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Abstract

Recently, pre-trained vision-language models have been increasingly used to tackle
the challenging zero-shot segmentation task. Typical solutions follow the paradigm
of first generating mask proposals and then adopting CLIP to classify them. To
maintain the CLIP’s zero-shot transferability, previous practices favour to freeze
CLIP during training. However, in the paper, we reveal that CLIP is insensitive
to different mask proposals and tends to produce similar predictions for various
mask proposals of the same image. This insensitivity results in numerous false
positives when classifying mask proposals. This issue mainly relates to the fact that
CLIP is trained with image-level supervision. To alleviate this issue, we propose a
simple yet effective method, named Mask-aware Fine-tuning (MAFT). Specifically,
Image-Proposals CLIP Encoder (IP-CLIP Encoder) is proposed to handle arbitrary
numbers of image and mask proposals simultaneously. Then, mask-aware loss
and self-distillation loss are designed to fine-tune IP-CLIP Encoder, ensuring
CLIP is responsive to different mask proposals while not sacrificing transferability.
In this way, mask-aware representations can be easily learned to make the true
positives stand out. Notably, our solution can seamlessly plug into most existing
methods without introducing any new parameters during the fine-tuning process.
We conduct extensive experiments on the popular zero-shot benchmarks. With
MAFT, the performance of the state-of-the-art methods is promoted by a large
margin: 50.4% (+ 8.2%) on COCO, 81.8% (+ 3.2%) on Pascal-VOC, and 8.7%
(+4.3%) on ADE20K in terms of mIoU for unseen classes. Code is available at
github.com/jiaosiyu1999/MAFT.git.

1 Introduction

Semantic segmentation, one of the most widely researched topics in computer vision, has achieved
remarkable success [3; 39; 15; 16] with the development of deep learning techniques [14]. However,
traditional segmentation models are only capable of segmenting a few predefined categories within
a closed vocabulary [7; 2; 22; 21], which is much smaller than the number of categories used by
humans to describe the real world. Therefore, zero-shot segmentation [31; 1; 10; 13] is introduced to
segment objects using arbitrary categories described by texts.

Recently, large-scale visual-language pre-training models (e.g. CLIP [28] and ALIGN [17]) have
shown impressive transferability in recognizing novel categories, leading to their increased adoption
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Figure 1: Comparison between the frozen CLIP and our mask-aware CLIP for proposal classification.
Regions of proposals are highlighted with green. The frozen CLIP classifies p1, p2, and p3 as swan
class and produces similar predictions, although these proposals contain different regions of the
image. After the MAFT, the mask-aware CLIP can produce proper scores for different proposals.

for tackling the challenging zero-shot segmentation task [6; 33; 20; 27]. A mainstream solution
follows the "frozen CLIP" paradigm, which executes the zero-shot segmentation with two steps: 1)
first employing a Proposal Generator to produce class-agnostic mask proposals and 2) then leveraging
a frozen pre-trained CLIP to classify each mask proposal via similarity matching in the aligned
image-text feature space. While acceptable results are obtained, we reveal that these approaches
overlook a crucial issue, i.e. the frozen CLIP is insensitive to different mask proposals and tends to
produce similar predictions for various proposals of the same image.

To better illustrate the above-mentioned issue, we show several examples in Fig. 1. We use Mask-
Former [5] to generate a series of mask proposals and select three typical ones. When using frozen
CLIP for classification, we observe that it correctly classifies the high-quality swan proposal p1.
However, for the other two proposals p2 and p3, which respectively contain only shape information
of swan and both regions of swan and river, the frozen CLIP produces similar predictions compared
to p1. This is reasonable since CLIP is trained by image-text pairs, making it insensitive to pixel-
level information (e.g. background noise), and resulting in numerous false positives. Based on the
above observations, we consider that an expected CLIP for zero-shot segmentation task should 1) be
sensitive to different mask proposals, 2) not compromise its original transferability on novel
classes.

To this end, we introduce a Mask-aware CLIP Fine-tuning method (dubbed MAFT). To make
CLIP sensitive to different mask proposals, we devise an Image-Proposals CLIP Encoder (IP-CLIP
Encoder), which utilizes mask proposals to perform masked Multihead Attention [5; 4]. This design
enables the model to handle arbitrary numbers of images and proposals simultaneously. The mask-
aware loss is proposed to minimise the distance between the IoU score of mask proposals and
the classification score of IP-CLIP Encoder, prompting IP-CLIP Encoder to differentiate various
proposals. Besides, to preserve CLIP’s zero-shot transferability, we utilize a frozen CLIP as a teacher
network to facilitate fine-tuning. This is achieved by aligning the outputs of the frozen CLIP and IP-
CLIP Encoder through self-distillation loss. By performing MAFT, several advantages are provided:
1) Fine-tuning is efficient since only a few mask proposals need to be classified. 2) Compared to
pixel-level fine-tuning, mask-aware fine-tuning hardly alters the structure of CLIP itself, preserving
its maximum transferability. 3) Mask-aware fine-tuning of CLIP is released from the segmentation
module, making it plug-and-play and applicable to any "frozen CLIP" approaches. As shown in Fig.
1, the mask-aware CLIP can well distinguish different proposals and provide proper classification
scores for both seen (river) and unseen (swan) classes.

