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ABSTRACT

Existing Visual Learning (VL) benchmarks often contain exploitative biases.
Most former works only attempted to mitigate biases in semantically low-level
and conventional visual-question-answering typed datasets like VQA and GQA.
However, these methods cannot generalize to recently emerging highly semantic
VL datasets like VCR and are also difficult to scale due to many severe problems
like high-cost labors, drastically disrupting the data distribution, etc.To resolve
those problems and also address other unique biases on VCR-like datasets, we
first conduct in-depth analysis and identify important biases in VCR dataset. We
further propose a generalized solution that synthesizes counterfactual image and
text data based on the original query’s semantic focus while producing less dis-
tortion to the data distribution. To utilize our synthesized data, we also design
an innovative intra-sample contrastive training strategy to assist QA learning in
Visual Commonsense Reasoning (VCR). Moreover, our synthesized VL data also
serve as a highly-semantic debiased benchmark for evaluating future VL models’
robustness. Extensive experiments show that our proposed synthesized data and
training strategy improve existing VL models’ performances on both the original
VCR dataset and our proposed debiased benchmark.

1 INTRODUCTION

Figure 1: An example from VCR and the paired visual Grad-CAM result from a finetuned
V L − BERTL Su et al. (2019). With training, we expect the VL model to integrate mulitmodal
information and commonsense when select the correct answer (labelled by a green check). For in-
stance, to answer this question, we expect the model to focus on [person6] on the left and people in
the center. However, the model fails to pick up the correct visual clue and focuses on the irrelevant
entity, the window in the background. The orange words are the overlapping words between the
correct choice and the question.

Recently many works have explored Vision-Language (VL) models’ learning in high semantics from
image and text data. As a result, many VQAT-like benchmarks such as GQAHudson & Manning
(2019), VQALi et al. (2018), VCRZellers et al. (2019) and SNLI-VEXie et al. (2019) were pro-
posed to evaluate models’ abilities in learning visual commonsense and reasoning. Despite recent
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successes on aforementioned VL tasks, severe drawbacks due to biases in these evaluation still exist
and remain unsolved. These biases prevent existing VL models from understanding the image and
text but encourage them to learn shallow mappings based on repeated patterns or spurious distribu-
tions Cao et al. (2020); Manjunatha et al. (2019); Ye & Kovashka (2021); Kovaleva et al. (2019);
Ramakrishnan et al. (2018); Selvaraju et al. (2020); Agrawal et al. (2018).

Among those datasets, Visual Commonsense Reasoning (VCR) Zellers et al. (2019) has become
one of the most recognized highly-semantic VL benchmarks with heavy manual annotations, over
the past years. Despite its intention, VCR also suffers from various visual and language biases as
illustrated in Fig.1. Firstly, the correct choice shares the most number of overlapping words with
the question Ye & Kovashka (2021); Secondly, the distractors (incorrect choices) are low-quality
and often not related to the image and question at all. Lastly, as pointed out by previous works,
VL models often fail to understand the visual scene and thus maintain very low utilization in visual
data Cao et al. (2020); Ye & Kovashka (2021); Agrawal et al. (2018); Ramakrishnan et al. (2018).
As shown by the Grad-CAM results Selvaraju et al. (2016) in Fig. 1, models like VL-BERT often
focus on regions irrelevant to the question while deducing the correct answer. As a result of these
biases in VL datasets like VCR, existing VL models can easily learn shortcuts without utilizing
commonsense and reasoning. Therefore, a slight domain-shift in the question, answer or image
may drastically affect VL models’ predictions Dancette et al. (2021), leading to problems such as
prediction inconsistency Selvaraju et al. (2020); Ray et al. (2019); Ribeiro et al. (2019).

