
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EVOLVING SYMBOLIC 3D VISUAL GROUNDER WITH
WEAKLY SUPERVISED REFLECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding the behavior of an end-to-end 3D visual grounder is challenging,
especially when the grounder makes an unexpected prediction. Despite the llm-
agent-based grounders performing step-by-step interpretable reasoning, the cost
for evaluation at scale is prohibitive. To address the challenges, in this work, we
propose a novel fully interpretable symbolic framework for 3D visual grounding,
namely Evolvable Symbolic Visual Grounder (EASE), with much less inference
cost and superior performance. Given a symbolic expression of a grounding de-
scription translated by an LLM, EASE calculates the feature of each concept uti-
lizing a set of explicit programs in Python learned from a tiny subset of the training
data. To learn this program library, we introduce a learning paradigm that continu-
ously optimizes the programs on the training dataset by an LLM-based optimizer.
We demonstrate that our paradigm is scalable when more data is involved. Ex-
periments on ReferIt3D show EASE achieves 50.7% accuracy on Nr3D, which
surpasses most training-free methods and has considerable advantages in infer-
ence time and cost. On Sr3D, EASE also has comparable overall performance
with these approaches. Moreover, we perform extensive experiments to analyze
the interpretability and feature quality and reveal the potential for reasoning and
condition level grounding.

55

50

40

60s

Performance

Token efficiency

Time efficiency
30s 5s

1000

8000

10000

Figure 1: Comparison of EASE with the two previous methods. With the symbolic framework and
evolutionary self-refinement, EASE excels in both performance and inference efficiency.

1 INTRODUCTION

The 3D visual grounding (3DVG) task aims to ground an object in a 3D scene based on a natural
language utterance. There have been a lot of supervised methods for 3DVG(Achlioptas et al., 2020;
Jain et al., 2022; Huang et al., 2022). By modeling various object attributes and spatial relations,
and leveraging large-scale training data with high-quality annotations, these methods achieve high
performances on 3DVG. These approaches are trained to have good performance in object detec-
tion, classification, attribute, and relation recognition. However, annotation of training data can be

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

×⟮ ⟯⋅ =

Find the desk
further from

window.

Ours

desk1, location:
(x1,y1,z1)
desk2, location:
(x2,y2,z2)
window1,
location: …

Neural SymbolicAgent-Based

reason

desk1 is further.

Detector

Prompt

Instruction

Find the desk
further from

window.

Scene Instruction

LLMparseDetector

Pointcloud &
BBox

…

Symbolic
Expression

far (
 target=’desk’,
 anchor=’window’
)

Network

desk1 is further.

gradient
loss

training
data

Find the desk
further from

window.

Instruction

LLMparseDetector

Symbolic
Expression

far (
 target=’desk’,
 anchor=’window’
)

Pointcloud &
BBox

×⟮ ⟯⋅ =

desk1 is further.

…

Function
Library

Python
Interpreter

samples

Critic

up
da

te

Inference

Learning

sa
m

pl
e

 code batch

 code base
⟳

Python
Interpreter

LLMgenerate

code
revision

evolve

env

act.

obs.

Scene Scene

Figure 2: EASE uses LLM and training data to generate and refine the code for representing rela-
tions. During the evaluation, the executor can explicitly infer the target object.

expensive, and the limited vocabularies in the training data may limit the generalization and open
vocabulary application in the real world.

Neuro-symbolic approaches (Hsu et al., 2023; Yuan et al., 2024) separate the processes of rela-
tion encoding and inference. In these methods, natural language descriptions are transformed into
symbolic representations containing relevant categories and relationships, which are then encoded
through a series of modules. The resulting expressions are executed using features to achieve
grounding. However, these encoders either operate implicitly or rely on human annotation.

Subsequently, the expression is executed using features for grounding results. However, the encoders
either are implicit(Hsu et al., 2023) or rely on human annotation(Yuan et al., 2024).

Recently, large language models (LLMs) have demonstrated significant capabilities in reasoning and
generating executable code. Approaches that utilize LLMs and vision-language models (VLMs)
simulate human-like grounding processes through multi-turn reasoning. These methods, leveraging
the rich knowledge within pretrained models, are often training-free and support open-vocabulary
applications. However, the requirement for multiple inferences to evaluate a single example leads to
high computational costs and inefficiencies.

To provide explainable relation encoding and enable faster, more cost-effective inference, we intro-
duce EASE, an evolvable 3D visual grounder that employs a symbolic framework and utilizes LLM
generated Python codes as explainable encoders and pre-trained classifier to compute both relation
and category features.

To improve the quality of generated codes, we designed a system that can automatically generate unit
tests and give feedback based on test results. Then LLM can improve it through self-refine (Madaan
et al., 2024). Considering some relations are associated, we use dynamic in-context examples re-
trieved from codes that have been generated for the generation of new relations. The distinction
between EASE and previous approaches is illustrated in Figure 2. Our contributions are summa-
rized as follows:

• We introduce EASE, a symbolic 3DVG approach employing LLM to generate explicit re-
lation encoders by self-refinement without any human knowledge.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• By evaluating on 3D visual grounding experiments, EASE achieves 50.7% accuracy on
Nr3D, surpassing previous training-free methods and having considerable advantages on
time and token efficiency.

• We show the interpretability of both explicit relation encoders and step-by-step grounding.
Besides, the features have certain properties without any and they are provable because of
our interpretability.

