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ABSTRACT

Although likelihood-based methods are theoretically appealing, deep generative
models (DGMs) often produce unreliable likelihood estimates in practice, particu-
larly for out-of-distribution (OOD) detection. We reinterpret variational autoen-
coders (VAEs) through the lens of fast and slow weights. Our approach is guided
by the proposed Likelihood Path (LPath) Principle, which extends the classical
likelihood principle. A critical decision in our method is the selection of statistics
for classical density estimation algorithms. The sweet spot should contain just
enough information that’s sufficient for OOD detection but not too much to suffer
from the curse of dimensionality. Our LPath principle achieves this by selecting
the sufficient statistics that form the "path" toward the likelihood. We demonstrate
that this likelihood path leads to SOTA OOD detection performance, even when
the likelihood itself is unreliable.

1 INTRODUCTION

Independent and identically distributed (IID) samples during training and testing are key to much
of machine learning’s (ML) success. However, as ML systems are deployed in the real world,
encountering out-of-distribution (OOD) data is inevitable and poses significant safety risks. This is
particularly challenging in the most general setting where labels are absent, and test input arrives in a
streaming fashion. The objective of general unsupervised OOD detection is to develop a scalar score
function, trained on PID (in-distribution (ID) samples), that assigns higher scores to data from POOD
(out-of-distribution samples) than to data from PID.

Naïve approaches, such as using pθ(x), the likelihood of deep generative models (DGMs), are
attractive in theory but have proven ineffective due to unreliable likelihood estimates, often assigning
high likelihood to OOD data (Nalisnick et al., 2018). Furthermore, even with perfect density
estimation, likelihood alone is insufficient to detect OOD data (Le Lan & Dinh, 2021; Zhang
et al., 2021) when the ID and OOD distributions overlap. Compounding this, recent theoretical
works (Behrmann et al., 2021; Dai et al.) show that perfect density estimation may be infeasible for
many DGMs.

Research Question (RQ) 1: Can we achieve state-of-the-art (SOTA) unsupervised OOD detection
without relying on accurate likelihood estimation?

We take a step towards answering this question by developing a principled method for unsupervised
OOD detection. Our algorithm is inspired by a reinterpretation of Variational Autoencoders (VAEs)
from the fast and slow weights perspective, originally proposed in the context of adaptive neural
networks and meta-learning (Hinton & Plaut, 1987; Munkhdalai & Trischler, 2018; Ba et al., 2016).
Our algorithm has two stages. In the first stage (neural feature extraction), we train VAEs and
extract key statistics contributing to the likelihood function. In the second stage (classical density
estimation), these statistics are used as training data to fit a classical statistical density estimation
algorithm (COPOD (Li et al., 2020) or MD (Lee et al., 2018; Maciejewski et al., 2022)) for OOD
detection.

The key design decision in our algorithm is the choice of statistics, which leads to our second research
question:

RQ 2: How do we select key statistics for the classical density estimation algorithm?
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The desired statistics should strike a balance: including too many activations leads to the curse of
dimensionality, while including too few fails to capture enough information. Our approach is to
select the minimal sufficient statistics of the main components on the computational graph leading to
the likelihood function. These anchoring statistics define the computational path of the likelihood
function, which we term the Likelihood Path (LPath) Principle.

Under imperfect likelihood estimation, there is more information in the computational path leading
to the marginal likelihood function pθ(x). Information can be optimally extracted by the minimal
sufficient statistics of the individual components of the factorization of the likelihood function.

Although the LPath principle has independent interest in representation learning and can be applied
to other DGMs, this work focuses on a thorough case study of applying the LPath principle to the
OOD detection problem using Gaussian VAEs. We take the sufficient statistics of the VAE encoder
and decoder as key statistics for our two-stage algorithm, achieving SOTA performance on common
benchmarks (Table 1). Compared to other SOTA methods, we used a much smaller model (DC-VAEs
from Xiao et al. (2020)’s architecture) with a parameter count of 3M, compared to 44M for Glow in
DoSE (Morningstar et al., 2021) and 46M for the diffusion model (Liu et al., 2023). We believe this
“achieving more with less” phenomenon demonstrates our method’s potential.