Different from conventional datasets like VQA, GQA but similar to other highly semantic ones
Tapaswi et al. (2016); Park et al. (2020), VCR has more complex images, diverse question types
and follows the standard Multiple-Choice-Question (MCQ) format where each question has mul-
tiple sample-specific choices in sentences. Therefore VCR-like dataset may have specific hidden
biases unseen before. However, former works only focus on countering biases in the conven-
tional VL datasets which makes them not applicable to VCR. For instance, Agrawal et al. (2018);
Dancette et al. (2021)’s methods for balancing answer distribution does not apply to VCR since
VCR has question-specific choices in sentences; directly placing occlusions or maskings on im-
age or text Chen et al. (2020a); Liang et al. (2020) may drastically disturb the data distribution in
VCR;additional high-cost manual annotations are not practical Ray et al. (2019); Selvaraju et al.
(2016); Ribeiro et al. (2019); VCR does not have questions asking only about colors or numbers
Gokhale et al. (2020); Inter-sample contrastive learning between image and text pairs may distract
models from intra-sample differentiation among VCR’s sample specific choices, etc.. Chen et al.
(2020a); Liang et al. (2020); Gokhale et al. (2020);

Many problems like the above mentioned prevail in former methods and prevent them from gen-
eralizing to highly semantic VL datasets like VCR. To raise the community’s attention in biases
of highly semantic VL datasets like VCR and countering them, in this work, we first conduct in-
depth analysis and identify unique biases in VCR. Second, we propose a generalized Counterfactual
Vision-Language Data Synthesis (CDS) method to help counter the identified biases. CDS utilizes
adversarial models to modify images and answer choices to create synthesized positive and negative
image and text data without drastically disturbing data distribution like direct occlusions. Further, we
prove that CDS’s synthesized data can compliments VCR data to effectively mitigate our identified
biases and even integrate to a debiased evaluation benchmark to evaluate future models’s robustness.

To better leverage our synthesized data in training, we also propose Intra-sample Contrastive Learn-
ing (ICL) framework to assist existing VL models focus on intra-sample differentiation among an-
swer choices and images. Unlike Chen et al. (2020a); Gokhale et al. (2020), ICL frees us from
creating paired answers for negative synthesized images. With extensive experiments, we demon-
strate that ICL with synthesized data can help existing VL models to be more robust in terms of
domain-shifts in data.

In conclusion, our contributions are four-folds.

Firstly, we identify significant biases in VCR and analyze VL models’ over-reliance on text data.

Secondly, we propose an innovative counterfactual VL data synthesis method, CDS, to mitigate the
dataset biases. This is the first work to propose an adversarial VL data synthesis method in VCR.

Thirdly, to better leverage our synthesized data in training, we further propose an intra-sample
contrastive learning mechanism to assist the conventional QA learning with cross entropy loss. To
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the best of our knowledge, we are the first to adopt a contrastive learning strategy with counterfactual
VL data in highly-semantic VL datasets like VCR and prove its effectiveness.

Lastly, our synthesized VL data complements the VCR data and mitigate biases. Therefore, the gen-
erated data also serve as a highly semantic VL debiased benchmark on top of VCR for evaluating VL
models’ performance in a more challenging setting. We also conduct extensive experiments to prove
that both our synthesized data and training strategy massively improve VL models’ performance on
the original VCR and our debiased evaluation benchmarks.

2 RELATED WORK

2.1 BIASES IN VISION-LANGUAGE DATASETS

Many works have explored biases in VL dataset, especially in the conventional ones like VQA Li
et al. (2018) and GQA Hudson & Manning (2019). Since they do not have sample-specific dis-
tractors, all questions share the same set of answer choices. Agrawal et al. (2018); Dancette et al.
(2021); Zhang et al. (2016) point out that shallow biases exist in the question-answer distribution
with such limited variance. Ramakrishnan et al. (2018); Manjunatha et al. (2019) focus on effects of
language priors in VQA like shortcuts from the prior words of questions. Due to lazy human anno-
tations and less complexity in text than visual data, VL models can easily learn shortcuts from text
biases. Therefore, simple changes in text may lead to significant performance drops and prediction
inconsistency Shah et al. (2019); Li et al. (2018); Selvaraju et al. (2020); Ribeiro et al. (2019); Ray
et al. (2019). On the other hand, Cao et al. (2020); Wang et al. (2022) also confirms that existing
VL models tend to under-utilize visual information compared to text. However, nearly all former
works focus on conventional VQA, GQA and other similar VL datasets. Recent highly semantic
VL dataset like VCR Zellers et al. (2019); Tapaswi et al. (2016) with MCQ format have answer
distribution with larger variance, more diverse question types and complex images. Therefore many
of the explored bias analysis may not apply directly. Only one former work, Ye & Kovashka (2021),
mentions the bias problem in VCR. However, it suffers from very limited scope when only looking
at pronoun words. In this work, we provide an in-depth analysis of biases in an existing highly
semantic VL dataset, VCR.

