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ABSTRACT

The inability of deep neural networks to learn continually while retaining inter-
pretability limit their deployment in critical settings. Existing research has made
strides in either interpretability or continual learning, but the synergy of these
two directions largely remains under-explored. This work examines this intersec-
tion from the perspective of concept-based models where classes are considered
as combinations of text-based concepts, and thus can enhance the interpretability
of models in a continual learning setting. Addressing the unique challenges of
learning new concepts without forgetting past ones, our method MC2proposes
an approach to seamlessly learn both classes and concepts over time. We adopt a
multimodal approach to concepts, emphasizing text-based human-understandavle
semantics associated with images. Through various experimental studies, we
demonstrate that MC2outperforms existing concept-based approaches by a large
margin in a continual setting, while performing comparably if not better in full-
data settings. We also demonstrate that MC2can be used as a post-hoc inter-
pretability method to examine image regions associated with abstract textual con-
cepts. Our code for MC2will be publicly released on acceptance.

1 INTRODUCTION

Modern deep neural networks (DNNs) have proven their ability to solve a multitude of tasks in the
supervised learning setting, even outperforming humans on certain tasks. In recent times, there has
been growing interest in developing models that not only perform well on a single task in an i.i.d.
setting but also learn continually, i.e. on new, previously unseen tasks that may arrive in the future.
However, in such settings, when a model is directly trained on a new task, it loses the ability to
perform well on previously learnt tasks, a phenomenon known as catastrophic forgetting. Many
methods in continual learning literature have explored a plethora of techniques to combat this issue
(Wang et al., 2023). However, models that have the capability to learn continually still have a signif-
icant hurdle that prevents them from being extensively deployed in safety-critical conditions - they
cannot explain how they arrive at a decision from the provided data, viz., they are not interpretable.

From another perspective, methods that allow deep neural networks to become interpretable have
also become an active area of research in recent times (Molnar, 2018; Samek et al., 2021). Most
existing literature focus on post-hoc interpretability, i.e. they attempt to explain the decisions of
a model already trained on a particular dataset and task. There has been a recent thrust, however,
towards developing intrinsically interpretable (ante-hoc interpretable) models that render models to
be interpretable in the training process itself (Rudin, 2019; Vilone & Longo, 2021; Nauta et al.,
2023). These recent efforts have largely focused on traditional supervised learning; methods that
can learn continually and are also inherently interpretable remain largely unexplored.

A class of interpretable models that has gained prominence in recent years is concept-based learn-
ing. A concept is typically a high-level, inherently interpretable unit of information. A class can
be abstracted into a set of concepts that define the characteristics of that class. For example, the
class cat may be broken down into the concept set {fur, whiskers, four legs, pointy ears, sociable}.
Such concept-based approaches allow atomic concepts to be combined to signify the presence of a
particular class in image-based tasks. Recent works such as (Koh et al., 2020; Oikarinen et al., 2023;
Yang et al., 2023) have shown promise in using concept-based models to enhance interpretability
of image classification models, but however have not been studied for learning continually. When
using concept-based models in a continual learning setting, several new problems emerge: (i) from
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Figure 1: Illustration of our model and the proposed setting

a concept-based learning perspective, the model has to allow mechanisms to learn new concepts
without forgetting past concepts; (ii) from a continual learning perspective, in addition to learning
new classes over time (standard continual learning), the model also has to learn new concepts over
time, i.e. the model has to address catastrophic forgetting in classes as well as concepts; and (iii)
it is possible that older concepts may be component of a newer class in a later task; it has to learn
these associations effectively too. These challenges make this setting a non-trivial one, and timely
considering the focus on ante hoc interpretable models. A very recent work (Rymarczyk et al., 2023)
addressed this setting for the first time, also supporting the need for this direction of work. How-
ever, the notion of a concept is different from earlier efforts in this work, and is oriented towards
part-based prototypes. Such part-based structures may not capture abstract concepts or relationships
such as, for e.g., cat and sociable. We focus on a more generic approach to concepts that are not
necessarily part-based but text-based high-level semantics associated with an object category.

To this end, we propose MC2, a novel multimodal concept-based continual learner that not only
accommodates new classes and concepts, but also implicitly localizes text-based concepts in images.
We consider text encodings of text concepts, which we call concept anchors, along with image repre-
sentations to create a set of multimodal concepts for a given image. These multimodal concepts are
latent vectors which contain information that help in classification while also providing interpreta-
tions. We introduce the notion of concept grounding, which allows the interpretation of multimodal
concepts in terms of text-based concepts. We also design MC2with the consideration that it should
be able to learn continually. Our proposed approach is not limited to a pre-specified number of con-
cepts and classes, thus making it scalable by design for class-incremental and concept-incremental
learning. Our key contributions are summarized below:

• We propose a novel method for concept-based continual learning that can adapt continually to new
classes as well as new concepts, without increasing the number of parameters. Standard experi-
ence replay does not help reliably explain the model in terms of concepts; we hence introduce a
new concept-augmented exemplar replay approach that allows the model to retain concept-based
explanations of previous experiences.

• We propose multimodal concepts, a combination of image embeddings and interpretable concept
anchors, to perform classification. These multimodal concepts are grounded to their correspond-
ing text-based concept anchors, thus making them interpretable. We also show that the vision-
language models used in our approach need not be pre-aligned, allowing for more flexibility in
the method.