To summarize, our main contributions are:

Empirical contribution: We achieved SOTA unsupervised OOD detection performance on common
benchmarks (Table 1) using a much smaller model compared to other SOTA methods, addressing
RQ1.

Methodological contribution: We proposed the LPath Principle, which generalizes the classical
likelihood principle1 for instance-dependent inference (e.g., OOD detection) under imperfect density
estimation, addressing RQ2.

2 INFERENCE, FAST AND SLOW

In this section, we reinterpret VAEs from the perspective of fast and slow weights. We begin by
clearly distinguishing between likelihood evaluation and parameter inference procedures, as this
distinction will be important throughout the paper.

Inferential Procedure Given training data XTrain = {xi}Ni=1 and a density model pModel = pψ
parameterized by ψ, we train pψ on XTrain to obtain pψtrained . This is an inferential procedure,
transferring knowledge from XTrain to the trained parameters ψtrained:

(XTrain, pψ) −→ ψtrained ∈ Ψ, (1)

where Ψ is the parameter space.

Evaluation Procedure Suppose we have a new sample x; we can compute the likelihood of x
under the trained model pψ . This is an evaluation procedure, assessing x using the knowledge gained
from training:

(x, ψtrained) −→ pψtrained(x) ∈ R. (2)

This typically occurs during test-time likelihood evaluation, after training is completed. However,
direct application of this likelihood evaluation can assign higher likelihoods to OOD data than to ID
data (Nalisnick et al., 2018).

While the evaluation procedure returns a scalar, the inferential procedure outputs a density model or
parameters that characterize a model.

2.1 VAES BACKGROUND

We next concrete examples of conditional distributions parameterized by encoder qϕ(z | x) and
decoder pθ(x | z) neural networks, as well as the prior. We choose Gaussian VAEs for illustration

1The marginal likelihood pθ(x) is a special case, as it only uses the endpoint in the likelihood path.
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because they are widely used and have very simple minimal sufficient statistics. If the reader is
unfamilair with VAEs, see a more basic refresher of VAEs in Appendix A.

In our setup, the prior distribution is a standard Gaussian distribution:

p(z) = N (z | µ = 0,Σ = I). (3)

The encoder is a Gaussian distribution parameterized by an encoder neural network with parameters
ϕ:

(µz(x),σz(x)) = EncoderNeuralNetϕ(x), (4)

qϕ(z | x) = N
(
z | µz(x),diag

(
σ2
z(x)

))
. (5)

Here, (µz(x),σz(x)) are the instance-dependent latent parameters for the latent code z. This
inference occurs for every sample x and is the key property we aim to exploit.

The decoder is also a Gaussian distribution parameterized by a decoder neural network with parame-
ters θ:

(µx(z),σx(z)) = DecoderNeuralNetθ(z), (6)

pθ(x | z) = N
(
x | µx(z),diag

(
σ2
x(z)

))
. (7)

Here, z is sampled from the encoder distribution qϕ(z | x). The pair (µx(z),σx(z)) represents the
instance-dependent observable parameters for reconstructing the observation x. The reconstruc-
tion error is given by ∥x − µx(z)∥, measuring the difference between the original input and its
reconstruction.

2.2 VAE REINTERPRETED: THE FAST AND SLOW WEIGHTS PERSPECTIVE

Consider Gaussian VAE learning. Given training data XTrain = {xi}Ni=1, we train an encoder
qϕ(z | x) and a decoder pθ(x | z):

qϕ(z | x) = N
(
z | µz(x;ϕ),diag

(
σ2
z(x;ϕ)

))
, (8)

pθ(x | z) = N
(
x | µx(z;θ),diag

(
σ2
x(z;θ)

))
. (9)

After training, the knowledge in XTrain is transferred to ϕtrained = ϕ(XTrain) and θtrained = θ(XTrain).
This is the first inferential procedure:

(XTrain, qϕ, pθ) −→ (ϕtrained,θtrained) ∈ (Φ,Θ). (10)