We evaluate our MAFT on three commonly used zero-shot segmentation benchmarks: COCO-
Stuff [2], Pascal-VOC [7], and ADE20K [40]. Extensive experiments show that MAFT works
well with various zero-shot segmentation methods. In particular, by plugging MAFT, the state-of-
the-art approach FreeSeg [27] achieves superior performance on COCO-Stuff (42.2% → 50.4%),
Pascal-VOC (78.6% → 81.8%) and ADE20K (4.4% → 8.7%) in terms of mIoU of unseen classes.
Furthermore, we conduct experiments in a open-vocabulary setting, where MAFT enhances the
performance of A-847 [40], A-150 [40], PC-459 [24], PC-59 [24] and PAS-20 [7] datasets by +3.0%,
+11.2%, +6.4%, +19.1% and +4.4%, respectively. Notably, our approach outperforms the freezing
CLIP counterpart and establishes new state-of-the-art results on all datasets.
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2 Related Work

Zero-Shot Segmentation [29] is established to break the restriction of categories and perform
segmentation on unseen classes. Earlier works SPNet [31] learn a joint pixel and vocabulary concept
embedding space, ZS5 [1] utilizes a generative model to generate pixel-level features based on
word embeddings of unseen classes, CaGNet [10] incorporates context information for better feature
generation. Recent approaches take the advent of large-scale visual-language models (e.g. CLIP
[28] and ALIGN [17]) to leverage rich alignment features from image-text pairs. [34] uses CLIP to
generate pseudo-labels for single-image segmentation. STRICT [25] obtains pixel-level pseudo-labels
from CLIP for unlabeled pixels and proposes a self-training strategy to capture latent information on
unseen classes. LSeg [8] trains a CNN model to compute per-pixel image embeddings and use CLIP
text embeddings as a classifier. [32] employs contrastive supervision to learn segmentation masks
from text.

Concurrently, recent works [6; 33; 27; 20; 9] follow the "frozen CLIP" paradigm for zero-shot
segmentation, they first generate a series of mask proposals and then utilize CLIP [28] or ALIGN [17]
to classify them. ZSSeg and OVSeg [33; 20] train CLIP adapters to boost performance. FreeSeg[27]
simultaneously uses semantic, instance, and panoptic labels and performs fusion training. OpenSeg[9]
takes extra images with image-level supervision (e.g. captions) to scale up training data.

Pre-trained model fine-tuning is widely used for transferring pre-trained knowledge to downstream
tasks, e.g. segmentation. However, this strategy may not work well for data-limited tasks like few-shot
learning and zero-shot learning due to the daunting overfitting problem. To address this problem and
transfer pre-trained knowledge to data-limited tasks, [43; 42; 12; 33; 20; 27] propose to learn text
prompts or image prompts by using (a few) annotated images from target dataset. SVF [30] fine-tunes
only a few parameters in the pre-trained image encoder to adapt pre-trained knowledge to few-shot
segmentation. [38; 37] use contrastive learning to avoid catastrophic forgetting. Alternatively, many
outstanding approaches in data-limited tasks [23; 35; 36; 6; 33] choose to freeze the parameters of
pre-trained models to maintain the transferability.

Specific to the task of zero-shot/ open-vocabulary segmentation, mainstream approaches use frozen
CLIP to avoid overfitting. Recently, MaskCLIP [41] conducts adequate experiments to fine-tune CLIP
for open-vocabulary segmentation but has failed. While this attempt is meaningful and appreciated, it
is believed that the failure is due to the large domain gap between pixel-level and image-level tasks.
This motivates us further research fine-tuning CLIP to be mask-aware (region-level task).

3 Preliminary

Problem Setting. Zero-shot segmentation aims at training a segmentation model capable of segment-
ing novel objects using text descriptions. Given two category sets Cseen and Cunseen respectively,
where Cseen and Cunseen are disjoint in terms of object categories (Cseen ∩ Cunseen = ∅). The
model is trained on Cseen and directly tested on both Cseen and Cunseen. Typically, Cseen and
Cunseen are described with semantic words (e.g. sheep, grass).

Revisiting the "frozen CLIP" paradigm. The "frozen CLIP" approaches [6; 33; 27; 20] execute
zero-shot segmentation in two steps: mask proposals generation and mask proposals classification.
In the first step, these approaches train a Proposal Generator to generate N class-agnostic mask
proposals (denoting as M , M ∈ RN×H×W ) and their corresponding classification scores (denoting
as Ap, Ap ∈ RN×|Cseen|). MaskFormer [5] and Mask2Former [4] are generally used as the Proposal
Generator since the Hungarian matching [19] in the training process makes the mask proposals
strongly generalizable. In the second step, N suitable sub-images (Isub) are obtained by merging
N mask proposals and the input image. Isub is then fed into the CLIP Image Encoder to obtain the
image embedding (EI ). Meanwhile, text embedding (ET ) is generated by a CLIP Text Encoder. The
classification score (Ac, Ac ∈ RN×C) predicted by CLIP is calculated as:

Ac
i = Softmax(

exp( 1τ sc(E
T
i , E

I))∑C
i=0 exp(

1
τ sc(E

T
i , E

I))
), i = [1, 2, ...C] (1)

where τ is the temperature hyper-parameter. sc(ET
i , E

I) =
ET

i ·EI

|ET
i ||EI | represents the cosine similarity

between ET
i and EI . C is the number of classes, with C = |Cseen| during training and C =

|Cseen ∪ Cunseen| during inference. Noting that CLIP is frozen when training to avoid overfitting.
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Figure 2: Overview of the Mask-Aware Fine-tuning (MAFT). In IP-CLIP Encoder, we modify the
CLIP Image Encoder, and apply the mask proposals as attention bias in Multihead Attention from the
Lth layer. The final projection unit is an MLP module used for reshaping the channels of Fcls. w.o.
M denotes IP-CLIP Encoder processes image without utilizing mask proposals (M ). Mask-aware
Loss is designed to train CLIP to be mask-aware, while Self-distillation Loss is designed to maintain
the transferability. Only the IP-CLIP Encoder is trained (orange part), the Proposal Generator and the
CLIP Text Encoder are frozen (blue part).

To further enhance the reliability of Ac, the classification score of the Proposal Generator (Ap) is
ensembled with Ac since Ap is more reliable on seen classes. This ensemble operation is wildly used
in "frozen CLIP" approaches. The pipeline of "frozen CLIP", as well as the merge and ensemble
operations, are described in detail in the Appendix.

