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ABSTRACT

Understanding the behavior of an end-to-end 3D visual grounder is challenging,
especially when the grounder makes an unexpected prediction. Despite the 1lm-
agent-based grounders performing step-by-step interpretable reasoning, the cost
for evaluation at scale is prohibitive. To address the challenges, in this work, we
propose a novel fully interpretable symbolic framework for 3D visual grounding,
namely Evolvable Symbolic Visual Grounder (EASE), with much less inference
cost and superior performance. Given a symbolic expression of a grounding de-
scription translated by an LLM, EASE calculates the feature of each concept uti-
lizing a set of explicit programs in Python learned from a tiny subset of the training
data. To learn this program library, we introduce a learning paradigm that continu-
ously optimizes the programs on the training dataset by an LLM-based optimizer.
We demonstrate that our paradigm is scalable when more data is involved. Ex-
periments on Referlt3D show EASE achieves 50.7% accuracy on Nr3D, which
surpasses most training-free methods and has considerable advantages in infer-
ence time and cost. On Sr3D, EASE also has comparable overall performance
with these approaches. Moreover, we perform extensive experiments to analyze
the interpretability and feature quality and reveal the potential for reasoning and
condition level grounding.
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Figure 1: Comparison of EASE with the two previous methods. With the symbolic framework and
evolutionary self-refinement, EASE excels in both performance and inference efficiency.

1 INTRODUCTION

The 3D visual grounding (3DVG) task aims to ground an object in a 3D scene based on a natural
language utterance. There have been a lot of supervised methods for 3DVG(Achlioptas et al.,[2020;
Jain et al.| [2022; Huang et al., [2022). By modeling various object attributes and spatial relations,
and leveraging large-scale training data with high-quality annotations, these methods achieve high
performances on 3DVG. These approaches are trained to have good performance in object detec-
tion, classification, attribute, and relation recognition. However, annotation of training data can be
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Figure 2: EASE uses LLM and training data to generate and refine the code for representing rela-
tions. During the evaluation, the executor can explicitly infer the target object.

expensive, and the limited vocabularies in the training data may limit the generalization and open
vocabulary application in the real world.

Neuro-symbolic approaches (Hsu et al., 2023} [Yuan et al., 2024) separate the processes of rela-
tion encoding and inference. In these methods, natural language descriptions are transformed into
symbolic representations containing relevant categories and relationships, which are then encoded
through a series of modules. The resulting expressions are executed using features to achieve
grounding. However, these encoders either operate implicitly or rely on human annotation.

Subsequently, the expression is executed using features for grounding results. However, the encoders
either are implicit(Hsu et al.,|2023) or rely on human annotation(Yuan et al., 2024).

Recently, large language models (LLMs) have demonstrated significant capabilities in reasoning and
generating executable code. Approaches that utilize LLMs and vision-language models (VLMs)
simulate human-like grounding processes through multi-turn reasoning. These methods, leveraging
the rich knowledge within pretrained models, are often training-free and support open-vocabulary
applications. However, the requirement for multiple inferences to evaluate a single example leads to
high computational costs and inefficiencies.

To provide explainable relation encoding and enable faster, more cost-effective inference, we intro-
duce EASE, an evolvable 3D visual grounder that employs a symbolic framework and utilizes LLM
generated Python codes as explainable encoders and pre-trained classifier to compute both relation
and category features.

To improve the quality of generated codes, we designed a system that can automatically generate unit
tests and give feedback based on test results. Then LLM can improve it through self-refine (Madaan
et al.,|2024). Considering some relations are associated, we use dynamic in-context examples re-
trieved from codes that have been generated for the generation of new relations. The distinction
between EASE and previous approaches is illustrated in Our contributions are summa-
rized as follows:

* We introduce EASE, a symbolic 3DVG approach employing LLM to generate explicit re-
lation encoders by self-refinement without any human knowledge.
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* By evaluating on 3D visual grounding experiments, EASE achieves 50.7% accuracy on
Nr3D, surpassing previous training-free methods and having considerable advantages on
time and token efficiency.

* We show the interpretability of both explicit relation encoders and step-by-step grounding.
Besides, the features have certain properties without any and they are provable because of
our interpretability.

2 METHOD

2.1 PROBLEM STATEMENT

3D visual grounding tasks involve a scene, denoted as S, represented by an RGB-colored point
cloud containing C' points, where S € R¢*6. Accompanying this is an utterance I/ that describes
an object within the scene S. The objective is to identify the location of the target object 7 in the
form of a 3D bounding box. In the Referlt3D dataset (Achlioptas et al., [2020), bounding boxes for
all objects are provided, making the visual grounding process a task of matching these bounding
boxes to the scene S. In contrast, the ScanRefer dataset (Chen et al.,[2020) provides only the scene
point cloud, requiring additional detection or segmentation modules to accomplish the grounding
task.

2.2 GROUNDING PIPELINE

We adhere to the previous SOTA neuro-symbolic framework for 3DVG (Hsu et al., 2023; [Feng
et al., 2024). The grounding pipeline is composed of three main components: the semantic parser
that converts I/ into a structured expression £; encoders to compute the features for descriptive terms
such as near and small within £. Subsequently, an executor performs logical reasoning over £
and computes matching scores between S and each object.