• Our approach offers multi-hoc concept-based interpretability, i.e. it is designed in an ante-hoc
fashion to offer interpretability in the form of high-level concepts, and can also be employed
as a concept-specific attribution method, which enhances post-hoc interpretability by identifying
regions of interest involved in the search for a specified concept. For example, in Figure 3, we
show that our model is able to reliably localize image-level attributions for queried concepts.
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• We perform a comprehensive set of experiments to evaluate our proposed method on well-
known benchmark datasets, and also compare our method against continual adaptations of ear-
lier concept-based methods. We study our method’s performance both in a continual as well as
full-data setting. We perform qualitative evaluations of how well our model learns to associate
concepts with localized visual cues in images, and also study the goodness of concepts by demon-
strating their effectiveness in post-hoc interventions.

2 RELATED WORK

Interpretability of Deep Neural Network Models: Interpretability methods in DNN models can be
broadly classified into post-hoc and ante-hoc methods. Post-hoc methods aim to interpret model pre-
dictions through several strategies, including Gradient-weighted Class Activation Mapping-based
methods which focus on highlighting influential features by tracking gradient flows to the final layer
(Selvaraju et al., 2017; Chen et al., 2020a; Chattopadhay et al., 2018); Integrated gradient- based
methods that compute the gradient integration via the Riemann integral (Sattarzadeh et al., 2021;
Yvinec et al., 2022; Benitez et al., 2023); Shapley value-based methods that address model inter-
pretation using Shapley values (Sundararajan & Najmi, 2020; Wang et al., 2020a; Jethani et al.,
2021; Wang et al., 2020a), and several other Non-gradient based methods(Dabkowski & Gal, 2017;
Fong & Vedaldi, 2017; Petsiuk et al., 2018; Montavon et al., 2019). While post-hoc methods offer
insight into the model’s interpretability without posing additional model constraints, recent efforts
have highlighted the issues with post-hoc methods and their reliability in reflecting a model’s rea-
soning (Rudin, 2019; Vilone & Longo, 2021; Nauta et al., 2023). Besides, When interpretations are
inaccurate, it becomes difficult to reason whether the problem lies with the interpretation method or
if the model relied on spurious correlations in the data. There have also been concerns on post-hoc
interpretability and its larger success only on simple model architectures (Burns & Steinhardt, 2021;
Adebayo et al., 2021; Bordt et al., 2022). On the other hand, ante-hoc methods that jointly learn to
explain and predict provide models that are inherently interpretable (Sokol & Flach, 2021; Benitez
et al., 2023). Ante-hoc methods have also been found to provide interpretatations that help make the
model more robust and reliable (Alvarez-Melis & Jaakkola, 2018; Chattopadhyay et al., 2022). We
focus on this genre of methods in this work.

Continual Learning: Continual learning (CL) methods aim to tackle catastrophic forgetting (Had-
sell et al., 2020) using techniques that alleviate forgetting across experiences. These methods have
been extensively studied in the last few years and can be broadly grouped into three main categories:
exemplar replay-based methods use a small exemplar buffer to store highly-representative samples
of classes belonging to previous experiences using some similarity metric (Shin et al., 2017; Mi
et al., 2020; Van de Ven et al., 2020; Maracani et al., 2021; Graffieti et al., 2023). Variations of such
methods tend to adapt gradient-based sample selection strategies for populating the buffer (Aljundi
et al., 2019; Jin et al., 2020; Tiwari et al., 2022). Architecture-based methods on the other hand
rely on strategies such as network expansion and require updating parameters of the model as new
classes arrive (Ebrahimi et al., 2020; Douillard et al., 2022; Kang et al., 2023), such methods can be
costly and difficult to scale. Regularization-based methods tend to protect influential weights from
old experiences from mutation (Sha et al., 2016; Jung et al., 2020; Maschler et al., 2021; Li et al.,
2023). However, methods for interpretable continual learning have largely remained unexplored,
except for one very recent work (Rymarczyk et al., 2023), discussed later in this section.

Concept-based Interpretability: Koh et al. (2020) proposed Concept Bottleneck Models (CBMs),
a method that uses interpretable, human-defined concepts, combining them linearly to perform clas-
sification. CBMs also allow human interventions on concept activations (Shin et al., 2023; Stein-
mann et al., 2023) to steer the final prediction of the model. Subsequent efforts such as (Marconato
et al., 2022b; Havasi et al., 2022; Barker et al., 2023) improved upon specific issues such as con-
cept leakage. Adaptation of concept-based learning to provide ante-hoc interpretability to any DNN
architecture was also shown in (Sarkar et al., 2022). While the presence of a representative set of
concepts helps with interpretability, collecting such dense concept annotations is time-consuming.
This issue was addressed in (Kim et al., 2023; Collins et al., 2023; Yan et al., 2023) where the inter-
mediate semantic concepts are obtained by replacing domain experts with Large Language Models
(LLMs). This allows for ease and flexibility in obtaining the concept set, while also overcoming
the issue of concept leakage using concept filters. We follow this approach to obtain concepts in
this work too. Besides making concept-based learning more feasible, using LLMs to obtain con-
cepts also allow grounding of neurons in a bottleneck layer to a human-understandable concept, an
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Figure 2: Overview of our data setup and proposed architecture. Our architecture receives new classes and
associated concepts across multiple experiences in a continual learning setting. We use pre-trained language
and vision encoders to get embeddings for the input image, concepts, and classes. These are then used to
create multimodal concepts using our Multimodal Encoder. These multimodal concepts are grounded to their
anchor concepts using a loss function, and are used to predict both the class label and the presence/absence of
corresponding concepts in the image.

issue with CBMs that was highlighted in (Margeloiu et al., 2021). Other concept-based methods
(Alvarez-Melis & Jaakkola, 2018; Chen et al., 2020b; Kazhdan et al., 2020; Rigotti et al., 2021;
Benitez et al., 2023) use a different notion of concepts based on prototype representations of image
features; we follow the former approach in this work. Importantly, all aforementioned efforts only
perform concept-based learning in the traditional supervised setting, with no explicit efforts towards
addressing the continual learning setting.