Although "frozen CLIP" approaches have achieved promising results, it is clear that directly adopting
an image-level pre-trained CLIP for proposal classification can be suboptimal. A frozen CLIP usually
produces numerous false positives, and the merge operation may destroy the context information
of an input image. In view of this, we rethink the paradigm of the frozen CLIP and explore a new
solution for proposal classification.

4 Methodology

We introduce Mask-Aware Fine-tuning (MAFT), a method for learning mask-aware CLIP represen-
tations. Within MAFT, we first propose the Image-Proposal CLIP Encoder (IP-CLIP Encoder) to
handle images with any number of mask proposals simultaneously (Sec. 4.1). Then, mask-aware loss
and self-distillation loss are introduced to fine-tune the IP-CLIP Encoder and make it distinguishable
for different mask proposals while maintaining transferability (Sec. 4.2). The complete diagram of
the MAFT is shown in Fig. 2, we use the ViT-B/16 CLIP model for illustration.

4.1 Image-Proposal CLIP Encoder (IP-CLIP Encoder)

IP-CLIP Encoder aims to process arbitrary numbers of images and mask proposals simultaneously.
We draw inspiration from MaskFormer [4; 5], which uses attention-masks in Multihead Attention and
provides the flexibility for accepting any number of queries and features of different masked regions.
Accordingly, we apply mask proposals as attention-masks in Multihead Attention and designate
independent classification queries for each mask proposal.

In the IP-CLIP Encoder shown in Fig. 2, we denote the features propagate between Transformer
layers as F i, where i = [1, 2...12]. We can express F i as F i = [F i

cls; F
i
feat],∈ R(1+hw)×d, here 1

represents a class-embedding vector (F i
cls), hw represents the number of the flattened image features

(F i
feat). To obtain the classifications of all mask proposals simultaneously, we repeat F i

cls at layer L
N times, where N is the number of mask proposals, denoting the repeated class-embedding vectors
as F i∗

cls. We can express the modified features (F i∗) as F i∗ = [F i∗
cls; F

i
feat],∈ R(N+hw)×d.
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Propagation of F i, where i = [1, 2, ...L]. We consider that CLIP’s classification significantly relies
on context information. In the first L Transformer layers, the propagation of F i is the same as in
standard CLIP. Specifically, F i

cls utilizes cross-attention with all pixels within F i
feat, effectively

retaining the context information.

In the subsequent 12 − L Transformer layers, the propagation of F i∗ can be partitioned into two
parts: the propagation of F i∗

cls and the propagation of F i
feat.

Propagation of F i∗
cls. We use F i∗

cls[n] and M [n] to represent the position n in F i∗
cls and M , where

n = [1, 2...N ]. It is expected F i∗
cls[n] computes Multihead Attention for the positions where M [n]= 1

and itself. To achieve this, we construct an attention bias B ∈ RN×(N+hw) as follows:

B(i,j) =

{
0, if M̂(i,j) = 1

−∞, if M̂(i,j) = 0
, M̂ = [I(N,N); Flat(M)] (2)

here I(N,N) denotes N th order identity matrix, Flat(·) denotes the flatten operation. M̂ is an
intermediate variable for better representation. Therefore, a masked Multihead Attention is used for
propagating F i∗

cls :

F
(i+1)∗
cls = Softmax(

Que(F i∗
cls)Key(F i∗)T√

d
+B)Val(F i∗) (3)

where Que(·), Key(·), and Val(·) denote linear projections, d is the hidden dimension of F i∗.
Notably, We omit the MLP Layer and Layer Normalizations in Transformer layers to simplify the
representation in Eq. 3 and Eq. 4.

Propagation of F i
feat. A standard Multihead Attention is used for propagating F i

feat :

F i+1
feat = Softmax(

Que(F i
feat)Key(F i

feat)
T

√
d

)Val(F i
feat) (4)

Therefore, for any given mask proposal M [n], the corresponding class-embedding F i∗
cls[n] only

performs Multihead Attention with F i
feat where M [n]= 1 and F i∗

cls[n]. The propagation of F i
feat

remains undisturbed by attention-masks. Compared with the frozen CLIP, IP-CLIP Encoder leverages
context information effectively and reduces computational costs.

4.2 Objective

IP-CLIP Encoder with CLIP pre-trained parameters remains challenging in distinguishing different
mask proposals, e.g., when the proposals contain more background regions than foreground objects,
IP-CLIP may tend to classify them into the foreground categories. To overcome this limitation,
we introduce mask-aware loss and self-distillation loss to fine-tune the IP-CLIP Encoder to be
mask-aware without sacrificing transferability.

We conduct the mask-aware loss function (Lma) on Ac. The goal is to assign high scores to high-
quality proposals and low scores to low-quality proposals in Ac. Concretely, we use the Intersection
over Union (IoU) score obtained from ground-truth and align it with the Ac to prompt CLIP to
become mask-aware. Assuming there are k classes in ground-truth, we can generate k binary maps of
ground-truth and calculate the IOU score (SIoU ) with N mask proposals. We identify a discrepancy
between the maximum values of Ac and SIoU . The maximum value of Ac tends to approach 1,
whereas the maximum value of SIoU ranges from 0.75 to 0.99. This inconsistency can hinder the
alignment between these two metrics. Therefore, we introduced a min-max normalization technique
for SIoU as follows:

Snorm
IoU =

SIoU −min(SIoU )

max(SIoU )−min(SIoU )
, SIoU ∈ RK×N (5)

Meanwhile, we select k pre-existing classes in Ac (Ac
select, A

c
select ∈ RK×N ), and employ

SmoothL1 Loss to align it with Snorm
IoU . Therefore, Lma can be formulated as follows:

