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Abstract
It was recently shown by Amos et al. (2023)
that to boost test accuracy of transformer mod-
els on sequence classification, it can be highly
effective to first pretrain with a masked token pre-
diction objective on exactly the same data (self-
pretraining, SPT). While the focus of Amos et al.
(2023) is to show that transformers – and not only
state-space models (SSMs, like S4) – can perform
well on the Long-Range Arena (LRA, a collec-
tion of challenging synthetic sequence classifica-
tion tasks), their finding is intriguing from a more
fundamental perspective. Indeed, even though
it can be easily claimed that the observed gains
come from the benefits of data-driven initializa-
tion and pretraining inductive biases, it is unclear
which precise mechanism unlocks performance
and why standard supervised learning can fail.
To better understand this intriguing phenomenon,
we replicate and ablate the results of Amos et al.
(2023). We show that substantial gains can be
observed even at an extremely small scale, using
a self-pretraining pipeline that requires little ex-
tra compute. We further identify in the attention
mechanism weights the source of SPT improved
performance. We hope our insights lead to future
investigations around SPT, and that our work ex-
poses this unusual yet promising technique for
data-scarce learning to a broader audience.

1. Introduction
The Long-range Arena (Tay et al., 2020b) has served great
importance for the development of new efficient token-
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mixing strategies over the last few years. A prime example
is that of the first state-space-model (SSM): S4 (Gu et al.,
2022b), that became popular for surpassing transformers
on the LRA with 20% average increase in accuracy. S4
along with later variants also developed by benchmarking
on the LRA (Smith et al., 2023; Gu et al., 2022a; Poli et al.,
2023; Orvieto et al., 2023) serve as the basis for modern
architectures such as Mamba-1/2 (Gu & Dao, 2024; Dao &
Gu, 2024), GLA (Yang et al., 2024a), RetNet (Sun et al.,
2023), RWKV (Peng et al., 2023; 2024) and DeltaNet (Yang
et al., 2024b) among others.

While the latest developments in token-mixing mecha-
nisms are mainly inspired by language modeling perfor-
mance (Waleffe et al., 2024), researchers maintained a
strong interest in explaining the gap between transform-
ers and SSMs on LRA (e.g. Zimerman & Wolf (2023)). In
their brilliant contribution, awarded the Outstanding Paper
Award at ICLR 2024, Amos et al. (2023) showed that train-
ing transformer models from scratch (as done in the LRA
benchmark) leads to an under-estimation of their perfor-
mance and demonstrates that dramatic gains can be achieved
with a pretraining → finetuning setup (see Table 1). At a
first glance, this finding may not seem too surprising – yet,
pretraining is here performed on the same data (self-
pretraining, SPT), that is: the transformer is first tasked to
learn to predict masked tokens (or the next token) in the
sequence, and only later is trained on tasks labels. While
this procedure differs substantially with the usual pretrainig
paradigm (large pretraining corpus, small finetuning dataset,
e.g. Brown et al. (2020)), it draws conceptual similarities
both with classical curriculum learning (Bengio et al., 2009)
and more recent applied research: among others, El-Nouby
et al. (2021) showed the efficacy of self-pretraining in vi-
sion and more recently Krishna et al. (2023) showed that
pretraining large language models directly on downstream
datasets could often match pretraining on massive external
data, highlighting that much of the observed performance
gains may be driven by the pretraining objective itself rather
than the data volume.

Compared to El-Nouby et al. (2021); Krishna et al. (2023),
the main objective of Amos et al. (2023) was not to show
how to reach state-of-the-art performance or to eliminate
the need of pretaining on a massive external dataset. In-
stead, they show that on challenging tasks such as the LRA,
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Table 1. Replication of the result of Amos et al. (2023). We use their codebase and similar training settings. We find good agreement
with their results and hyperparameters. The numbers reported always refer to final finetuning accuracy, with the values around green
parenthesis referring to the absolute performance increase with respect to the relative from-scratch result.