2 METHOD

2.1 PROBLEM STATEMENT

3D visual grounding tasks involve a scene, denoted as S, represented by an RGB-colored point
cloud containing C points, where S ∈ RC×6. Accompanying this is an utterance U that describes
an object within the scene S. The objective is to identify the location of the target object T in the
form of a 3D bounding box. In the ReferIt3D dataset (Achlioptas et al., 2020), bounding boxes for
all objects are provided, making the visual grounding process a task of matching these bounding
boxes to the scene S. In contrast, the ScanRefer dataset (Chen et al., 2020) provides only the scene
point cloud, requiring additional detection or segmentation modules to accomplish the grounding
task.

2.2 GROUNDING PIPELINE

We adhere to the previous SOTA neuro-symbolic framework for 3DVG (Hsu et al., 2023; Feng
et al., 2024). The grounding pipeline is composed of three main components: the semantic parser
that converts U into a structured expression E ; encoders to compute the features for descriptive terms
such as near and small within E . Subsequently, an executor performs logical reasoning over E
and computes matching scores between S and each object.

Semantic parser. We employ GPT-4o (OpenAI, 2024) as the semantic parser and structure the
expressions in JSON format, which consists of the following components:

• category: A string representing the category of the target object referenced in U .

• relations: A list defining the spatial constraints relative to the target object. Each entry in
this list includes:
relation name, a string specifying the spatial relation mentioned in U , such as “near” or
“above.”; objects, a list of objects that share the specified relation with the target object.
Each element is represented as a separate JSON object; negative, A boolean indicating that
if set to true, the target object should not exhibit this relation.

For example, the phrase “chair near the table and under a shelf” can be represented as:

{"category": "chair", "relations": [{"relation_name": "near",
"objects": [{"category": "table"}]}, "relation_name": "below",
"objects": [{"category": "shelf"}]}]}

Human-annotated natural language expressions exhibit diverse descriptions of relations, leading to
a long-tail distribution of relation name in parsed expressions. To address this issue, we pre-define
a set of common relation names and prompt LLM to select from them for E instead of using the
original word from U . Based on the number of associated objects, the relations are categorized into
unary, binary, and ternary (Feng et al., 2024). Table 1 presents our predefined set of relations
along with their classifications. For simplicity, attributes that describe properties of a single object,
such as “large” or “at the corner,” are treated as special types of relations.

Relation encoder. Neuro-symbolic approaches always use neural network-based encoders to com-
pute features corresponding to category names and relation names in E for grounding. Unlike previ-
ous neuro-symbolic approaches, our relation encoder is a Python class generated by LLM. It directly
utilizes the scene’s point cloud data, performing computations in a transparent and interpretable
manner. Additionally, object classification is conducted using a pre-trained point cloud classifier.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Classification of all relations.
Classification Relations

unary large, small, high, low, on the floor, against the wall, at the corner
binary near, far, above, below, left, right, front, behind
ternary between

The feature of categories and unary relations, denoted as funary ∈ RN , can be seen as the matching
score between objects and their respective categories or relations, where N is the number of objects
in the scene. Features of binary relations fbinary ∈ RN×N represent the likelihood of binary rela-
tions existing between all possible pairs of objects. For instance, the element fneari,j quantifies the
probability that the i-th object is “near” the j-th object. The structure of ternary features follows a
similar pattern.

Executor. The executor use E and associated features to identify T . Since elements in the features
represent the probabilities or corresponding relation or category, the logical conjunction in E can be
represented through the product operation. For a symbolic expression E , the classification score ccls
of its category is calculated initially by a classifier. Subsequently, the executor processes each
relation individually by referring to the relations field. For every relation, the relation feature
frelation is computed, and the grounding scores scoresub ∈ RN for the corresponding objects can
be recursively calculated. Since the number of associated objects is always less than the feature
dimension by one, the grounding result of the individual relation can be determined through a dot
product between feature and grounding scores. Once all grounding results have been computed, the
final score score ∈ RN is obtained by performing an element-wise (Hadamard) product between ccls
and all scorerelation. The target object’s index is then determined by applying the argmax operation
to the final score.

2.3 RELATION ENCODER

The sizes and positions of objects in 3D scenes are mathematically related to specific relations.
For example, “near” is related to the distance between objects, and “large” is related to the volume
of an object. In EASE, we represent each relationship in a modular format using Python classes.
Each class contains a highly interpretable computing process. These classes are generated by LLM
through generation and self-refinement (Madaan et al., 2024) on a little scale of data from the train-
ing set. Previous works Yuan et al. (2024); Fang et al. (2024) also employ functions for relation
computation. However, a key distinction to EASE is that it eliminates the need for human anno-
tations or specific prompts—either at the code or text level—thereby reducing reliance on human
knowledge. 2.3.1 outlines the overarching structure of our classes, while the data collection process
is detailed in 2.3.2. In 2.3.4, we describe the procedures for generating and refining the classes. The
overall framework is depicted in Figure 3.

2.3.1 CLASS STRUCTURE

For each relation, we define a corresponding Python class. The class is initialized with the point
cloud data of the scene, represented as a PyTorch tensor, and has two primary methods. One is
init param, which is used to compute all parameters for derive features such as the distances

between pairs of objects in the case of the “near” class. The other is forward executes numerical
computations, including operations such as inversion and exponentiation, and ultimately returns the
computed feature.

2.3.2 UNIT TEST

LLMs may not always generate a perfect code within one attempt(Olausson et al., 2023). Therefore,
we incorporate relation-specific data from the training set to enhance both accuracy and quality,
enabling the LLM to refine its code based on these data samples.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The symbolic framework facilitates the collection of this data. For each relation, we use the heuris-
tics method to filter the training set data based on the parsed expressions, excluding samples with
simple structures. These data typically include only object categories and relationship labels, lacking
more complex logical constructs. The data scale for each relation is small (less than 100).