Interpretable Continual Learning: As stated earlier, we focus on the premise that making models
continual and interpretable allows them to adapt their reasoning mechanisms to unseen data that
arrive over time. Existing concept-based models (Koh et al., 2020; Oikarinen et al., 2023; Yang
et al., 2023) address interpretability under the assumption that classes and concepts are pre-defined,
making the concept set rigid. Concept-based continual learning has remained largely unstudied. We
identify (Marconato et al., 2022a) as an early effort in this direction; however, this work trains CBMs
in a continual setting under an assumption that all concepts, including those required for unseen
classes, are accessible from the first experience itself, which does not emulate a real-world setting.
More recently, Rymarczyk et al. (2023) proposed a method that is both continual and interpretable
that uses part-based prototypes as concepts. As mentioned earlier, our notion of concepts allows us
to go beyond parts of an object category, as in CBM-based models.

3 MC2: METHODOLOGY

Preliminaries and Notations. Given a sequence of experiences {E1, E2, ..., ET }, with each
experience Ei consisting of n image-label pairs (X i,Yi) = {(xi
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n)}, a

class-incremental continual learning (CiCL) system aims to learn a task Et without catastroph-
ically forgetting tasks E1 to Et−1. In the scenario where human-provided concepts are used
for classification, each experience Ei consists of n image-label-concept tuples (X i,Yi, Ci) =
{(xi

1, y
i
1, Ci

1), (x
i
2, y

i
2, Ci

2), ..., (x
i
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i
n, Ci

n)}, where Ci is the set of concepts known during experi-
ence Ei and Ci

k is the set of active concepts in example k. The set of concepts known during Ei is
the union of all concept sets from task E1 to Ei. For the following sections, we use the subscript
NL for an object if it is presented to our method in natural language.

Concept Annotations: The natural language concepts in Ci may be provided as part of the dataset
(e.g. CUB dataset). However, collecting concept annotations for classes can be tedious in general,
especially if the number of classes is very large or if suitable and sufficient domain experts are not
available. In such cases, one can derive the concepts by querying a Large Language Model (LLM)
as proposed by Oikarinen et al. (2023) and Yang et al. (2023). Our approach is inclusive of both
these approaches, depending on what may be available for a given dataset.
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Our model learns to create multimodal concept embeddings that are grounded to their corresponding
textual anchors and also contain the corresponding visual information that together aid in classifica-
tion. We now formally define the terms Grounding and Anchor, as used in our work.

Definition 1. Given a vocabulary V containing words, phrases, or sentences in natural language,
a text encoder ϕ : V → Rd, a vector u ∈ Rd, and a distance function D : Rd × Rd → R, u is
grounded to a word, phrase, or sentence vNL ∈ V if D(u, ϕ(vNL)) ≤ ε for some distance function
D and ε > 0. Then, vNL is said to be an anchor of u.

In other words, a feature vector is said to be grounded to a text term if their embeddings align with
a certain tolerance ε. We present an overall schematic of MC2in Figure 2. Our approach lever-
ages embeddings obtained from both the input image and the user-defined concepts present in that
image. These are used to create multimodal concept embeddings using textual concept embeddings
as anchors. Our algorithm comprises three major components: a multimodal concept encoder, a
concept-grounding module, and a concept-augmented experience replay, each of which is described
in detail below.

Multimodal Concept Encoder. Our proposed setting requires each sample of experience Et to be
of the form (xi ∈ X t, yi ∈ Yt

NL, Ci ∈ Ct
NL), where xi is an input image and Ci is the concept set

for the current experience in natural language. yi is the corresponding class name, also in natural
language. The embeddings for the classes and concepts in Y(i)

NL and C(i)
NL are obtained using a

pre-trained language encoder. Formally, given an image xi and a feature extractor F , the image
embedding xi is obtained as xi = F(xi); similarly, given a concept word or phrase cj ∈ C(i)

NL and a
text encoder T , the text embedding cj is obtained as cj = T (cj).

In order to enable cross-modal learning, we create multimodal representations of the image and
text inputs using their respective embeddings. This allows the learned representation to exchange
information between the modalities, and also assimilate information about the occurrence of the
textual concept in the provided image. To this end, we use a multimodal encoder M, which is a
stack of transformer encoder layers. We provide the image embeddings xi as well as the concept
embeddings c1c2...c|Ci

NL| as an input sequence to M. The output of M is also a sequence of
vectors, wherein we map the last |Ci

NL| of the sequence to the concept anchors using the concept
grounding module (described later in this section). A shared sigmoid-activated linear layer, σ(·), is
also trained on each multimodal concept vector to perform binary classification, where 1 indicates
the presence of a concept, and 0 otherwise. A weighted binary cross-entropy loss, LWBCE , is used
to train the model for concept classification. We also classify the entire image represented by these
multimodal concepts using the standard image-level cross-entropy loss, LCE . The loss for training
M is then a weighted sum of these two losses: L = LCE+λLWBCE , where λ is a hyperparameter.
Empirically, we find that λ = 5 works marginally better than lower or higher values. More details
on LWBCE are provided in the appendix.