Semantic parser. We employ GPT-40 (OpenAll [2024) as the semantic parser and structure the
expressions in JSON format, which consists of the following components:

* category: A string representing the category of the target object referenced in /.

* relations: A list defining the spatial constraints relative to the target object. Each entry in
this list includes:
relation_name, a string specifying the spatial relation mentioned in U/, such as “near” or
“above.”’; objects, a list of objects that share the specified relation with the target object.
Each element is represented as a separate JSON object; negative, A boolean indicating that
if set to true, the target object should not exhibit this relation.

For example, the phrase “chair near the table and under a shelf” can be represented as:

{"category": "chair", "relations": [{"relation_name": "near",
"objects": [{"category": "table"}]}, "relation_name": "below",
"objects": [{"category": "shelf"}]}1}

Human-annotated natural language expressions exhibit diverse descriptions of relations, leading to
a long-tail distribution of relation_name in parsed expressions. To address this issue, we pre-define
a set of common relation names and prompt LLM to select from them for £ instead of using the
original word from /. Based on the number of associated objects, the relations are categorized into
unary, binary, and ternary (Feng et al.[2024). [Table I|presents our predefined set of relations
along with their classifications. For simplicity, attributes that describe properties of a single object,
such as “large” or “at the corner,” are treated as special types of relations.

Relation encoder. Neuro-symbolic approaches always use neural network-based encoders to com-
pute features corresponding to category names and relation names in £ for grounding. Unlike previ-
ous neuro-symbolic approaches, our relation encoder is a Python class generated by LLM. It directly
utilizes the scene’s point cloud data, performing computations in a transparent and interpretable
manner. Additionally, object classification is conducted using a pre-trained point cloud classifier.
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Table 1: Classification of all relations.

Classification Relations
unary large, small, high, low, on the floor, against the wall, at the corner
binary near, far, above, below, left, right, front, behind
ternary between

The feature of categories and unary relations, denoted as funary € R¥, can be seen as the matching
score between objects and their respective categories or relations, where N is the number of objects
in the scene. Features of binary relations fyinary € RN*N represent the likelihood of binary rela-
tions existing between all possible pairs of objects. For instance, the element ficar;,; quantifies the
probability that the ¢-th object is “near” the j-th object. The structure of ternary features follows a
similar pattern.

Executor. The executor use £ and associated features to identify 7. Since elements in the features
represent the probabilities or corresponding relation or category, the logical conjunction in £ can be
represented through the product operation. For a symbolic expression &, the classification score cs
of its category is calculated initially by a classifier. Subsequently, the executor processes each
relation individually by referring to the relations field. For every relation, the relation feature
frelation 18 computed, and the grounding scores scoreg, € RY for the corresponding objects can
be recursively calculated. Since the number of associated objects is always less than the feature
dimension by one, the grounding result of the individual relation can be determined through a dot
product between feature and grounding scores. Once all grounding results have been computed, the
final score score € RY is obtained by performing an element-wise (Hadamard) product between cg
and all scorepaion- The target object’s index is then determined by applying the argmax operation
to the final score.

2.3 RELATION ENCODER

The sizes and positions of objects in 3D scenes are mathematically related to specific relations.
For example, “near” is related to the distance between objects, and “large” is related to the volume
of an object. In EASE, we represent each relationship in a modular format using Python classes.
Each class contains a highly interpretable computing process. These classes are generated by LLM
through generation and self-refinement (Madaan et al., |2024) on a little scale of data from the train-
ing set. Previous works [Yuan et al.| (2024); Fang et al. (2024) also employ functions for relation
computation. However, a key distinction to EASE is that it eliminates the need for human anno-
tations or specific prompts—either at the code or text level—thereby reducing reliance on human
knowledge. 2.3 T] outlines the overarching structure of our classes, while the data collection process
is detailed in In[2.3.4] we describe the procedures for generating and refining the classes. The

overall framework is depicted in

2.3.1 CLASS STRUCTURE

For each relation, we define a corresponding Python class. The class is initialized with the point
cloud data of the scene, represented as a PyTorch tensor, and has two primary methods. One is
_init_param, which is used to compute all parameters for derive features such as the distances
between pairs of objects in the case of the “near” class. The other is forward executes numerical
computations, including operations such as inversion and exponentiation, and ultimately returns the
computed feature.

2.3.2 UNIT TEST

LLMs may not always generate a perfect code within one attempt(Olausson et al.,2023)). Therefore,
we incorporate relation-specific data from the training set to enhance both accuracy and quality,
enabling the LLM to refine its code based on these data samples.
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The symbolic framework facilitates the collection of this data. For each relation, we use the heuris-
tics method to filter the training set data based on the parsed expressions, excluding samples with
simple structures. These data typically include only object categories and relationship labels, lacking
more complex logical constructs. The data scale for each relation is small (less than 100).

