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Abstract

A text encoder within Vision-Language Models001
(VLMs) like CLIP plays a crucial role in trans-002
lating textual input into an embedding space003
shared with images, thereby facilitating the004
interpretative analysis of vision tasks through005
natural language. Despite the varying signif-006
icance of different textual elements within a007
sentence depending on the context, efforts to008
account for variation of importance in con-009
structing text embeddings have been lacking.010
We propose a framework of Semantic Token011
Reweighting to build Interpretable text embed-012
dings (SToRI), which incorporates controlla-013
bility as well. SToRI refines the text encod-014
ing process in CLIP by differentially weighting015
semantic elements based on contextual impor-016
tance, enabling finer control over emphasis re-017
sponsive to data-driven insights and user pref-018
erences. The efficacy of SToRI is demonstrated019
through comprehensive experiments on few-020
shot image classification and image retrieval021
tailored to user preferences.022

1 Introduction023

As artificial intelligence (AI) systems based on024

deep learning models grow in application in our025

daily lives, their black box nature raises issues of026

transparency, resulting in a demand for enhanced027

interpretability to promote trust in AI systems (Mur-028

doch et al., 2019; Li et al., 2022). Consequently,029

research efforts have been focused on making the030

systems’ decision-making processes more human-031

understandable through various explanatory meth-032

ods (Simonyan et al., 2014; Kim et al., 2018; Goyal033

et al., 2019; Wu and Mooney, 2019). Among the034

various forms of explanation, natural language has035

emerged as an excellent medium due to its human-036

friendly nature and adeptness in managing high-037

level abstractions (Kayser et al., 2021; Sammani038

et al., 2022). These advantages have led to a grow-039

ing interest in leveraging natural language for inter-040

preting vision tasks (Hendricks et al., 2021; Yang 041

et al., 2023). 042

To facilitate the use of natural language in vi- 043

sion tasks, Vision-Language Models (VLMs) like 044

CLIP (Radford et al., 2021) are commonly de- 045

ployed to bridge visual information and its linguis- 046

tic interpretation (Yuksekgonul et al., 2023; Yang 047

et al., 2023; Oikarinen et al., 2023). CLIP consists 048

of two encoders that translate images and texts 049

into embeddings that coexist in a shared space, en- 050

abling vision tasks to be conducted and understood 051

through natural language. 052

Natural language sentences often carry multiple 053

implications, with varying levels of significance 054

that can change based on the desired outcome, even 055

if the text remains unchanged. Selectively empha- 056

sizing certain information relevant to a task can 057

aid in conducting and understanding the task. For 058

instance, when differentiating given images of a 059

‘great grey owl’ from other groups using the de- 060

scription ‘a large owl with big yellow eyes’, em- 061

phasis on ‘eyes’ may better represent the group 062

of images, indicating that ‘eyes’ is significant (see 063

examples of image classification in Figure 1). Sim- 064

ilarly, when searching for images using the query 065

‘a castle surrounded by trees,’ the preference on 066

‘trees’ relative to ‘a castle’ could differ based on 067

user intent, and retrieval reflecting this can yield the 068

desired search results (see examples of retrieved 069

images in Figure 1). While there have been at- 070

tempts to modulate focus in image and text gener- 071

ation (Ge et al., 2023; Zhang et al., 2023, 2024), 072

fine-tuning the importance of specific text elements 073

in CLIP’s text embeddings remains relatively un- 074

explored. This paper endeavors to create text em- 075

beddings that can incorporate a varying controlled 076

importance of each semantic element within a sen- 077

tence, thereby enhancing the representativeness of 078

text embedding for images in interpretable way. 079

To meet our objective, we introduce SToRI 080

(Semantic Token Reweighting for Interpretable text 081
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A tiger shark has dark stripes on its body and a grey back.
An electrical ray has dark brown back.
A great grey owl is a large owl with big yellow eyes.
A red king crab has bard shell and long legs

Figure 1: System diagram of SToRI. SToRI facilitates data-driven control through interpretable weight optimization
in the semantic space, enhancing the classification performance of image data. It also enables user-driven control
over multiple images by allowing fine-grained manipulation of the text prompts. Weights affect text embeddings via
semantic token reweighting (STR).