At test time, when a new observation xTest is given, the encoder and decoder Gaussian parameters are
inferred depending on xTest. This is the second inferential procedure:

(xTest,ϕtrained,θtrained) −→ (µz(xTest;ϕtrained),σz(xTest;ϕtrained),µx(zTest;θtrained),σx(zTest;θtrained)) .
(11)

There are two kinds of parameters involved. The parameters ϕtrained and θtrained do not change
after training—they are the slow weights. The quantities µz(xTest;ϕtrained),σz(xTest;ϕtrained),
µx(zTest;θtrained),σx(zTest;θtrained) are instance-dependent and are considered the fast weights (Hin-
ton & Plaut, 1987; Ba et al., 2016). From this perspective, the second inferential procedure uses
knowledge both from XTrain (slow weights) and the test-time instance xTest (fast weights).

In the next section, we detail how to use these fast weights T (x, z) = (µx(z),σx(z),µz(x),σz(x))
for OOD detection.

3 OOD DETECTION WITH FAST AND SLOW WEIGHTS

In this section, we reinterpret a classical prior OOD detection method from the slow weight perspective
and introduce our method from the fast weight perspective. We then detail our algorithm. In the next
section, we provide a thorough analysis of our method’s statistical and combinatorial foundations.
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3.1 OOD DETECTION WITH VAE SLOW WEIGHTS

Reinterpreting the Likelihood Regret Method The likelihood regret method for OOD detec-
tion (Xiao et al., 2020) can be reinterpreted as detecting OOD samples using the information update
in slow weights. At a high level, after obtaining θtrained from training, they fine-tune VAEs by
maximizing likelihood on a test sample xTest to get θonline, and track the following likelihood regret:

log p(θonline | xTest)− log p(θtrained | xTest). (12)

In other words, their work involves two inferential procedures. First, (XTrain, pθ) −→ θtrained;
second, (XTrain,xTest, pθ) −→ θonline, where they do not maximize pθ jointly on (XTrain,xTest), but
sequentially on XTrain first and xTest next. However, likelihood regret is empirically outperformed
by alternative approaches (Morningstar et al., 2021) which did not involve any fine-tuning. This
is probably because training neural networks on one sample is challenging. Optimizing for a few
iterations changes θtrained very little, while training for many iterations results in overfitting quickly.
Furthermore, in streaming OOD detection, such computational overhead is formidable.

3.2 OOD DETECTION WITH VAE FAST WEIGHTS

Given that OOD detection with slow weights induces formidable computational overhead during test
time and poses optimization challenges, we propose to perform OOD detection with fast weights.
In Section 2, we reinterpreted the encoder and decoder means and variances as the fast weights
of the VAE: T (x, z) = (µx(z),σx(z),µz(x),σz(x)). However, these remain high-dimensional.
This not only increases computational time but can also cause issues for the second-stage statistical
algorithm (Maciejewski et al., 2022). We address this problem by taking the L2 norm of T (x, z):

u(x) = ∥x− x̂∥2 = ∥x− µx(µz(x))∥2, (13)
v(x) = ∥µz(x)∥2, (14)
w(x) = ∥σz(x)∥2, (15)
s(x) = ∥σx(µz(x))∥2. (16)

Note that in Eq. 13, instead of taking ∥µx(µz(x))∥2, we compute ∥x − µx(µz(x))∥2. This is
because ∥µx(µz(x))∥2 could be unnormalized in magnitude compared to other statistics, causing
problems in the second-stage classical density estimation algorithm. Thus, we normalize it by taking
the reconstruction error, which should be close to zero due to the VAE optimization objective. While
VAE optimization should already be driving Eqs. 14–16 to a small value.

3.3 THE LPATH ALGORITHM FOR FAST WEIGHTS OOD DETECTION

We use Eqs. 13–16 as the scoring metrics for our OOD detection algorithm. We call it the Likelihood
Path (LPath) algorithm because it is based on minimal sufficient statistics of the individual components
of the factorization of the likelihood function; we provide a detailed description and analysis in
Section 4.3.