Lma(A
c
select, S

norm
IoU ) = SmoothL1(Ac

select, S
norm
IoU ) (6)
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Table 1: Comparison with state-of-the-art methods in zero-shot segmentation. mIoUs and mIoUu

denote the mIoU(%) of seen classes and unseen classes.
Method COCO-Stuff Pascal-VOC ADE20K

mIoUs mIoUu hIoU mIoUs mIoUu hIoU mIoUs mIoUu hIoU
SPNet[31] 34.6 26.9 30.3 77.8 25.8 38.8 - - -
ZS5[1] 34.9 10.6 16.2 78.0 21.2 33.3 - - -
CaGNet[10] 35.6 13.4 19.5 78.6 30.3 43.7 - - -
STRICT[25] 35.3 30.3 32.6 82.7 35.6 73.3 - - -
ZegFormer[6] 36.7 36.2 36.4 90.1 70.6 79.2 17.4 5.1 7.9
ZegFormer +MAFT 36.4 −0.3 40.1 +3.9 38.1 +1.7 91.5 +1.4 80.7 +10.1 85.7 +6.5 16.6 −0.8 7.0 +1.9 9.8 +1.9

ZSSeg[33] 40.4 36.5 38.3 86.6 59.7 69.4 18.0 4.5 7.2
ZSSeg +MAFT 40.6 +0.2 40.1 +3.6 40.3 +2.0 88.4 +1.8 66.2 +6.5 75.7 +6.3 18.9 +0.9 6.7 +2.2 9.9 +2.7

FreeSeg[27] 42.4 42.2 42.3 91.9 78.6 84.7 22.3 4.4 7.3
FreeSeg +MAFT 43.3 +0.9 50.4 +8.2 46.5 +4.2 91.4 −0.5 81.8 +3.2 86.3 +1.6 21.4 −0.9 8.7 +4.3 12.4 +5.1

Table 2: Results on representative methods [6; 33; 27] with/without MAFT. Here we remove the
ensemble operation, and only maintain CLIP classifier results.

Method COCO-Stuff Pascal-VOC ADE20K
mIoUs mIoUu hIoU mIoUs mIoUu hIoU mIoUs mIoUu hIoU

ZegFormer[6] 18.5 23.0 20.5 81.4 76.8 79.0 5.1 2.6 3.5
ZegFormer +MAFT 35.1 +16.6 31.6 +7.6 33.3 +12.7 87.6 +6.2 79.9 +3.1 83.5 +4.5 15.8 +10.8 7.0 +4.4 9.8 +6.3

ZSSeg[33] 20.6 27.4 23.6 82.0 71.2 76.2 5.9 2.8 3.9
ZSSeg +MAFT 36.1 +15.5 35.9 +8.3 36.0 +12.4 87.1 +5.1 76.1 +4.9 81.2 +5.0 17.2 +11.3 7.2 +4.4 10.2 +6.3

FreeSeg[27] 22.3 29.3 25.3 87.4 74.7 80.5 6.5 2.8 3.9
FreeSeg +MAFT 40.1 +17.8 49.7 +20.4 44.4 +19.1 90.4 +3.0 84.7 +10.0 87.5 +7.0 21.3 +14.8 8.7 +5.9 12.2 +8.3

SmoothL1(x, y) =

{
0.5 · (x− y)2, if |x− y| < 1

|x− y| − 0.5, otherwise
(7)

In addition to Lma, we also introduce a self-distillation loss Ldis to maintain CLIP’s transferability
and alleviate overfitting on Cseen. Within Ldis, we use a frozen CLIP as the teacher net, the IP-CLIP
as the student net for self-distillation. The predictions of the frozen CLIP and IP-CLIP are expected
to be the same when no mask is included. Denoting the output of the frozen CLIP as AT , and the
output of the fine-tuned IP-CLIP without masks as AS . We use SmoothL1 Loss to minimize the
difference as follows:

Ldis(AS , AT ) = SmoothL1(AS , AT ) (8)

It is important to note that when processing an image through IP-CLIP without mask proposals, the
resulting AS is a matrix with dimensions RC×1. Therefore, the final loss function can be formulated
as: L = Lma + λLdis, where we set the constant λ to 1 in our experiments. The mask-aware
fine-tuning process is efficient as we only perform a few iterations (less than 1 epoch).

5 Experiments

5.1 Setting

Dataset. We first follow [1; 11; 26; 6; 33] to conduct experiments on three popular zero-shot
segmentation benchmarks, Pascal-VOC, COCO-Stuff and ADE20K, to evaluate our method. Then,
we evaluate MAFT on the open-vocabulary setting [20; 33], i.e., training on COCO-Stuff and testing
on ADE20K (A-847, A-150), Pascal-Context (PC-459, PC-59), and Pascal-VOC (PAS-20). More
details of the dataset settings are provided in the Appendix.

Evaluation Metrics. To quantitatively evaluate the performance, we follow standard practice
[1; 31; 10; 25; 6; 33; 27], adopt mean Intersection over Union (mIoU) to respectively evaluate the
performance for seen classes (IoUs) and unseen classes (IoUu). We also employ the harmonic mean
IoU (hIoU) among the seen and unseen classes to measure comprehensive performance.

Methods. Three representative methods are used to verify the generality of MAFT. We unify the three
methods into the same framework, with all methods using ResNet101 as the backbone of Proposal
Generator and ViT-B/16 CLIP model for a fair comparison.
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Table 3: Comparison with state-of-the-art methods on the open-vocabulary setting. mIoU is used to
evaluate the performance. * denotes additional training data is used.

A-847 A-150 PC-459 PC-59 PAS-20
SPNet[31] - - - 24.3 18.3
ZSSeg[1] - - - 19.4 38.3
LSeg+[8] 2.5 13.0 5.2 36.0 59.0
OVSeg[20] 7.1 24.8 11.0 53.3 92.6
OpenSeg* [9] 8.8 28.6 12.2 48.2 72.2
FreeSeg[27] 7.1 17.9 6.4 34.4 85.6
FreeSeg +MAFT 10.1 +3.0 29.1 +11.2 12.8 +6.4 53.5 +19.1 90.0 +4.4

• ZegFormer (CVPR 2022) [6] is an early adopter of the "frozen CLIP" paradigm. It uses
MaskFormer as Proposal Generator and employs an ensemble operation to improve the
confidence of the results.