embeddings). SToRI adjusts the importance of082

each semantic element during text embedding ex-083

traction in CLIP by assigning a weight to each084

element, denoting its significance, which modu-085

lates the self-attention mechanism in text encoding.086

This allows the final text embedding vector to re-087

flect the desired emphasis on specific elements,088

enhancing representativeness for vision tasks with-089

out requiring new modules. Since the emphasis090

remains within an interpretable space, SToRI also091

enables the interpretative analysis of vision tasks092

using natural language.093

Our SToRI framework offers two ways of tailor-094

ing text embeddings: data-driven and user-driven.095

The data-driven approach derives token weights096

from training on dataset, optimizing text embed-097

dings for image classification and revealing in-098

terpretable insights (see the orange path in Fig-099

ure 1). The user-driven approach allows users to100

set weights for each semantic token, customizing101

the text embedding to fit their preferences (see the102

green path in Figure 1). We demonstrate these en-103

hancements through two vision tasks with CLIP:104

few-shot classification and image retrieval.105

To summarize, our main contributions are:106

• We propose a novel framework to differenti-107

ate the importance of textual information dur-108

ing the construction of text embeddings with109

CLIP for vision tasks.110

• Our method can build improved text classifiers111

in few-shot learning tasks while offering new112

interpretability insights.113

• We demonstrate the controllability of our114

method, specifically customization of seman- 115

tic emphasis, and its utility in image retrieval 116

tasks using a new metric. 117

2 Preliminary: Text embeddings in CLIP 118

The text encoder of CLIP (Radford et al., 2021), 119

which utilizes a transformer-based architecture, 120

transforms a given text prompt into a single vector 121

through the following process. Initially, a given 122

text prompt is converted into a sequence of text 123

tokens {xi}Ni=1, where N represents the number 124

of the text tokens. Tokens indicating the start and 125

end, [SOS] and [EOS] tokens, are appended at the 126

beginning and the end of the sequence of tokens, 127

resulting in the extended series {xi}N+1
i=0 , with x0 128

and xN+1 representing the [SOS] and [EOS], re- 129

spectively. Each text token is then converted into 130

an embedded input token, and positional embed- 131

ding is added, resulting in the input embedding for 132

the first transformer block {z0i }
N+1
i=0 . For the l-th 133

block of the encoder, the input tokens can be rep- 134

resented as Z l−1 = [zl−1
0 , ..., zl−1

N+1]. The output 135

tokens from the l-th block is given by: 136

Z l = Blockl(Z l−1), (1) 137

where l ∈ [1, L] with the encoder consisting of 138

L blocks. Each block contains a multi-head self- 139

attention mechanism. First, Z l−1 is projected into 140

the query Q, key K, and value V . Then, the atten- 141

tion process is performed as follows: 142

Attention(Q,K, V ) = AV,

s.t. A = softmax(QKT ).
(2) 143

2



Scaling and masking operations are omitted for144

simplicity. Through the attention mechanism, to-145

kens influence each other, and the values of A rep-146

resent the extent to which they influence one an-147

other (Vaswani et al., 2017). In general, the final148

output text embedding of the [EOS] token encapsu-149

lates the full semantic meaning of the text prompt.150

This embedding is compared with image embed-151

dings to assess the degree of correspondence with152

images once it has been projected into a multi-153

modal embedding space.154

A pre-trained CLIP model is commonly em-155

ployed for image classification, where given an156

image, it computes similarity scores with class157

names, which become logits. To adapt the model158

to a specific dataset, fine-tuning is performed by159

minimizing the cross-entropy loss as follows:160

L = LCE(y, sim(ϕT , ϕI)/τ), (3)161

where ϕT and ϕI represent output text and image162

embeddings from two encoders, respectively, and163

τ is a temperature factor.164

3 Method165

We propose SToRI, a novel framework that encodes166

a given text prompt into a single text embedding167

vector using CLIP by varying the importance of168

different textual elements through data-driven and169

user-driven controls. In Section 3.1, we elabo-170

rate on semantic token reweighting, which involves171

modifying the attention given to individual tokens172

within the text encoding process based on their re-173

spective weights. In Section 3.2, we present two174

methods for determining these weights.175

3.1 Semantic Token Reweighting176

In natural language processing, a given text is177

tokenized prior to encoding, resulting in one or178

more tokens. Consequently, to emphasize or de-179

emphasize a particular semantic element, one must180

focus on the corresponding tokens. Henceforth, our181

discussion will center on the process of reweighting182

in terms of these tokens.183

Given a sequence of text tokens {xi}Ni=1, we184

first define a sequence of weights {wi}Ni=1, where185

wi is the level of significance of token xi. Note186

that wi = 1 indicates a typical weight in common187

situations, where xi is neither emphasized nor de-188

emphasized. Our goal is to modulate the impact189

each token has on the final output embedding of190

the text prompt. As elaborated in Section 2, tokens191

interact with each other through attention mech- 192

anisms. Each token generates its embedding by 193

referencing other tokens, including itself, in pro- 194

portion to the attention scores. Consequently, as 195

the attention score of a specific token increases, 196

its influence on the text embedding becomes more 197

substantial. Therefore, we directly multiply the 198

weights {wi}Ni=1 to amplify original attention val- 199

ues proportionally. From Eq. (2), the weighted 200

attention scores can be reformulated as follows: 201

âm,n =
wn exp (qmkTn )∑
j wj exp (qmkTj )

, (4) 202

where âm,n represents attention value for n-th 203

value token to be attended by m-th query token. 204

qm and kn represent vector elements of Q and K, 205

respectively. Through this process, we can selec- 206

tively enhance the influence of particular tokens 207

during the attention process by simply changing 208

the corresponding weights. 209

The reweighting process is applied to all blocks 210

following a certain block. Experimentally, we con- 211

firm that the effects are similar regardless of start- 212

ing from any intermediate block. Please refer to 213

Appendix C.6 for further details. 214

3.2 Strategies to Control 215

There are two approaches to determine weights for 216

tokens: user-driven and data-driven controls. 217

Data-driven control determines weights by 218

learning from data. This approach is suitable when 219

data is available and we want to obtain text embed- 220

dings that align closely with the data. An illustra- 221

tive task where this can be effectively applied is im- 222

age classification (see the orange path in Figure 1). 223

In image classification, weights are trained using 224

Eq. (3), where ϕT is obtained with âi,j , allowing 225

only {wi}Ni=1 to be updated. Since the weights are 226

trained to build text embeddings that correspond 227

well to image belonging to their corresponding 228

classes, we can interpret which textual informa- 229

tion prominently stands out in the image data with 230

the weights. 231

User-driven control applies to scenarios where 232

the user assigns weights to each token. This method 233

allows user to determine a particular textual in- 234

formation to be emphasized or de-emphasized ac- 235

cording to their intentions, thereby influencing the 236

resulting text embeddings. The green path in Fig- 237

ure 1 presents examples of preference-based im- 238

age retrieval, an application in the user-driven con- 239

trol. Users may initially set a text prompt and then 240
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Gauzy Honeycombed

Banded Cobwebbed Lined

Zigzagged1

0

Figure 2: Text prompts and corresponding weights are provided as examples after training. The intensity of the red
shading reflects the weight assigned, with darker shades indicating higher weights. For visualization, the weights
are normalized to sum up 1. The figures on the right display an example image for each class.