2.2 MITIGATING BIASES

Various methods have been proposed to counter biases. Chen et al. (2020a); Liang et al. (2020);
Gokhale et al. (2020) place occlusions or maskings on images and questions to create synthesized
data. However, occlusions and maskings drastically disturb data distribution while leading to non-
sensical synthesized answers. Additionally, these methods do not apply to VCR due to their need for
inter-sample contrastive learning. Agrawal et al. (2018); Dancette et al. (2021) categorize answer
choices of the whole VQA and rearrange the overall distribution. However, these methods do apply
to VL dataset with sample-specific distractors. Ray et al. (2019); Selvaraju et al. (2020); Ribeiro
et al. (2019) utilize annotated sub-questions to enhance models’ prediction consistency. Neverthe-
less, these methods have high manual cost and hard to generalize.Gokhale et al. (2020) applies ad-
versarial methods to modify the images but only limit to questions asking about colors and numbers.
Other methods Niu et al. (2021); Wang et al. (2022); Zhang et al. (2021b); Niu & Zhang (2021);
Gupta et al. (2022) either require largely pretrained VL models, additional data resources or focus
only on one modality and hence are hard to generalize. Differently, CDS produces synthesizd pos-
itive and negative data for both images and texts. ICL can further provide an effective intra-sample
contrastive learning strategy with simple setups while maintaining base models’ structures.

3 DATASET BIASES AND SHORTCUTS

Former works Cao et al. (2020); Ye & Kovashka (2021); Agrawal et al. (2018); Ramakrishnan et al.
(2018) have identified that existing VL models are vulnerable to over-reliance on data from text
modality and under-utilization from visual modality. Different from the conventional VL datasets
like VQA Antol et al. (2015) and GQA Hudson & Manning (2019), questions and answers in highly
semantic VL datasets Zellers et al. (2019); Xie et al. (2019); Park et al. (2020); Tapaswi et al. (2016)
contain much more implicit semantic information and images are also more complex to understand.
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Hence, it may be more difficult to create those highly semantic dataset without biases and supervise
VL models’ training on them without picking up shortcuts. To further quantify this issue, we finetune
two T5-Base Su et al. (2019) models on the training set of both VQA-Multiple-Choice and VCR
with only text data. Comparing the validation results (21% on VQA-Multiple-Choice and 58% on
VCR), we notice that a language-only model can achieve higher performance via only relying on
text information (including question and answer choices) on the highly semantic VL dataset, VCR.
To our surprise, language-only model can achieve more than 50% much higher than the accuracy
of random guessing, 25%. This indicates potential learnable strong correlations between only texts
and groundtruth labels. The correlation concerns us and may also counter the original objective for
evaluating VL models’ abilities in visual commonsense reasoning via utilizing both image and text.

In this work, we define “shortcuts” in a more generalized form comparing with Ye & Kovashka
(2021): a way of selecting the correct answer by reliance on simple (lexical) patterns, matching
repeated references without requiring to fully understand the given image and text. In the following,
we share two identified shortcuts based on our analysis.

Shortcuts of Overlapping Words: As in Tab. 1, for each question-answer-choices pair in VCR,
we first preprocess them via simple tokenization and lemmatization into tokens. Through exact
matching, we cumulatively count the number of overlapping words between the question against
the correct and the incorrect answer choices respectively. Comparing the top two rows, we discover
that the correct answer choices have much higher frequency for containing more overlapping words
against the question compared with the incorrect ones. We further experiment to measure the val-
idation accuracy of always selecting the choice with the most overlapping words. To our surprise,
in the highly curated VCR dataset costing millions, this simple strategy can already bring us an
accuracy of 53.14%. For verifying that if it is plausible for existing models to take this shortcut,
we further extract a subset from the full VCR data with which the former finetuned language-only
T5 model can achieve more than 90% confidence in prediction. After conducting the same analysis
on this subset, as shown in the third and fourth rows of Tab. 1, we realize that, within 77.81% of
this subset, the correct answer choices have the most overlapping words across all choices. This
obviously verifies that existing models are capable of utilizing this shortcut.