Classification using the Multimodal Concept Encoder: The alignment between the jth multimodal
concept vector of the current sample, c′j , and the embedding of the kth class yk of the current experi-
ence can be obtained by taking the dot product of the two vectors. We define the strength sk of class
k in a given image to be the sum of dot products of all multimodal concepts onto the class embedding
of k, i.e. sk =

∑|Ci|
j=1 c

′
j · yk. The classification result is then given by: argmaxy(s1, s2, ..., s|Yi|),

that is, the index of the class having the greatest strength with respect to all concepts. We use sk
as the logit of class k, and perform a softmax operation on top of the logits to get classification
probabilities, which are used to train the model with the standard cross-entropy loss LCE . It should
be noted that deriving class strengths from the multimodal concepts does not require any additional
parameters; this enables scalability of our approach to unseen classes and concepts when deployed
in a continual setting.

Concept-Grounding Module. While the outputs of M are multimodal by design, they do not
implicitly provide explanations in terms of human-defined concepts. The concept-grounding module
allows us to ground these multimodal concept vectors to known concept anchors that are directly
obtained from textual descriptions of concepts. We use the last |Ci

NL| vectors of the output sequence
given by M as the set of our multimodal concepts. This allows us to create a one-to-one mapping
between input and output concept vectors. We use a Concept Grounding Loss, LG, to ground the
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predicted multimodal concepts with their corresponding concept anchors, as below:

LG = − 1

|Ci|

|Ci|∑
k=1

cos(ck,W
T c′k + b) = − 1

|Ci|

|Ci|∑
k=1

ck.(W
T c′k + b)

|ck|.|WT c′k + b|
(1)

where c′k represents the multimodal vector corresponding to concept anchor ck. W and b are
learnable parameters that are shared among all concepts and serve to perform concept alignment.
Grounding the multimodal concept vectors enables them to encode the association between the
corresponding concept anchor and the given input image.

Concept-Augmented Experience Replay. Experience (or exemplar) replay is a standard technique
used in continual learning to prevent catastrophic forgetting. This is typically implemented by cre-
ating a (small) memory buffer that contains training samples from past experiences. When a model
is trained on a new experience, the memory buffer is sampled and the model is additionally trained
on these stored samples. We propose an extension called Concept-Augmented Experience Replay in
this work, wherein we store the class-level concept labels in addition to images and class labels. The
exemplar loss is identical to the loss L used to train M, i.e. the concept-level loss in the multimodal
concept encoder LWBCE is additionally used on these concepts when replaying these buffer sam-
ples, in addition to the cross-entropy loss. While this simple enhancement of experience replay may
seem trivial since one can simply ignore concepts in the buffer, we show later in the paper that the
quality of concepts learned through concept-augmented experience replay is far superior to standard
experience replay that does not store concepts (see Table 4).

4 EXPERIMENTS AND RESULTS

We perform a comprehensive suite of experiments to study the performance of MC2on well-known
benchmarks that allow us to study both continual as well as concept-based learning: CIFAR-100,
ImageNet-100, and CalTech-UCSD Birds 200 (CUB200). We study our method both in a continual
setting as well as in a full-data setting. We also examine different components of our model and
study each of their importances to the method. Details related to architecture implementation and
hyperparameter selection have been described in the appendix.

Performance Metrics. In the class-incremental setting, we follow earlier literature in using two
metrics to evaluate the performance of different methods. Final Average Accuracy (FAA) is a mea-
sure of how well a model has adapted to a sequence of tasks or data streams over time. It represents
the average accuracy of the model on the validation splits of all tasks or data streams after it has
completed its learning process, across the experiences. FAA is defined as: FAA = 1

T

∑T
i=1 acc

T
i ,

where accTi represents the model’s accuracy on the validation split of experience i after training on
T experiences. Average Forgetting (AF) quantifies the extent to which a model forgets previously
learned knowledge when exposed to new experiences. It measures the drop-in performance on tasks
learned in previous experiences after the model has been trained on newer experiences. Lower av-
erage forgetting indicates better model stability and performance in a continual learning scenario.
AF at task T is defined as: AF = 1

T−1

∑T−1
i=1 accii − accTi , i.e., the difference in accuracy on the

validation set of task i when it was originally learned and the accuracy on it after the model has been
trained on T experiences. In the full-data setting where the model is provided with all training data
in a single experience, we use the standard Classification Accuracy to evaluate different methods,
viz. the ratio of correctly classified examples and the total number of examples.