This approach allows the use of straightforward numerical relationships for testing. We write a test
suite to compute the relation feature using generated code and compare the corresponding value of
the target object with that of distractors from the same class. The code passes the test case if the
target object’s corresponding value is the highest. The test suite also provides detailed feedback on
failed cases. For example, in the case of the relation “small”, the target object, being smaller, should
have a larger corresponding feature value compared to distractors. If a distractor exhibits a larger
value, this test case fails, and bounding box information of both the distractor and target object will
be given for the feedback message in[2.3.4]

2.3.3 PROMPT

Our code generation prompt is primarily composed of two sections: the general instruction and the
in-context example.

General Instruction The general instruction provides fundamental details, such as the task de-
scription, execution environment, and class schema. To ensure more precise code generation for
view-dependent relationships, we include additional specific guidelines. Please refer to the appendix
for the prompt.

In Context Example In-context examples can assist LLM generate more accurate re-
sponses (Brown et al.l [2020). However, fixed annotated in-context examples may not work for
all relations. On the other hand, annotating specific examples for every relation needs a lot of hu-
man effort and could lead to the model relying more on the explicit human-provided knowledge
within the examples than on the knowledge encoded in the model itself. Some relations have exhib-
ited computational similarities. For example, code for computing relation “near” and “far” may be
largely identical in computing pair-wise distances but differ only in the numerical processing. Once
a well-refined code for “near” is developed, it can serve as an in-context example for generating
responses related to “far”. By employing dynamic in-context examples, this method offers two key
benefits: 1) reduced reliance on extensive human annotation compared to manually annotated in-
context examples (ICE), and (2) enhanced efficiency and precision in generating similar relational
data when compared to settings where no ICE is available.

We prompt LLM with instruction select the relations that may be relative to

from following to construct a directed acyclic graph G to implement that. In G, each
node represents a relation, and an edge from node A to node B means that when generating code for
B, code of A is used as ICE. The entire code generation process can then follow a topological sort

order. We show the graph in[Figure 7}

2.3.4 CODE REFINEMENT

The code generation and refinement are done in many iterations. In the initial iteration, we give
the prompt in @] and relation name to LLM to generate Nqmpie responses. where Nygpmpie is a
hyperparameter. Following this unit tests in[2.3.2]are executed on all generated codes. If a code can
pass all the test cases, we use it as the final choice and stop the generation. Otherwise, we randomly
select 3 failure cases from the test suite[2.3.2]and formulate a feedback message for refinement. This
feedback specifies the expected execution outcomes and includes bounding box information from
the test suites, instructing the LLM to modify the code accordingly.

In subsequent iterations, codes having top_k highest pass rate on test cases in the last iteration are
selected for further refinement. For each code, its feedback message is appended and the LLM
generates another N1 modified version based on the old version and the feedback message.
The same testing and refinement process is applied to these new samples. After V., iterations, the
code with the highest pass rate is chosen as the final version. If multiple samples achieve the same
pass rate, we select from which is refined more times.
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Figure 3: Overview of our framework. (a): the process of code generation and refinement. We
retrieve an ICE for the first iteration and get the refined code by filtering and self refinement for many
iterations. The final version is stored in a library for other relations. (b): In testing time, features are
computed by pretrained classifiers and generated codes. They are executed on the parsed symbolic
expression for the target object.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Dataset We conduct experiments on Refer[t3D (Achlioptas et al.,[2020) dataset, which has 2 sub-
sets: Nr3D and Sr3D. Nr3D subset utterances contain human-annotated utterances and Sr3D con-
tains synthesized ones. Based on the number of same-class distractors, the dataset can be categorized
into “easy” and "hard” subsets depending on the number of same class distractors. The easy subset
has a single distractor and the hard subset has multiple. The dataset can also be split into ”view de-
pendent” and “view independent” subsets according to if there are some keywords in the utterance.
Ground truth object bounding boxes are given in Refer[t3D default test setting. So the metric is an
exact match between the predicted bounding box and the target bounding box.

Implementation Details In code generation, we set Nygympie and Njze, to 5, topy, is 3. We mainly
use gpt-40-2024-08-06 model with a temperature of 1.0 and top_p of 0.95. For a fair compar-
ison, we use the same object classification result and evaluation code as Yuan et al.| (2024).

Baselines We compare EASE with supervised approach BUTD-DETR (Jain et al.| [2022), neruo-
symbolic approaches NS3D (Hsu et al., 2023), ZSVG3D (Yuan et al., 2024) and agent based ap-
proaches Transcrib3D (Fang et al., [2024), VLMGrounder (Xu et al.).

We compare EASE with them on performance, inference cost on ReferIt3D (Achlioptas et al., 2020)
and visualize some grounding examples and features to assess the quality.

3.2 QUANTITATIVE RESULTS

ReferIt3D  As Shown in[Table 2] in settings where ground truth labels are unavailable, the overall
performance of EASE outperforms the zero shot baseline ZSVG3D (Yuan et al., 2024) and VLM-
Grounder (Xu et al.). When compared to the previous state-of-the-art supervised method, BUTD-
DETR, EASE achieves comparable performance on view dependent subset but still lags behind on
view independent subset.