This approach allows the use of straightforward numerical relationships for testing. We write a test
suite to compute the relation feature using generated code and compare the corresponding value of
the target object with that of distractors from the same class. The code passes the test case if the
target object’s corresponding value is the highest. The test suite also provides detailed feedback on
failed cases. For example, in the case of the relation “small”, the target object, being smaller, should
have a larger corresponding feature value compared to distractors. If a distractor exhibits a larger
value, this test case fails, and bounding box information of both the distractor and target object will
be given for the feedback message in 2.3.4.

2.3.3 PROMPT

Our code generation prompt is primarily composed of two sections: the general instruction and the
in-context example.

General Instruction The general instruction provides fundamental details, such as the task de-
scription, execution environment, and class schema. To ensure more precise code generation for
view-dependent relationships, we include additional specific guidelines. Please refer to the appendix
for the prompt.

In Context Example In-context examples can assist LLM generate more accurate re-
sponses (Brown et al., 2020). However, fixed annotated in-context examples may not work for
all relations. On the other hand, annotating specific examples for every relation needs a lot of hu-
man effort and could lead to the model relying more on the explicit human-provided knowledge
within the examples than on the knowledge encoded in the model itself. Some relations have exhib-
ited computational similarities. For example, code for computing relation “near” and “far” may be
largely identical in computing pair-wise distances but differ only in the numerical processing. Once
a well-refined code for “near” is developed, it can serve as an in-context example for generating
responses related to “far”. By employing dynamic in-context examples, this method offers two key
benefits: 1) reduced reliance on extensive human annotation compared to manually annotated in-
context examples (ICE), and (2) enhanced efficiency and precision in generating similar relational
data when compared to settings where no ICE is available.

We prompt LLM with instruction select the relations that may be relative to
... from following to construct a directed acyclic graph G to implement that. In G, each
node represents a relation, and an edge from node A to node B means that when generating code for
B, code of A is used as ICE. The entire code generation process can then follow a topological sort
order. We show the graph in Figure 7.

2.3.4 CODE REFINEMENT

The code generation and refinement are done in many iterations. In the initial iteration, we give
the prompt in 2.3.3 and relation name to LLM to generate Nsample responses. where Nsample is a
hyperparameter. Following this unit tests in 2.3.2 are executed on all generated codes. If a code can
pass all the test cases, we use it as the final choice and stop the generation. Otherwise, we randomly
select 3 failure cases from the test suite 2.3.2 and formulate a feedback message for refinement. This
feedback specifies the expected execution outcomes and includes bounding box information from
the test suites, instructing the LLM to modify the code accordingly.

In subsequent iterations, codes having top k highest pass rate on test cases in the last iteration are
selected for further refinement. For each code, its feedback message is appended and the LLM
generates another Nsample modified version based on the old version and the feedback message.
The same testing and refinement process is applied to these new samples. After Niter iterations, the
code with the highest pass rate is chosen as the final version. If multiple samples achieve the same
pass rate, we select from which is refined more times.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Overview of our framework. (a): the process of code generation and refinement. We
retrieve an ICE for the first iteration and get the refined code by filtering and self refinement for many
iterations. The final version is stored in a library for other relations. (b): In testing time, features are
computed by pretrained classifiers and generated codes. They are executed on the parsed symbolic
expression for the target object.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Dataset We conduct experiments on ReferIt3D (Achlioptas et al., 2020) dataset, which has 2 sub-
sets: Nr3D and Sr3D. Nr3D subset utterances contain human-annotated utterances and Sr3D con-
tains synthesized ones. Based on the number of same-class distractors, the dataset can be categorized
into ”easy” and ”hard” subsets depending on the number of same class distractors. The easy subset
has a single distractor and the hard subset has multiple. The dataset can also be split into ”view de-
pendent” and ”view independent” subsets according to if there are some keywords in the utterance.
Ground truth object bounding boxes are given in ReferIt3D default test setting. So the metric is an
exact match between the predicted bounding box and the target bounding box.

Implementation Details In code generation, we set Nsample and Niter to 5, topk is 3. We mainly
use gpt-4o-2024-08-06 model with a temperature of 1.0 and top p of 0.95. For a fair compar-
ison, we use the same object classification result and evaluation code as Yuan et al. (2024).

Baselines We compare EASE with supervised approach BUTD-DETR (Jain et al., 2022), neruo-
symbolic approaches NS3D (Hsu et al., 2023), ZSVG3D (Yuan et al., 2024) and agent based ap-
proaches Transcrib3D (Fang et al., 2024), VLMGrounder (Xu et al.).

We compare EASE with them on performance, inference cost on ReferIt3D (Achlioptas et al., 2020)
and visualize some grounding examples and features to assess the quality.

3.2 QUANTITATIVE RESULTS

ReferIt3D As Shown in Table 2, in settings where ground truth labels are unavailable, the overall
performance of EASE outperforms the zero shot baseline ZSVG3D (Yuan et al., 2024) and VLM-
Grounder (Xu et al.). When compared to the previous state-of-the-art supervised method, BUTD-
DETR, EASE achieves comparable performance on view dependent subset but still lags behind on
view independent subset.

To compare with Transcrib3D (Fang et al., 2024) fairly, we utilize GT labels for evaluation. In
this setting, EASE has a comparable performance on view dependent subset but the gap on view

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Performance on Nr3D, VD, and VID stands for view-dependent and view-independent,
respectively. Performance of EASE is comparable with previous zero shot methods and surpasses
the baseline ZSVG3D by 11.4%. Meanwhile, EASE offers significant advantages in terms of time
efficiency and token costs. †: VLM-Grounder is evaluated on a subset having 250 samples. * : we
re-run ZSVG3D using gpt-4o.

