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Abstract
In the last decade, we have witnessed the in-
troduction of several novel deep neural network
(DNN) architectures exhibiting ever-increasing
performance across diverse tasks. Explaining the
upward trend of their performance, however, re-
mains difficult as different DNN architectures
of comparable depth and width – common fac-
tors associated with their expressive power – may
exhibit a drastically different performance even
when trained on the same dataset. In this pa-
per, we introduce the concept of the non-linearity
signature of DNN, the first theoretically sound
solution for approximately measuring the non-
linearity of deep neural networks. Built upon a
score derived from closed-form optimal transport
mappings, this signature provides a better under-
standing of the inner workings of a wide range
of DNN architectures and learning paradigms,
with a particular emphasis on the computer vi-
sion task. We provide extensive experimental re-
sults that highlight the practical usefulness of the
proposed non-linearity signature and its potential
for long-reaching implications. The code for our
work is available at https://github.com/
qbouniot/AffScoreDeep.

1. Introduction
Deep neural networks (DNNs) are undoubtedly the most
powerful AI models currently available (LeCun et al., 2015;
Schmidhuber, 2015; Jordan & Mitchell, 2015; Goodfellow
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et al., 2016; Litjens et al., 2017). Their performance on
many tasks, including natural language processing (NLP)
(He et al., 2021) and computer vision (He et al., 2015), is
already on par or exceeds that of a human being. One of the
reasons explaining such progress is of course the increas-
ing computational resources (OpenAI, 2018; Strubell et al.,
2019). Another one is the endeavour for finding ever more
efficient neural architectures pursued by researchers over
the last decade. As of today, the transformer architecture
(Vaswani et al., 2017) has firmly imposed itself as a number
one choice for most, if not all, of the recent breakthroughs
(Brown et al., 2020; Touvron et al., 2023; OpenAI, 2023) in
the machine learning and artificial intelligence fields.

Limitations But why transformers are more capable
than other architectures? Answering this question requires
finding a meaningful measure to compare the different
famous models over time gauging the trend of their
intrinsic capacity. For such a comparison to be informative,
it is particularly appropriate to consider the computer
vision field that produced many of the landmark neural
architectures improving upon each other over the years.
Indeed, the decade-long revival of deep learning started
with Alexnet’s (Krizhevsky et al., 2012) architecture, the
winner of the ImageNet Large Scale Visual Recognition
Challenge (Russakovsky et al., 2015) in 2012. By achieving
a significant improvement over the traditional approaches,
Alexnet was the first truly deep neural network to be trained
on a dataset of such scale, suggesting that deeper models
were likely to bring even more gains. In the following years,
researchers proposed novel ways to train deeper models
with hundreds of layers (Simonyan & Zisserman, 2015;
Szegedy et al., 2016; He et al., 2016; Huang et al., 2017)
pushing the performance frontier even further. The AI
research landscape then reached a turning point with the
proposal of transformers (Vaswani et al., 2017), starting
their unprecedented dominance first in NLP and then in
computer vision (Dosovitskiy et al., 2021). Surprisingly,
transformers are not particularly deep, and the size of
their landmark vision architecture is comparable to that
of Alexnet, and this despite a significant performance gap
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between the two. Ultimately, this gap should be explained
by the differences in the expressive power (Gühring et al.,
2020) of the two models: a term used to denote the ability
of a DNN to approximate functions of a certain complexity.
Unfortunately, the existing theoretical results related to
this either associate higher expressive power with depth
(Eldan & Shamir, 2016; Safran & Shamir, 2017; Bartlett
et al., 2019) or width (Raghu et al., 2017b; Montúfar et al.,
2014; Lu et al., 2017; Vardi et al., 2022) falling short in
comparing different families of architectures. This, in turn,
limits our ability to understand what underpins the achieved
progress and what challenges and limitations still exist in
the field, guiding future research efforts.

Contributions We argue that quantifying the non-linearity
of a DNN may be what we were missing so far to understand
the evolution of the deep learning models at a more fine-
grained level. To verify this hypothesis in practice, we put
forward the following contributions:

1. We propose a first theoretically sound measure, called
the affinity score, that estimates the non-linearity of
a given (activation) function using optimal transport
(OT) theory. We use the proposed affinity score to
introduce the concept of the non-linearity signature
of DNNs defined as a set of affinity scores of all its
activation functions.

2. We compare non-linearity signatures of a wide range of
popular DNNs used in computer vision: from Alexnet
to vision transformers (ViT) and their more recent vari-
ations. Through this, we clearly illustrate the disruptive
patterns in the evolution of the deep learning field.

3. We demonstrate that non-linearity signature can be
predictive of DNNs performance and used to meaning-
fully identify the family of approaches to which a given
DNN belongs. We further show that the non-linearity
signature is unique as it doesn’t correlate strongly with
other potential candidates used for this task.

The rest of the paper is organized as follows. We start by
presenting the relevant background knowledge on OT in
Section 2. Then, we introduce the affinity score together
with its different theoretical properties in Section 3. Section
4 presents experimental evaluations on a wide range of pop-
ular convolutional neural networks. Finally, we conclude in
Section 5.

2. Background
Optimal Transport Let (X, d) be a metric space
equipped with a lower semi-continuous cost function c :
X × X → R≥0, e.g the Euclidean distance c(x, y) =

∥x − y∥. Then, the Kantorovich formulation of the OT
problem between two probability measures µ, ν ∈ P(X) is
given by

OTc(µ, ν) = min
γ∈ADM(µ,ν)

Eγ [c], (1)

where ADM(µ, ν) is the set of joint probabilities with
marginals µ and ν, and Eν [f ] denotes the expected value of
f under ν. The optimal γ minimizing equation 1 is called
the OT plan. Denote by L(X) the law of a random variable
X . Then, the OT problem extends to random variables X,Y
and we write OTc(X,Y ) meaning OTc(L(X),L(Y )).

Assuming that either of the considered measures is abso-
lutely continuous, then the Kantorovich problem is equiva-
lent to the Monge problem

OTc(µ, ν) = min
T :T#µ=ν

EX∼µ[c(X,T (X))], (2)

where the unique minimizing T is called the OT map, and
T#µ denotes the push-forward measure, which is equivalent
to the law of T (X), where X ∼ µ.

Wasserstein distance Let X be a random variable over
Rd satisfying E[∥X − x0∥2] < ∞ for some x0 ∈ Rd, and
thus for any x ∈ Rd. We denote this class of random
variables by P2(Rd). Then, the 2-Wasserstein distance W2

between X,Y ∈ P2(Rd) is defined as

W2(X,Y ) = OT||x−y||2(X,Y )
1
2 . (3)

We now proceed to the presentation of our main contribu-
tion.

3. Non-linearity signature of deep neural
networks

Among all non-linear operations introduced into DNNs in
the last several decades, activation functions remain the only
structural piece that they all inevitably share. Without non-
linear activation functions, most of DNNs, no matter how
deep, reduce to a linear function unable to learn complex
patterns. Activation functions were also early identified
(Hornik, 1989; Barron, 1994; Kurt & Hornik, 1991; Cy-
benko, 1989) as a key to making even a shallow network
capable of approximating any function, however complex it
may be, to arbitrary precision.

