure 6.

H.7. Figure 4(c)

We adopt Mistral-7b-it as the initial LLM and the contrastive objective (Eq. 9) in iterative preference optimization. We
generate 4/6/8/10 responses with the LLM and score the responses with the off-the-shelf reward model (Dong et al., 2024).
The top-1 scored response is adopted as the positive response and the other responses are treated as the negative responses to
construct the 1-vs-N training data. The temperature is set as 1 to generate the responses.
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