Shortcuts of Low-quality Distractors: Due to the nature of MCQ, the quality of incorrect answer
choices (distractors) also profoundly affect the difficulty of selecting the correct choice. Based on
our experiences of dataset annotation, cognitively it is often much more difficult to come up with a
quality distractor than the obvious correct choice even for human annotators. Referring Zellers et al.
(2019), for every VCR question, the distractors are actually derivation of correct choices of other
questions after modification with heuristic rules. With the well-konwn lazy annotation biases, it is
not surprising for us to realize that most questions in VCR may be paired with much low-quality
distractors. We started with transforming questions and answer choices into a common feature space
via a pretrained BERT model Reimers & Gurevych (2019). Then, for every image-question pair:
We calculate the cosine similarity of its paired correct answer choice against all the answer choices
of other image-question pairs in the dataset and sort them based on the similarity. Similarly, we
also calculate the cosine similarity between every correct choice against the three incorrect ones
then average them all across samples. We find out that for every sample, the average similarity score
between the correct and the incorrect is 0.31. To our surprise, it is even lower than the score between
the 1000th ranked similar choice sorted across the dataset and the correct choice. This implies that
existing VCR incorrect choices are even outside the top 1000th window of the most similar choices
against the correct answer. With applying a simple K-Nearest-Neighbors algorithm Kozma (2008),
we further cluster all the answer choices into 20 clusters. For every correct choice, we calculate
the similarity score of it against the furthest choice in the same cluster. The average score is 0.34
and it is also higher than the average score between the correct and the incorrect ones for every
image-question pair. Regarding this, we believe existing distractors in highly semantic VL dataset
like VCR suffer biases of low-quality and this may lead to shortcuts models can easily pick up.

4 METHOD

There are two approaches in terms of countering biases and learning shallow shortcuts: the first one
is to directly modify the data to mitigate biases in the dataset and the second one is to modify the
training strategy of models to avoid learning the shortcuts. In this work, we propose Counterfactual
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Vision-Language Data Synthesis and Intra-sample Contrastive Learning (CDS-ICL) framework that
tackle those two aspects in a unified way. Given an input image I , question Q, and answer A,
we apply CDS to generate positive and negative(counterfactual) synthesized image and answer data,
(I+, I−) and (A+, A−). Unlike Chen et al. (2020a); Liang et al. (2020); Gokhale et al. (2020), Intra-
sample Contrastive Learning (ICL) helps bypass the need of creating paired synthesized answers for
counterfactual images.

4.1 CDS-TEXT-POSITIVE

External Knowledge: As discussed in the previous section, correct answers often share more over-
lapped words and syntactical structures with the question. To mitigate this dataset bias as well as
derive more synthesized choices, our strategy is to replace words, phrases of the correct choice with
semantic-related alternatives to create variations with fewer overlapped words. Unlike former meth-
ods Chen et al. (2020a); Liang et al. (2020); Gokhale et al. (2020) that simply place masking tokens
and drastically disturb the original data distribution, our synthesized text data is human-readable
with semantically consistent noises. We first utilize some external database to retrieve alternative
words to replace words in the correct choice, especially the overlapped ones. The alternative words
consist of synonyms and hypernyms from a lexical database, WordNet Fellbaum (2010), and also
connected concept-words from ConceptNet Speer et al. (2017) through a set of selected relationships
(Referring to Appendix).

Pretrained Language Model: To increase the variation in our synthesized choices and avoid
naive and biased templates, we further utilize pretrained language models: We inference a T5-Large
model Raffel et al. (2020) finetuned on TaPaCo Scherrer (2020) to generate additional paraphrased
variations of the correct choices; We also remove stop words from existing correct answers and keep
the rest as input of keywords to a pretrained T5-large model finetuned on CommonGen Lin et al.
(2019) to generate new sentences.

Adversarial Filtering: For ensuring the quality of our created choices and mitigating the biases,
lastly, we apply adversarial filterings. First, we calculate the average number of total overlapped
words between the distractors and the image-question pair. To mitigate the bias of having more
overlapped words in correct answer choices, we choose to reserve generated positive choices that
have the same number of overlapped words as the average number of incorrect choices. Lastly,
we combine question-correct-answer pairs into statements/captions, S via heuristic rules1 and cal-
culate the sentence similarity Reimers & Gurevych (2019) between each of the generated choices
filtered from the last step against the corresponding statement and only keep the top three as our
final synthesized positive answer choices.