We thus build our study on the following intuition: if activa-
tion functions play in important role in making DNNs non-
linear, then measuring their degree of non-linearity can pro-
vide us with an approximation of the DNN’s non-linearity
itself. To implement this intuition in practice, however, we
first need to find a way to measure the non-linearity of an ac-
tivation function. Surprisingly, there is no widely accepted
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measure for this, neither in the field of mathematics nor in
the field of computer science. To fill this gap, we will use
the OT theory to develop a so-called affinity score below.

3.1. Affinity score

Identifiability We consider the pre-activation signal X of
an activation function within a neural network, and the post-
activation signal σ(X) denoted by Y as input and output
random variables. Our first step to build the affinity score
then is to ensure that we can identify when σ is linear with
respect to (wrt) X (for instance, when an otherwise non-
linear activation is locally linear at the support of X). To
show that such an identifiability condition can be satisfied
with OT, we first recall the following classic result from the
literature characterizing the OT maps.
Theorem 3.1 ((Smith & Knott, 1987)). Let X ∈ P2(Rd),
T (x) = ∇ϕ(x) for a convex function ϕ with T (X) ∈
P2(Rd). Then, T is the unique optimal OT map between µ
and T#µ.

Using this theorem about the uniqueness of OT maps ex-
pressed as gradients of convex functions, we can prove the
following result (all proofs can be found in Appendix C):
Corollary 3.2. Without loss of generality, let X,Y ∈
P2(Rd) be centered, and let Y = σ(X) = TX , where
T is a positive definite linear transformation. Then, T is the
OT map from X to Y .

Whenever the activation function σ is linear, the solution to
the OT problem T exactly reproduces it.

Characterization We now seek to understand whether
T can be characterized more explicitly. For this, we prove
the following theorem stating that T can be computed in
closed-form using the normal approximations of X and Y .
Theorem 3.3. Let X,Y ∈ P2(Rd) be centered and
Y = TX for a positive definite matrix T . Let NX ∼
N (µ(X),Σ(X)) and NY ∼ N (µ(Y ),Σ(Y )) be their nor-
mal approximations where µ and Σ denote mean and co-
variance, respectively. Then, W2(NX , NY ) = W2(X,Y )
and T = Taff , where Taff is the OT map between NX and
NY and can be calculated in closed-form

Taff(x) = Ax+ b,

A = Σ(Y )
1
2

(
Σ(Y )

1
2Σ(X)Σ(Y )

1
2

)− 1
2

Σ(Y )
1
2 ,

b = µ(Y )−Aµ(X).

(4)

Upper bound When the activation σ is non-linear wrt X ,
the affine OT mapping Taff(X) will deviate from the true
activation outputs Y . One important step toward quantify-
ing this deviation is given by the famous Gelbrich bound,
formalized by means of the following theorem:

Theorem 3.4 (Gelbrich bound (Gelbrich, 1990)). Let
X,Y ∈ P2(Rd) and let NX , NY be their normal approxi-
mations. Then, W2(NX , NY ) ≤ W2(X,Y ).

This upper bound provides a first intuition of why OT can be
a great tool for measuring non-linearity: the cost of the affine
map solving the OT problem on the left-hand side increases
when the map becomes non-linear. We now upper bound
the difference between W2(NX , NY ) and W2(X,Y ), two
quantities that coincide only when σ is linear.
Proposition 3.5. Let X,Y ∈ P2(Rd) and NX , NY be their
normal approximations. Then,

1. |W2(NX , NY )−W2(X,Y )| ≤
2Tr

[
(Σ(X)Σ(Y ))

1
2

]
√

Tr[Σ(X)]+Tr[Σ(Y )]
.

2. For Taff as in (4), W2(TaffX,Y ) ≤
√
2Tr [Σ(Y )].

To have a more informative non-linearity measure, we now
need to normalize the non-negative Wasserstein distance
W2(TaffX,Y ) to an interpretable interval of [0, 1]. The
bound given in Proposition 3.5 lets us define the following
affinity score

ρaff(X,σ(X)) = 1− W2(TaffX,σ(X))√
2Tr[Σ(σ(X))]

. (5)

The proposed affinity score quantifies how far a given acti-
vation σ is from an affine transformation. It is equal to 1 for
any input for which the activation function is linear, and 0
when it is maximally non-linear, i.e., when TaffX and σ(X)
are independent random variables.
Remark 3.6. One may wonder whether a simpler alterna-
tive to the affinity score can be to use, instead of Taff , a
mapping TW (x) = Wx defined as a solution of a linear
regression problem minW ||Y −WX||2F . Then, one can use
the coefficient of determination (R2 score) to measure how
well TW fits the observed data. This approach, however, has
two drawbacks. First, following the famous Gauss-Markov
theorem, TW is an optimal linear (linear in Y ) estimator.
On the contrary, Taff is a globally optimal non-linear map-
ping aligning X and Y . Second, R2 compares the fit of
TW with that of a mapping outputting µ(Y ) for any value
of X . This is contrary to ρaff that compares how well Taff

fits the data wrt to the worst possible cost incurred by Taff

as quantified in Proposition 3.5. This gives us a bounded
score, i.e. ρaff ∈ [0, 1], whereas R2 is not lower bounded,
i.e. R2 ∈ [−∞, 1]. We confirm experimentally in Section 4
that the two coefficients do not correlate consistently across
the studied DNNs suggesting that R2 is a poor proxy to ρaff .

3.2. Non-linearity signature

We now define a non-linearity signature of DNNs. We let N
be a composition of layers Fi where each layer Fi is a func-
tion taking as input a tensor Xi ∈ Rhi×wi×ci (for instance,
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Non-linearity signature = [ (ReLU1), (ReLU2), (ReLU3), ... , (ReLUn)]
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Figure 1: Illustration of how the non-linearity of a given neural network is measured. (Top) The non-linearity signature of
a DNN is a collection of affinity scores calculated for each activation function spread across its hidden layers. (Bottom)
The affinity score is calculated based on 3 main steps. First, given an input (grey) and an output (red) of an activation
function (left), we estimate the best affine OT fit Taff(X) (green) transporting the input to the output (middle-left). Second,
we measure the mismatch between the two by summing the transportation costs (middle-right) to obtain the Wasserstein
distance W2(TaffX,Y ). Finally, this distance is normalized with the magnitudes of variance (arrows in the rightmost plot)
of the output data based on its covariance matrix.

an image of size 224 × 224 × 3 for i = 1) and outputting
a tensor Yi ∈ Rhi+1×wi+1×ci+1 used as an input of the fol-
lowing layer Fi+1. This defines N = FL⊙...⊙Fi ...⊙F1 =⊙

k=1,...,L Fk where ⊙ stands for a composition.

We now present the definition of a non-linearity signature of
a network N. Below, we abuse the compositional structure
of Fi and see it as an ordered sequence of functions.