• ZSSeg (ECCV 2022) [33] uses MaskFormer as Proposal Generator and introduces learnable
prompts to improve classification accuracy, which significantly affects the subsequent
methods. ZSSeg also adopts a self-training strategy, this strategy is excluded from all
methods for a fair comparison.

• FreeSeg (CVPR 2023) [27] represents the state-of-the-art method, unifies semantic, instance,
and panoptic segmentation tasks and uses annotations from all three tasks for fusion training.
We retrain FreeSeg with only the semantic annotations to ensure fairness.

Implementation details. We employ ResNet101 as backbone of the Proposal Generator and ViT-
B/16 CLIP model. The training process consists of two stages. For the first stage, we follow the
official code of ZegFormer, ZSSeg and FreeSeg for model training. For the second stage, we fine-tune
IP-CLIP Encoder with MAFT. We take the batch size of 16 and set CLIP input image size to 480×480.
The optimizer is AdamW with a learning rate of 0.00001 and weight decay of 0.00001. The number
of training iterations is set to 100 for Pascal-VOC, 1000 for COCO-Stuff and 5000 for ADE20K.

5.2 Comparisons with State-of-the-art Methods

In this section, three representative methods are used [6; 33; 27] to evaluate the effectiveness of
MAFT. We compare three representative methods with MAFT and frozen CLIP. Additionally, we
compare the results with previous state-of-the-art methods [31; 1; 10; 25].

Comparisons in the zero-shot setting. In Tab. 1, MAFT remarkably improves the performance.
MAFT promotes the state-of-the-art performance by + 8.2% on COCO, + 3.2% on Pascal, and +4.3%
on ADE20K in terms of mIoU for unseen classes. It is important to note that the results for seen
classes are mainly based on Ap rather than Ac due to the ensemble operation in [6; 33; 27] (Details
in Sec. 3). Therefore, the effect of MAFT on the seen classes is relatively insignificant.

Comparisons without ensemble strategy. To better showcase the performance gains from MAFT,
we removed the ensemble operation in [6; 33; 27] and presented the results in Tab. 2. It can be
seen that the performance of different methods is significantly improved after applying MAFT. In
particular, the state-of-the-art method FreeSeg achieves hIoU improvements of 19.1%, 7.0%, and
8.3% on COCO, VOC2012 and ADE20K datasets.

Comparisons in the open-vocabulary setting. We further evaluated the transferability of MAFT in
the open-vocabulary setting [20; 33], using FreeSeg as a baseline for comparison. Results are shown
in Tab. 3. Compared with OVSeg [20] and OpenSeg [9], FreeSeg achieves suboptimal performance.
However, the proposed MAFT enhances the performance of A-847, A-150, PC-459, PC-59 and
PAS-20 by 3.0%,11.2%, 6.4%, 19.1% and 4.4%, and outperforms OpenSeg on all five datasets.

5.3 Ablation Study

We conduct ablation studies on various choices of designs of our MAFT to show their contribution to
the final results in Tab. 4. FreeSeg is used as the baseline model and ensemble operation is removed.

Component-wise ablations. To understand the effect of each component in the MAFT, including
the IP-CLIP Encoder and the fine-tuning strategy (Lma, Ldis), we start with standard FreeSeg and
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Table 4: Ablations on COCO dataset. GFLOPs in (a) is used to measure the computation of CLIP
Image Encoder. The best results are highlighted with red, and the default settings are highlighted
with gray background.

(a) Ablation on components of MAFT. ft denotes the mask-aware fine-tining

mIoUs mIoUu hIoU GFLOPs
FreeSeg 22.3 29.3 25.3 1127.0

+ IP-CLIP 29.4 +7.1 36.2 +6.9 32.4 +7.1 53.4
+ ft (Lma) 39.9 +17.6 47.1 +17.8 43.1 +17.8 53.4

+ ft (Lma + Ldis) 40.1+17.8 49.7+20.4 44.4+19.0 53.4

(b) Ablation on mask-aware loss Lma. Ldis is removed.

mIoUs mIoUu hIoU
L1 38.6 +16.3 45.8 +16.5 41.8 +16.5

L2 40.0 +17.7 45.8 +16.5 42.7 +17.4

SmoothL1 39.9 +17.6 47.1 +17.8 43.1 +17.8

KL 40.9 +18.6 41.8 +12.5 41.3 +16.0

(c) Ablation of the training iterations

mIoUs mIoUu

500 iters 37.7 47.0
1k iters 40.0 49.7
2k iters 41.1 47.6
3k iters 41.4 46.5
4k iters 41.5 46.1
5k iters 42.0 45.7

(d) Ablation of the frozen units in CLIP

mIoUs mIoUu hIoU
None 40.6 44.7 42.5
+ cls. 40.7 44.7 42.7
+ pos. 40.6 44.9 42.8
+ mlp 40.3 48.7 44.1
+ conv. 40.0 49.7 44.3
+ proj. 40.2 49.1 44.2

(e) Ablation of the start mask attention layer L

mIoUs mIoUu hIoU
0 39.3 46.4 42.6
2 39.2 46.4 42.5
4 39.5 46.6 42.6
6 40.0 47.8 43.6
8 40.0 49.7 44.3
10 39.9 45.7 42.6

progressively add each design. (Tab. 4a). FreeSeg uses frozen CLIP and yields inferior performance
due to CLIP’s mask-unaware property (1st row). Then, IP-CLIP Encoder obtains rich context
information and greatly reduces the omputational costs, resulting in an improvement of 7.1% on
seen classes and 6.9% on unseen classes. However, mask-aware is not accomplished at this point.
Using only Lma for fine-tuning CLIP produces decent performance (the 3rd result). The introduction
of Ldis (the 4th result) maintains transferability while learning mask-aware representations, which
further enhances the performance on unseen classes by 2.6%.