progressively amplify the weight of keywords per-241

ceived as more crucial, assess the resulting arrange-242

ment, and refine their selection accordingly.243

4 Experiments244

We evaluate SToRI on two representative vision245

tasks, few-shot image classification and preference-246

based image retrieval. In few-shot image classi-247

fication, weights are determined via data-driven248

control and provide interpretation on the trained249

classifier. Evaluation on preference-based image250

retrieval demonstrates controllability of SToRI via251

user-driven control.252

4.1 Classification with Data-driven Control253

We train weights that best represent each dataset254

for the image classification task. We first show in-255

terpretation with trained weights and then evaluate256

few-shot classification performance of trained text257

classifier.258

4.1.1 Experimental Setup259

Datasets. We use DTD (Cimpoi et al., 2014)260

and CUB (Wah et al., 2011) datasets for analy-261

sis on interpretation. We use various benchmarks262

for few-shot learning i.e., ImageNet (Deng et al.,263

2009), DTD (Cimpoi et al., 2014), SUN397 (Xiao264

et al., 2010), Flowers102 (Nilsback and Zisser-265

man, 2008), Caltech101 (Fei-Fei et al., 2004), and266

Food101 (Bossard et al., 2014).267

Text Prompts. We use text descriptions for each268

class which are provided by CuPL (Pratt et al.,269

2023). For the ImageNet and SUN397 datasets,270

due to the large number of total prompts, we use 10271

text prompts for each class, selected based on their272

similarity with training set. We average the text273

embeddings from multiple text prompts to build274

one text embedding for each class. We refer the text275

embedding for image classifier as a text classifier.276

Model. The experiments are conducted using 277

CLIP and MetaCLIP ViT-L/14, with reweighting 278

applied from the 7th block onward. 279

Implementation Details. We set the logarithm of 280

the weight as the parameter to be trained in order to 281

constrain the weights to non-negative values. Each 282

text prompt has its own individual set of weights. 283

Training Details. Following TaskRes (Yu et al., 284

2023), we evaluate our method by training with 285

1/2/4/8/16 examples (shots) per class from the train- 286

ing sets, respectively. We follow the data split out- 287

lined in CoOp (Zhou et al., 2022b), conducting 288

tests on the official test set of each dataset and the 289

validation set of the ImageNet dataset. 1/2/4-shot 290

training is done with 100 epoch and the other is 291

done with 200 epoch for all datasets. For further 292

details, please refer to Appendix A.1. 293

4.1.2 Interpretability 294

Interpretation with Trained Weights. After train- 295

ing for an image classification task, we analyze 296

the trained weights. Figure 2 presents examples of 297

text prompts and the corresponding trained weights 298

for each token within the DTD dataset. We have 299

crafted the text prompts. We can discern that 300

banded is associated with an emphasis on words 301

like multiple and stripes. For gauzy, terms such 302

as translucent and light are emphasized, and 303

cobwebbed are notably associated with the word 304

spider web. As illustrated by the images corre- 305

sponding to each category, high weight values are 306

assigned to important semantic tokens. This shows 307

that SToRI can learn text embeddings that effec- 308

tively represent the data in a data-driven control 309

context, and the trained weights can offer novel 310

insights for interpretation. 311

Does Optimization Occur in Interpretable 312

Space? To ensure interpretability of text embed- 313

dings through data-driven control optimization, we 314
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Blue headed Vireo   vs  Warbling Vireo

White eyed Vireo

Warbling Vireo

Blue headed Vireo    vs  White eyed Vireo 1

0

Blue headed Vireo

Figure 3: Text prompts and their corresponding weights are presented after training with the CUB dataset. The
more intense the shade of red, the greater the weight assigned. In each scenario, the text classifier is trained to
discriminate two classes. The weights for the same text prompts vary depending on the class to be distinguished.

Text Caltech101 SUN397

CuPL 97.42±0.23 79.54±0.12
CuPL+Nonsensical tokens 97.30±0.15 79.11±0.10

Table 1: Accuracy (%) on 16-shot image classification.

conduct two experiments: an analysis on trained315

classifiers with different class compositions and an316

assessment of the effect of nonsensical text tokens.317

The role of classifier is to distinguish one class318

from others. Thus, even for classifiers within the319

same class, the critical distinguishing features can320

vary depending on the alternative categories be-321

ing compared. Figure 3 shows two text classifiers322

trained on the CUB dataset for two distinct pairs:323

Blue headed Vireo versus Warbling Vireo, and Blue324

headed Vireo versus White eyed Vireo. The text325

prompts for each class are generated with the at-326

tribute labels from the dataset. When contrast-327

ing Blue headed Vireo with the Warbling Vireo,328

striped is attributed a high weight. However,329

when distinguished from the White eyed Vireo, the330

weight on striped becomes low and grey is at-331

tributed a high weight. Note that White eyed Vireo332

also has striped wings. These terms highlight the333

key distinctions between each pair of classes.334

Table 1 reports the 16-shot classification per-335

formance when nonsensical text tokens are added.336

We randomly sample five tokens from the set of337

three rare tokens (Ruiz et al., 2023), namely ‘sks’,338

‘pll’, and ‘ucd’, and add them to the end of all339

the original texts from CuPL. The inclusion of rare340

tokens does not contribute meaningful information341

to build a text classifier; it simply extends the num-342

ber of tokens and trainable parameters. As a result,343

the performance when rare tokens are added did344

not surpass that without their addition. This demon-345

strates that adoption of the tokens without semantic346

meaning does not contribute to performance im- 347

provement. These findings support that data-driven 348

control, achieved through attention modulation for 349

tokens with semantic meaning, facilitates the cre- 350

ation of text embeddings that effectively represent 351

the data, thereby ensuring the interpretability of 352

text embeddings. 353

4.1.3 Few-shot Classification Performance 354

To evaluate the capability of the text classifier ob- 355

tained through SToRI to perform few-shot image 356

classification, we conduct a comparative analysis 357

of the prediction performance between SToRI and 358

TaskRes (Yu et al., 2023). TaskRes is a recent 359

method for few-shot image classification, which 360

trains class-specific residual embedding xc added 361

to initial text embedding tc to create new classifier 362

tc + αxc for each class c. Here, tc denotes the text 363

embedding derived from a given text prompt for 364

class c, and α is a hyperparameter for scaling. xc 365

is trained with cross-entropy loss (refer to Eq. (3)). 366

Such residual embeddings exist in uninterpretable 367

space, rendering the final classifier also uninter- 368

pretable. In contrast, SToRI trains only weights, in- 369

dicating the degree to which each semantic element 370

within a given sentence should be emphasized, thus 371

maintaining interpretability. 372

Ensuring interpretability, SToRI achieves per- 373

formance comparable to TaskRes, as presented in 374

Table 2. “Base” refers to custom text prompts in- 375

cluding class names, which are generally used in 376

few-shot image classification tasks with CLIP (Yu 377

et al., 2023). We use both base and CuPL text 378

prompts, with weights trained exclusively on CuPL. 379

In the 1/2-shot setting, SToRI generally outper- 380

forms TaskRes across most datasets. In the 4/8/16- 381

shot setting, it exhibits only a marginal difference, 382

achieving nearly similar performance. This indi- 383

cates that SToRI provides substantial flexibility to 384
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Method Text ImageNet DTD Flowers102 SUN397 Caltech101 Food101 AVG

1shot
TaskRes Base 75.95±0.03 55.40±0.27 81.16±0.44 68.10±0.16 94.28±0.11 90.30±0.10 77.53
TaskRes Base+CuPL 74.69±0.04 65.66±0.82 90.07±0.79 73.52±0.49 95.89±0.57 90.35±0.36 81.70
SToRI (Ours) Base+CuPL 76.68±0.15 65.82±0.98 89.05±0.58 72.88±0.20 96.27±0.67 91.34±0.12 82.01

2shot
TaskRes Base 76.03±0.00 55.52±0.48 81.50±0.62 69.53±0.14 94.54±0.05 90.49±0.05 77.93
TaskRes Base+CuPL 75.55±0.04 66.45±1.57 92.38±0.69 75.69±0.29 96.96±0.27 90.64±0.38 82.95
SToRI (Ours) Base+CuPL 77.36±0.23 66.37±1.01 91.56±0.60 75.75±0.04 97.15±0.13 91.49±0.24 83.28