TRAINING MODALITY LISTOPS CIFAR10 PATHFINDER RETRIVAL TEXT

STANDARD (FROM SCRATCH) 0.402 0.499 0.67 0.776 0.653
+SELF-PRETRAINING (RESULTS FROM AMOS ET AL.) 0.59 (+0.19) 0.74 (+0.24) 0.88 (+0.21) 0.88 (+0.11) 0.89 (+0.24)

+SELF-PRETRAINING (OUR REPRODUCTION OF AMOS ET AL.) 0.56 (+0.16) 0.72 (+0.22) 0.85 (+0.18) 0.88 (+0.11) 0.89 (+0.24)

Table 2. Self-pretraining epochs ablation. We first self-pretrain with X number of epochs (full cosine annealing in that number of epochs).
We then finetune for 100 epochs on each dataset. Reported are the final finetuning results after 100 epochs: we found that on ListOps,
CIFAR10, and PathFinder the relative finetuning performance except for pathfinder saturates after 10 self-pretraining epochs.

PRETRAINING LEN. LISTOPS CIFAR10 PATHFINDER

0 EPOCHS 0.403 0.499 0.67
1 EPOCH 0.48(+0.08) 0.56(+0.06) 0.69(+0.02)

10 EPOCHS 0.55(+0.15) 0.71(+0.21) 0.71(+0.04)

50 EPOCHS 0.55(+0.15) 0.71(+0.21) 0.71(+0.04)

100 EPOCHS 0.55(+0.15) 0.71(+0.21) 0.73(+0.06)

150 EPOCHS 0.56(+0.16) 0.71(+0.21) 0.77(+0.10)

200 EPOCHS 0.56(+0.16) 0.72(+0.22) 0.85(+0.18)
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Figure 1. Illustration of different training pipelines for classifica-
tion. SPT is the method by Amos et al. (2023) that we study here.

transformers benefit significantly from data-informed
initialization. While this is a great practical insight, we
believe it opens up intriguing questions.

Inspired by Amos et al. (2023), we here present some prelim-
inary results and ablations on self-pretraining transformers
with masked token prediction objectives, with the hope of
drawing more attention to this topic – of interest both for
empirical and practical research. Our objective is to simplify
the picture by starting a discussion around the following
questions:

1. Is the boost in test accuracy observed when including
self-pretraining in the LRA pipeline only observable
in deep models and after self-pretraining for hundreds
of epochs? In other words, can we observe this effect
in simpler models, perhaps with only one layer?

2. Our second question is a sanity check: Is the self-
pretraining boost due to learning data-specific features,
or can it also be observed when pretraining on a differ-
ent dataset compared to finetuning?

3. Is poor from-scratch test performance an optimization
issue (e.g., reconstruction loss allows gradients to flow

better), or is it instead due to a fundamental generaliza-
tion problem?

Towards answering these questions, we start by replicating
the results of Amos et al. (2023) in Sec. 2. We then present
ablations on pretraining budget (Sec. 3.1), model size and
dataset source (Sec. 3.2). We conclude by inspecting the
role of intermediate layers in Sec. 3.3, and summarize our
findings and insights in Sec. 4.

We limit ourselves, in this work, to developing intuitions
on top of the experimental setting by Amos et al. (2023).
However, we believe it would be interesting, for future
investigations, to also operate beyond the LRA.

2. Preliminaries
The LRA (Tay et al., 2020a) consists of 6 classification tasks,
where if inputs are not strictly of a sequential nature (e.g.
Image, the black/white version of CIFAR10) they are first
flattened to produce a sequence. For a full description of
these tasks, particularly comments on the increased com-
plexity compared to baselines in the original papers cited
for each dataset, please refer to Tay et al. (2020a) and the
appendix.

Our first step towards a closer inspection of the results
by Amos et al. (2023) is a replication of their findings, for
which we use their codebase 1 and their same transformer
settings (width, depth, heads, etc). We limit ourselves here

1https://github.com/IdoAmos/
not-from-scratch
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to self-pretraining through a masked2 sequence modeling
objective and consider bidirectional processing with a trans-
former encoder (Vaswani et al., 2017) using rotary posi-
tional embeddings (Su et al., 2021). After a 200 epochs
self-pretraining stage where the model learns to reconstruct
dataset-specific inputs (self-pretraining), we perform fine-
tuning for 100 epochs and compare the results with those of
from-scratch training on 100 epochs (no self-pretraining).