Method Overall Easy Hard VD VID Time Token
BUTD-DETR (Jain et al., 2022) 54.6 60.7 48.4 46.0 58.0 - -
ZSVG3D∗ (Yuan et al., 2024) 39.3 45.5 33.0 38.2 40.0 0.5 305
VLM-Grounder† (Xu et al.) 48.0 55.2 39.5 45.8 49.4 60.0 8000
EASE (Ours) 50.7 58.7 43.0 45.6 53.2 2.1 1178
Transcrib3D (Fang et al., 2024) 70.2 79.7 60.3 60.1 75.4 27.0 12215
EASE (Ours, w/ GT Labels) 65.7 75.6 56.2 58.7 69.1 2.1 1178

Table 3: Performance on Sr3D and the Nr3D subset in NS3D.
Method Overall NS3D
BUTD-DETR (Jain et al., 2022) 67.0 -
NS3D (Hsu et al., 2023) 62.7 52.6
NS3D (Hsu et al., 2023) (w/ GT Labels) 96.9 -
Transcrib3D (Fang et al., 2024) (w/ GT Labels) 98.4 -
EASE (Ours) 62.1 59.9
EASE (Ours, w/ GT Labels) 95.3 -

independent subset remains significant. Nevertheless, EASE exhibits superior efficiency in terms of
both time and token usage.

We also evaluate the performance on Sr3D and the Nr3D subset proposed by NS3D (Hsu et al.,
2023). Shown in Table 3, EASE’s overall performance is close to other baseline methods on Sr3D.
And on the NS3D subset, EASE surpasses the baseline NS3D by 7.3%.

Time and cost evaluation Both VLM-Grounder (Xu et al.) and Transcrib3D (Fang et al., 2024)
are agent-based methods, which result in high computational time and token usage during inference
due to multiple LLM/VLM calls. We evaluated Transcrib3D and VLM-Grounder on a randomly
selected set of 50 examples from the Nr3D dataset, with the average time and token costs during
inference displayed in the two rightmost columns of Table 2.

In contrast, EASE demonstrates lower time and token costs. VLM-Grounder can require up to 60
seconds and 8000 tokens. Although Transcrib3D has a slightly shorter average inference time, it
remains significantly longer than EASE and incurs a substantial token cost of over 12,000. The
resource efficiency of EASE is comparable to ZSVG3D, which employs a similar framework and
achieves slightly lower costs due to batch prompting. Compared to agent-based methods, EASE
reduces more than 90 % inference time and token consumption.

3.3 QUALITATIVE RESULTS

Scene Visualization In Figure 4, we show two step-by-step grounding cases of EASE illustrating
how the final grounding results are constructed through a series of smaller, intermediate grounding
steps.

The corresponding utterance of the second row is “When facing the door, it’s the shelf above the desk
on the right.” Execution of the parsed symbolic expression can be seen as 4 steps, progressing from
left to right. Each of the 4 subfigures shows the internal grounding results and the corresponding
utterance. Objects with higher scores are highlighted in green, with lighter objects showing a better
match to the utterance.

In the leftmost subfigure, the phrase ”right to the door” is grounded by computing the dot product
between the feature representing the ”right” spatial relation and the classification score for ”door.”

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

below the desk monitor on the floor monitor on the left target

right of the door desk on the right of door above desk on door’s right target

Figure 4: Explanation and visualization of the grounding steps. Anchors (desk for the upper case
and door for the lower) are marked by red circle. We only visualize a part of objects that match
the below conditions well in green, objects of brighter color have higher scores of meeting the
condition.

The grounding result for ”desk on the right of the door” is obtained by applying the Hadamard
product to the previous result and the classification score for ”desk.” Through similar operations, the
entire utterance is grounded, making the process highly interpretable.

Relation constraints Feng et al. (2024) propose that some spatial relations are symmetric, like
“near” or “far”, which means if object A is “near” B, B should be also “near” A. So the features
of these relations should be symmetric. Some other relations should be asymmetric like “left” or
“right”. In these cases, if a feature element is positive (indicating the presence of the relationship), its
corresponding symmetric element should be zero (indicating the absence of the reverse relationship).
Feng et al. (2024) add loss for these constraints during training for regularization. Even if there is not
any training or special instruction from humans on them, we observe that in our generated data, the
constraints can be ensured on relation “near”, “far”, “left” and “right” because of the deterministic
execution of code. This means the feature of ‘near” and “far” is guaranteed to be symmetric. For
features f for “left” and “right”, if fi,j > 0, fj,i is guaranteed to be 0.

Error Breakdown We randomly selected 100 error cases from EASE on the Nr3D to conduct
a detailed error analysis. Results are shown in section 3.3. The primary failure source is related
to errors in feature computation. These errors come from flaws in codes or inaccuracies in object
classification. Another significant source of failure is the limitations of our system design. Specif-
ically, we simplify the scene representation into a list of 3D bounding boxes with predicted labels,
while omitting critical details such as object orientation, shape, color, and other visual attributes.
Furthermore, the system does not incorporate region or room-level segmentation of the scenes. Ad-
ditionally, some failure cases are linked to issues in the semantic parsing process. On the one hand,
we only have a limited set of common relations, which is insufficient for grounding utterances in
real-world scenarios. On the other hand, LLM cannot ensure the generation of accurate symbolic
expressions that align with the grounding utterance, which can result in incorrect grounding results.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

generation generation generation

ac
cu
ra
cy

ac
cu
ra
cy

Figure 6: The learning curves of different variants. The x-axis is the generation number of the
program. The y-axis is the accuracy of the program on the test set. It is worth noting that the curves
of our full model coincide with the curves of Variant 3 in the second row (“Left”, “Above”,
and “Corner”) since Variant 3 can be regarded as the first stage of generating all programs.