Definition 3.1. Let N =
⊙

k=1,...,L Fk be a neural net,
A := {σ|σ : Rh×w×c → Rh×w×c} be a finite set of com-
mon activation functions. Let r be a pooling operation such
that r : Rh×w×c → Rc. Then, the non-linearity signature
of N given an input X is defined as follows:

ρaff(N; X) = {ρaff(r(Xi), σ(r(Xi))), (6)
∀σ ∈ Fi ∩ A, i = {1, . . . , L}}. (7)

Non-linearity signature, illustrated in Figure 1, is a vector
of affinity scores calculated over the inputs and outputs of
all activation functions encountered in network N.

What makes an activation function non-linear? We
now want to understand the mechanism behind achieving
a lower or higher non-linearity with a given (activation)
function. This will explain what the different values of

the affinity scores stand for when defining the non-linearity
signature of a DNN. In Figure 2(A), we show how the
ReLU function (Nair & Hinton, 2010), defined element-
wise as ReLU(x) = max(0, x), achieves its varying degree
of non-linearity. Interestingly, this degree depends only on
the range of the input values. Second, in Figure 2(B) we
also show how the shape of activation functions impacts
their non-linearity for a fixed input: surprisingly, piece-wise
linear ReLU function is more non-linear than Sigmoid(x) =
1/(e−x +1) (Rumelhart et al., 1986) or Tanh(x) = (e−x −
ex)/(e−x+ex). Similar observations also apply to compare
polynomials of varying degrees (Figure 2(C)). We refer the
reader to Appendix D for more visualizations of the affinity
score of popular activation functions.

Neural redshift revisited As a follow-up to the previous
experiment, we now revisit a recent work by (Teney et al.,
2024) that studied the complexity biases carried by the dif-
ferent activation functions in randomly initialized DNNs.
The conclusion reached by the authors is that ReLU and its
variations have a strong bias toward low complexity which
is unaffected by the change in the magnitude of weights
when compared, for instance, to tanh. We follow the pro-
tocol of (Teney et al., 2024) and consider an MLP with
3 hidden layers and scalar output initialized using Glorot
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(A) (B)

(C)

Figure 2: (A) Non-linearity of ReLU depends on the range of input values (red); (B) ReLU, Tanh, and Sigmoid exhibit
different degrees of non-linearity for the same input; (C) Affinity score captures the increasing non-linearity of polynomials
of different degrees.

initialization U(−s, s) (Glorot & Bengio, 2010) for weight
matrices and U(−1, 1) for biases. The inputs to the network
are 642 evenly spaced 2D coordinates on the grid in [−1, 1]2

so that the network output 642 scalars that can be visualized
as a grayscale image. In Figure 3 (A), we present the results
from (Teney et al., 2024) reproducing their claim regard-
ing the comparison between ReLU and tanh when using
the different weight magnitudes in the Glorot initialization.
This indeed shows that ReLU visually appears to lead to a
much simpler function that is independent of the weights’
magnitudes. The appearance, however, seems misleading as
the average affinity scores of ReLU activations in the consid-
ered MLP decrease slightly in the case of higher magnitude
weights, yet remain higher than that of tanh. However, our
experiments in Figure 2 suggest that this behaviour should
not be universal and that the domain of the activation func-
tion should have a strong influence on its complexity. To
verify this, we slightly change the s parameter in Glorot
initialization by setting it to s′ = s− 0.05. We redo the ex-
periment as before and plot the obtained results in Figure 3
(B). It is now apparent that both visually, and quantitatively,
the ReLU activations became much more complex within
the considered random MLP with the visualization of the
function approximating the considered networks becoming
almost indistinguishable between ReLU and tanh. Our pro-
posed affinity score captures this change of complexity and
provides a more fine-grained quantitative measure for it.

3.3. Related work

Layer-wise similarity analysis of DNNs A line of work
that can be distantly related to our main proposal is that
of quantifying the similarity of the hidden layers of the

DNNs as proposed (Raghu et al., 2017a) and (Kornblith
et al., 2019) (see (Davari et al., 2023) for a complete survey
of the subsequent works). Raghu et al. (2017a) extracts
activation patterns of the hidden layers in the DNNs and use
CCA on the singular vectors extracted from them to measure
how similar the two layers are. Their analysis brings many
interesting insights regarding the learning dynamics of the
different convnets, although they do not discuss the non-
linearity propagation in the convnets, nor do they propose
a way to measure it. Kornblith et al. (2019) proposed to
use a normalized Frobenius inner product between kernel
matrices calculated on the extracted activations of the hidden
layers and argued that such a similarity measure is more
meaningful than that proposed by Raghu et al. (2017a).

Impact of activation functions Dubey et al. (2022) pro-
vides the most comprehensive survey on the activation func-
tions used in DNNs. Their work briefly discusses the non-
linearity of the activation functions suggesting that piece-
wise linear activation functions with more linear compo-
nents are more non-linear (e.g., ReLU vs. ReLU6). Hayou
et al. (2019) proved that smooth versions of ReLU allow
for more efficient information propagation in DNNs with a
positive impact on their performance. Our work provides
a first extensive comparison of all popular activation func-
tions; we also show that smooth version of ReLU exhibit
wider regions of high non-linearity (see Appendix D).

Non-linearity measure The only work similar to ours
in spirit is the paper by Philipp (2021) proposing the non-
linearity coefficient in order to predict the train and test error
of DNNs. Their coefficient is defined as a square root of
the Jacobian of the neural network calculated wrt its input,
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ReLU 
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Figure 3: Revisiting the neural redshift phenomenon. (A) MLP with 3 hidden layers (Teney et al., 2024) equipped with
either ReLU or Tanh activation functions; (B) Same MLP initialized by setting s′ = s− 0.05 in Glorot initialization. By
changing the domain of ReLU, we see that its simplicity bias with changing weight magnitudes vanishes.

multiplied by the covariance matrix of the Jacobian, and nor-
malized by the covariance matrix of the input. The presence
of the Jacobian in it calls for the differentiability assumption
making its application to most of the neural networks with
ReLU non-linearity impossible as is. The authors didn’t
provide any implementation of their coefficient and we were
not able to find any other study reporting the reproduced
results from this work.

4. Experimental evaluations
We consider computer vision models trained and evaluated
on the same Imagenet dataset with 1,000 output categories
(Imagenet-1K) publicly available at maintainers & contribu-
tors (2016). The non-linearity signatures of different stud-
ied models presented in the paper is calculated by passing
batches of size 512 through the pre-trained models for the
entirety of the Imagenet-1K validation set (see Appendix H
for more datasets) with a total of 50,000 images. We include
the following landmark architectures in our study: Alexnet
(Krizhevsky et al., 2012), four VGG models (Simonyan
& Zisserman, 2015), Googlenet (Szegedy et al., 2014), In-
ception v3 (Szegedy et al., 2016), five Resnet models (He
et al., 2016), four Densenet models (Huang et al., 2017),
four MNASNet models (Tan et al., 2019), four Efficient-
Net models (Tan & Le, 2019), five ViT models, three Swin
transformer (Liu et al., 2021) and four Convnext models
(Liu et al., 2022). We include MNASNet and EfficientNet
models as prominent representatives of the neural architec-
ture search approach (Elsken et al., 2019). Such models are
expected to explicitly maximize the accuracy for a given
computational budget. Swin transformer and Convnext mod-

els are introduced as ViTs with traditional computer vision
priors. Their presence will be useful to better grasp how
such priors impact ViTs. We refer the reader to Appendix E
for more practical details.