4shot
TaskRes Base 76.16±0.02 55.85±0.12 81.65±0.28 71.15±0.09 94.58±0.09 90.44±0.05 78.31
TaskRes Base+CuPL 76.42±0.03 70.76±1.12 93.22±0.37 77.20±0.08 97.40±0.21 91.45±0.15 84.41
SToRI (Ours) Base+CuPL 77.90±0.05 69.03±1.48 92.46±0.09 76.89±0.02 97.39±0.08 91.68±0.07 84.22

8shot
TaskRes Base 76.87±0.05 58.14±0.07 86.82±0.19 74.52±0.07 96.17±0.08 91.12±0.07 80.60
TaskRes Base+CuPL 77.97±0.02 73.42±0.86 98.17±0.25 77.54±0.16 97.00±0.28 91.27±0.11 85.89
SToRI (Ours) Base+CuPL 78.38±0.13 72.03±0.60 97.51±0.43 78.34±0.13 96.98±0.29 90.50±0.05 85.62

16shot
TaskRes Base 77.34±0.03 61.47±0.16 90.85±0.21 76.01±0.24 96.75±0.07 91.30±0.10 82.29
TaskRes Base+CuPL 79.18±0.10 77.05±0.65 99.07±0.11 78.98±0.10 97.65±0.23 91.49±0.08 87.24
SToRI (Ours) Base+CuPL 79.03±0.13 74.94±0.10 98.55±0.23 79.61±0.11 97.43±0.20 91.18±0.10 86.79

Table 2: Accuracy (%) on few-shot classification with CLIP ViT-L/14. The results include mean values with
standard deviation across three runs. The results of TaskRes are reproduced. The best performance is indicated in
bold, while the second-best performance is underlined.

text embeddings, enabling it to be an enhanced385

text classifier that effectively represents image data.386

Please refer to Appendix C.2 for the MetaCLIP387

results, which align closely with those from CLIP.388

4.2 Retrieval with User-driven Control389

To assess the effectiveness of SToRI in emphasiz-390

ing or de-emphasizing specific information based391

on applied weights, we compare the ordering of392

retrieved images using text embeddings.393

4.2.1 Experimental Setup394

Dataset. We use CelebA (Liu et al., 2015) and395

CUB (Wah et al., 2011) datasets. The CelebA396

dataset contains over 200K face images, each an-397

notated with 40 attributes. The CUB dataset con-398

tains over 11K bird images, which are annotated399

with 312 attributes. Three attributes are chosen to400

create eight categories based on their presence or401

absence. For the CelebA dataset, each category402

comprises 100 randomly selected images, resulting403

in a total of 800 images. For the CUB dataset, all404

images are used. For more details, please refer to405

Appendix A.2.406

Image Retrieval with Preference. We construct407

a text prompt containing the selected attributes.408

For instance, the text prompt becomes ‘a photo409

of a woman with blonde hair, wearing410

eyeglasses’ for the attributes female, blonde hair,411

and eyeglasses. Using the text prompt and attribute412

weights, we obtain a corresponding text embedding413

through SToRI, followed by sorting the images in414

descending order of similarity between their image415

embeddings and the text embedding. 416

Model. Most experiments are conducted using 417

CLIP ViT-L/14 (Radford et al., 2021), unless oth- 418

erwise specified. Experiments are also conducted 419

using various VLMs, including OpenCLIP (Cherti 420

et al., 2023) and MetaCLIP (Xu et al., 2023). 421

Reweighting is applied from the 7th block. 422

4.2.2 Metric for Preference Retrieval 423

Our primary focus is on observing how adjusting 424

weights for specific semantic elements affects the 425

image retrieval order. To facilitate this comparison, 426

we report the average precision score (AP) and pre- 427

cision at rank k (Pk) for images with the attributes 428

influenced by the adjusted weights. For instance, 429

when we modify the weight on ‘eyeglasses’, we 430

consider images with eyeglasses as positive sam- 431

ples and calculate AP and Pk. 432

Additionally, we introduce a novel metric to 433

quantify priority in preference retrieval. We gener- 434

ate a line plot illustrating the proportion of images 435

retrieved for each attribute combination up to the n- 436

th retrieved image (see the second row in Figure 4), 437

and calculate the Area Under the Curve (AUC) for 438

each plotted curve. A higher AUC value suggests 439

a faster retrieval of associated visual attribute set, 440

indicating a higher priority in the retrieval process. 441

4.2.3 Results 442

Initially, we select three attributes, female, blonde 443

hair, and eyeglasses, and observe the ordering of 444

image retrieval as shown Figure 4. With the plain 445

text embedding, the initial bin predominantly con- 446
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with blonde hair: 1.0
wearing eyeglasses: 1.0

with blonde hair: 2.0
wearing eyeglasses: 0.2

Figure 4: Results of preference retrieval using the text
prompt ‘a photo of a woman with blonde hair,
wearing eyeglasses’. The first row shows density
plots with the retrieval order, and the second row visual-
izes the ratio of retrieved samples within each category.
The left column shows results from a plain text prompt,
whereas the right column depicts the results when the
weights are adjusted. Best viewed in color.

tains images featuring all selected attributes, fol-447

lowed by a prevalence of images from the ‘female,448

no blonde hair, eyeglasses’ category. When the449

weight on ‘with blonde hair’ increases and450

on ‘wearing eyeglasses’ decreases, images be-451

longing to ‘female, blonde hair, no eyeglasses’ are452

retrieved more prominently. This suggests that the453

‘blonde hair’ gains more representation in the text454

embedding through reweighting. The groups with455

two or more mismatched attributes still rank lower,456

indicating that our method preserves the meanings457

of the original text while appropriately reflecting458

the intention of emphasis and de-emphasis.459

We conduct quantitative validation across vari-460

ous text prompts. Table 3 presents AP and P400461

scores while controlling weights on attributes. We462

generate image pools and text prompts from three463

selected attributes. The reported scores are based464

on adjusting the weight for one specific attribute,465

considering the images containing that attribute466

as positive samples. Various combinations of at-467

tributes, totaling 20 text prompts for the CelebA468

dataset and 58 text prompts for the CUB dataset,469

are used to obtain scores, and their averages and470

standard deviations are reported. Further details are471

in Appendix A.2. The results show that modifying472

CelebA CUB
AP P400 AP

Plain (w = 1.0) 0.752±0.089 0.679±0.084 0.154±0.070

Emphasized 0.773±0.084 0.697±0.068 0.183±0.079
(w = 1.5) ∆0.021±0.011 ∆0.017±0.009 ∆0.029±0.018

De-emphasized 0.709±0.096 0.648±0.072 0.116±0.057
(w = 0.5) ∆-0.043±0.021 ∆-0.031±0.031 ∆-0.038±0.021