3.4 ABLATION STUDIES

wrong expression
19%

execution error
44%

system limitation
37% lack of visual

information
27%

lack of
orientation

4%

lack of region
6%

wrong classifications
24%

error of code
20%

Figure 5: Error breakdown result.

In this section, we conduct an ablation study to in-
vestigate the impact of various components during
the code generation process, evaluating three differ-
ent variants. In all three variants, no ICE2.3.3 is pro-
vided. 1) Direct Code Generation: In this variant,
we generate the code by prompting the LLM with
the prompt for initial iteration, and sample multiple
codes. The code with the highest pass rate on unit
tests is selected. 2) General Refinement: In this vari-
ant, we use the same prompt as variant 1 and replace
the feedback message in 2.3.4 with a general refine-
ment instruction. Please refer to the appendix for
the details. 3) In-context Example Ablation: In this
variant, we only ablate the in-context examples. For
the relations without in-context examples in the main
experiment, variant 3 is identical to the first stage of
our full model, so we only plot variants 1 and 2 for
“left”, “above”, and “corner”. For relations “right”,
“below” and “between”, we conduct experiment on
all 3 variants. To control for the impact of the first iteration, we use the same responses in iteration
0 across variant 2 and variant 3.

Figure 6 shows the results of the ablation study, different variants are represented by lines of dif-
ferent colors. The horizontal axis represents the number of iterations, after an iteration ends, we
choose a code based on their unit test pass rates and then evaluate it on the test set. The vertical
axis shows the number of correctly solved test examples associated with the relation. We normalize
them by dividing them by the maximum value. We can see that random sampling (Variant 1) shows
comparable performance to the full model only for the ”corner” and ”between” relations. In Vari-
ant 2, which uses simple self-reflection, there is noticeable performance improvement across most
relations except ”corner.” This variant achieves performance on ”above” and ”corner” close to that
of the full model, as these relations are easier to generate. However, it struggles with the more com-
plex relations. Variant 3, which incorporates feedback messages, improves upon the performance
of Variant 2. For all relations except ”right”, it achieves results similar to the full model. However,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

for ”right,” ”between,” and ”below” — where in-context examples are used to assist generation —
Variant 3 shows a significant performance gap in the early iterations compared to the full model,
highlighting the impact of in-context examples.

4 RELATED WORK

3D Visual Grounding 3D visual grounding focuses on finding an object in 3D scene based on
descriptions to appearance or location. ScanRefer (Chen et al., 2020) and ReferIt3D (Achlioptas
et al., 2020) are 2 popular benchmarks on this task, providing rich and diverse object-utterance
pairs on ScanNet (Dai et al., 2017). Traditional approaches train a end-to-end model to work on
this task. By encoding more features on visual information (Huang et al., 2022), designing fine-
grained encoder on spatial relationship or training on large scale well-annotated data (Ziyu et al.,
2023). Recent approaches employ large multi-modal models for reducing training data, enhancing
perception and reasoning. Neural symbolic approaches (Hsu et al., 2023; Feng et al., 2024; Yuan
et al., 2024) use LLM to parse natural language grounding utterances into executable structured
expressions, improving data efficiency. R2G (Li et al., 2024) employ scene graph to modeling object
attributes and relations, It surpasses previous methods on view dependent utterances. Agent-based
approaches (Yang et al., 2024; Fang et al., 2024) create virtual environments where LLM can take
actions, get observations and do iterative reasoning. Xu et al. use VLM and images from the scene
to figure out the target object without the need for detection or segmentation modules.

LLM Programming LLM can generate executable code (Roziere et al., 2023; Zhu et al., 2024).
Many works use LLM’s programming ability on reasoning (Li et al., 2023a), robotic control-
ling (Liang et al., 2023), reward designing (Xie et al.; Ma et al., 2023). For high-quality and stable
code output, Le et al. (2022); Chen et al. (2023) use the feedback from the outside environment to
fine-tuning LLM, Ma et al. (2023) use RL training trajectories to select and improve functions.

Neural Symbolic Reasoning Neural symbolic reasoning methods parse natural language to sym-
bolic expression and get reasoning results by executing expressions. Li et al. (2023b) provides a
neuro-symbolic interface that supports many logical reasoning and seamless integration with other
pretrained model seamlessly. Cheng et al. (2023) use LLM query to assist SQL execution. Mao et al.
(2019); Hsu et al. (2023) define domain-specific language and use neural networks to encode labels
and relations. Zero-shot visual programming (Gupta & Kembhavi, 2022; Yuan et al., 2024) use
Python code as the symbolic language and execute by interpreter equipped with predefined APIs.

5 CONCLUSION & LIMITATION

In this work, we propose a way to encode relations in Python programs for symbolic 3D visual
grounding and a weakly supervised framework for filtering and refining LLM synthesized codes.
We directly use knowledge distilled from LLM for relation encoding instead of human annotation
or supervised learning. The whole system is highly explainable. We demonstrate its advantages in
performance, data efficiency, and inference cost.

However, some limitations still remain. In natural language referring sentences, there are diverse
descriptions of the relation. But we constraints the domain of keywords in a prompt and pass a
minor part of spatial relation names during semantic parsing. Besides, we treat the scene as a list of
3D bounding boxes and ignore the object’s appearance, orientation, and room-level information of
the scene.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mohamed Elhoseiny, and Leonidas Guibas.
ReferIt3D: Neural Listeners for Fine-grained 3D Object Identification in Real-world Scenes. In
ECCV, pp. 422–440. Springer, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language Models are
Few-Shot Learners. NeurIPS, 33:1877–1901, 2020.