To compare with Transcrib3D (Fang et al., [2024) fairly, we utilize GT labels for evaluation. In
this setting, EASE has a comparable performance on view dependent subset but the gap on view
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Table 2: Performance on Nr3D, VD, and VID stands for view-dependent and view-independent,
respectively. Performance of EASE is comparable with previous zero shot methods and surpasses
the baseline ZSVG3D by 11.4%. Meanwhile, EASE offers significant advantages in terms of time
efficiency and token costs. {: VLM-Grounder is evaluated on a subset having 250 samples. * : we
re-run ZSVG3D using gpt-4o.

Method Overall Easy Hard VD VID Time Token
BUTD-DETR (Jain et al.|[2022) 54.6 60.7 484 46.0 58.0 - -
ZSVG3D* (Yuan et al.,[2024) 39.3 455 330 382 40.0 05 305
VLM-Grounderf (Xu et al.) 48.0 552 395 458 494 60.0 8000
EASE (Ours) 50.7 587 430 456 532 21 1178
Transcrib3D (Fang et al.,[2024) 70.2 797 603 60.1 754 270 12215
EASE (Ours, w/ GT Labels) 65.7 756 562 587 69.1 2.1 1178

Table 3: Performance on Sr3D and the Nr3D subset in NS3D.

Method Overall NS3D
BUTD-DETR (Jain et al,2022) 67.0 -
NS3D (Hsu et al.,[2023) 62.7 52.6
NS3D (Hsu et al., 2023)) (w/ GT Labels) 96.9 -
Transcrib3D (Fang et al.| 2024)) (w/ GT Labels) 98.4 -
EASE (Ours) 62.1 59.9
EASE (Ours, w/ GT Labels) 95.3 -

independent subset remains significant. Nevertheless, EASE exhibits superior efficiency in terms of
both time and token usage.

We also evaluate the performance on Sr3D and the Nr3D subset proposed by NS3D (Hsu et al.,
2023). Shown in EASE’s overall performance is close to other baseline methods on Sr3D.
And on the NS3D subset, EASE surpasses the baseline NS3D by 7.3%.

Time and cost evaluation Both VLM-Grounder (Xu et al.) and Transcrib3D (Fang et al., [2024)
are agent-based methods, which result in high computational time and token usage during inference
due to multiple LLM/VLM calls. We evaluated Transcrib3D and VLM-Grounder on a randomly
selected set of 50 examples from the Nr3D dataset, with the average time and token costs during
inference displayed in the two rightmost columns of

In contrast, EASE demonstrates lower time and token costs. VLM-Grounder can require up to 60
seconds and 8000 tokens. Although Transcrib3D has a slightly shorter average inference time, it
remains significantly longer than EASE and incurs a substantial token cost of over 12,000. The
resource efficiency of EASE is comparable to ZSVG3D, which employs a similar framework and
achieves slightly lower costs due to batch prompting. Compared to agent-based methods, EASE
reduces more than 90 % inference time and token consumption.

3.3 QUALITATIVE RESULTS

Scene Visualization In we show two step-by-step grounding cases of EASE illustrating
how the final grounding results are constructed through a series of smaller, intermediate grounding
steps.

The corresponding utterance of the second row is “When facing the door, it’s the shelf above the desk
on the right.” Execution of the parsed symbolic expression can be seen as 4 steps, progressing from
left to right. Each of the 4 subfigures shows the internal grounding results and the corresponding
utterance. Objects with higher scores are highlighted in green, with lighter objects showing a better
match to the utterance.

In the leftmost subfigure, the phrase “right to the door” is grounded by computing the dot product
between the feature representing the right” spatial relation and the classification score for “door.”
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right of the door desk on the right of door above desk on door’s right target

Figure 4: Explanation and visualization of the grounding steps. Anchors (desk for the upper case
and door for the lower) are marked by red circle. We only visualize a part of objects that match
the below conditions well in green, objects of brighter color have higher scores of meeting the
condition.

The grounding result for “desk on the right of the door” is obtained by applying the Hadamard
product to the previous result and the classification score for “desk.” Through similar operations, the
entire utterance is grounded, making the process highly interpretable.

Relation constraints |[Feng et al.| (2024) propose that some spatial relations are symmetric, like
“near” or “far”, which means if object A is “near” B, B should be also “near” A. So the features

of these relations should be symmetric. Some other relations should be asymmetric like “left” or
“right”. In these cases, if a feature element is positive (indicating the presence of the relationship), its
corresponding symmetric element should be zero (indicating the absence of the reverse relationship).
add loss for these constraints during training for regularization. Even if there is not
any training or special instruction from humans on them, we observe that in our generated data, the
constraints can be ensured on relation “near”, “far”, “left” and “right” because of the deterministic
execution of code. This means the feature of ‘near” and “far” is guaranteed to be symmetric. For
features f for “left” and “right”, if f; ; > 0, f;; is guaranteed to be 0.