Baselines. While there has been very little effort on explicitly studying concept-based continual
learning, we thoroughly evaluate our approach in class-incremental and full-data settings by com-
paring it with existing works that use human-defined concepts. Our baseline methods for comparison
include: (i) (Marconato et al., 2022a), which uses a concept bottleneck layer with one neuron as-
signed to each concept. In a class-incremental setting this baseline makes the assumption that all
concepts, including those that would ideally only be provided in future experiences, are provided
upfront. The model then uses a growing linear layer with new neurons added for new classes for the
final classification; (ii) Incremental CBM, a version of the Concept Bottleneck Model (Koh et al.,
2020) that we modify to adapt to a class-incremental and concept-incremental learning scenario. We
grow both the bottleneck layer and the linear classification layer as new classes and new concepts
are introduced. One can see that this is a generalized version of the previous baseline where the as-
sumption that all concepts are provided upfront is relaxed; We also consider (iii) and (iv) which are
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Label-Free CBM (Oikarinen et al., 2023) and LaBo (Yang et al., 2023), variations of CBM that use
embeddings of natural language concepts as the bottleneck layer. Both these methods also propose
ways to discover concepts for a specified class by querying LLMs. They primarily differ between
them in how they query the LLM and filter the obtained concept set. We adapt these methods to the
continual learning setting by allowing concepts from previous experiences to be considered when a
new experience is provided.

Implementation Details. For ImageNet-100 and CIFAR-100, we grow the concept set at ev-
ery experience as new concepts arrive, while discarding duplicate concepts from the new set.

Exp CIFAR-100 ImageNet-100

E1 257 (257) 214 (214)
E2 460 (527) 359 (416)
E3 638 (794) 457 (594)
E4 798 (1046) 545 (762)
E5 925 (1309) 641 (945)

Table 1: Number of concepts
per class, excluding duplicates
across experiences (Exp) (inclu-
sive numbers in parentheses)

We show the number of concepts, with and without duplicates, in
Table 1. In the case of CUB, the number of concepts is fixed to 312
across all experiences (as provided with the dataset). The number of
concepts can be reasonably large, as shown. This can cause out-of-
memory errors when used with the standard attention mechanism
since our method performs attention over the entire concept set. To
address this, we also study a simple variant of our method with
linear attention, which we denote as MC2(Linear) in our results.
More details about the use of linear attention are provided as part of
our ablation studies. Other implementation details including dataset
details, hyperparameters, and training setups are provided in the
Appendix. Our code will be made publicly available on acceptance.

CIFAR-100 CUB ImageNet-100

Method FAA AF FAA AF FAA AF

CBM (Koh et al., 2020) 0.4333 0.5646 0.5875 0.2029 0.4523 0.5553
CBM (Sequential) (Koh et al., 2020) 0.3533 0.6025 0.5329 0.1347 0.4523 0.5553
ICIAP (Marconato et al., 2022a) 0.4196 0.5719 0.5875 0.2029 0.4689 0.5253
ICIAP (Sequential) (Marconato et al., 2022a) 0.2945 0.5937 0.5329 0.1347 0.4689 0.5253
Label-Free (Oikarinen et al., 2023) 0.3200 0.2338 0.1934 0.4408 0.1493 0.2760
LaBo (Yang et al., 2023) 0.3009 0.6879 0.3101 0.4741 0.3384 0.4560
MC2 0.7022 0.3003 0.8137 0.0611 0.7970 0.0877
MC2(Linear) 0.6920 0.3142 0.8188 0.0531 0.7985 0.0776

Table 2: Continual learning performance of different methods over 5 experiences

Long, slender neck Small Brown Shell Small Head

A short beak Grey wings and back A white cheek

Mud Turtle

Chickadee

Figure 3: Visual grounding of concepts: Qualitative results for local-
izing concepts using MC2 versus when localizing the same concepts
using GradCAM on CBMs

Quantitative Results. Table 2
shows our results on concept-
based continual learning. On
CIFAR-100 and ImageNet-100,
our approach outperforms all
baselines by a significant mar-
gin. It should be noted that
this is done without adding any
additional parameters to our
model with newer experiences,
whereas other methods require
new parameters to incorporate
new classes and concepts. We
also observed significantly lower
forgetting across experiences us-
ing our approach. These results
show that our model can read-
ily incorporate knowledge about
new concepts and classes while
internally forming the required
concept-class associations. It is
also able to remember these as-
sociations to a good extent, even
after being trained on new tasks.
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Qualitative Results. Visual Grounding and Attributions. We extend our method as a post-hoc
analysis tool to provide visualizations of the attention maps learned by our model. As shown in
Figure 3, each heatmap shows the region an attention head focuses on for a specified concept. It
can be seen that our model learns to assign a subset of its attention heads to extract user-defined
concepts from an image. This is in contrast with models that do not provide such grounding, which
fail to reliably extract user-defined concepts from the given image (Margeloiu et al., 2021).

Method CIFAR-
100

CUB ImageNet-
100

CBM-J 0.7868 0.7231 0.7773
CBM-Seq 0.5712 0.6932 0.4265
Label-
Free

0.6431 0.7413 0.7818

LaBo 0.8572 0.7015 0.8506

Ours 0.8567 0.8401 0.8466

Table 3: Classification performance of different
methods in the full-data (single experience) set-
ting. CBM-J involves joint training of the CBM
as in Koh et al. (2020), while CBM-Seq involves
sequential training.

More Results: Full-Data Training. To see how
our model fares in standard classification settings,
we evaluate our method in a full-data, single-
experience setting on three datasets. These results
for presented in Table 3.In this setting, we find
that MC2considerably outperforms the next clos-
est baseline on the CUB dataset, indicating that it
is highly effective when used to differentiate be-
tween fine-grained classes. It also achieves com-
parable performance on ImageNet-100 and CIFAR-
100, even though this setting is not our focus.