Dave Zhenyu Chen, Angel X Chang, and Matthias Nießner. ScanRefer: 3D Object Localization in
RGB-D Scans using Natural Language. In ECCV, pp. 202–221. Springer, 2020.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, et al. Binding Language Models in Sym-
bolic Languages. In ICLR, 2023.

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes. In CVPR, pp. 5828–
5839, 2017.

Jiading Fang, Xiangshan Tan, Shengjie Lin, Igor Vasiljevic, Vitor Guizilini, Hongyuan Mei, Rares
Ambrus, Gregory Shakhnarovich, and Matthew R Walter. Transcrib3d: 3d referring expression
resolution through large language models. arXiv preprint arXiv:2404.19221, 2024.

Chun Feng, Joy Hsu, Weiyu Liu, and Jiajun Wu. Naturally supervised 3d visual grounding with
language-regularized concept learners. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13269–13278, 2024.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. ArXiv, abs/2211.11559, 2022.

Joy Hsu, Jiayuan Mao, and Jiajun Wu. NS3D: Neuro-Symbolic Grounding of 3D Objects and
Relations. In CVPR, pp. 2614–2623, 2023.

Shijia Huang, Yilun Chen, Jiaya Jia, and Liwei Wang. Multi-View Transformer for 3D Visual
Grounding. In CVPR, 2022.

Ayush Jain, Nikolaos Gkanatsios, Ishita Mediratta, and Katerina Fragkiadaki. Bottom Up Top Down
Detection Transformers for Language Grounding in Images and Point Clouds. In ECCV, pp. 417–
433. Springer, 2022.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314–21328, 2022.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey
Levine, Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-
augmented code emulator. arXiv preprint arXiv:2312.04474, 2023a.

Yixuan Li, Zan Wang, and Wei Liang. R2g: Reasoning to ground in 3d scenes. arXiv preprint
arXiv:2408.13499, 2024.

Ziyang Li, Jiani Huang, and Mayur Naik. Scallop: A language for neurosymbolic programming.
Proceedings of the ACM on Programming Languages, 7(PLDI):1463–1487, 2023b.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv:2310.12931, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun Wu. The Neuro-
Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervi-
sion. In ICLR, 2019.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is self-repair a silver bullet for code generation? In The Twelfth International Conference
on Learning Representations, 2023.

OpenAI. Hello GPT-4o . https://openai.com/index/hello-gpt-4o/, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang,
and Tao Yu. Text2reward: Reward shaping with language models for reinforcement learning. In
The Twelfth International Conference on Learning Representations.

Runsen Xu, Zhiwei Huang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Vlm-grounder:
A vlm agent for zero-shot 3d visual grounding. In 8th Annual Conference on Robot Learning.

Jianing Yang, Xuweiyi Chen, Shengyi Qian, Nikhil Madaan, Madhavan Iyengar, David F Fouhey,
and Joyce Chai. Llm-grounder: Open-vocabulary 3d visual grounding with large language model
as an agent. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp.
7694–7701. IEEE, 2024.

Zhihao Yuan, Jinke Ren, Chun-Mei Feng, Hengshuang Zhao, Shuguang Cui, and Zhen Li. Vi-
sual programming for zero-shot open-vocabulary 3d visual grounding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20623–20633, 2024.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

Zhu Ziyu, Ma Xiaojian, Chen Yixin, Deng Zhidong, Huang Siyuan, and Li Qing. 3d-vista: Pre-
trained transformer for 3d vision and text alignment. In ICCV, 2023.

12

https://openai.com/index/hello-gpt-4o/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROMPTS

A.1 SEMANTIC PARSING

In this section, we show the prompt for semantic parsing. The relation set in the prompt is slightly
larger than that in Table 1 and we create a lookup table for replace relations in parsed expressions
with relations in Table 1.

Listing 1: prompt for semantic parsing
You are a skilled assistant with expertise in semantic parsing.

Task Overview
I will provide you with a sentence that describes the location of an object within a scene.

Your task is to convert this description into a JSON format that captures the essential
details of the object.

The JSON object should include:
- **"category"**: string, representing the object’s category.
- **"relations"**: a list of relationships between the object and other elements in the scene.

Each relationship should be represented as a dictionary with the following fields:
- **"relation_name"**: string, specifying the type of relationship. The relationship can

be:
- *Unary*: choose from [’corner’, ’on the floor’, ’against wall’, ’smaller’, ’larger’,

’taller’, ’lower’, ’within’].
- *Binary*: choose from [’above’, ’below’, ’beside’, ’close’, ’far’, ’left’, ’right’,

’front’, ’behind’, ’across’].
- *Ternary*: choose from [’between’, ’center’, ’middle’].
Only consider **simple** and **general** relations, donot make complex ones like "left

of a blue box", "with dark appearance", "facing the window", etc. You should
handle these by logical structures.

If the relationship is not mentioned in the list, you should choose the most
appropriate relation above. **Never** create a new relation name!

- **"objects"**: a list of objects involved in the relationship. Every object in the list
should have the same JSON structure. The list structure depends on the relationship
type:
- *Unary*: The list should be empty.
- *Binary*: The list should contain one object.
- *Ternary*: The list should contain two objects.

- **"negative"**: boolean, indicating if the object is explicitly described as not having
this relationship. Set this to True if applicable.

Guidelines:
- First, generate a plan outlining the object’s appearance and relationships based on the

sentence. Then, use this plan to create the JSON representation.

Examples:

Example 1:

Sentence: The correct whiteboard is the one on a table.