Error Breakdown We randomly selected 100 error cases from EASE on the Nr3D to conduct
a detailed error analysis. Results are shown in The primary failure source is related
to errors in feature computation. These errors come from flaws in codes or inaccuracies in object
classification. Another significant source of failure is the limitations of our system design. Specif-
ically, we simplify the scene representation into a list of 3D bounding boxes with predicted labels,
while omitting critical details such as object orientation, shape, color, and other visual attributes.
Furthermore, the system does not incorporate region or room-level segmentation of the scenes. Ad-
ditionally, some failure cases are linked to issues in the semantic parsing process. On the one hand,
we only have a limited set of common relations, which is insufficient for grounding utterances in
real-world scenarios. On the other hand, LLM cannot ensure the generation of accurate symbolic
expressions that align with the grounding utterance, which can result in incorrect grounding results.
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Figure 6: The learning curves of different variants. The x-axis is the generation number of the
program. The y-axis is the accuracy of the program on the test set. It is worth noting that the curves
of our full model coincide with the curves of Variant 3 in the second row (“Left”, “Above”,
and “Corner”) since Variant 3 can be regarded as the first stage of generating all programs.

3.4 ABLATION STUDIES
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for “right,” ”between,” and ’below” — where in-context examples are used to assist generation —
Variant 3 shows a significant performance gap in the early iterations compared to the full model,
highlighting the impact of in-context examples.

4 RELATED WORK

3D Visual Grounding 3D visual grounding focuses on finding an object in 3D scene based on
descriptions to appearance or location. ScanRefer (Chen et al., [2020) and ReferIt3D (Achlioptas
et al.l |2020) are 2 popular benchmarks on this task, providing rich and diverse object-utterance
pairs on ScanNet (Dai et al., |2017). Traditional approaches train a end-to-end model to work on
this task. By encoding more features on visual information (Huang et al., [2022), designing fine-
grained encoder on spatial relationship or training on large scale well-annotated data (Ziyu et al.,
2023). Recent approaches employ large multi-modal models for reducing training data, enhancing
perception and reasoning. Neural symbolic approaches (Hsu et al., [2023} [Feng et al., [2024; [Yuan
et al., 2024) use LLM to parse natural language grounding utterances into executable structured
expressions, improving data efficiency. R2G (Li et al.,[2024)) employ scene graph to modeling object
attributes and relations, It surpasses previous methods on view dependent utterances. Agent-based
approaches (Yang et al, 2024; Fang et al.| [2024)) create virtual environments where LLM can take
actions, get observations and do iterative reasoning. |[Xu et al., use VLM and images from the scene
to figure out the target object without the need for detection or segmentation modules.

LLM Programming LLM can generate executable code (Roziere et al.l 2023} [Zhu et al., [2024).
Many works use LLM’s programming ability on reasoning (Li et al. 2023a)), robotic control-
ling (Liang et al.| 2023)), reward designing (Xie et al.; Ma et al., [2023)). For high-quality and stable
code output, |Le et al.[(2022)); |Chen et al.| (2023) use the feedback from the outside environment to
fine-tuning LLLM, Ma et al.| (2023)) use RL training trajectories to select and improve functions.

Neural Symbolic Reasoning Neural symbolic reasoning methods parse natural language to sym-
bolic expression and get reasoning results by executing expressions. |L1 et al.| (2023b) provides a
neuro-symbolic interface that supports many logical reasoning and seamless integration with other
pretrained model seamlessly. (Cheng et al.[(2023) use LLM query to assist SQL execution. Mao et al.
(2019); |Hsu et al.|(2023) define domain-specific language and use neural networks to encode labels
and relations. Zero-shot visual programming (Gupta & Kembhavi, 2022 |[Yuan et al., 2024) use
Python code as the symbolic language and execute by interpreter equipped with predefined APIs.

5 CONCLUSION & LIMITATION

In this work, we propose a way to encode relations in Python programs for symbolic 3D visual
grounding and a weakly supervised framework for filtering and refining LLM synthesized codes.
We directly use knowledge distilled from LLM for relation encoding instead of human annotation
or supervised learning. The whole system is highly explainable. We demonstrate its advantages in
performance, data efficiency, and inference cost.

However, some limitations still remain. In natural language referring sentences, there are diverse
descriptions of the relation. But we constraints the domain of keywords in a prompt and pass a
minor part of spatial relation names during semantic parsing. Besides, we treat the scene as a list of
3D bounding boxes and ignore the object’s appearance, orientation, and room-level information of
the scene.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mohamed Elhoseiny, and Leonidas Guibas.
Referlt3D: Neural Listeners for Fine-grained 3D Object Identification in Real-world Scenes. In
ECCYV, pp. 422-440. Springer, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language Models are
Few-Shot Learners. NeurIPS, 33:1877-1901, 2020.

Dave Zhenyu Chen, Angel X Chang, and Matthias Niener. ScanRefer: 3D Object Localization in
RGB-D Scans using Natural Language. In ECCV, pp. 202-221. Springer, 2020.

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, et al. Binding Language Models in Sym-
bolic Languages. In ICLR, 2023.

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
NieBner. ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes. In CVPR, pp. 5828-
5839, 2017.