We found hyperparameters provided by (Amos et al., 2023)
to be well-tuned both in the self-pretraining and in the fine-
tuning stage, and their results align well with our reproduc-
tion in Table 1. This manuscript does not consider the PathX
dataset since it requires significant computational efforts.

3. Ablations
We present here three set of ablations bringing insights
into SPT mechanisms. We conclude in Section 4 bringing
together our insights and perspectives for future work.

3.1. Self-pretraining Duration
In our experiments leading to Table 1, we noticed that
pretraining is particularly computationally expensive3.
While (Amos et al., 2023) present detailed ablations re-
garding dataset sizes, we are most curious of decreasing the
epochs budget from 200 (baseline) down to a single epoch.
Our results in Table 1 show a curious phenomenon: only
10 epochs of self-pretraining are needed to significantly
boost performance on CIFAR10 and ListOps. Instead, for
PathFinder, major gains can only be observed after 100
epochs. Additionally, we found that improvements can al-
ready be observed after a single epoch. For this experiment,
our hyperparameters are kept the same as in Table 1, with
the only difference in the 1-epoch setting where we reduced
the learning rate warm-up settings to fit the reduced step
budget.

3.2. Model Depth and Data Source

A natural explanation for the observed increase in test accu-
racy is the ability of self-pretraining to learn crucial patterns
and hierarchical representations, providing a “better start-
ing point” when learning labels (Hubel & Wiesel, 1962;
Hinton & Salakhutdinov, 2006). While in Sec. 3.2, we
showed how such representations may arise with just a few

2Following Amos et al. (2023), 50% for images, 15% for text
tasks, and 10% in ListOps.

3In CIFAR the wall-clock time for 1 epoch of pretraining on our
hardware (a single A100 with 80GB of RAM) is 48s, for ListOps
is 19.1m and for Pathfinder is 3.20min. At finetuning, the time for
1 epoch in CIFAR is 56s, for ListOps is 18.95m and for Pathfinder
is 3min. Since as Amos et al. (2023) we first pretrain for 200
epochs and then finetune on 100, the total time compared to basic
training from scratch for 100 epochs is tripled.
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Figure 2. Settings are exactly the same as in Sec. 2 (200 pretraining
epochs), comment in the main text.

epochs of self-pretraining, here we inspect the efficacy of
self-pretraining as we vary the number of layers in the
model. At the same time, to test whether self-pretraining is
indeed learning task-specific representations, we consider
swapping pretraining datasets: we pretrain on Pathfinder
data and fine-tune on CIFAR and vice versa.

For A,B ∈ {CIFAR10, Pathfinder}, we (1) train from
scratch on data A, (2) pretrain on data A, fine-tune on data
A, or (3) pretrain on data A, fine-tune on data B. In Fig. 2
we report both train and test accuracy after fine-tuning.

1. We observe gains even when pretraining on a single
layer. While test accuracy at finetuning is only im-
proved by 2% after self-pretraining a 1-layer model on
Pathfinder, on CIFAR10 we observe a 15% increase.
Even though the gap in deeper models is higher, espe-
cially for Pathfinder, we find it interesting that it can
be observed at such small scales.

2. From-scratch test accuracies on both datasets are al-
most independent of the number of layers. Moreover,
there is a substantial gap in training accuracy between
from-scratch and SPT performance, pointing to opti-
mization issues.

3. Some gains in test accuracy after finetuning can be
observed when switching data source. This also
points to SPT targeting, to some degree, suboptimal
initialization and unlocking high training accuracy.

3.3. Freezing layers : From Scratch Sensitivity Analysis

In Sec. 3.2 we found that, SPT (regardless of data source)
greatly improves training accuracy – even when models are
just 1-layer deep. To further inspect this phenomenon, we
start from an insight coming from vision (Touvron et al.,
2021) indicating that, to improve performance, attention
layers may profit from additional supervision beyond
hard labels. To this end, we inspect the effects of freezing
attention layers – i.e. of clamping operations to their value at
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Table 3. Comparison of different freezing strategies when training from scratch. Reported are test accuracy results, the setting is the same
as in Sec. 2. We either clamp attention or attention and intermediate feedforward layers to random initialization. Encoder and decoder
layers (linear) are always trained.