Plan: "Correct" does not describe appearance. The appearances are "whiteboard" and "table
", and the "whiteboard" is on the "table".

Parsed JSON:
‘‘‘json
{

"category": "whiteboard",
"relations": [

{
"relation_name": "above",
"objects": [

{
"category": "table",
"relations": []

}
]

}
]

}
‘‘‘

... 2 more examples.

Listing 2: prompt for generation for “right”
You are an expert on spatial relation analysis and code generation.

Introduction to task

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Your task is to write a Python class which can be used to compute the metric value of the
existence of some spatial relationship between two objects in a 3D scene given their
positions and sizes. Higher the metric value, higher the probability of the two objects
have that relation.

In the class, you will be given the positions and sizes of the objects in the scene. The class
should have a method ‘forward‘ which returns a tensor of shape (N, N), where element (i,
j) is the metric value of the relation between object i and object j.

In the 3D scene, x-y plane is the horizontal plane, z-axis is the vertical axis.

Introduction to programming environment

Here is an example class for ‘Left‘ relation. The class you write should have the same
structure as the example class.

‘‘‘python
class Left:

...
‘‘‘
Make sure all tensors are placed on ‘DEVICE‘, which has been defined in the environment.
The code output should be formatted as a python code string: "‘‘‘python ... ‘‘‘".

Some helpful tips

(1) You should only use the given variables, and you should not introduce new variables.
(2) The metric value should be sensitive to the input arguments, which means if the arguments

change a little, the value should change a lot.
(3) The metric value should be 0 if the two objects don’t have that relation, never set

negative values!
(4) Never treat an object as its center point, you must consider the size of the bounding box,

just like the example code. Never set an threshold to determine the relation. The value
of the relation should be continuous and sparse.

(5) You should imagine that you are at position (0, 0) to determine the relative positions.
(6) Remember you are **in** the scene and look around, not look from the top. So never use the

same way as 2D environment.
...

Propose your method first and then generate the code. Think step by step.
Don’t use any axis or specific direction as the reference direction or right direction, your

method should work for any perspectives.

Listing 3: an example for feedback message
We have run your code on some cases. Here are 3 failure cases:

Case 1.

Metric value of object tensor([0.3992, -0.5619, 0.8831, 0.3921, 0.3476, 0.1059], device=’
mps:0’) "above" object tensor([-0.0432, -0.6965, 0.8483, 0.6526, 0.4943, 0.3061],
device=’mps:0’) should be larger than 0. Metric value of object tensor([0.3992, -0.5619,

0.8831, 0.3921, 0.3476, 0.1059], device=’mps:0’) "above" object tensor([-0.0432,
-0.6965, 0.8483, 0.6526, 0.4943, 0.3061], device=’mps:0’) should be higher than the
metric value of object tensor([0.5338, 1.1607, 1.1160, 0.2121, 0.3323, 0.8192], device=’
mps:0’) "above" object tensor([-0.0432, -0.6965, 0.8483, 0.6526, 0.4943, 0.3061],
device=’mps:0’). # Case 2.

Metric value of object tensor([-0.3941, 1.5280, 0.4675, 0.5132, 0.3938, 0.1191], device=’
mps:0’) "above" object tensor([-0.4468, 2.1906, 0.5153, 0.9604, 2.0905, 0.9733],
device=’mps:0’) should be larger than 0. Metric value of object tensor([-0.3941, 1.5280,

0.4675, 0.5132, 0.3938, 0.1191], device=’mps:0’) "above" object tensor([-0.4468,
2.1906, 0.5153, 0.9604, 2.0905, 0.9733], device=’mps:0’) should be higher than the
metric value of object tensor([-0.0855, 3.4164, 0.2426, 0.4462, 0.5911, 0.1475],
device=’mps:0’) "above" object tensor([-0.4468, 2.1906, 0.5153, 0.9604, 2.0905,
0.9733], device=’mps:0’). # Case 3.

Metric value of object tensor([-2.1831, 2.9738, 1.0996, 0.3647, 0.2885, 0.5714], device=’
mps:0’) "above" object tensor([-1.9380, 2.3704, 0.5013, 0.7656, 1.2784, 0.8153],
device=’mps:0’) should be larger than 0. Metric value of object tensor([-2.1831, 2.9738,

1.0996, 0.3647, 0.2885, 0.5714], device=’mps:0’) "above" object tensor([-1.9380,
2.3704, 0.5013, 0.7656, 1.2784, 0.8153], device=’mps:0’) should be higher than the
metric value of object tensor([1.4070, 3.5247, 0.7835, 0.3882, 0.3539, 0.5908], device=’
mps:0’) "above" object tensor([-1.9380, 2.3704, 0.5013, 0.7656, 1.2784, 0.8153],
device=’mps:0’).

The first three are the center of the object, the last three are the size of the object. x-y
is the horizontal plane and z is the vertical axis.

After test, the pass rate of your code is too low. So you MUST check carefully where the
problem is. If you can’t find the problem, you should

come up with a new algorithm and re-write your code.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

left

right

between

front

behind

above

below

near

far

large

small

high

low

Figure 7: The graph for in context example selection.

Don’t forget the following tips:
(1) You should imagine that you are at position (0, 0, 0) to determine the relative positions.
(2) Remember you are **in** the scene and look around, not look from the top. So never use the

same way as 2D environment.
(3) Don’t use any of x-axis or y-axis as your perspective, Your method should work for every

perspective.
(4) The horizontal plane is x-y plane.
Please carefully analyze each of the failure case and explain why your code failed to pass it.

The reason can be incorrect test case might or your code might not be able to handle
some specific cases. Please write your analysis for each of the failure cases.