History of deep vision models at a glance We give a
general outlook of the developments in computer vision
over the last decade when seen through the lens of their
non-linearity. In Figure 4 we present the minimum, median,
and maximum values of the affinity scores calculated for
the considered neural networks (see Appendix F for raw
non-linearity signatures). We immediately see that until the
arrival of transformers, the trend of the landmark models
was to decrease their non-linearity, rather than to increase
it. On a more fine-grained level, we note that pure con-
volution architectures such as Alexnet (2012) and VGGs
(2014) exhibit a very low spread of the affinity score values.
This trend changes with the arrival of the inception module
first used in Googlenet (2014): the latter includes activation
functions that extend the range of the non-linearity on both
ends of the spectrum. Importantly, we can see that the trend
toward increasing the maximum and average non-linearity
of the neural networks has continued for almost the whole
decade. Even more surprisingly, EfficientNet models (2019),
trained through neural architecture search, have strong neg-
ative skewness toward higher linearity, although they were
state-of-the-art in their time. The second surprising finding
comes with the arrival of ViTs (2020): they break the trend
and leverage the non-linearity of their hidden activation
functions becoming more or more non-linear with the vary-
ing size of the patches (see Appendix F for a more detailed
comparison with raw signatures). This trend remains valid
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Figure 4: Median, minimum, and maximum values of non-linearity signatures of the different architectures spanning a
decade (2012-2022) of computer vision research. We observe a clear trend toward the increase of the spread and the
maximum values of the linearity in neural networks lasting until the arrival of transformers in 2020. ViTs have a distinct
pattern of maximizing the non-linearity of their activation functions. Swin transformers and Convnext models retain this
property from them while remaining close to the pure convolutional networks.
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Figure 5: Best found dependency between the different statistics extracted from the non-linearity signatures of the DNN
families and their respective Imagenet-1K accuracy. The results are compared in terms of the R2 score against the most
precise of the other common DNN characteristics such as depth, size, and the GFLOPS.

also for Swin transformers (2021), although introducing the
computer vision priors into them makes their non-linearity
signature look more similar to pure convolutional networks
from the early 2010s, such as Alexnet and VGGs. Finally,
we observe that the non-linearity signature of a modern
Convnext architecture (2022), designed as a convnet for
2020s using the best practices of Swin transformers, further
confirms this observation.

Closer look at accuracy/non-linearity trade-off Differ-
ent families of vision models leverage different characteris-
tics of their internal non-linearity to achieve better perfor-

mance. To better understand this phenomenon, we now turn
our attention to a more detailed analysis of the accuracy/non-
linearity trade-off by looking for a statistic extracted from
their non-linearity signatures that is the most predictive of
their accuracy as measured by the R2 score. Additionally,
we also want to understand whether the non-linearity of
DNNs can explain their performance better than the tra-
ditional characteristics such as the number of parameters,
the number of giga floating point operations per second
(GFLOPS), and the depth. From the results presented in
Figure 5, we observe the following. First, the information
extracted from the non-linearity signatures often correlates
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Figure 6: Comparing the different families of the neural architectures based on their non-linearity signatures. (A) Hierarchical
clustering of all DNNs considered in our study revealing meaningful clusters with close architectural characteristics; (B) 9
representative architectures from all studied families and the similarities between them. Note how the similarities between
early convnets and other models is decreasing with time until computer vision priors are introduced into Swin transformers
in 2021; (C) Distributions of affinity scores in each network. Most models expand the non-linearity ranges of their activation
functions compared to early convnets. ViTs are dominated by highly non-linear activation functions, Resnets have a bimodal
distribution, Densenets, and EfficientNets have a diametrically skewed distribution compared to ViTs. (D) Comparing the
same convnet with 20 layers when trained with (Residual Resnet20) and without (Plain Resnet20) residual connections
(top row). Residual connections introduce a clear trend toward a bimodal distribution of affinity scores; the same effect is
observed for Resnet18 and Resnet34 (bottom row).

Table 1: Pearson correlations between the non-linearity signature and other metrics, for all the architectures evaluated in this
study. The highest absolute value in each group is reported in bold.

Models CKA NORM SPARSITY ENTROPY R2

VGGs 0.0 ± 0.05 -0.67 ± 0.06 -0.18 ± 0.03 -0.90 ± 0.04 -0.21 ± 0.06
ResNets 0.53 ± 0.04 -0.41 ± 0.19 -0.68 ± 0.02 -0.38 ± 0.12 -0.48 ± 0.24
DenseNets 0.88 ± 0.02 -0.76 ± 0.02 -0.89 ± 0.02 -0.66 ± 0.03 0.85 ± 0.04
MNASNets 0.67 ± 0.11 -0.54 ± 0.14 -0.63 ± 0.07 -0.55 ± 0.16 0.45 ± 0.17
EfficientNets 0.42 ± 0.10 -0.16 ± 0.22 -0.17 ± 0.23 -0.16 ± 0.14 0.21 ± 0.12
ViTs -0.22 ± 0.40 -0.67 ± 0.20 -0.09 ± 0.56 0.17 ± 0.25 -0.10 ± 0.34
Swins -0.15 ± 0.13 -0.53 ± 0.10 -0.26 ± 0.17 0.06 ± 0.35 -0.13 ± 0.13
Convnexts 0.69 ± 0.08 0.21 ± 0.15 0.23 ± 0.16 0.02 ± 0.09 0.79 ± 0.05
Average 0.33 ± 0.45 -0.44 ± 0.34 -0.32 ± 0.42 -0.31 ± 0.39 0.14 ± 0.49
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more with the final accuracy, than the usual DNN charac-
teristics. This is the case for Residual networks (ResNets
and DenseNets), ViTs, and vision models influenced by
transformers (Post-ViT). Unsurprisingly, for models based
on neural architecture search (NAS-based) the number of
parameters is the most informative metric as they are specif-
ically designed to reach the highest accuracy with the in-
creasing model size and compute. For Pre-residual pure
convolutional models (Alexnet, VGGs, Googlenet, and In-
ception), the spread of the non-linearity explains the accu-
racy increase similarly to depth. Second, we observe that
all models preceding ViTs were implicitly optimizing the
spread of their affinity score values to achieve better perfor-
mance. After the arrival of the transformers, the observed
trend is to increase either the median or the minimum values
of the non-linearity. This suggests a fundamental shift that
the transformers brought to the ML field.