Effect of different Lma. Mask-aware Loss Lma is an essential component of MAFT. In Tab. 4b,
we investigate how different loss functions (L1, L2, SmoothL1 and KL Loss) impact performance,
here we remove Ldis for analysis. Results show SmoothL1 Loss boosts performance on Cunseen to
47.1% (+17.8%), KL Loss provides +12.5% improvement on Cseen, but only +11.8% on Cunseen,
manifesting KL Loss compromises the model of transferability comparing with SmoothL1 Loss.

Training iterations. Tab. 4c examines the impact of training iterations. Increasing the number of
iterations leads to gradual improvement of IoUs, but it also results in significant overfitting on unseen
classes. Therefore, we choose to fine-tune 1k iterations to maximize the zero-shot ability.

Frozen units in CLIP. We also explore the impact of fine-tuning units within IP-CLIP Encoder.
As illustrated in Fig. 2, IP-CLIP Encoder comprises convolution layers (dubbed as conv.), class
embedding (cls.), Transformer layers, final projection (proj.) and positional embedding (pos., not
shown in Fig. 2). We start with fine-tuning the entire IP-CLIP Encoder, and then freezing each unit
sequentially, as specified in Tab. 4d. We only freeze MLP in the Transformer layers (dubbed as
mlp). Compared with fine-tuning the entire IP-CLIP Encoder, the performance of mIoUu is improved
by 5.0% when freezing conv., cls., pos. and mlp.

Start mask attention layer. Tab. 4e presents the results of the start mask attention layer (L). We
observe a significant improvement in the performance of unseen classes by +3.4% when the value of
L increases from 0 to 8. This could be attributed to the fact that starting masked Multihead Attention
later enables F i∗

cls to gain more context information. However, the performance significantly drops
when L = 10 (from 49.7% to 45.7%), which may be due to the loss of mask-aware property.

5.4 Extending MAFT with SAM

We explore using the Segment Anything Model [18] (SAM) as the proposal generator. We evaluate
the performance with SAM-H using an original CLIP (dubbed SAM) or a mask-aware fine-tuned
CLIP (dubbed SAM+MAFT). In fact, SAM can be seamlessly integrated into our framework as
the proposal generator. The results are shown in Tab. 5. Experiments are conducted under both
zero-shot setting and open-vocabulary setting.

It can be observed that SAM+MAFT obtains significant improvement over SAM under both
settings. Besides, SAM+MAFT also surpasses FreeSeg +MAFT on all benchmarks. Particularly,
in the zero-shot setting (Pascal-VOC), SAM+MAFT outperforms FreeSeg +MAFT by 6.8% in
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Table 5: Comparison with SAM. We use SAM-H as the proposal generator.

(a) Results in zero-shot segmentation.

Pascal-VOC COCO-Stuff
mIoUs mIoUu hIoU mIoU mIoUs mIoUu hIoU mIoU

SAM 85.1 86.7 85.9 85.5 43.1 43.3 43.2 42.1
SAM + MAFT 91.0 +5.9 88.6 +1.9 89.8 +3.9 90.4 +4.9 43.4 +0.3 51.5 +8.2 47.1 +3.9 44.1 +2.0

(b) Results in open-vocabulary segmentation.

A-847 A-150 PC-459 PC-59 PAS-20
SAM 9.0 21.3 7.8 33.7 87.5
SAM + MAFT 12.7 +3.7 33.0 +11.7 16.2 +8.4 59.0 +25.3 92.7 +5.2

terms of mIoUu. This enhancement can be attributed to the stronger generalization capabilities of
SAM for unseen classes.

5.5 Extending MAFT with more Vision-Language Models
Table 6: Comparison with more Vision-Language Models.
backbone A-847 A-150 PC-459 PC-59 PAS-20

OVSeg [20]
ViT-L

9.0 29.6 12.4 55.7 94.5
FreeSeg [27] 8.5 21.0 7.6 33.8 86.4
FreeSeg + MAFT 12.1 +3.6 32.0 +11.0 15.7 +8.1 58.5 +24.7 92.1 +5.7

FreeSeg [27] Res50 5.3 15.5 5.4 28.2 87.1
FreeSeg + MAFT 8.4 +3.1 27.0 +11.5 9.9 +4.5 50.8 +22.6 89.0 +1.9

In order to demonstrate the efficacy and robustness of MAFT, we conduct experiments using stronger
(CLIP-ViT-L) and ResNet-based (CLIP-Res50) Vision-Language Models. The open-vocabulary
results are shown in Tab. 6, we also include the results of OVSeg with CLIP-ViT-L for comparison.

CLIP-ViT-L. According to Tab. 6, FreeSeg with a standard CLIP-ViT-L model (dubbed FreeSeg) still
can not achieve satisfactory results. However, by integrating our MAFT (dubbed FreeSeg +MAFT),
the segmentation results are remarkably enhanced, thus establishing new state-of-the-art benchmarks.

CLIP-Res50. Our MAFT can easily adapted into ResNet-based models. Specifically, we modified
the AttentionPool2d unit within CLIP-R50 Image Encoder. The mask proposals are introduced as
attention bias (B) in Multihead Attention, with Fcls being repeated N times. Notably in CLIP-R50,
Fcls is obtained via GlobalAveragePooling performing on Ffeat. The results are presented in Tab. 6.
The performance on all 5 datasets is improved by a large margin. FreeSeg +MAFT with CLIP-R50
achieves competitive results with some CLIP-ViT-B-based methods according to Tab. 3.