DATASET FROM SCRATCH +ATT. FROZEN +ATT. & MLP FROZEN

CIFAR-10 0.50 0.56 (+0.06) 0.43 (-0.07)

PATHFINDER 0.67 0.50 (-0.17) 0.50 (-0.17)

LISTOPS 0.40 0.40 (+0.00) 0.30 (-0.10)

RETRIEVAL 0.78 0.78 (+0.00) 0.67 (-0.09)

TEXT 0.65 0.65 (+0.00) 0.66 (+0.01)

Table 4. For one-layer models, SPT improved test accuracy is due to better initialization of queries and keys parameters.

DATASET FROM SCRATCH SPT → FULL MODEL INIT SPT → ONLY QK INIT

CIFAR-10 0.48 0.60 (+0.12) 0.60 (+0.12)

PATHFINDER 0.67 0.70 (+0.03) 0.70 (+0.03)

random initialization when training from scratch. In Table 3,
we observe that (with the exception of Pathfinder) training
the attention layer has little to no effect on from-scratch
accuracy: this is surprising, and indicates the inability of
attention layers to help construct useful features to solve
the task at hand, when learning from labels. Instead, as
expected (with the exception of the Text task) freezing also
the intermediate MLP layers in the transformer block always
decreases performance.

4. Insights and Future Research
In Section 3, we ablated on the SPT paradigm, testing which
components are necessary to observe gains. From our pre-
liminary results, to be tested thoroughly in a full paper, we
can conclude that:

(1) SPT benefits can be observed in extremely small mod-
els (1 layer) at a low number of SPT epochs (e.g., 10).
While for challenging datasets like PathFinder one may
require bigger models and substantial SPT effort, we
find it interesting that some important gains can be
observed even at small scale.

(2) SPT helps with optimization (training performance) in
addition to generalization. This is perhaps our most
crucial finding, which can be inspected in Figure 2:
even at a single layer, from-scratch training fits the
training data suboptimally. This hints us that some
component in the architecture may be hard to optimize
directly from labels.

(3) Building on top of (2), we performed a sensitivity anal-
ysis in Table 3. We found that, when training from
scratch, freezing the MLP leads to a drastic decrease
in performance. Instead, freezing the attention layer to
random initialization can have a much milder effect–

suggesting that attention layers are harder to optimize
from scratch than MLPs.

Our findings point to an interesting conclusion: SPT is par-
ticularly crucial in the presence of attention layers. This
also aligns well with the results of Amos et al. (2023), show-
ing that S4 and other recurrent models do not gain much
using SPT, compared to attention. Motivated by this, we
present one last experiment using 1-layer models: we com-
pare training from scratch with SPT followed by fine-tuning.
As opposed to before, we now consider initializing to SPT
weights only the parameters inside the softmax layers:
the queries/keys weights. Figure 4 confirms our insights: at
least for 1 layer models, the effect of SPT can be attributed
to a better initialization of the attention parameters.

While the results above are non-conclusive, they point to
a clear direction for theoretical research. Indeed, while
it is known that deep transformers can have optimization
problems (Noci et al., 2022; Wang et al., 2024), not much is
known about potential issues for single layers trained from
labels. We believe understanding such problems is of crucial
importance for practitioners, specifically for applications
where pretraining is not part of the pipeline.
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Appendix
A. Tasks

• ListOps: Inspired by (Nangia & Bowman, 2018). Se-
quences are nested lists describing mathematical oper-
ations applied to token sets. The task requires under-
standing hierarchical structures. The sequence length
is 2048.

• Text: Character-level IMDb reviews (Maas et al., 2011)
for binary sentiment classification. Sequences are up
to 2048 tokens.

• Retrieval: Character-level binary classification of doc-
ument similarity scores with sequences up to 4096 to-
kens. The task was introduced by Radev et al. (2013).