Distinct signature for every architecture Non-linearity
signature correctly identifies the different families of neural
architectures. To show this, we perform hierarchical cluster-
ing using pairwise dynamic time warping (DTW) distances
(Sakoe & Chiba, 1978) between the non-linearity signa-
tures of the models from Figure 4. The results in Figure
6 (A), as well as the pairwise distance matrix between a
representative of each studied family in Figure 6 (B) (see
Appendix G for the full matrix), show that we correctly
cluster all similar models together, both within their respec-
tive families (such as the different variations of the same
architecture) and across them (such as the cluster of Swin
and pure convolution models). Additionally, we highlight
the individual affinity scores’ distributions of representative
models in Figure 6 (C). Finally, we highlight the exact ef-
fect of residual connections proposed in 2016 and used ever
since by every benchmark model in Figure 6 (D). It reveals
vividly that residual connections make the distribution of
the affinity scores bimodal with one such mode centered
around highly linear activation functions. This confirms in
a principled way that residual connections indeed tend to
enable the learning of the identity function just as suggested
in the seminal work that proposed them (He et al., 2016).
Non-linearity signatures can also be applied to meaning-
fully identify training methods, such as popular nowadays
self-supervised approaches (see Appendix I).

Uniqueness of the affinity score No other metric ex-
tracted from the activation functions of the considered net-
works exhibits a strong consistent correlation with the non-
linearity signature. To validate this claim, we compare in
Table 1 the Pearson correlation between the non-linearity
signature and several other metrics comparing the inputs and
the outputs of the activation functions. We can see that for
different models the non-linearity correlates with different
metrics suggesting that it captures the information that other

metrics fail to capture consistently across all architectures.
This becomes even more apparent when analyzing the in-
dividual correlation values (in Appendix G). Overall, the
proposed affinity score and the non-linearity signatures de-
rived from it offer a unique perspective on the developments
in the ML field.

5. Discussions
We proposed the first sound approach to measure non-
linearity of activation functions in DNNs and defined their
non-linearity signature based on it. We further provided a
meaningful overview of the evolution of neural architectures
proposed over the last decade. We showed that until the ar-
rival of transformers, the trend in DNNs was to decrease
their non-linearity, rather than to increase it. Vision trans-
formers changed this pattern drastically. We also showcased
that our measure is unique, as no other metric correlates
strongly with it across all architectures.

By looking at transport maps computed between inputs and
outputs of activation functions, our measure can also be used
to follow the propagation of non-linearity throughout the
network for individual data points. This could allow to better
interpret the inner behaviour of DNNs, by having a mean
to measure where and when non-linearity appears, but also
for which kind of data. On a higher level, our approach can
also be used to identify new disruptive neural architectures
by identifying those of them that leverage different internal
non-linearity characteristics to obtain better performance.
This capacity of identifying novel technologies is even more
crucial in the age of very large models where experimenting
with the building blocks of the optimized backbone comes
at a very high cost.
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S. Similarity contrastive estimation for self-supervised
soft contrastive learning. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision,
pp. 2706–2716, 2023.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale. In ICLR, 2021.

Dubey, S. R., Singh, S. K., and Chaudhuri, B. B. Activation
functions in deep learning: A comprehensive survey and
benchmark. Neurocomput., 503(C):92–108, 2022.

Eldan, R. and Shamir, O. The power of depth for feedfor-
ward neural networks. In 29th Annual Conference on
Learning Theory, pp. 907–940, 2016.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted
linear units for neural network function approximation
in reinforcement learning. Neural networks, 107:3–11,
2018.

Elsken, T., Metzen, J. H., and Hutter, F. Neural architecture
search: A survey. Journal of Machine Learning Research,
20(55):1–21, 2019.

Gelbrich, M. On a formula for the l2 wasserstein metric
between measures on euclidean and hilbert spaces. Math-
ematische Nachrichten, 147(1):185–203, 1990.

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In Teh, Y. W.
and Titterington, M. (eds.), Proceedings of the Thirteenth
International Conference on Artificial Intelligence and
Statistics, volume 9, pp. 249–256, 2010.

Glorot, X., Bordes, A., and Bengio, Y. Deep sparse rec-
tifier neural networks. In Gordon, G., Dunson, D., and
Dudı́k, M. (eds.), Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statis-
tics, volume 15 of Proceedings of Machine Learning

Research, pp. 315–323, Fort Lauderdale, FL, USA, 11–
13 Apr 2011. PMLR. URL https://proceedings.
mlr.press/v15/glorot11a.html.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.
Adaptive computation and machine learning. MIT Press,
2016.

Gühring, I., Raslan, M., and Kutyniok, G. Expressivity of
deep neural networks. arXiv:2007.04759, 2020.

Hayou, S., Doucet, A., and Rousseau, J. On the impact of
the activation function on deep neural networks training.
In Proceedings of the 36th International Conference on
Machine Learning, pp. 2672–2680, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 1026–1034,
2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep resid-
ual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2016.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738,
2020.

He, P., Liu, X., Gao, J., and Chen, W. Deberta: Decoding-
enhanced bert with disentangled attention. In Proceedings
of the International Conference on Learning Representa-
tions, 2021.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Hornik, K. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,
et al. Searching for mobilenetv3. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 1314–1324, 2019.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weng, W., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. In Proceedings of the 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp.
4200–4210. IEEE, 2017.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. arXiv
preprint arXiv:1608.06993, 2017.

10

https://proceedings.mlr.press/v15/glorot11a.html
https://proceedings.mlr.press/v15/glorot11a.html


Measuring the Non-linearity of Deep Neural Networks with Affine Optimal Transport

Jordan, M. I. and Mitchell, T. M. Machine learning: Trends,
perspectives, and prospects. Science, 349(6245):255–260,
2015.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. Similar-
ity of neural network representations revisited. In ICML,
volume 97, pp. 3519–3529. PMLR, 09–15 Jun 2019.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems, 25:
1097–1105, 2012.

Kurt and Hornik. Approximation capabilities of multilayer
feedforward networks. Neural Networks, 4(2):251–257,
1991.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Na-
ture, 521(7553):436–444, 2015.

Ledoit, O. and Wolf, M. Honey, i shrunk the sample co-
variance matrix. Journal of Portfolio Management, 30(4):
110–119, 2004.

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A., Ciompi,
F., Ghafoorian, M., van der Laak, J. A., van Ginneken, B.,
and Sánchez, C. I. A survey on deep learning in medical
image analysis. Medical image analysis, 42:60–88, 2017.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
2021.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T.,
and Xie, S. A convnet for the 2020s. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. The expres-
sive power of neural networks: a view from the width. In
Advances in Neural Information Processing Systems, pp.
6232–6240, 2017.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. Rectifier non-
linearities improve neural network acoustic models. In
Proceedings of the ICML Workshop on Deep Learning
for Audio, Speech and Language Processing, 2013.

maintainers, T. and contributors. Torchvision: Pytorch’s
computer vision library. GitHub repository, 2016.
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A. Broader Impacts
This paper presents work whose goal is to advance the field of Machine Learning and better understand the underlying
behavior of Deep Neural Networks architectures. There are many potential societal consequences of our work, none which
we feel must be specifically highlighted here.

B. Limitations
An important assumption of Theorem 3.3, is that the activation function that we want to analyze through ρaff needs to be a
positive definite transformation of the inputs. Fortunately, this is the case for activation functions, that we consider in this
paper. Finally, we note that despite the strong correlation between the statistics extracted from the non-linearity signatures
for certain DNNs’ architectures, we are yet to show that explicitly optimizing affinity scores through backpropagation can
have an actionable impact on DNNs performance or its other properties, such as robustness or transferability.