5.6 Qualitative Study

Visualizations of typical proposals. Fig. 3 shows frozen CLIP and mask-aware CLIP classifications
of typical proposals, including high-quality proposals of foreground (p1, p4), high-quality proposals
of background (p3, p6), a proposal with background noise (p2), and a proposal containing part of the
foreground (p5). The proposal regions are highlighted in green or yellow.
Several observations can be obtained: (1) The frozen CLIP provides good predictions for p1 and
p4. (2) The frozen CLIP assigns p2 as cat and p5 as horse, with scores even higher than p1, p4,
indicating the frozen CLIP cannot distinguish proposals containing information on the same objects.
(3) The frozen CLIP fails to give correct predictions for p3 and p6, which may be due to the lack of
context information. (4) Our mask-aware CLIP gives good predictions for high-quality proposals (p1,
p3, p4, p6) and provides suitable predictions for p2 and p5.

Qualitative analysis. We show some visual examples in Fig. 4. Some segmentation results of
FreeSeg contain background noise (e.g. the 1st & 2nd row, 3rd column) or contain only part of the
objects (3rd row, 3rd column). In ADE20K-847 dataset, too many classes may lead to the anticipated
results (last row, 3rd column) with the frozen CLIP. Using a mask-aware CLIP to learn mask-aware
representations can significantly improve these segmentation results, as evident from the last column.

More visual samples are shown in the Appendix.
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Figure 3: Visualizations of typical proposals & top 5 Ac by frozen CLIP and mask-aware CLIP.

VOC2012

COCO-Stuff

ADE20K-150

ADE20K-847

Image GT FreeSeg FreeSeg + MAFT

pizza furniture

building tree sky
tower house hill
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building antenna sky
street mount tramcar

skyscraper brick

pottedplant

cardboard

bird

Figure 4: Qualitative results. The models are trained with COCO-Stuff and directly tested on
VOC2012, COCO, and ADE20K.

6 Conclusion

In this paper, we rethink the "frozen CLIP" paradigm in zero-shot segmentation and propose Mask-
Aware Fine-Tune (MAFT) for fine-tuning CLIP. Firstly, IP-CLIP Encoder is proposed to handle
images with any number of mask proposals. Then, Lma and Ldis are designed for fine-tuning CLIP
to be mask-aware without sacrificing its transferability. MAFT is plug-and-play and can be applied to
any "frozen CLIP" approach. Extensive experiments well demonstrate the performance of various
zero-shot segmentation methods is improved by plugging MAFT.

Limitations. Our MAFT introduces a CLIP fine-tining framework to the research of zero-shot
segmentation. However, the classification ability for novel classes is still limited by pre-trained
vision-language models. How to further narrow this limitation is our future research focus.

Acknowledgment. This work was supported in part by the National Key R & D Program of China
(No.2021ZD0112100).
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Appendix

Here we introduce technical details of the "frozen CLIP" approaches in Sec. A. The dataset settings
are shown in Sec. B. Moreover, we provide additional experiments in Sec. C, and additional
qualitative results in Sec. D.

A Technical details of the "frozen CLIP" approaches
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Figure 5: Overview of the "decoupling-paradigm".

Fig. 5 presents an overview of the "frozen CLIP" approach. During training, a standard MaskFormer
or Mask2Former is used as Proposal Generator to generate N mask proposals (M , M ∈ RN×h×w)
and classification score (Ap, Ap ∈ RN×|Cseen|). During testing, the input image is merged with M

to obtain N sub-images (Isub, Isub ∈ RN×ĥ×ŵ). These sub-images are fed into a frozen CLIP to get
the CLIP classification score (Ac, Ac ∈ RN×|Cseen∪Cunseen|). Here Cseen and Cunseen represent a
set of seen classes and unseen classes. An ensemble operation is used to ensemble Ap and Ac for the
final prediction. The merge and the ensemble operations will be introduced in detail in following:

Merge operation. To generate appropriate sub-images based on mask proposals, [6] presents three
different merge operations: 1) mask, 2) crop, 3) mask & crop. Through experimentation, they
demonstrate that the mask & crop option yields the best results. Fig. 6 provides an example of these
operations. It’s worth noting that all sub-images are resized to ĥ× ŵ, here ĥ and ŵ typically take a
value of 224, which is the default input size of CLIP Image Encoder. Although acceptable results can
be obtained with the merge operation, it involves repeatedly feeding images into CLIP, which leads to
significant computational redundancy.

Ensemble operation. Comparatively, Ap provides higher confidence classification scores for the seen
classes, and Ac provides higher confidence classification scores for the unseen classes. Therefore, an
ensemble of Ap and Ac achieves better results. The ensemble operation can be formulated as:

Â(c) =

{
Ap(c)λ ·Ac(c)(1−λ) , c ∈ Cseen

Ac(c)λ , c ∈ Cunseen
(9)

here a geometry mean of Ap and Ac is calculated (dubbed as Â), and the contribution of both
classification scores is balanced by λ. As per literature [6; 33; 27], λ usually takes values from
0.6 to 0.8. Therefore, the final output (O, O ∈ R|Cseen∪Cunseen|×h×w) can be obtained by matrix
multiplication: O = ÂT ·M . With the ensemble operation, the classification results of seen classes
primarily depend on Ap, whereas the classification results of unseen classes mainly rely on Ac.

B Dataset

We follow [1; 11; 26; 6; 33] to conduct experiments on three benchmarks of the popular zero-shot
setting, Pascal-VOC, COCO-Stuff and ADE20K, to evaluate the performance of MAFT. Additionally,
we evaluate MAFT on the open-vocabulary setting [20; 33], i.e., training on COCO-Stuff and testing
on ADE20K, Pascal-Context, and Pascal-VOC.
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Figure 6: Comparison among three merge operations.

• COCO-Stuff: COCO-Stuff is a large-scale semantic segmentation dataset that includes 171
classes. For the zero-shot setting [6; 33; 27], it is divided into 156 seen classes for training
and 15 unseen classes for testing. For the open-vocabulary setting, all 171 classes are used
for training.