More Results: Evaluating Concepts. The concepts
given by LLMs (in the case of ImageNet-100 and
CIFAR-100), as well as concepts annotated by humans (as in CUB200), can be noisy. Therefore,
directly comparing accuracies of concept classification may not evaluate how well the networks learn
concepts. We instead evaluate the learned concepts in two ways: (i) using concept neurons (inspired
by Marconato et al. (2022a)), and (ii) using interventions, each of which is described below.

Dataset FAA
w/ CR

Linear Acc
w/ CR

FAA
w/o CR

Linear Acc
w/o CR

CIFAR-100 0.7022 0.7650 0.6722 0.4511
CUB200 0.8137 0.7914 0.7844 0.1382
ImageNet-100 0.7970 0.7722 0.7903 0.5903

Table 4: Linear layer training on top of concept neurons;
CR = concept-augmented experience replay

Evaluating goodness of concepts through
concept neurons: A concept neuron (see
Marconato et al. (2022a)) predicts the pres-
ence or absence of a given concept based
on a grounded concept representation. Af-
ter training, such concept neurons should be
able to feed a linear classifier on par with the
grounded concept vectors. We evaluate this
by treating a group of concept neurons as a bottleneck layer and training a linear classifier on top
of the neurons. Since this only examines concepts, we train the linear layer on all classes simulta-
neously for 3 epochs, irrespective of whether the model was trained incrementally or in a full data
setting. The results are shown in Table 4 with and without concept-augmented experience replay
(CR). Evidently, the concepts perform significantly better when using our proposed CR replay.

Leatherback
Sea Turtle

Komodo Dragon

Water Snake

Vine Snake

Figure 4: Manual interventions on concepts: We identify concepts that are incorrectly labeled, and modify
them based on the image semantics, this results in correct classification.

8



Under review as a conference paper at ICLR 2024

Evaluating concepts using interventions: Interventions allow us to study the (potentially causal)
relationship between concepts and the classes they describe. To study these, we use the linear
layer trained above to evaluate how well our model learns such concept-class relationships. We
consider samples that are misclassified by the newly trained linear layer and perform interventions
on the wrongly predicted concepts using the mechanism described in (Koh et al., 2020). Figure 4
shows qualitative results of performing interventions on a misclassified image. We observe that most
concepts present in an image are usually correctly identified, but performing interventions on a few
key misclassified concepts results in correct classifications a majority of the time. This highlights
the goodness of semantics of the learned concepts, and its impact on classification. In the figure,
we see that the image of Komodo Dragon in also activates the concept “a tree” due to visual cue
similarity. When the key concepts “scales” and “long, sharp claws” are activated better, the model
now classifies this correctly as a Komodo Dragon.

Ablation Studies: Vision-Language Alignment. We now study the importance of having pre-
aligned vision and text encoders to get image, class, and concept embeddings. Alignment here
refers to the property that for a given image and corresponding image description in natural lan-
guage, the encoders produce vectors that are close in a high-dimensional space based on some
predefined metric. We perform a grid search over 9 different vision-language encoder pairs.
Two of these pairs, CLIP (Radford et al., 2021) and FLAVA (Singh et al., 2022), have pre-
aligned vision-language encoders. We also used BERT (Devlin et al., 2018) and ViT (Dosovitskiy
et al., 2021) models trained on unimodal data, where our model explicitly aligns the modalities.

Vision
Text FLAVA CLIP BERT

FLAVA 0.7036 0.6532 0.6952
CLIP 0.7372 0.7247 0.7125
ViT 0.7970 0.7458 0.7404

Table 5: VL alignment, ImageNet100

The results are shown for CUB in Table 6, and for ImageNet-
100 in Table 5. Our results indicate that using pre-aligned
vision-language (VL) models for our method; our method’s
alignment for this task is in fact superior to pre-aligned mod-
els. This is because pre-aligned VL models are trained
at a general image level, while our explicit approach al-
lows more fine-grained association between image and text.

Vision
Text FLAVA CLIP BERT

FLAVA 0.7628 0.6501 0.7218
CLIP 0.8047 0.7180 0.7970
ViT 0.8245 0.7973 0.8344

Table 6: VL alignment, CUB

Ablation Studies: Attention Mechanism and Scalability.
In its naive implementation, the compute requirements of our
method can grow quadratically with the number of concepts.
This is due to the quadratic dependency of the vanilla attention
mechanism used in transformer blocks. Fortunately, recent at-
tempts (Katharopoulos et al., 2020; Vyas et al., 2020; Shen
et al., 2021; Wang et al., 2020b; Kitaev et al., 2019) have been
made to improve the computational efficiency of transformer
architectures. As stated earlier, we propose a viable variant to make our model practically feasi-
ble for a large number of concepts: MC2with Linear Attention, whose compute requirements grow
linearly with the number of concepts. We use transformer blocks featuring the linear attention mech-
anism proposed in (Katharopoulos et al., 2020) as a drop-in replacement in our multimodal encoder.
These results are also shown in Table 2. We see that using linear attention surprisingly achieves
better results on CIFAR-100 while achieving comparable performance to vanilla attention on CUB
and ImageNet-100.