Table 3: Retrieval performance on attributes of the
CelebA and CUB datasets with CLIP ViT-L/14. The
results show mean values with standard deviation across
multiple controlled attributes.

the weight of tokens corresponding to a specific 473

attribute in the text prompt results in faster retrieval 474

of images with that attribute (both scores become 475

higher) when the weight increases and slower re- 476

trieval when decreases (both scores become lower). 477

This shows that adjusting the weight influences the 478

creation of text embeddings, effectively highlight- 479

ing or downplaying the corresponding attribute. 480

Additional results on more complex scenarios, in- 481

cluding those with MetaCLIP, are in Appendix C.4. 482

Figure 5 demonstrates the effects of weight 483

control on the AUC scores for the retrieval of 484

each category. As the weight assigned to the 485

‘with blonde hair’ increases and the weight 486

for ‘wearing eyeglasses’ decreases, there is a 487

noticeable rise in the AUC scores for the two cate- 488

gories that have blonde hair but no eyeglasses. In 489

contrast, categories characterized by the absence 490

of blonde hair and the presence of eyeglasses see 491

a reduction in their AUC scores. When the weight 492

assigned to ‘with blonde hair’ is set to zero, 493

the differentiation between the ‘female, blonde hair, 494

eyeglasses’ and ’female, no blonde hair, eyeglasses’ 495

categories is effectively eliminated, resulting in re- 496

markably similar AUC scores. The effect of weight 497

control is consistent across different CLIP mod- 498

els, such as CLIP ViT-B/16, CLIP ViT-L/14, Open- 499

CLIP (Cherti et al., 2023), and MetaCLIP (Xu et al., 500

2023). This shows that SToRI enables the emphasis 501

or de-emphasis of specific semantics within a text 502

when constructing text embeddings across various 503

models, showcasing its versatility. 504

5 Related Works 505

VLMs and Interpretability. In recent vision 506

tasks, interpretative analysis in natural language be- 507

comes popular rather than relying solely on visual 508

form. VLMs like CLIP have commonly been em- 509
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a photo of a woman with blonde hair, wearing eyeglasses
1-

CLIP ViT-L/14CLIP ViT-B/16 OpenCLIP ViT-L/14 MetaCLIP ViT-L/14

Figure 5: AUC scores from preference retrieval with varying weights. The text prompt is ‘a photo of a woman
with blonde hair, wearing eyeglasses’. The weights on ‘with blonde hair’ and ‘wearing eyeglasses’
are w and (1− w), respectively, which are adjusted simultaneously in opposite direction. Best viewed in color.

ployed to connect the image and text feature spaces510

for explanations. Kim et al. (2023) utilized CLIP to511

obtain concept activation vector (Kim et al., 2018)512

in vision model. Yuksekgonul et al. (2023) and513

Oikarinen et al. (2023) leveraged CLIP to deter-514

mine whether concepts defined in text are present515

in images. Menon and Vondrick (2023) and Pratt516

et al. (2023) formulated text prompts that explains517

image classes using Large Language Models and518

employed them for zero-shot classification with519

CLIP. While these works simply utilized the shared520

embedding space of CLIP, our approach introduces521

a new dimension of interpretability by allowing522

control over the focus of textual information.523

Few-shot Image Classification. CLIP exhibits524

promising performance in image recognition tasks,525

leading to the development of various few-shot526

learning approaches. CoOp (Zhou et al., 2022b)527

and CoCoOp (Zhou et al., 2022a) are represen-528

tative methods based on prompt tuning. Tip-529

Adapter (Zhang et al., 2022) integrates an extra530

adapter unit following the encoders. TaskRes (Yu531

et al., 2023) involves training task-specific residual532

text embeddings for each category. While these533

approaches incorporate extra trainable parameters534

outside an interpretable framework and thus do535

not guarantee interpretability, our framework en-536

ables the training of classifiers while ensuring in-537

terpretability.538

Enrich Textual Representation. In text-to-image539

generation, several approaches have been devel-540

oped to enrich textual representation. Prompt541

weighting1 is a common technique in Stable Dif-542

fusion (Rombach et al., 2022), which multiplies543

weights to individual output token embeddings544

1https://huggingface.co/docs/diffusers/using-
diffusers/weighted_prompts

prior to supplying them to the image generation 545

model. Prompt-to-Prompt controls cross-attention 546

between noise images and text embeddings (Hertz 547

et al., 2022). Additionally, Ge et al. (2023) pro- 548

posed a richer text editor that allows users to de- 549

fine various input conditions for image generation, 550

such as coloring and footnotes. A similar approach 551

has been explored in text generation. Zhang et al. 552

(2024) introduced a method that enables large lan- 553

guage models to process text with user-defined em- 554

phasis by reducing attention to unspecified parts 555

of the text. Zhang et al. (2023) proposed Prompt 556

Highlighter, which highlights tokens during gen- 557

eration process with Multi-Modal LLMs. While 558

prior works have focused on image and text gener- 559

ation, typically using only user-defined attention, 560

our work innovates by developing enriched textual 561

representations for image recognition and propos- 562

ing an approach for deriving these representations 563

from data. This distinctive approach establishes a 564

new avenue for incorporating linguistic context in 565

visual understanding. 566

6 Conclusion 567

We propose SToRI, a framework that builds inter- 568

pretable text embeddings by reweighting seman- 569

tic tokens in CLIP. This approach innovatively en- 570

hances the explanatory power of natural language 571

in vision tasks. Our control strategies enable tun- 572

ing of text embeddings for classification and re- 573

trieval while maintaining interpretability. SToRI 574

can be easily applied to any model based on at- 575

tention mechanisms and has potential scalability 576

across various vision tasks. The extension to multi- 577

modal tasks using diverse VLMs remains a topic 578

for future work. 579
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7 Limitations580

Our method is focusing on controlling the attention581

of each semantic element within a given natural582

language sentence, rather than generating new tex-583

tual information. Therefore, one of the limitations584

of our method is its dependence on the richness and585

quality of the given texts. For example, when using586

data to train a classifier, if the given text lacks suffi-587

cient rich information, adjusting the attention may588

not sufficiently enlarge the text embedding space.589

This difficulty in expanding the embedding space590

makes it challenging to establish a basis for im-591

proving classification performance and explaining592

data.593

Additionally, we do not consider the inherent594

black box characteristics of CLIP. However, if595

this model has undergone sufficient testing and is596

deemed reliable, the advantage of our method lies597

in additional optimization and control being in a598

reliable and controllable space.599

8 Ethics Statement600

Our goal is to employ contollability when building601

text embeddings. This enables for users to em-602

phasize or deemphasize a certain part of textual603

information and improving text embeddings for vi-604

sion tasks, ensuring interpretability. We believe605

this work can be used to build trustful AI systems606

by providing natural language interpretation.607

If CLIP in use is biased towards the attributes608

targeted for reweighting, it may also affect other609

related attributes. The best approach to address610

this issue is to use CLIP that has been trained to611

reduce bias. However, if a biased CLIP must be612

used, designing text prompts that can help mitigate613

the bias could be a potential strategy to consider.614
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A Experimental Details 819