C. Proofs of main theoretical results
In this section, we provide proofs of the main theoretical results from the paper.

Corollary 3.2. Without loss of generality, let X,Y ∈ P2(Rd) be centered, and such that Y = TX , where T is a positive
semi-definite linear transformation. Then, T is the OT map from X to Y .

Proof. We first proof that we can consider centered distributions without loss of generality. To this end, we note that

W 2
2 (X,Y ) = W 2

2 (X − E[X], Y − E[Y ]) + ∥E[X]− E[Y ]∥2, (8)

implying that splitting the 2-Wasserstein distance into two independent terms concerning the L2 distance between the means
and the 2-Wasserstein distance between the centered measures.

Furthermore, if we have an OT map T ′ between X − E[X] and Y − E[Y ], then

T (x) = T ′(x− E[X]) + E[Y ], (9)

is the OT map between X and Y .

To prove the statement of the Corollary, we now need to apply Theorem 3.1 to the convex ϕ(x) = xTTx, where T is positive
semi-definite.

Theorem 3.3. Let X,Y ∈ P2(Rd) be centered and Y = TX for a positive definite matrix T . Let NX ∼ N (µ(X),Σ(X))
and NY ∼ N (µ(Y ),Σ(Y )) be their normal approximations where µ and Σ denote mean and covariance, respectively.
Then, W2(NX , NY ) = W2(X,Y ) and T = Taff , where Taff is the OT map between NX and NY and can be calculated in
closed-form

Taff(x) = Ax+ b, A = Σ(Y )
1
2

(
Σ(Y )

1
2Σ(X)Σ(Y )

1
2

)− 1
2

Σ(Y )
1
2 ,

b = µ(Y )−Aµ(X).

(10)

Proof. Corollary 3.2 states that T is an OT map, and

Σ(TNX) = TΣ(X)T = Σ(Y ).

Therefore, TNX = NY , and by Theorem 3.1, T is the OT map between NX and NY . Finally, we compute

W 2
2 (NX , NY ) =Tr[Σ(X)] + Tr[TΣ(X)T ]− 2Tr[T

1
2Σ(X)T

1
2 ]

= argmin
T :T (X)=Y

EX [∥X − T (X)∥2]

=W 2
2 (X,Y ).
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Proposition 3.5. Let X,Y ∈ P2(Rd) and NX , NY be their normal approximations. Then,

1. |W2(NX , NY )−W2(X,Y )| ≤
2Tr

[
(Σ(X)Σ(Y ))

1
2

]
√

Tr[Σ(X)]+Tr[Σ(Y )]
.

2. For Taff as in (4), W2(TaffX,Y ) ≤
√
2Tr [Σ(Y )]

1
2 .

Proof. By Theorem 3.4, we have W2(NX , NY ) ≤ W2(X,Y ). On the other hand,

W 2
2 (X,Y ) = min

γ∈ADM(X,Y )

∫
Rd×Rd

∥x− y∥2dγ(x, y)

≤
∫
Rd×Rd

(
∥x∥2 + ∥y∥2

)
dγ(x, y)

= Tr[Σ(X)] + Tr[Σ(Y )].

Combining the above inequalities, we get

|W2(NX , NY )−W2(X,Y )| ≤
∣∣∣√Tr[Σ(X)] + Tr[Σ(Y )]−W2(NX , NY )

∣∣∣ .
Let a = Tr[Σ(X)] + Tr[Σ(Y )], and so W 2

2 (NX , NY ) = a− b, where b = 2Tr
[
(Σ(X)Σ(Y ))

1
2

]
. Then the RHS of can be

written as ∣∣∣√a−
√
a− b

∣∣∣ = |a− (a− b)|
√
a+

√
a− b

≤ b√
a
,

where the inequality follows from positivity of W2(NX , NY ) =
√
a− b. Letting X = TaffX in the obtained bound gives

2).
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Figure 7: Median affinity scores of Sigmoid, ReLU, GELU, ReLU6, LeakyReLU with a default value of slope, Tanh,
HardTanh, SiLU, and HardSwish obtained across random draws from Gaussian distribution with a sliding mean and varying
stds used as their input. Whiskers of boxplots show the whole range of values obtained for each mean across all stds. The
baseline value is the affinity score obtained for a sample covering the whole interval. The ranges and extreme values of each
activation function over its subdomain are indicative of its non-linearity limits.

D. Affinity scores of other popular activation functions
Many works aimed to improve the way how the non-linearity – represented by activation functions – can be defined in
DNNs. As an example, a recent survey on the commonly used activation functions in deep neural networks (Dubey et al.,
2022) identifies over 40 activation functions with first references to sigmoid dating back to the seminal paper (Rumelhart
et al., 1986) published in late 80s. The fashion for activation functions used in deep neural networks evolved over the years
in a substantial way, just as the neural architectures themselves. Saturating activations, such as sigmoid and hyperbolic tan,
inspired by computational neuroscience were a number one choice up until the arrival of rectifier linear unit (ReLU) in 2010.
After being the workhorse of many famous models over the years, the arrival of transformers popularized Gaussian Error
Linear Unit (GELU) which is now commonly used in many large language models including GPTs.

We illustrate in Figure 7 the affinity scores obtained after a single pass of the data through the following activation functions:
Sigmoid, ReLU (Glorot et al., 2011), GELU (Hendrycks & Gimpel, 2016), ReLU6 (Howard et al., 2017), LeakyReLU (Maas
et al., 2013) with a default value of the slope, Tanh, HardTanh, SiLU (Elfwing et al., 2018), and HardSwish (Howard et al.,
2019). As the non-linearity of activation functions depends on the domain of their input, we fix 20 points in their domain
equally spread in [−20, 20] interval. We use these points as means {mi}20i=1 of Gaussian distributions from which we sample
1000 points in R300 with standard deviation (std) σ taking values in [2, 1, 0.5, 0.25, 0.1, 0.01]. Each sample denoted by X

σj
mi

is then passed through the activation function act ∈ {sigmoid,ReLU,GELU} to obtain ρ
mi,σj

aff := ρaff(X
σj
mi , act(Xσj

mi)).
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Larger std values make it more likely to draw samples that are closer to the region where the studied activation functions
become non-linear. We present the obtained results in Figure S2 where each of 20 boxplots showcases median(ρmi,σ·

aff )
values with 50% confidence intervals and whiskers covering the whole range of obtained values across all σj .

This plot allows us to derive several important conclusions. We observe that each activation function can be characterized
by 1) the lowest values of its non-linearity obtained for some subdomain of the considered interval and 2) the width of the
interval in which it maintains its non-linearity. We note that in terms of 1) both GELU and ReLU may attain affinity scores
that are close to 0, which is not the case for Sigmoid. For 2), we observe that the non-linearity of Sigmoid and GELU is
maintained in a wide range, while for ReLU it is rather narrow. We can also see a distinct pattern of more modern activation
functions, such as SiLU and HardSwish having a stronger non-linearity pattern in large subdomains. We also note that
despite having a shape similar to Sigmoid, Tanh may allow for much lower affinity scores. Finally, the variations of ReLU
seem to have a very similar shape with LeakyReLU being on average more linear than ReLU and ReLU6.
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Figure 8: (Top left) Affinity score is robust to the dimensionality reduction both when using averaging and summation over
the spatial dimensions; (Top right) When d > n, sample covariance matrix estimation leads to a lack of robustness in the
estimation of the affinity score; (Bottom) Shrinkage of the covariance matrix leads to constant values of the affinity scores
with increasing d.