4.2 CDS-TEXT-COUNTERFACTUAL

External Knowledge: For creating counterfactual answer choices and mitigate the biases of low-
quality distractors, we generate alternative distractors that are more similar to the correct answers
while preserving the semantic difference. Therefore, we utilize both the original correct and in-
correct choices to generate counterfactual distractors. If we modify based on the correct choice,
we would only replace the target word with antonyms from WordNet and connected concept words
from ConceptNet via a selected relationships2. If we modify based on the incorrect ones, we also
utilize synonyms and hypernyms from WordNet and connected concepts via another larger selected
set of relationships (referring to Appendix) in ConceptNet. Following Ye & Kovashka (2021), we
always align the pronouns in the generated incorrect choices against the pronouns in the question.

Pretrained Language Model: Additionally, we also paraphrase each original incorrect choice with
pretrained language models to generate more variations as before.

Adversarial Filtering: Lastly, after grammar filtering, we group all the synthesized counterfac-
tual choices derived from both original correct and incorrect choices together to apply filtering.
We first calculate the average number of overlapped words between the correct choice and the
image-question pair. To mitigate the low-quality distractor bias, we reserve generated counterfac-
tual choices that have the same number of overlapped words as the original correct choice. Then,

1Details of heuristic rules is listed in Appendix
2(DistinctFrom, Antonym)
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based on sentence semantic similarity, we rank the generated choices by their maximum similarity
measured against any of the original incorrect choices. After selecting the top twenty choices, we
re-rank them based on their similarity against the corresponding statement (combination between
question ans answer) and finally only reserve the top three. Hence, we expect the final selected
generated distractors to be more relevant to the original question-correct-answer pair.

Figure 2: Diagram of Coarse-to-Fine Region Removal.

4.3 CDS-IMAGE

Preventing existing models from neglecting visual information and assisting them focus on relevant
regions, we propose a region removal method that generates both I+ and I- to emphasize the correct
visual dependency. To generate I+, we remove image regions that are irrelevant to the question and
answer so that the semantic integrity of the image is preserved. On the contrary, we remove relevant
image regions to create I-. To minimize disturbance in the image distribution, we design a two-stage
coarse-to-fine visual in-painting steps.

Relevant Region Selection: Many methods have been proposed to select the relevant regions in
the image given the question and answer. Das et al. (2017); Selvaraju et al. (2019) use collected
human attention maps to select relevant regions on VQA (Antol et al., 2015). However, since hu-
man attention maps are often hard to collect, some alternative methods such as Grad-CAM Chen
et al. (2020a); Zhang et al. (2021b) and visual-textual co-attention map Lu et al. (2016) are pro-
posed. Nevertheless, as these methods obtain relevant information from the embedding space of a
finetuned model, we are concerned that they may already suffer from learning dataset biases based
on our analysis before. To ensure correctly determining the relevant entities and regions, we adopt
a conditional selection mechanism. At first, we prioritize directly match overlapped tokens between
VCR’s images and texts via keywords-matching, similar to Gupta et al. (2022). For a (I,Q,A)
pair, we construct the image token set SI by combining the annotated ground-truth object labels
and the detected object labels from Anderson et al. (2018). We also further build the textual object
set ST via extracting all the tokens present in the question, the correct answer, and rationale except
stop words. We compare every element of SI against every element of ST . When comparing two
objects, we exhaustively apply keywords-matching between them and their corresponding lemmas,
stems, and substrings. If there exists any directly matched entity, we prioritize its region as the rel-
evant region. If none is matched, we then apply soft matching via inferencing an off-shelf concept
similarity model Zhu & Iglesias (2017) to measure the semantic similarity of every possible pair
between the two sets and obtain the scores, Csem. Further, we also obtain the statements/captions,
S as a combination between Q and A data mentioned before. Afterward, we utilize a pretrained
CLIP model Radford et al. (2021) to measure the visual relevance between the region of every en-
tity from SI and the statements and obtain the scores, Cv . Finally, we define relevant regions as:
REL = {R (si) : si ∈ SI}, if ∃st, f (si, st) = 1, or Csem (si, st) + Cv (R (si) , S) > T . R(s)
denotes the region for the object s and f represents the keywords-matching procedure. When it
equals 1, the two entities are matched. T is a hyperparameter threshold.
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Coarse-to-Fine Region Removal: After determining the relevant regions in images, following the
structure of SPL Zhang et al. (2021a), we design a Coarse-to-Fine In-painting Generative Adver-
sarial Network (IGAN ) framework to remove relevant and irrelevant regions to generate realistic
natural images, I+/-. In this framework, we reserve two IGANs, an IGANp pretrained on Places2
Zhou et al. (2017) as in Zhang et al. (2021a) and another IGANf finetuned on VCR. We first re-
trieve the segmented polygons (if the entity is provided by VCR annotation) or bounding boxes
(if generated) of the selected relevant entities. After determining the dimensions of the maximum
inscribed rectangles within the polygons or boxes, we create corresponding rectangle maskings in
ratios, (0.7, 0.5, 0.3) of the maximum dimensions. Similarly, we also calculate the maximum di-
mensions of inscribed rectangles in regions that have no entity overlapped on top at all and create
maskings of different ratios within those regions. When fine-tuning IGANf on the VCR training
set, we input images with regions masked by one of those maskings and supervise IGANf to re-
construct the masked region. Therefore, essentially IGANf is trained to reconstruct the interior
of either an entity or an open background region based on its neighboring non-masked pixels and
patterns. In order to create I+, in inferencing, we filter to irrelevant regions, R (si) /∈ R E L and
create maskings of the minimum circumscribed rectangles around the boxes or polygons. We then
feed images masked by those maskings into IGANs to remove the irrelevant entities. Similarly, For
creating I-, we create similar maskings over the relevant regions from REL to inference to remove
the relevant entities. Some examples of the reconstructed images by IGAN are shown in 3.