5 CONCLUSIONS AND FUTURE WORK

In this work, we propose a new perspective to integrating human-defined concept-based models
perform in a continual setting. We propose a method that uses pre-trained language and vision
encoders to create multimodel concepts, which are anchored to natural language concepts. Our
approach can reliably interpret classification results in terms of the provided concepts, and can
incorporate new concepts and classes at a later time as well. We perform comprehensive evaluations
of our method on three benchmark datasets and also study the efficacy of concepts in our pipeline.
Our qualitative and quantitative results show the usefulness of the proposed method. Although
our method provides a high-performing continual and interpretable model, the use of a pre-trained
vision encoder limits us from using arbitrary augmentations (e.g. color jitter) to improve model
generalization. Allowing for this in unaligned unimodal encoders could help further performance.
From an interpretability viewpoint, developing an improved intervention mechanism that can be
used on our model without an explicit linear layer would be an interesting direction of future work.
We can also explore other forms of attention, such as Flash Attention (Dao et al., 2022), to improve
the practical scalability of our method.
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Reproduciblity Statement: Necessary details required to reproduce our results have been provided
in the Appendix. The full code shall be released publicly upon acceptance of the paper.
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A1.1 ARCHITECTURE AND IMPLEMENTATION DETAILS

Information about Vision, Language, and Multimodal Encoders (F , T ,M). We use the FLAVA
(Singh et al., 2022) language encoder paired with the ViT (Dosovitskiy et al., 2021) image encoder.
Each encoder has a latent embedding dimension of 768. Our multimodal encoder uses two stacked
transformer blocks with the same latent embedding size. We use the HuggingFace1 library to im-
plement the transformer in case of the Full Attention version, or the fast-transformers2 library to
implement transformer blocks with Linear Attention. The experimental setup is implemented using
PyTorch3.

Training hyperparameters. For Cifar100, we train the model for 10 epochs in every experience, with
a starting learning rate of 0.001 and a batch size of 48. In the case of CUB, we train our model for
25 epochs in every experience and stop training after 15 epochs if the model converges. We start
with a learning rate of 0.0003 and a batch size of 64. In the case of Imagenet100, we train the model
for 5 epochs in every experience, with a starting learning rate of 0.001 and batch size of 48. In all
three cases, we use Cosine Annealing to schedule the learning rate, decaying it down to 0.0001.

Details of LWBCE . For a given image, the ratio of the number of active concepts to the number
of total concepts is quite small. This necessitates penalizing the misclassification of active concepts
more strongly than the misclassification of inactive concepts. We do this by weighting the loss for
active concepts by the fraction of inactive concepts, and weighting the loss for inactive concepts by
the fraction of active concepts. The loss LWBCE is then defined as:

LWBCE =
# inactive concepts

# concepts

|Cactive|∑
i=1

LBCE(σ(c
′
i), 1)

+
# active concepts

# concepts

|Cinactive|∑
i=j

LBCE(σ(c
′
j), 0)

Additional Details about Concept Bottlenecks. A Concept Bottleneck layer, introduced by ?, is a
layer where each neuron corresponds to a specific concept. Models containing such bottlenecks
can be trained sequentially or jointly with the classification layer. Sequential and joint settings are
applicable when the model contains a bottleneck layer followed by a classification layer. In the
sequential setting, the model is first trained to predict concept labels. Post-training, a classifier
is trained on top of concept logits predicted for the input images. The model and classifier are
optimized separately. In joint training, both concept predictions and the classifier are trained end-to-
end and optimized jointly.

A1.2 DATASET DETAILS

Descriptions of Datasets. Cifar100 consists of 50000 training images and 10000 validation images
spanning 100 classes. Each image is a 3-channel RGB image of size 32x32 pixels. Concept an-
notations per class are not provided, and hence we query a Large Language Model as described by

1https://huggingface.co/
2https://fast-transformers.github.io/
3https://pytorch.org/
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(Oikarinen et al., 2023) to get the concept set, excluding the concept filters applied post-training
for reduction in the number of concepts. We get a total of 925 concepts for Cifar100. CUB200
(CalTech-UCSD Birds 200) is a fine-grained bird identification dataset consisting of 11000 RGB
images of 200 different bird species. In this case, the concept annotations are provided by human
annotators. All concepts are shared among a few classes, which means that the entire concept set
is available from the first experience itself. This gives us a platform to show that our method gives
state-of-the-art results even on fine-grained visual classification in a much simpler setting where ex-
isting methods still fail to perform comparably. ImageNet100 is a subset of the Imagenet1K dataset
consisting of 100 classes with 1300 training images and 50 validation images per class. The subset
includes both coarse and fine-grained classes. We choose classes such that each class in a new expe-
rience adds new concepts, in addition to using concepts available from past experiences. We provide
a subset of some classes and concepts per dataset in A10. To use the datasets in a continual setting,
we split each dataset into 5 tasks having overlapping concept sets. Details of the number of concepts
in each experience for Imagenet100 and Cifar100 have been provided in table 1 of the main paper.

A1.3 PER-EXPERIENCE PERFORMANCE

Here, we report the performance of MC2and baseline methods across five experiences, providing
the values of Average Accuracies and Forgetting at every experience.