After the analysis of all cases, you should write the improved code based on your analysis.
But **never** modify on the class methods and function parameters.

Some possible improvement ways:
1. Use a new algorithm to calculate the metric value rather than just modifying the existing

code.
2. Consider carefully what other factors might be relevant to the spatial relationship between

two objects and use them in your calculation.
3. Check the correctness of the input data and the calculation process.

A.2 SELF-REFLECTION PROMPT

We show self-reflection prompt used in variant2, subsection 3.4 here.

Listing 4: prompt for self-reflection
Reflect on the code above, think carefully how to make it better. For example, check if you

ignore some factors that may affect the result or use a wrong method.
Then you must re-write the code in the same format. Remeber all the tips!

B EXECUTION DETAILS

In this section, we introduce the detailed algorithm of our execution.

relation lookup table Some relations are not in the pre-defined set in 2.3.3, but they have similar
meaning with some relations in the set. So we build an lookup table from relation names in the set
to parsed relation names for relation translation.

Listing 5: lookup table
"near": ["near", "beside", "next to", "within", "in", "inside", "close", "closer", "closest",

"surrounded by", "around", "facing", "with", "attached"],
"far": ["far", "farthest", "opposite", "furthest", "cross", "across"],
"corner": ["corner"],
"against wall": ["against wall"],
"above": ["above", "on top", "on the top", "on"],
"below": ["below", "under", "beneath"],
"tall": ["higher", "taller", "highest", "upper"],
"low": ["lower"],
"on the floor": ["on the floor"],
"small": ["smaller", "shorter"],
"large": ["larger", "bigger", "largest", "longer"],

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

below sink on the right of sink right below sink target

stove beside the stove close to fridge target

Figure 8: More visualization results.

"left": ["left"],
"right": ["right"],
"front": ["front"],
"behind": ["behind"],
"between": ["middle", "center", "between"]

category feature Yuan et al. (2024) provides the classified label for each objects. To convert
labels to an feature fcategory ∈ RN , we calculate the text similarity between category and all
labels sim ∈ RN using CLIP(Radford et al., 2021). Then we use fcategory = softmax(100× sim)
as the category feature.

negative condition If the field negative is true, the objects having higher value in the feature
should be degraded. In the execution, we use fneg = max(f)− f to implement that.

C EXTRA EXPERIMENT RESULTS

C.1 VISUALIZATION OF SCENES

In this section, we visualize 2 more grounding examples in Figure 8. The first row shows the
process of grounding “the kitchen cabinet close to fridge and beside the stove”; the second row is
the grounding of “trash can on right below the sink”.

C.2 CONDITION LEVEL GROUNDING

Our parsed symbolic expressions actually contain one or more spatial conditions of the target object.
However, there may be some redundant condition in the utterance. Take the first row of Figure 4 for
example, because all monitors ”on the floor” are ”under the desk”, so one of these two conditions
are redundant, which means even if the method can not process one condition of them, it can still
give the correct grounding result. So we test EASE on utterances containing single condition for a
better understanding of its ability.

We categorize objects of same class to groups. With in a group, we collect the conditions for
each object from parsed expressions. Each condition is a JSON format like {{"relation":
..., "objects": [...]}} and can be executed seamlessly to find best matching object.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy on Unit Tests

340

360

380

400

420

440

460

480

500

Nu
m

be
r o

f C
or

re
ct

 Te
st

 E
xa

m
pl

es

above

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy on Unit Tests

300

320

340

360

380

400

420

Nu
m

be
r o

f C
or

re
ct

 Te
st

 E
xa

m
pl

es

below

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy on Unit Tests

30

40

50

60

70

Nu
m

be
r o

f C
or

re
ct

 Te
st

 E
xa

m
pl

es

behind

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy on Unit Tests

25

50

75

100

125

150

175

200

Nu
m

be
r o

f C
or

re
ct

 Te
st

 E
xa

m
pl

es

front

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy on Unit Tests

200

250

300

350

400

Nu
m

be
r o

f C
or

re
ct

 Te
st

 E
xa

m
pl

es

left

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy on Unit Tests

40

60

80

100

120

140

160

Nu
m

be
r o

f C
or

re
ct

 Te
st

 E
xa

m
pl

es

corner

Figure 9: Corresponding relation between the unit test pass rate and number of correct examples on
test set.

We calculate the average precision and recall for all condition level matches. EASE has 67.5%
average precision and 66.9% average recall.

C.3 EFFECT OF UNIT TESTS

To demonstrate the effect of filtering generated code by its accuracy on training cases, we choose 6
relations and plot the pass rate on training cases on the x-axis and the number of passed examples in
all relative test examples. For some easy relations like “near” or “far”, GPT-4o can pass all the tests
at once, so we only show the cases having multiple refinement steps.

The result is shown in Figure 9. For 5 of 6 relations (except relation behind), the code having
the highest performance on the training cases can have the top-tier performance on the test set. As
for relation behind, using the best code on training cases causes about 15 cases loss on the test
case compared to using about 70 percent accurate code. But it’s still better than using most of the
codes whose accuracy is less than 0.5. This might be caused by the bias of training data collection.
But in general, choosing codes according to performance on the training set is useful for overall
performance on the test set.

17

	Introduction
	Method
	Problem statement
	Grounding pipeline
	Relation Encoder
	Class structure
	Unit test
	Prompt
	Code Refinement

	EXPERIMENTS
	Experimental Settings
	Quantitative Results
	Qualitative Results
	Ablation Studies

	Related Work
	Conclusion & Limitation
	Prompts
	Semantic Parsing
	Self-reflection prompt

	execution details
	Extra experiment results
	Visualization of scenes
	Condition level grounding
	Effect of Unit tests