A.1 Few-shot Image Classification 820

We use Adam optimizer with the cosine learning 821

rate scheduler (Loshchilov and Hutter, 2017) fol- 822

lowing the training scheme of TaskRes (Yu et al., 823

2023). For CLIP, the learning rate is set to 1×10−2 824

for the ImageNet and SUN397 datasets, 0.1 for the 825

Food101 dataset and for 8/16-shot scenarios on the 826

DTD and Flower102 datasets, and 5 × 10−2 for 827

the other datasets. For MetaCLIP, the learning rate 828

is set to 1 × 10−2 for the ImageNet and SUN397 829

datasets, 0.1 for Flower102 dataset, and 5× 10−2 830

for the other datasets. The weight decay is set to 831

0 for both models. When reproducing TaskRes, 832

the learning rate is set to 2 × 10−5 for the Ima- 833

geNet dataset and 2× 10−4 for the other datasets. 834

The weight decay is set to 0.005 and α is set to 835

0.5. The training is conducted with a batch size 836

of 256. All experiments are implemented using 837

PyTorch (Paszke et al., 2017), and we use official 838

code base released by Yu et al. (2023) to reproduce 839

TaskRes. 840

A.2 Image Retrieval 841

CelebA. We initially select 11 attributes with a 842

zero-shot classification performance of AUROC 843

0.75 or higher with CLIP on test set. For zero-shot 844

classification, we create text prompt for each at- 845

tribute and calculate AUROC using the similarity 846

between the test set images and the text prompt. 847

For example, when evaluating the attribute smiling, 848

we use the text prompt ‘a photo of a smiling 849

person’. Among the identified 11 attributes, we 850

create combinations of three and five attributes, 851

each including either female or male. For the com- 852

binations of three attributes, we filter out the com- 853

binations where all eight categories contain fewer 854

than 100 images. We conduct image retrieval with 855

total 20 numbers of text prompts based on the com- 856

binations of attributes, as shown in Table 9. Details 857

on combinations of five attributes can be found in 858

Appendix C.4. 859

CUB. Following the filtering process described 860

by Koh et al. (2020), we initially retain 112 at- 861

tributes. We then select 15 attributes that achieve a 862

zero-shot classification performance with AUROC 863

0.75 or higher using CLIP. Notably, the attribute 864

labels in the CUB dataset are finely detailed and 865

related to various parts of birds, which poses a 866

challenge for CLIP in differentiation. With the 867

chosen attributes, we form combinations of three 868
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attributes that do not share the same color, yield-869

ing 58 combinations. The text prompt we use is870

‘a photo of a bird, which has [text for871

attribute1], has [text for attribute2],872

and has [text for attribute3]’. Table 10873

presents 15 attributes and their corresponding texts.874

We use all the datasets and models solely for875

academic research purposes and do not employ876

them for improper intentions.877

B Metric for Preference Retrieval878

To quantify priority in preference retrieval, we in-879

troduce a novel metric using the area under the880

curve (AUC). First, we obtain the top n images881

with the highest similarity to the text embedding.882

We then calculate the proportion of images from883

each category that fall within rank n and plot these884

proportions as a function of n, as shown in the885

second row of Figure 4. The AUC of these plots886

represents how quickly images from each category887

are retrieved, providing a measure of retrieval effi-888

ciency for each category.889

C Additional Experimental Results890

C.1 Comparison to Prompt Weighting891

We compare SToRI with prompt weighting, a tech-892

nique often used in text-to-image generation via893

Stable Diffusion (Rombach et al., 2022). Prompt894

weighting multiplies weights by the difference in895

output token embeddings when provided with a896

text prompt versus an empty one. Unlike Stable897

Diffusion, which utilizes all output token embed-898

dings, we aim to build a vector form of text em-899

bedding from [EOS] token. Therefore, we modify900

prompt weighting for use at an intermediate layer,901

which we refer to as modified prompt weighting,902

and compare it with SToRI on preference-based903

image retrieval.904

As depicted in Figure 6(a), the modified prompt905

weighting influences the significance of tokens sim-906

ilarity to SToRI. However, the change in AUC is not907

gradual; it remains nearly static when weights fall908

below 0.5 or above 1.5. As shown in Figure 6(b),909

even when the weight for ‘with blonde hair’910

increases significantly, SToRI consistently raises911

the AUC for the category ‘female, blonde hair,912

no eyeglasses’. In contrast, the AUC with mod-913

ified prompt weighting initially increases but sub-914

sequently decreases, indicating augmented weight915

fails to heighten emphasis. This could stem from916

the scaling of intermediate embeddings which,917

Modified Prompt WeightingSToRI

(a) a photo of a woman with blonde hair, wearing eyeglasses
1-

(b) a photo of a woman with blonde hair, wearing eyeglasses

weight on ‘with blonde hair’ weight on ‘with blonde hair’

Figure 6: AUC scores from preference retrieval with
varying weights. The text prompt is ‘a photo of a
woman with blonde hair, wearing eyeglasses’.
(a) The weights on ‘with blonde hair’ and ‘wearing
eyeglasses’ are w and (1 − w), respectively, which
are adjusted simultaneously in opposite direction. (b)
Only the weight on ‘with blonde hair’ is adjusted.
Best viewed in color.

when overextended, surpasses the scale that the 918

text encoder is pre-trained to deal with, lessen- 919

ing the intended effect of emphasis. SToRI, on 920

the other hand, adjusts normalized attention scores 921

within the self-attention mechanism, ensuring that 922

as weight escalates, the relevant tokens consistently 923

obtain attention scores approaching 1, thus preserv- 924

ing the desired impact. 925

C.2 Additional Results for Few-shot 926

Classification 927

Table 8 compares few-shot classification perfor- 928

mances of SToRI and TaskRes (Yu et al., 2023) on 929

MetaCLIP ViT-L/14. Similar to the results on CLIP, 930

the results show that SToRI achieves performance 931

comparable to TaskRes, which uses uninterpretable 932

classifiers. These experiments further support our 933

findings, demonstrating our approach’s effective- 934

ness across models and highlighting its adaptability 935

and scalability. 936

C.3 Additional Examples for Interpretation 937

Figures 7 and 8 present examples of text prompts 938

and the corresponding trained weights for each 939

token within the ImageNet and DTD datasets, re- 940

spectively. Higher weights are assigned to word 941
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AP P400

Plain (w = 1.0) 0.752±0.089 0.679±0.070

Emphasized

Attribute 0.754±0.085 0.681±0.064
with w = 1.5 ∆0.003±0.017 ∆0.002±0.016

Attribute 0.776±0.082 0.698±0.064
with w = 2.0 ∆0.024±0.019 ∆0.019±0.016

Table 4: Retrieval performance on attributes of the
CelebA dataset when two attributes are assigned dif-
ferent weights. The results show mean values with
standard deviation across multiple controlled attributes.