In order to produce fine-grained images and avoid drastically disturbing existing image distribution
and bringing obvious artifacts/biases as occlusion boxes do in Chen et al. (2020a); Liang et al.
(2020); Gokhale et al. (2020), in practice, during inferencing, we apply a coarse-to-refine strategy
by first passing the masked images into IGANp that was pretrained on a larger dataset and then feed
the reconstructed output to IGANf that was finetuned more specifically to refine the reconstruction.
As inferencing in IGANf , we additionally refine the image via a triple-grid mechanism. As in Fig.
2, for a given masked region, we evenly split it into M blocks and N blocks respectively where
2 < M < N . In the first pass, we allow IGANf to reconstruct the whole masked region in one
pass and then revisit the same region with smaller maskings in the following two passes. In the
second pass, we take turns to turn each of the M blocks in order into a smaller masking, from the
top left to the bottom right, and accordingly reconstruct each masked region to refine. Note that
when we reconstruct the first block from the top left of M blocks, the visual regions of the rest
M − 1 blocks are not masked but in-painted with results from the former pass as placeholders.
Therefore, we cumulatively inference M times to refine the whole region in the 2nd overall pass. A
similar procedure is carried out for the third pass with N blocks. This method allows the framework
to maintain the global consistency in reconstructed visual patterns while obtaining the flexibility in
refining smaller regions.

4.4 CONTRASTIVE LEARNING IN VCR

4.4.1 ANSWER-FOCUSED CONTRASTIVE LEARNING

In former works to resolve Visual-Question-Answering-Type(VQAT) tasks, it is conventional to
model as maximizing a probability of answer selection conditioning on the given image and ques-
tion, P̂ (a | I,Q). As shown in Fig. 3, it can be essentially regarded as a problem of mapping from
(I,Q) to A. Hence, former works Chen et al. (2020a); Liang et al. (2020); Gokhale et al. (2020)
have to create heuristic methods to create a paired answer for every created counterfactual image.
This unfortunately may result in incorrect or counter-intuitive answers with strong biases like ”Not
”, ”Not Green”. In this work, due to ICL (discussed later), we do not have to create paired answers
for coutnerfactual images. Therefore, we only need to focus on differentiating positive and negative
answer choices within each VCR sample. Considering this, we follow the conventional methods to
include the Cross Entropy loss of mapping (I,Q) to A via :

LCE = −
K∑
i

yi log
(
σ
(
P̂ (a | I,Q)

))
(1)

where yi is the groundtruth label, K is the total number of samples and σ is the softmax function.
During QA training, within each batch, we conduct softmax bewteen the logit of each correct answer

7



Under review as a conference paper at ICLR 2023

Figure 3: Diagram of all the combinations of (I, Q, A) pairs utilized in training. The pairs form the
top block are utilized in QA classification training. The pairs in the bottom block are used in intra-
sample contrastive learning. The orange lines indicate the overlapping/repeated pairs. In practice,
we only pass those pairs once in the feedforward operations. Ac represents the correct choices. Ai
represents the incorrect choices.

and three other incorrect ones. As in Fig. 3, within this training strategy, we can directly augment
I+ and A+ /− into QA training.