• Image: Grayscale CIFAR-10 (Krizhevsky et al., 2009)
images flattened into 1D sequences for 10-way classi-
fication without explicit 2D inductive bias, sequence
length 1024.

• Pathfinder, PathX: Synthetic 2D visual tasks intro-
duced by (Linsley et al., 2018), treated as 1D sequences
for tracing capabilities (sequence lengths 1024 and
16384, respectively). They are both binary classifica-
tion tasks.

B. Experimental details
Our training settings in most ablations closely follow
choices by Amos et al. (2023).

• For ListOps, the model is trained with an embedding
size of 512, input to 6 transformer layers, each with
8 attention heads. The feed-forward network has a
hidden size of 1024. The tuned learning rates used for
our experiments are 1×10−4 (finetuning) and 1×10−3

(pre-training), with batch sizes 64 to 128 (respectively).
Weight decay is set at 0.1, and cross-entropy is used as
the pretraining loss.

• In the Text dataset, the training strategy remains simi-
lar to ListOps, with identical feature size, depth, and
attention heads. However, the learning rates are slightly
adjusted to 1× 10−4 (finetuning) and 5× 10−4 (pre-
training), with batch sizes of 64 and 32 (respectively).

• For the Retrieval dataset, the model adopts a smaller
feature size of 128 and a reduced depth of 4 layers,
with 4 attention heads and a feed-forward hidden size
of 512. The learning rates are 5 × 10−4 (finetuning)
and 5× 10−3 (pre-training), with batch sizes of 16 and
32 respectively. Notably, weight decay is here set to
zero, and cross-entropy loss is used.

• The Image dataset (a.k.a CIFAR10) employs a distinct
setup, with a feature size of 64 and a shallow depth of 3
layers. There are 4 attention heads and a feed-forward
hidden size of 128. Unlike the previous tasks, max
pooling is used at the last layer, reflecting the spatial
nature of image data. The learning rates are fixed at
1×10−3 (finetuning and pre-training), with batch sizes
of 16 and 32(finetuning and pre-training, respectively).
Weight decay is set to zero. The pretraining loss is here
the L2 loss, emphasizing pixel-level reconstruction
rather than classification.

• Finally, in the Pathfinder dataset, the model configura-
tion closely resembles that of Retrieval, with a feature
size of 128, a depth of 4 layers, 4 attention heads, and
a feed-forward size of 512. The learning rates vary
between 5 × 10−4 (finetuning) and 1 × 10−3 (pre-
training), with batch sizes of 16 and 32 (respectively).
Like ListOps and Retrieval, cross-entropy loss is used
for pretraining.

During further experiments involving changing number of
layers and datasets, we found these settings to be mostly
stable, with only minor adjustments to the learning rate
needed.
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C. Further Experimental results

Table 5. Ablation on number of layers and data source, see
Sec. 3.2. This data is shown in Figure 2

DATA MODALITY 1 LAYER 2 LAYERS 3/4 LAYERS

FROM SCRATCH (TRAIN) 0.69 0.78 0.88
FROM SCRATCH (TEST) 0.48 0.48 0.50

CIFAR 10 + SELF PRE-TRAINED (TRAIN) 0.93 0.95 0.96
+ SELF PRE-TRAINED (TEST) 0.60 (+0.13) 0.67 (+0.19) 0.72 (+0.22)

PRE-TRAINED W/ PATHFINDER (TRAIN) 0.84 0.94 0.97
PRE-TRAINED W/ PATHFINDER (TEST) 0.56 (+0.8) 0.56 (+0.8) 0.57 (+0.7)

FROM SCRATCH (TRAIN) 0.67 0.76 0.83
FROM SCRATCH (TEST) 0.669 0.670 0.672

PATHFINDER SELF PRE-TRAINED (TRAIN) 0.77 0.85 0.97
SELF PRE-TRAINED (TEST) 0.70 (+0.03) 0.78 (+0.10) 0.85 (+0.18)

PRE-TRAINED W/ CIFAR 10 (TRAIN) 0.85 0.89 0.91
PRE-TRAINED W/ CIFAR 10 (TEST) 0.68 (+0.01) 0.68 (+0.01) 0.68 (+0.01)
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