CelebA CUB
AP P400 AP

Plain (w = 1.0) 0.753±0.088 0.681±0.062 0.148±0.055

Emphasized 0.774±0.086 0.699±0.063 0.195±0.074
(w = 1.5) ∆0.021±0.011 ∆0.018±0.009 ∆0.047±0.026

De-emphasized 0.709±0.087 0.647±0.057 0.098±0.035
(w = 0.5) ∆-0.044±0.022 ∆-0.035±0.016 ∆-0.051±0.026

Table 5: Retrieval performance on attributes of the
CelebA and CUB datasets with MetaCLIP ViT-L/14.
The results show mean values with standard deviation
across multiple controlled attributes.

tokens that effectively represent images.942

C.4 Additional Results for Retrieval943

We assess SToRI in the context of preference-based944

retrieval by assigning different weights to multiple945

attributes to explore how varying weight magni-946

tudes affect emphasis. We create combinations of947

three attributes and assign them different weights:948

one attribute is assigned a weight of 2.0, another949

a weight of 1.5, and the remaining one a weight950

of 1.0. We then compare the retrieval performance951

for attributes with weights of 1.5 and 2.0. Table 4952

demonstrates that the retrieval performance of the953

attribute with a weight of 1.5 increases, while the954

attribute with a weight of 2.0 shows an even greater955

increase in retrieval performance. This indicates956

that when semantic tokens are assigned different957

weights, the emphasis effect increases proportion-958

ally with the assigned weights compared to plain959

text. This highlights the significance of the magni-960

tude of weights.961

Table 5 presents the results on MetaCLIP ViT-962

L/14 when adjusting the weight of one attribute963

among three within combinations of three attributes964

(as outlined in Section 4.2). The results demon-965

strate that emphasizing or de-emphasizing an at-966

tribute in MetaCLIP leads to increased or decreased967

AP P80

CLIP

Plain (w = 1.0) 0.684±0.097 0.627±0.062

Emphasized 0.705±0.099 0.643±0.069
(w = 1.5) ∆0.021±0.009 ∆0.015±0.012

De-emphasized 0.643±0.086 0.601±0.054
(w = 0.5) ∆-0.041±0.019 ∆-0.026±0.012

MetaCLIP

Plain (w = 1.0) 0.689±0.074 0.631±0.062

Emphasized 0.713±0.078 0.646±0.062
(w = 1.5) ∆0.023±0.008 ∆0.015±0.011

De-emphasized 0.644±0.064 0.602±0.057
(w = 0.5) ∆-0.045±0.020 ∆-0.029±0.014

Table 6: Retrieval performance on the CelebA dataset
with CLIP and MetaCLIP ViT-L/14 when five attributes
are combined. The results show mean values with stan-
dard deviation across multiple controlled attributes.

Method Plain Text Embeddings SToRI

Relative Run Time 1.00 1.02

Table 7: Relative compuational cost

retrieval performance for images with the speci- 968

fied attribute, showcasing the scalability of SToRI 969

across models. 970

To evaluate SToRI in more complex attribute 971

combinations, we perform retrieval using com- 972

binations of five attributes. Only the following 973

five attributes result in images for all 32 possible 974

categories formed by combinations of the five at- 975

tributes: male or female, smiling, bangs, gray hair, 976

and eyeglasses. We use two text prompts for male 977

and female. We randomly select five images for 978

each category, resulting in a total of 160 images. 979

Table 6 presents the results on CLIP and Meta- 980

CLIP ViT-L/14 when adjusting the weight of one 981

attribute among five. These findings underscore a 982

consistent trend of increasing retrieval scores when 983

attributes are emphasized and decreasing scores 984

when attributes are de-emphasized, across different 985

attribute combinations. 986

C.5 Computational Cost 987

We calculate runtime for applying SToRI compared 988

to plain text embeddings, as reported in Table 7. 989

The experiment is done on RTX A5000 and the 990

reported values are mean values from 28K runs. 991

Since SToRI only multiplies predefined weights 992

when calculating attention scores, the runtime is 993

not significantly different from that of plain text 994

embeddings. 995
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C.6 Position for Reweighting996

Figure 9(a) compares the changes in AUC scores997

when we start reweighting at various positions. The998

reweighting process is applied to all blocks follow-999

ing a specific block. There is not a significant differ-1000

ence when we initiate token reweighting at interme-1001

diate positions. However, when token reweighting1002

is applied to all blocks (from 1st block), a sharp1003

bend is observed at 0.1 when the weight decreases.1004

This is unlike other cases, which show a smooth1005

decrease or increase in all scenarios. It is presumed1006

that this abrupt occurrence is due to tokens in the1007

specified position being completely disregarded1008

when the weight becomes 0, leading to sudden1009

gaps in those areas.1010

Figure 9(b) illustrates that when reweighting is1011

applied only within a single specific intermediate1012

block, the effects of emphasis or de-emphasis are1013

scarcely observed. This suggests that if reweight-1014

ing is confined within a single intermediate block,1015

its effects in the subsequent blocks are counter-1016

acted, indicating that it should be applied in the1017

subsequent blocks to emphasize or de-emphasize1018

semantic tokens.1019

Figure 10 shows the changes in few-shot classi-1020

fication performance when we start reweighting at1021

various positions. The reweighting process is ap-1022

plied to all blocks following a specific block. Like1023

the results in image retrieval, there is not a signifi-1024

cant difference when we initiate token reweighting1025

at intermediate positions.1026

C.7 Studies on Failure Cases1027

There are some cases where non-semantic elements1028

are assigned high weights in differentiating classes,1029

which may appear illogical to a human observer.1030

For example, in Figure 7, ‘.’ is assigned a high1031

weight. This occurrence likely results from the1032

training process, where it’s advantageous to em-1033

phasize not only the semantic meaning but also1034

to differentiate from other classes. Hence, ‘.’ is1035

not emphasized for other classes but is for this spe-1036

cific class. This can also be observed in Figure 3,1037

where in the comparison of Blue headed Vireo vs.1038

Warbling Vireo, ‘bird’ is emphasized only for Blue1039

headed Vireo, and ‘reo’ is more emphasized only1040

for Warbling Vireo.1041

D Demonstration of Image Retrieval1042

Figure 11 shows a practical demo application of1043

SToRI. It enables users to actively adjust image1044

retrieval results by tweaking weights in real time. 1045
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Method Text ImageNet DTD Flowers102 SUN397 Caltech101 Food101 AVG