E. Implementation details
Dimensionality reduction Manipulating 4-order tensors is computationally prohibitive and thus we need to find an
appropriate lossless function r to facilitate this task. One possible choice for r may be a vectorization operator that flattens
each tensor into a vector. In practice, however, such flattening still leads to very high-dimensional data representations.
In our work, we propose to use averaging over the spatial dimensions to get a suitable representation of the manipulated
tensors. In Figure 8 (left), we show that the affinity score is robust wrt such an averaging scheme and maintains the same
values as its flattened counterpart.

Computational considerations The non-linearity signature requires calculating the affinity score over “wide” matrices.
Indeed, after the reduction step is applied to a batch of n tensors of size h× w × c, we end up with matrices of size n× c
where n may be much smaller than c. This is also the case when input tensors are 2D when the batch size is smaller than the
dimensionality of the embedding space. To obtain a well-defined estimate of the covariance matrix in this case, we use a
known tool from the statistics literature called Ledoit-Wolfe shrinkage (Ledoit & Wolf, 2004). In Figure 8 (right), we show
that shrinkage allows us to obtain a stable estimate of the affinity scores that remain constant in all regimes.

Robustness to batch size and different seeds In this section, we highlight the robustness of the non-linearity signature
with respect to the batch size and the random seed used for training. To this end, we concentrate on VGG16 architecture and
CIFAR10 dataset to avoid costly Imagenet retraining. In Figure 9, we present the obtained result where the batch size was
varied between 128 and 1024 with an increment of 128 (left plot) and when VGG16 model was retrained with seeds varying
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Figure 9: Non-linearity signature of VGG16 on CIFAR10 with a varying batch size (left) and when retrained from 9 different
random seeds (right).
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Figure 10: Non-linearity signatures of VGG16 on CIFAR10 in the beginning and end of training on Imagenet.

from 1 to 9 (right plot). The obtained results show that the affinity score is robust to these parameters suggesting that the
obtained results are not subject to a strong stochasticity.

Impact of training Finally, we also show how a non-linearity signature of a VGG16 model looks like at the beginning
and in the end of training on Imagenet. We extract its non-linearity signature at initialization when making a feedforward
pass over the whole CIFAR10 dataset and compare it to the non-linearity signature obtained in the end. In Figure 10, we can
see that at initialization the network’s non-linearity signature is increasing, reaching almost a perfectly linear pattern in the
last layers. Training the network enhances the non-linearity in a non-monotone way. Importantly, it also highlights that the
non-linearity signature is capturing information from the training process.
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Figure 11: Raw non-linearity signatures of popular DNN architectures, plotted as affinity scores over the depth throughout
the network.

F. Raw signatures
In Figure 11, we portray the raw non-linearity signatures of several representative networks studied in the main paper. We
use different color codes for distinct activation functions appearing repeatedly in the considered architecture (for instance,
every first ReLU in a residual block of a Resnet). We also indicate the mean standard deviation of the affinity scores over
batches in the title.

We see that the non-linearities across ReLU activations in all of Alexnet’s 8 layers remain stable. Its successor, VGG
network, reveals tiny, yet observable, variations in the non-linearity propagation with increasing depth and, slightly lower
overall non-linearity values. We attribute this to the decreased size of the convolutional filters (3x3 vs. 7x7). The Googlenet
architecture was the first model to consider learning features at different scales in parallel within the so-called inception
modules. This add more variability as affinity scores of activation in Googlenet vary between 0.6 and 0.9. Despite being
almost 20 times smaller than VGG16, the accuracy of Googlenet on Imagenet remains comparable, suggesting that increasing
and varying the linearity is a way to have high accuracy with a limited computational complexity compared to predecessors.
This finding is further confirmed with Inception v3 that pushed the spread of the affinity score toward being more linear in
some hidden layers. When comparing this behavior with Alexnet, we note just how far we are from it. Resnets achieve the
same spread of values of the non-linearity but in a different, and arguably, simpler way. Indeed, the activation after the skip
connection exhibits affinity scores close to 1, while the activations in the hidden layers remain much lower. Densenet, that
connect each layer to all previous layers and not just to the one that precedes it, is slightly more non-linear than Resnet152,
although the two bear a striking similarity: they both have an activation function that maintains the non-linearity low
with increasing depth. Additionally, transition layers in Densenet act as linearizers and allow it to reset the non-linearity
propagation in the network by reducing the feature map size. ViTs (Large with 16x16 and 32x32 patch sizes, and Huge with
14x14 patches) are all highly non-linear models to the degree yet unseen. Interestingly, as seen in Figure 12 the patch size

19



Measuring the Non-linearity of Deep Neural Networks with Affine Optimal Transport

0 5 10 15 20
Depth

0

0.2

0.4

0.6

0.8

1

af
f

Vit Large 16x16 (GELU, std=0.024)

0 5 10 15 20
Depth

0

0.2

0.4

0.6

0.8

1

af
f

Vit Large 32x32 (GELU, std=0.014)

0 5 10 15 20 25 30
Depth

0

0.2

0.4

0.6

0.8

1

af
f

Vit Huge 14x14 (GELU, std=0.013)

Figure 12: ViTs: Large ViT with 16x16 and 32x32 patch sizes and Huge ViT.
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Figure 13: Impact of depth on the non-linearity signature of VGGs.

affects the non-linearity propagation in a non-trivial way: for 16x16 size a model is more non-linear in the early layers,
while gradually becoming more and more linear later, while 32x32 patch size leads to a plateau in the hidden layers of MLP
blocks, with a steep change toward linearity only in the final layer. We hypothesize that attention modules in ViT act as a
focusing lens and output the embeddings in the domain where the activation function is the most non-linear.

Finally, we explore the role of increasing depth for VGG and Resnet architectures. We consider VGG11, VGG13, VGG16
and VGG19 models in the first case, and Resnet18, Resnet34, Resnet50, Resnet101 and Resnet152. The results are presented
in Figure 13 and Figure 14 for VGGs and Resnets, respectively. Interestingly, VGGs do not change their non-linearity
signature with increasing depth. In the case of Resnets, we can see that the separation between more linear post-residual
activations becomes more distinct and approaches 1 for deeper networks.
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Figure 14: Impact of depth on the non-linearity signature of Resnets.

G. Detailed comparisons between architectures
We consider the following metrics as 1) the linear CKA (Kornblith et al., 2019) commonly used to assess the similarity of
neural representations, the average change in 2) SPARSITY and 3) ENTROPY before and after the application of the activation
function as well as the 4) Frobenius NORM between the input and output of the activation functions, and the 5) R2 score
between the linear model fitted on the input and the output of the activation function. We present in Table 2, the detailed
values of Pearson correlations obtained for each architecture and all the metrics considered in this study. In Figure 15, we
show the full matrix of pairwise DTW distances (Sakoe & Chiba, 1978) obtained between architectures, then used to obtain
the clustering presented in the main text.
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Figure 15: Full matrix of DTW distances between non-linearity signatures.