• Pascal-VOC: There are 10582 images for training and 1,449 images for testing. For the
zero-shot setting, Pascal-VOC is split into 15 seen classes and 5 unseen classes. For the
open-vocabulary setting, all 20 classes are used for evaluation (dubbed as PAS-20).

• ADE20K: ADE20K contains 25k images for training and 2k images for validation. For the
zero-shot setting, we follow [6] to choose 847 classes present in both training and validation
sets, and split them into 572 seen and 275 unseen classes. For the open-vocabulary setting,
we use two settings of ADE20K: 150 classes (dubbed as A-150) and 847 classes (dubbed as
A-847).

• Pascal-Context is an extensive dataset of Pascal-VOC 2010. Two versions are used for
open-vocabulary setting, one with 59 frequently used classes (dubbed as PC-59) and another
with the whole 459 classes (dubbed as PC-459).

C Additional experiments

C.1 Analysis of the Upper Bound of MAFT

Table 7: Upper Bound analysis.

COCO-Stuff
mIoUs mIoUu hIoU mIoU

MAFT 43.3 50.4 46.5 43.9
Upper Bound 77.2 82.1 79.6 77.6

Considering the mask-aware loss may be limited if the quality of proposals is too bad, we conducted
an evaluation of the Upper Bound while using Mask2Former as the proposal generator. The results
are presented in Tab. 7. Specifically, we replace Ac by SIoU (IoU score between binary ground-truth
masks and proposals) during inference, and multiply proposals with SIoU to obtain the segmentation
result. This result can be regarded as the Upper Bound for the given proposals. Notably, the Upper
Bound achieves satisfactory results (77.6 % mIoU), indicating Mask2Former is capable of providing
high-quality proposals in most cases. Additionally, there is still a large gap between the current
performance and the Upper Bound (≈ 30% mIoU), which suggests that our MAFT has enormous
potential for improvement, whereas we have achieved state-of-the-art performance.

C.2 Analysis of the Self-Training (ST) strategy

Several previous approaches [25; 33; 41] adopt the Self-Training (ST) strategy to enhance perfor-
mance. we conduct experiments to investigate the application of ST into our method. Specifically,
we use the existing FreeSeg +MAFT model to generate pseudo-labels for unseen classes on the
training data, and then re-train FreeSeg with the pseudo-labels. Results are shown in Tab. 8.
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Table 8: Analysis of the self-training (ST) strategy.

Pascal-VOC COCO-Stuff
mIoUs mIoUu hIoU mIoU mIoUs mIoUu hIoU mIoU

MAFT 91.4 81.8 86.3 89.0 43.3 50.4 46.5 43.9
MAFT + ST 90.0 −1.4 86.3 +4.5 88.1 +1.8 89.1 +0.1 44.1 +0.8 55.2 +4.8 49.0 +2.5 45.0 +1.1

The improvement of ST on the unseen category is significant (Pascal: 81.8 % → 86.3%, COCO: 50.4%
→ 55.2%) in terms of mIoUu. However, it’s essential to highlight the applicability of ST is limited
by a crucial requirement: unseen classes need to be obtained during training. This requirement
poses significant limitations on generalizing ST to various scenarios, e.g., open-vocabulary settings,
since images of unseen classes may not be obtained during training.

D Visualization

We provide more qualitative results, including typical proposals and top-5 Ac (Fig. 7), as well as
examples of models trained on COCO-Stuff and text on A-847 (Fig. 8), A-150 (Fig. 9), PC-459 (Fig.
10), PC-59 (Fig. 11), Pascal-VOC (Fig. 12), and COCO-Stuff(Fig. 13).

Typical Proposals and Top-5 Ac. Fig. 7 shows frozen CLIP and mask-aware CLIP classifications
of typical proposals. In the 2nd column, we provide high-quality proposals of thing classes. Both
the frozen CLIP and mask-aware CLIP provide high classification scores for the correct classes. In
the 3rd column, we provide proposals that only contain part of the objects (row 1-3), and proposals
containing more than 1 class (row 4). The mask-aware CLIP provides more proper results compared
to the frozen CLIP. In the 4th column, we provide some high-quality background proposals. The
frozen CLIP typically gives incorrect predictions, but the mask-aware CLIP assigns high scores for
the correct classes.

Qualitative Analysis. Fig. 8,9,10,11,12,13 show segmentation results on Pascal-VOC, COCO-
Stuff, ADE20K. In Pascal-VOC dataset (Fig. 12), which only contains 20 thing classes, the
FreeSeg +MAFT model tends to assign background regions to the similar thing classes, e.g., "train"
in row 1, "pottedplant" in row3-4. "boat" in row 8. In A-847, A-150, PC-459, PC-59 and COCO-Stuff
datasets, both seen classes and unseen classes exist in the input images, the FreeSeg +MAFT model
generates better segmentation results compared to FreeSeg.
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Figure 7: Visualizations of typical proposals & top 5 Ac by frozen CLIP and mask-aware CLIP. The
correct classes are highlighted in red.

17



Image GT FreeSeg FreeSeg+MAFT

Figure 8: Qualitative results on A-847, using 847 class names in ADE20K to generate text embed-
dings.
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Image GT FreeSeg FreeSeg+MAFT

Figure 9: Qualitative results on A-150, using 150 class names in ADE20K to generate text embed-
dings.
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Image GT FreeSeg FreeSeg+MAFT

Figure 10: Qualitative results on PC-459, using 459 class names in Pascal-Context to generate text
embeddings.
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Image GT FreeSeg FreeSeg+MAFT

Figure 11: Qualitative results on PC-59, using 59 class names in Pascal-Context to generate text
embeddings.
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Image GT FreeSeg FreeSeg+MAFT

Figure 12: Qualitative results on Pascal-VOC, using 20 class names in Pascal-VOC to generate text
embeddings.
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Image GT FreeSeg FreeSeg+MAFT

Figure 13: Qualitative results on COCO, using 171 class names in COCO-Stuff to generate text
embeddings.
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