1shot
TaskRes Base 79.38±0.02 67.91±0.26 83.75±0.16 74.89±0.08 97.21±0.15 90.63±0.04 82.29
TaskRes Base+CuPL 79.59±0.22 72.79±0.54 92.26±0.10 76.16±0.2 97.59±0.19 90.28±0.15 84.78
SToRI (Ours) Base+CuPL 79.44±0.17 72.66±0.73 92.38±0.75 76.05±0.38 97.46±0.23 90.12±0.22 84.68

2shot
TaskRes Standard 79.46±0.01 67.93±0.18 84.03±0.13 75.71±0.13 97.48±0.07 90.83±0.03 82.57
TaskRes Base+CuPL 80.23±0.14 74.27±1.08 94.42±0.08 77.64±0.28 98.20±0.08 90.68±0.22 85.91
SToRI (Ours) Base+CuPL 79.98±0.16 73.76±1.38 95.09±0.45 78.21±0.27 98.04±0.02 90.57±0.18 85.94

4shot
TaskRes Standard 79.58±0.00 68.34±0.22 84.07±0.12 76.66±0.06 97.44±0.06 90.82±0.02 82.82
TaskRes Base+CuPL 80.68±0.04 76.91±1.24 94.94±0.18 78.88±0.11 98.16±0.11 90.85±0.07 86.74
SToRI (Ours) Base+CuPL 80.53±0.09 75.91±0.39 96.28±0.31 79.38±0.14 98.01±0.33 90.73±0.13 86.81

8shot
TaskRes Standard 80.03±0.08 69.7±0.45 90.12±0.07 78.87±0.04 97.84±0.10 91.30±0.03 84.64
TaskRes Base+CuPL 81.30±0.12 78.88±0.10 98.55±0.17 78.87±0.17 98.22±0.07 90.81±0.18 87.77
SToRI (Ours) Base+CuPL 81.01±0.18 78.39±0.27 98.04±0.05 80.24±0.09 98.23±0.10 90.71±0.16 87.77

16shot
TaskRes Standard 80.46±0.01 72.03±0.46 93.72±0.13 79.92±0.13 98.00±0.08 91.47±0.05 85.93
TaskRes Base+CuPL 81.78±0.02 81.28±0.82 99.22±0.12 79.92±0.17 98.47±0.08 91.19±0.11 88.65
SToRI (Ours) Base+CuPL 81.40±0.02 79.89±0.70 98.58±0.06 81.43±0.16 98.47±0.12 91.25±0.04 88.50

Table 8: Accuracy (%) on few-shot classification with MetaCLIP ViT-L/14. The results include mean values with
Standard deviation across three runs. The results of TaskRes are reproduced. The best performance is indicated in
bold, while the second-best performance is underlined.

Selected Attributes Text prompts

Female/Male, Smiling, Bangs a photo of a smiling [woman/man] with bangs
Female/Male, Smiling, Blond Hair a photo of a smiling [woman/man] with blond hair
Female/Male, Smiling, Gray Hair a photo of a smiling [woman/man] with gray hair
Female/Male, Smiling, Wearing Hat a photo of a smiling [woman/man] wearing hat
Female/Male, Smiling, Eyeglasses a photo of a smiling [woman/man] wearing eyeglasses
Female/Male, Bangs, Wearing Hat a photo of a [woman/man] with bangs, wearing hat
Female/Male, Bangs, Eyeglasses a photo of a [woman/man] with bangs, wearing eyeglasses
Female/Male, Blond Hair, Eyeglasses a photo of a [woman/man] with blond hair, wearing eyeglasses
Female/Male, Gray Hair, Eyeglasses a photo of a [woman/man] with gray hair, wearing eyeglasses
Female/Male, Wearing Hat, Eyeglasses a photo of a [woman/man] wearing hat and eyeglasses

Table 9: All combinations of attributes and corresponding text prompts on the CelebA dataset.

Attributes Texts

has_bill_shape::hooked_seabird hooked seabird bill
has_shape::duck-like duck-like shape
has_crown_color::blue blue crown
has_forehead_color::blue blue forehead
has_wing_color::yellow yellow wing
upperparts_color::yellow yellow upperparts
has_underparts_color::yellow yellow underparts
has_back_color::yellow yellow back
has_breast_color::yellow yellow breast
has_throat_color::yellow yellow throat
has_forehead_color::yellow yellow forehead
has_nape_color::yellow yellow nape
has_belly_color::yellow yellow belly
has_primary_color::yellow yellow color
has_crown_color::yellow yellow crown

Table 10: Candidates of attributes and corresponding texts on the CUB dataset.
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1
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Red king crabGreat grey owl

Tiger shark Electrical ray

Figure 7: Text prompts and corresponding weights on the ImageNet dataset are provided as examples after training
with data. For visualization, the weights are normalized to sum up 1. The figures on the right display an example
image for each class.

1

0

PerforatedSwirlyPolka-dotted

Bubbly Dotted Cracked

Figure 8: Text prompts and corresponding weights on the DTD dataset are provided as examples after training with
data. For visualization, the weights are normalized to sum up 1. The figures on the right display an example image
for each class.

From 2nd blockFrom 1st block From 7th block
(a)

At 7th block
(b)

Figure 9: The change of AUC scores for preference retrieval with weight control when diversifying blocks that
semantic token reweighting is applied. (a) The results when reweighting is applied within the subsequent blocks as
well. (b) The result when reweighting is applied within a single block.

Caltech101 DTD Food101

Figure 10: The change of accuracy for few-shot classification when diversifying blocks that semantic token
reweighting is applied. The experiments are run three times, with the mean shown by a line and the standard
deviation indicated by shading.
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(a) Image retrieval result when using 
"Eiffel Tower surrounded by trees" as 
text prompts with OpenClip.

(b) Adjustment in retrieval with 
reduced weight on "trees", eliminating 
images where the Eiffel Tower is small 
despite many trees.

(c) A modified retrieval where the 
weight on "Eiffel Tower" is increased, 
enhancing the prominence of the Eiffel 
Tower even amidst many trees

Figure 11: Demonstration of a real-world, functioning demo application using OpenCLIP alongside SToRI, where
users can dynamically manipulate image retrieval outcomes through targeted weight adjustments. The application
effectively showcases how identical textual prompts can yield substantially different visual results based on user-
specified weight modifications.
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