4.4.2 IMAGE-FOCUSED INTRA-SAMPLE CONTRASTIVE LEARNING

However, it is not straightforward how to apply the counterfactual image, I− into the cross entropy
classification loss above. Hence, we decide to transform the problem of mapping (IQ) to A, (IQ →
A) into another related problem of mapping (QA) to I , (QA → I).

Conventional VQA, GQA datasets do not have sample-specific distractors, and therefore, resolving
their tasks, IQ → A mapping is essentially learning to differentiate the current sample’s answer
from other samples’ based on the given (I,Q) data. In other words, their tasks focus on inter-
sample differentiation. Hence, learning other inter-sample mappings like QA → I with contrastive
loss (learning to differentiate images of different samples based on the given (Q,A) data) may
help resolve the original VQA tasks Li et al. (2018). Differently, VCR has sample-specific distrac-
tors. Therefore it focuses more on intra-sample differentiation and learning inter-sample mapping
of QA → I may not directly help optimize solving the VCR task. On that account, we limit the
QA → I mapping problem into the intra-sample pairing problem between each (Qi, Ai) pair against
(Ii, Ii+, Ii−) with a loose contrastive loss. As mentioned before, existing VL models under-utilize
visual information such that they fail to understand and pick up relevant visual clues from images.
Since the contrast among (Ii, Ii+, Ii−) is the presence of relevant visual regions to the question and
answer, constraining the learning to it would regulate models to better utilize the visual data in VCR.
As shown in Fig. 3, the model would be reinforced to realize the intra-sample visual difference, the
relevant entity to the question and answer, the cup. Even though it is not directly optimizing for
selecting the answer but it is aiming to select the critical entity the answer mentioned.

We further follow the conventional methods with VL transformer-based models and extract the
[CLS] token’s hidden feature, z in the end to represent the whole input (I,Q,A) pair, e.g. positive
pairs like (I,Q,A) and (I+, Q,A) and negative pair (I−, Q,A). Lastly, the contrastive learning is
via calculating the InfoNCE loss Van den Oord et al. (2018):

LNCE = − log
exp (Φ (z, zp) /τ)

exp (Φ (z, zp) /τ) + exp (Φ (z, zn) /τ)
(2)
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where Φ measures the cosine distance, τ is a hyperparameter temperature, zp is the [CLS] token
feature for a positive pair, (I, S) or (I+, S), and zn is for a negative pair, (I−, S).

Finally, the overall objective function is given by:

L = λ1LCE + λ2LNCE (3)

where λ1 and λ2 are hyperparameter weights.

5 EXPERIMENT

In this section, we first describe the datasets including our debiased evaluation benchmark. We then
give quantitative analysis on the statistics of biases, ablation, benchmark evaluation and debiased
evaluation.

5.1 BASE MODEL

CDS-ICL is a generalizable method that can be applied on different VL models. To clearly demon-
strate its effectiveness, in this work, we evaluate it with three high-performing baseline methods:
one two-stream transformer-based VL model, LXMERT Tan & Bansal (2019) and two one-stream
transformer-based VL models, VL-BERT Su et al. (2019) and UNITER Chen et al. (2020b).

5.2 DATASET

5.2.1 VCR AND VCR-PRONOUN-SHIFT

We conduct training and evaluation on the train and validation subset of VCR data consisted of
around 290K pairs of image, question, and four-way answers. Additionally, for a comprehensive
comparison in domain-shift scenarios, we adopt the evaluation with rule-based pronoun-shift from
Ye & Kovashka (2021) as one of our evaluation settings, VCR-Pronoun-Shift.