Jiading Fang, Xiangshan Tan, Shengjie Lin, Igor Vasiljevic, Vitor Guizilini, Hongyuan Mei, Rares
Ambrus, Gregory Shakhnarovich, and Matthew R Walter. Transcrib3d: 3d referring expression
resolution through large language models. arXiv preprint arXiv:2404.19221, 2024.

Chun Feng, Joy Hsu, Weiyu Liu, and Jiajun Wu. Naturally supervised 3d visual grounding with
language-regularized concept learners. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13269-13278, 2024.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. ArXiv, abs/2211.11559, 2022.

Joy Hsu, Jiayuan Mao, and Jiajun Wu. NS3D: Neuro-Symbolic Grounding of 3D Objects and
Relations. In CVPR, pp. 2614-2623, 2023.

Shijia Huang, Yilun Chen, Jiaya Jia, and Liwei Wang. Multi-View Transformer for 3D Visual
Grounding. In CVPR, 2022.

Ayush Jain, Nikolaos Gkanatsios, Ishita Mediratta, and Katerina Fragkiadaki. Bottom Up Top Down
Detection Transformers for Language Grounding in Images and Point Clouds. In ECCV, pp. 417—
433. Springer, 2022.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314-21328, 2022.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey
Levine, Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-
augmented code emulator. arXiv preprint arXiv:2312.04474, 2023a.

Yixuan Li, Zan Wang, and Wei Liang. R2g: Reasoning to ground in 3d scenes. arXiv preprint
arXiv:2408.13499, 2024.

Ziyang Li, Jiani Huang, and Mayur Naik. Scallop: A language for neurosymbolic programming.
Proceedings of the ACM on Programming Languages, 7(PLDI):1463-1487, 2023b.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and

Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493-9500. IEEE, 2023.

11



Under review as a conference paper at ICLR 2025

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv:2310.12931, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun Wu. The Neuro-
Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervi-
sion. In ICLR, 2019.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is self-repair a silver bullet for code generation? In The Twelfth International Conference
on Learning Representations, 2023.

OpenAl. Hello GPT-40 . https://openai.com/index/hello—gpt-40/}, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PMLR, 2021.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang,
and Tao Yu. Text2reward: Reward shaping with language models for reinforcement learning. In
The Twelfth International Conference on Learning Representations.

Runsen Xu, Zhiwei Huang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Vlm-grounder:
A vlm agent for zero-shot 3d visual grounding. In 8th Annual Conference on Robot Learning.

Jianing Yang, Xuweiyi Chen, Shengyi Qian, Nikhil Madaan, Madhavan Iyengar, David F Fouhey,
and Joyce Chai. Llm-grounder: Open-vocabulary 3d visual grounding with large language model
as an agent. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp.
7694-7701. IEEE, 2024.

Zhihao Yuan, Jinke Ren, Chun-Mei Feng, Hengshuang Zhao, Shuguang Cui, and Zhen Li. Vi-
sual programming for zero-shot open-vocabulary 3d visual grounding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20623-20633, 2024.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

Zhu Ziyu, Ma Xiaojian, Chen Yixin, Deng Zhidong, Huang Siyuan, and Li Qing. 3d-vista: Pre-
trained transformer for 3d vision and text alignment. In /CCV, 2023.

12


https://openai.com/index/hello-gpt-4o/

Under review as a conference paper at ICLR 2025

A  PROMPTS

A.1 SEMANTIC PARSING

In this section, we show the prompt for semantic parsing. The relation set in the prompt is slightly
larger than that i and we create a lookup table for replace relations in parsed expressions
with relations in [Table ||

Listing 1: prompt for semantic parsing

You are a skilled assistant with expertise in semantic parsing.

## Task Overview

I will provide you with a sentence that describes the location of an object within a scene.
Your task is to convert this description into a JSON format that captures the essential
details of the object.

### The JSON object should include:

— *xx"category"xx: string, representing the object’s category.

- *xx"relations"xx: a list of relationships between the object and other elements in the scene.
Each relationship should be represented as a dictionary with the following fields:

- *x"relation_name"x*: string, specifying the type of relationship. The relationship can
be:

— xUnaryx: choose from [’corner’, ’'on the floor’, ’against wall’, ’smaller’, ’larger’,
"taller’, ’lower’, ’'within’].
- xBinary*: choose from [’above’, ’below’, ’'beside’, ’close’, ’'far’, ’'left’, ’'right’,
"front’, ’"behind’, ’'across’].
- xTernary+: choose from [’between’, ’center’, 'middle’].
Only consider x*simplexx and x+xgeneralxx relations, donot make complex ones like "left
of a blue box", "with dark appearance", "facing the window", etc. You should
handle these by logical structures.
If the relationship is not mentioned in the 1list, you should choose the most
appropriate relation above. x*Never*x create a new relation name!

— *xx"objects"x*x: a list of objects involved in the relationship. Every object in the list
should have the same JSON structure. The list structure depends on the relationship
type:

— xUnaryx: The list should be empty.
— *xBinary*: The list should contain one obiject.
— xTernary*: The list should contain two objects.