H. Results on more datasets
Below, we compare the results obtained on CIFAR10, CIFAR100 datasets as well as when the random data tensors are passed
through the network. As the number of plots for all chosen 33 models on these datasets will not allow for a meaningful
visual analysis, we rather plot the differences – in terms of the DTW distance – between the non-linearity signature of the
model on Imagenet dataset with respect to three other datasets. We present the obtained results in Figure 16.

We can see that the overall deviation for CIFAR10 and CIFAR100 remains lower than for Random dataset suggesting that
these datasets are semantically closer to Imagenet.
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Figure 16: Deviation in terms of the Euclidean distance of the non-linearity signature obtained on CIFAR10, CIFAR100,
and Random datasets from the non-linearity signature of the Imagenet dataset.

I. Results for self-supervised methods
In this section, we show that the non-linearity signature of a network remains almost unchanged when considering other
pertaining methodologies such as for instance, self-supervised ones. To this end, we use 17 Resnet50 architecture pre-trained
on Imagenet within the next 3 families of learning approaches:

1. SwAV (Caron et al., 2020), DINO (Caron et al., 2021), and MoCo (He et al., 2020) that belong to the family of
contrastive learning methods with prototypes;

2. Resnet50 (He et al., 2016), Wide Resnet50 (Zagoruyko & Komodakis, 2016), TRex, and TRex* (Sarıyıldız et al., 2023)
that are supervised learning approaches;

3. SCE (Denize et al., 2023), Truncated Triplet (Wang et al., 2021), and ReSSL (Zheng et al., 2021) that perform
contrastive learning using relational information.

From the dendrogram presented in Figure 17, we can observe that the DTW distances between the non-linearity signatures
of all the learning methodologies described above allow us to correctly cluster them into meaningful groups. This is
rather striking as the DTW distances between the different instances of the Resnet50 model are rather small in magnitude
suggesting that the affinity scores still retain the fact that it is the same model being trained in many different ways.

While providing a fine-grained clustering of different pre-trained models for a given fixed architecture, the average affinity
scores over batches remain surprisingly concentrated as shown in Table 3. This hints at the fact that the non-linearity
signature is characteristic of architecture but can also be subtly multi-faceted when it comes to its different variations.
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Figure 17: Hierarchical clustering of supervised and self-supervised pre-trained Resnet50 using the DTW distances between
their non-linearity signatures.

re
sn

et
50

re
sn

et
50

 di
no

re
sn

et
50

 m
oc

o 2
00

re
sn

et
50

 m
oc

o 8
00

re
sn

et
50

 re
ss

l 2
00

re
sn

et
50

 sc
e 1

00

re
sn

et
50

 sc
e 1

00
0

re
sn

et
50

 sc
e 2

00

re
sn

et
50

 sc
e 3

00

re
sn

et
50

 sw
av

 20
0

re
sn

et
50

 sw
av

 40
0

re
sn

et
50

 sw
av

 80
0

re
sn

et
50

 tr
ex

re
sn

et
50

 tr
ex

sta
r

re
sn

et
50

 tr
ipl

et
 1k

re
sn

et
50

 tr
ipl

et
 20

0
wi

de
 re

sn
et

50
 2

resnet50
resnet50 dino

resnet50 moco 200
resnet50 moco 800
resnet50 ressl 200

resnet50 sce 100
resnet50 sce 1000

resnet50 sce 200
resnet50 sce 300

resnet50 swav 200
resnet50 swav 400
resnet50 swav 800

resnet50 trex
resnet50 trexstar

resnet50 triplet 1k
resnet50 triplet 200

wide resnet50 2
0.00

0.05

0.10

0.15

0.20

0.25

Figure 18: DTW distances associated with the clustering presented in Figure 17. We can see distinct clusters as revealed by
the dendrogram.

24



Measuring the Non-linearity of Deep Neural Networks with Affine Optimal Transport

Table 2: Pearson correlations between the affinity score and other metrics, for all the architectures evaluated in this study. We
see that no other metric can reliably provide the same information as the proposed non-linearity signature across different
neural architectures.

Model CKA Norm Sparsity Entropy R2

alexnet -0.75 -0.86 0.14 -0.80 -0.41
vgg11 -0.07 -0.76 -0.15 -0.95 -0.27
vgg13 0.08 -0.66 -0.23 -0.93 -0.26
vgg16 0.01 -0.63 -0.19 -0.88 -0.17
vgg19 -0.01 -0.62 -0.15 -0.86 -0.14
googlenet 0.74 -0.60 -0.83 -0.49 0.73
inception v3 0.69 -0.66 -0.75 -0.45 0.35
resnet18 0.59 -0.17 -0.67 -0.30 -0.44
resnet34 0.48 -0.18 -0.65 -0.19 -0.08
resnet50 0.56 -0.60 -0.71 -0.50 -0.78
resnet101 0.51 -0.57 -0.70 -0.51 -0.64
resnet152 0.52 -0.51 -0.68 -0.42 -0.48
densenet121 0.84 -0.75 -0.87 -0.62 0.82
densenet161 0.87 -0.74 -0.87 -0.67 0.81
densenet169 0.87 -0.74 -0.87 -0.67 0.81
densenet201 0.89 -0.75 -0.91 -0.67 0.90
efficientnet b1 0.35 -0.41 -0.39 0.01 0.03
efficientnet b2 0.49 -0.02 -0.44 -0.06 0.34
efficientnet b3 0.32 -0.12 -0.18 -0.13 0.18
efficientnet b4 0.30 -0.51 -0.29 -0.44 0.11
vit b 32 0.47 -0.31 -0.29 0.39 0.51
vit l 32 -0.14 -0.61 -0.47 -0.02 -0.06
vit b 16 -0.27 -0.71 0.04 0.39 -0.22
vit l 16 -0.39 -0.89 -0.66 -0.23 -0.24
vit h 14 -0.77 -0.83 0.92 0.31 -0.49
swin t -0.12 -0.39 -0.02 -0.42 -0.06
swin s -0.003 -0.61 -0.31 0.18 -0.03
swin b -0.32 -0.59 -0.43 0.42 -0.32
convnext tiny 0.77 -0.01 -0.04 0.09 0.80
convnext small 0.57 0.22 0.25 0.13 0.72
convnext base 0.67 0.41 0.35 -0.03 0.82
convnext large 0.75 0.23 0.35 -0.10 0.84
Average 0.31 ± 0.45 -0.44 ± 0.35 -0.31 ± 0.43 -0.29 ± 0.39 0.13 ± 0.50

Table 3: Robustness of the different criteria when considering the same architectures pre-trained for different tasks. Affinity
score achieves the lowest standard deviation suggesting that it is capable of correctly identifying the architecture even when
it was trained differently.

Criterion Mean ± std
ρaff 0.76±0.04
Linear CKA 0.90±0.07
Norm 448.56±404.61
Sparsity 0.56±0.16
Entropy 0.39±0.46

25