5.2.2 VCR-AS

To fairly compare VL models’ capabilities in highly semantic VL data with domain-shift and min-
imized artifact/noises, we only include the synthesized data samples with synthesized answer data
in our own debiased evaluation benchmark. Hence, we include sample data with combinations:
IQ(Ac, 3Ai), IQ(A+, 3Ai), IQ(Ac, 3A

−), IQ(A+, 3A−) in our debiased evaluation benchmark
with more generalized domain-shift scenarios of answer choices, VCR-Answer-Shift (VCR-AS).

5.3 STATISTICS AND BIASES

As in Tab. 1, with CDS-Text, the difference of the average number of overlapping words (against
either the VCR question or object labels from the VCR image) between the correct and incorrect
choices becomes much less comparing with before. The percentage of incorrect choices that have
more overlapping words against the correct ones also increases. Furthermore, after CDS-Text, the
averaged semantic similarity between every correct answer choice against the incorrect ones also
increases from 0.31 to 0.4 after using CDC-Text.

5.4 ABLATION

According the first three rows in Tab. 2, after CDS-Text brings synthesized positive and negative
answer choice data and CDS-Image brings synthesized positive image data into the QA classifica-
tion training with cross entropy loss, the baseline model produces obvious and consistent improved
performance. With intra-sample CL, synthesized negative image data is also augmented into the
training with contrastive loss and the baseline model can achieve an overall improvement of 1.36%.
However, after Inter-sample CL, adding images of other samples into the contrastive learning, this
distracts the model’s attention in intra-sample differentiation especially among answer choices. The
severe performance drop confirms with our hypothesis before.
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Choice VCR Data CDS-Text Overlapping Words
w/ Question w/ Image

Avg. Num. More(%) Avg. Num. More(%)
Incorrect Train + Val N 1.80 38.16 0.95 32.23
Correct Train + Val N 2.02 44.44 0.97 45.75

Incorrect Language-biased
Subset N 1.65 12.11 0.83 28.84

Correct Language-biased
Subset N 3.14 77.81 0.98 48.16

Incorrect Train + Val Y 1.90 40.38 0.94 35.10
Correct Train + Val Y 1.95 42.81 0.95 42.17

Table 1: Average number of overlapped words of correct and incorrect answer choices against the
questions and object labels from images.

CDS-Text CDS-Image Intra-sample CL Inter-Sample CL VCR
75.53

✓ 75.84
✓ ✓ 76.30
✓ ✓ ✓ 76.89 (+1.36)
✓ ✓ ✓ ✓ 74.16

Table 2: Ablation Study. The baseline model is VLBERTLarge.

5.5 EVALUATION WITH VL BENCHMARK METHODS

As Tab. 3, for clearly demonstrating the effectiveness of CDS-ICL, we apply it on top three top-
performing VL models on VCR and witness consistent performance boosts.

Model Q2A QA2R Q2AR
VL-BERTLSuet al. (2019)⋆ 75.5 77.9 58.7
VL-BERTL + CDS − ICL 76.9 78.8 60.6 (+1.9)
UNITERLChenet al. (2020b)⋆ 76.7 80.0 61.4
UNITERL + CDS − ICL 77.3 80.8 62.5 (+1.1)
VILLALGanet al. (2020)⋆ 78.2 82.2 64.3
VILLAL + CDS − ICL 78.7 82.6 65.0 (+0.7)

Table 3: Comparing against benchmark methods. ⋆ The results are based on our re-implementation.

5.6 DEBIASED VL EVALUATION

CDS-ICL not only can assist existing VL models improve performances in the standard VCR evalu-
ation but also can enhance their robustness against domain-shifts in data. In Tab. 2, with CDS-ICL,
base models consistently suffer less performance drops.

Model CDS-ICL VCR VCR-PS VCR-AS
VL-BERTL N 75.5 71.1 70.6

Y 76.9 74.2 73.7
UNITERL N 76.7 72.8 72.0

Y 77.3 75.4 74.7

Table 4: Comparing against benchmark methods. ⋆ The results are based on our re-implementation.

6 CONCLUSION

In this paper, we propose a universal multimodal contrastive learning framework with novel data
augmentation that jointly learn debiased VL representation for question-answering tasks. Our exper-
iments demonstrate that both the additional generated data and our contrastive learning framework
improve models’ performance on both the original VCR and our debiased VCR evaluation set while
also helping models focus on relevant regions in the image.
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