- x*"negative"xx: boolean, indicating if the object is explicitly described as not having
this relationship. Set this to True if applicable.

## Guidelines:
- First, generate a plan outlining the object’s appearance and relationships based on the
sentence. Then, use this plan to create the JSON representation.

## Examples:

### Example 1:

*xSentencex*: The correct whiteboard is the one on a table.

**Plan*x: "Correct" does not describe appearance. The appearances are "whiteboard" and "table
", and the "whiteboard" is on the "table".

*xParsed JSONx*=*:

Vo

json
{
"category": "whiteboard",
"relations": [
{
"relation_name": "above"
"objects": [
{
"category": "table",
"relations": []

2 more examples.

Listing 2: prompt for generation for “right”

You are an expert on spatial relation analysis and code generation.

# Introduction to task
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Your task is to write a Python class which can be used to compute the metric value of the
existence of some spatial relationship between two objects in a 3D scene given their
positions and sizes. Higher the metric value, higher the probability of the two objects
have that relation.

In the class, you will be given the positions and sizes of the objects in the scene. The class
should have a method ‘forward' which returns a tensor of shape (N, N), where element (i,
j) 1is the metric value of the relation between object i and object j.

In the 3D scene, x-y plane is the horizontal plane, z-axis is the vertical axis.
# Introduction to programming environment

Here is an example class for ‘Left‘ relation. The class you write should have the same
structure as the example class.

‘Y '‘python
class Left:
#
Vaa
Make sure all tensors are placed on ‘DEVICE', which has been defined in the environment.
The code output should be formatted as a python code string: "‘‘‘python ... *''".

# Some helpful tips

(1) You should only use the given variables, and you should not introduce new variables.
(2) The metric value should be sensitive to the input arguments, which means if the arguments
change a little, the value should change a lot.
(3) The metric value should be 0 if the two objects don’t have that relation, never set
negative values!
(4) Never treat an object as its center point, you must consider the size of the bounding box,
just like the example code. Never set an threshold to determine the relation. The value
of the relation should be continuous and sparse.
(5) You should imagine that you are at position (0, 0) to determine the relative positions.
(6) Remember you are *xin*xx the scene and look around, not look from the top. So never use the
same way as 2D environment.

Propose your method first and then generate the code. Think step by step.
Don’t use any axis or specific direction as the reference direction or right direction, your
method should work for any perspectives.

Listing 3: an example for feedback message

We have run your code on some cases. Here are 3 failure cases:
# Case 1.

Metric value of object tensor ([ 0.3992, -0.5619, 0.8831, 0.3921, 0.347¢6, 0.1059], device=’
mps:0’) "above" object tensor([-0.0432, -0.6965, 0.8483, 0.6526, 0.4943, 0.3061]
device='mps:0’) should be larger than 0. Metric value of object tensor([ 0.3992, -0.5619,

0.8831, 0.3921, 0.347e6, 0.1059], device="mps:0’) "above" object tensor([-0.0432,
-0.6965, 0.8483, 0.6526, 0.4943, 0.3061], device='mps:0’) should be higher than the
metric value of object tensor([0.5338, 1.1607, 1.1160, 0.2121, 0.3323, 0.8192], device=’
mps:0’) "above" object tensor([-0.0432, -0.6965, 0.8483, 0.6526, 0.4943, 0.3061],
device="mps:0’). # Case 2.

Metric value of object tensor([-0.3941, 1.5280, 0.4675, 0.5132, 0.3938, 0.1191], device=’
mps:0’) "above" object tensor([-0.4468, 2.1906, 0.5153, 0.9604, 2.0905, 0.9733],
device="mps:0’) should be larger than 0. Metric value of object tensor([-0.3941, 1.5280,

0.4675, 0.5132, 0.3938, 0.1191], device="mps:0’) "above" object tensor([-0.4468,
2.1906, 0.5153, 0.9604, 2.0905, 0.9733], device="mps:0’) should be higher than the
metric value of object tensor([-0.0855, 3.4164, 0.242¢6, 0.4462, 0.5911, 0.14757,
device="mps:0’) "above" object tensor([-0.4468, 2.1906, 0.5153, 0.9604, 2.0905,
0.9733], device='mps:0’). # Case 3.

Metric value of object tensor([-2.1831, 2.9738, 1.099e6, 0.3647, 0.2885, 0.5714]1, device=’
mps:0’) "above" object tensor([-1.9380, 2.3704, 0.5013, 0.7656, 1.2784, 0.8153],
device="mps:0’) should be larger than 0. Metric value of object tensor([-2.1831, 2.9738,

1.0996, 0.3647, 0.2885, 0.5714], device="mps:0’) "above" object tensor([-1.9380,
2.3704, 0.5013, 0.7656, 1.2784, 0.8153], device="mps:0’) should be higher than the
metric value of object tensor([1.4070, 3.5247, 0.7835, 0.3882, 0.3539, 0.5908], device=’'
mps:0’) "above" object tensor([-1.9380, 2.3704, 0.5013, 0.7656, 1.2784, 0.8153],
device="mps:0").