Model Experience 1 Experience 2 Experience 3 Experience 4 Experience 5

AA Forget AA Forget AA Forget AA Forget AA Forget

CBM-Seq 0.8744 0.6607 0.6764 0.6338 0.5292 0.5793 0.4392 0.5359 0.3532 N/A
CBM-J 0.9041 0.6171 0.7379 0.5840 0.6017 0.5648 0.5207 0.4922 0.4332 N/A
ICIAP-Seq 0.8014 0.6511 0.5904 0.6160 0.4454 0.5743 0.3625 0.5332 0.2945 N/A
ICIAP-J 0.8931 0.6016 0.7282 0.6116 0.5851 0.5785 0.5071 0.4957 0.4195 N/A
LaBo 0.9065 0.7630 0.7190 0.6230 0.5785 0.6955 0.4639 0.6630 0.3009 N/A

MC2 0.9487 0.3358 0.8450 0.3080 0.7913 0.3177 0.7484 0.2408 0.7022 N/A

Table A7: Per Experience Results for CIFAR100

Model Experience 1 Experience 2 Experience 3 Experience 4 Experience 5

AA Forget AA Forget AA Forget AA Forget AA Forget

CBM-Seq 0.6861 0.2302 0.6067 0.1052 0.5818 0.0947 0.5349 0.1085 0.5329 N/A
CBM-J 0.7467 0.2413 0.6794 0.1867 0.6601 0.2270 0.5988 0.1562 0.5874 N/A
ICIAP-Seq 0.6861 0.2302 0.6067 0.1052 0.5818 0.0947 0.5349 0.1085 0.5329 N/A
ICIAP-J 0.7467 0.2413 0.6794 0.1867 0.6601 0.2270 0.5988 0.1562 0.5874 N/A
LaBo 0.6483 0.4927 0.6176 0.3907 0.5651 0.4970 0.4244 0.5160 0.3101 N/A

MC2 0.8615 0.0840 0.8536 0.0433 0.8487 0.0592 0.8119 0.0396 0.8137 N/A

Table A8: Per Experience Results for CUB (Caltech-UCSD Birds-200-2011)

Model Experience 1 Experience 2 Experience 3 Experience 4 Experience 5

AA Forget AA Forget AA Forget AA Forget AA Forget

CBM-Seq 0.8760 0.5439 0.6650 0.4835 0.5106 0.4400 0.3853 0.3565 0.3967 N/A
CBM-J 0.8907 0.4546 0.7300 0.4261 0.6099 0.4175 0.4697 0.3106 0.4961 N/A
ICIAP-Seq 0.8076 0.4950 0.5999 0.4282 0.4587 0.4548 0.3438 0.4016 0.3554 N/A
ICIAP-J 0.8946 0.4732 0.7154 0.4218 0.6041 0.4410 0.4728 0.2865 0.4868 N/A
LaBo 0.5720 0.5083 0.4140 0.3599 0.4379 0.2559 0.4244 0.2059 0.3652 N/A

MC2 0.9351 0.0919 0.8731 0.1228 0.8133 0.1109 0.7541 0.0268 0.7985 N/A

Table A9: Per Experience Results for ImageNet100

A1.4 MORE QUALITATIVE RESULTS
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Lorikeet

A long, thin tail Curved BeakBrightly coloured
feathers

Komodo Dragon

A Lizard A long forked tongue Scaly skin

Small Brown Shell Short front legs Mud

Mud Turtle

Figure A5: More qualitative results. Alternate rows present the localization results using MC2

versus when localizing the same concepts using GradCam on CBMs
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Whiptail Lizard

African Rock
Python

Tiger Shark

Hammerhead
Shark

Hammerhead
Shark

Jay

Figure A6: More results on manual interventions
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Dataset Class Concepts

CIFAR100

Bicycle
a tire, object, a helmet, a handlebar, a bicycle seat, pedals at-
tached to the frame, mode of transportation, two wheels of equal
size, a seat affixed to the frame, a chain

Chair
furniture, a person, object, legs to support the seat, an office, a
computer, a desk, four legs, a backrest, armrests on either side

Kangaroo
a grassland, short front legs, an animal, a safari, mammal, a long,
powerful tail, brown or gray fur, marsupial, long, powerful hind
legs, Australia

Imagenet100

Chickadee
trees, grayish upperparts, vertebrate, a short beak, white cheeks,
chordate, gray wings and back, an animal, leaves, a small, round
shape

American Bullfrog

an animal, a stream, a large size, a log, a webbed foot, a marsh,
a lily pad, long, powerful hind legs, a large body, a swamp, a
carnivorous diet, a lake, a woods, large, webbed hind feet, a large
mouth, a river, a pond, spots or blotches on the skin, a green or
brown body

Komodo Dragon
a large size, a keeper, scales, a tree, a dish, scaly skin, a rock,
long, sharp claws, a long, thick tail, a long, forked tongue, an
animal, reptile, a fence, vertebrate, a water dish, a zoo, a heat
lamp, a large, bulky body, a cage, a lizard

CUB

Black-footed Albatross
back pattern: solid, under tail color: rufous, wing shape: long-
wings, belly color: red, wing color: red, upperparts color:
brown, breast pattern: multi-colored, upperparts color: rufous,
bill shape: cone, tail shape: notched tail, back color: blue

American Crow

back pattern: solid, wing shape: long-wings, upperparts color:
brown, bill shape: cone, tail shape: notched tail, back color:
blue, under tail color: grey, wing shape: tapered-wings, belly
color: iridescent, wing color: iridescent

Lazuli Bunting
back pattern: solid, under tail color: rufous, throat color: pink,
wing shape: long-wings, wing color: red, upper tail color:
pink, upperparts color: brown, breast pattern: multi-colored, bill
shape: cone, tail shape: notched tail

Table A10: Sample classes and a subset of their corresponding concepts for the three datasets
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