The first three are the center of the object, the last three are the size of the object. x-y
is the horizontal plane and z is the vertical axis.

After test, the pass rate of your code is too low. So you MUST check carefully where the
problem is. If you can’t find the problem, you should

come up with a new algorithm and re-write your code.
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Figure 7: The graph for in context example selection.

Don’t forget the following tips:

(1) You should imagine that you are at position (0, 0, 0) to determine the relative positions.
(2) Remember you are x*inx* the scene and look around, not look from the top. So never use the
same way as 2D environment.
(3) Don’t use any of x—-axis or y-axis as your perspective, Your method should work for every
perspective.
(4) The horizontal plane is x-y plane.

Please carefully analyze each of the failure case and explain why your code failed to pass it.
The reason can be incorrect test case might or your code might not be able to handle

some specific cases.

After the analysis of all
But **neverxx modify

Some possible improvement
1. Use a new algorithm to

Please write your analysis for each of the failure cases.

cases, you should write the improved code based on your analysis.
on the class methods and function parameters.

ways:
calculate the metric value rather than just modifying the existing

code.

2. Consider carefully what other factors might be relevant to the spatial relationship between
two objects and use them in your calculation.

3. Check the correctness of the input data and the calculation process.

A.2 SELF-REFLECTION PROMPT

We show self-reflection prompt used in variant2, [subsection 3.4 here.

Listing 4: prompt for self-reflection

Reflect on the code above, think carefully how to make it better. For example,
ignore some factors that may affect the result or use a wrong method.
Then you must re-write the code in the same format. Remeber all the tips!

check if you

B EXECUTION DETAILS
In this section, we introduce the detailed algorithm of our execution.

relation lookup table Some relations are not in the pre-defined set in[2.3.3] but they have similar
meaning with some relations in the set. So we build an lookup table from relation names in the set
to parsed relation names for relation translation.

Listing 5: lookup table

"near": ["near", "beside", "next to", "within", "in", "inside", "close", "closer", "closest",
"surrounded by", "around", "facing", "with", "attached"],

"far": ["far", "farthest", "opposite", "furthest", "cross", "across"],

"corner": ["corner"]

"against wall": ["against wall"],

"above": ["above", "on top", "on the top", "on"]

"below": ["below", "under", "beneath"],

"tall": ["higher", "taller", "highest", "upper"],

"low": ["lower"],

"on the floor": ["on the floor"]

"small": ["smaller", "shorter"],

"large": ["larger", "bigger", "largest", "longer"]
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y W W

stove beside the stove close to fridge target

below sink on the right of sink right below sink target

Figure 8: More visualization results.

"left": ["left"],

"right": ["right"],

"front": ["front"],

"behind": ["behind"],

"between": ["middle", "center", "between"]

category feature [Yuan et al] (2024) provides the classified label for each objects. To convert
labels to an feature feacgory € RY, we calculate the text similarity between category and all

labels sim € RY using CLIP(Radford et al., 2021). Then we use feyegory = 50ftmaz (100 x sim)
as the category feature.

negative condition If the field negative is true, the objects having higher value in the feature
should be degraded. In the execution, we use fnee = maz(f) — f to implement that.

C EXTRA EXPERIMENT RESULTS

C.1 VISUALIZATION OF SCENES

In this section, we visualize 2 more grounding examples in [Figure 8] The first row shows the
process of grounding “the kitchen cabinet close to fridge and beside the stove”; the second row is
the grounding of “trash can on right below the sink”.

C.2 CONDITION LEVEL GROUNDING

Our parsed symbolic expressions actually contain one or more spatial conditions of the target object.
However, there may be some redundant condition in the utterance. Take the first row of for
example, because all monitors “on the floor” are “under the desk”, so one of these two conditions
are redundant, which means even if the method can not process one condition of them, it can still
give the correct grounding result. So we test EASE on utterances containing single condition for a
better understanding of its ability.

We categorize objects of same class to groups. With in a group, we collect the conditions for
each object from parsed expressions. Each condition is a JSON format like {{"relation":
., "objects": [...]}} and can be executed seamlessly to find best matching object.
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Figure 9: Corresponding relation between the unit test pass rate and number of correct examples on
test set.

We calculate the average precision and recall for all condition level matches. EASE has 67.5%
average precision and 66.9% average recall.

C.3 EFFECT OF UNIT TESTS

To demonstrate the effect of filtering generated code by its accuracy on training cases, we choose 6
relations and plot the pass rate on training cases on the x-axis and the number of passed examples in
all relative test examples. For some easy relations like “near” or “far”, GPT-40 can pass all the tests
at once, so we only show the cases having multiple refinement steps.

The result is shown in For 5 of 6 relations (except relation behind), the code having
the highest performance on the training cases can have the top-tier performance on the test set. As
for relation behind, using the best code on training cases causes about 15 cases loss on the test
case compared to using about 70 percent accurate code. But it’s still better than using most of the
codes whose accuracy is less than 0.5. This might be caused by the bias of training data collection.
But in general, choosing codes according to performance on the training set is useful for overall
performance on the test set.
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