Our algorithm is detailed in Algorithm 1. It first trains a VAE and extracts statistics in Eqs. 13–16
in the first stage (neural feature extraction). Then it fits a classical statistical density estimation
algorithm (COPOD (Li et al., 2020) or MD (Lee et al., 2018; Maciejewski et al., 2022)) in the second
stage (classical density estimation).

Our algorithm can be used with a single VAE model (LPath-1M) or a pair of two models (LPath-2M).
For LPath-1M, we use the same VAE to extract all of u(x), v(x), w(x), s(x). When used with a pair
of two models (LPath-2M), we train two VAEs: one with a very high latent dimension (e.g., 1000)
and another with a very low dimension (e.g., 1 or 2). In the second stage, we extract the following
statistics: (u(x)lowD, v(x)highD, w(x)highD, s(x)lowD), where u(x)lowD, s(x)lowD are taken from the
low-dimensional VAE and v(x)high D, w(x)high D from the high-dimensional VAE. Appendix D.1.2
explains the reasoning behind this combination.
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Algorithm 1 Training and Inference: From high-dimensional data to OOD scoring

1: Input: DTrain, ID ∼ PID of size ntrain × nchannels, DTest ∼ PID ∪ POOD
2: Stage 1 Training: From high-dim dataset to low-dim minimal sufficient statistics
3: Train VAE on DTrain, ID ▷ Normal training using SGD/Adam
4: for x ∈ DTrain, ID do
5: Compute and record T (x) = (u(x), v(x), w(x), s(x)) ▷ As in Eqs. 13–15
6: end for
7: Create new dataset DTrain, ID, T of size ntrain ×4 consisting of the minimal sufficient statistics T (x)

for Stage 2 Training
8: Stage 2 Training: From low-dim minimal sufficient statistics to OOD scoring
9: Select classical OOD scoring algorithm AClassical (e.g., COPOD (Li et al., 2020) or MD (Lee

et al., 2018))
10: Train AClassical on DTrain, ID, T to get AClassical, Trained ▷ Classical OOD training
11: Inference Stage: OOD Scoring
12: for xTest ∈ DTest do
13: Compute T (xTest) = (u(xTest), v(xTest), w(xTest), s(xTest)) from trained VAE
14: Compute OOD score S(xTest) = AClassical, Trained(T (xTest))
15: end for
16: Output: S(xTest), an OOD score for each xTest

4 THE LIKELIHOOD PATH PRINCIPLE

In this section, we provide an in-depth analysis of how we arrived at our selected T (x, z) =
(µx(z),σx(z),µz(x),σz(x)), the fundamental challenge for this problem, and how to have a general
principle to select such statistics not just for VAEs but for other DGMs.

Recall RQ2:

RQ 2: How do we select key statistics for the classical density estimation algorithm?

The goal is to overcome the challenge of dimensionality: If the dimensionality is too high, we
might suffer from the curse of dimensionality, but if the dimensionality is too low, we might capture
insufficient information to make effective inference. How do we find the sweet spot?

The key idea is our proposed Likelihood Path (LPath) Principle:

Under imperfect likelihood estimation, there is more information in the computational path leading
to the marginal likelihood function pθ(x). Information can be optimally extracted by the minimal
sufficient statistics of the individual components of the factorization of the likelihood function.

The LPath Principle is a general-purpose principle to select such statistics, and our analysis could
also be used to select such statistics for other DGMs; we leave that for future work.

We will start by reviewing the Likelihood Principle and Sufficiency Principle that form the statistical
foundation of our proposed LPath Principle.

4.1 THE LIKELIHOOD PRINCIPLE

The maximum likelihood estimation (MLE) approach to unsupervised learning focuses on finding
parameters ψ to maximize the likelihood ℓ(ψ | x) := p(x | ψ) given training data x, so that we
transfer information from x to ψ. MLE is a special case of the likelihood principle (Berger & Wolpert,
1988):

The likelihood principle states that all the evidence in an observed sample x relevant to model
parameters is contained in the likelihood function ℓ(ψ | x).

MLE satisfies the likelihood principle because inferring the most likely parameter depends only on
ℓ(ψ | x). Many OOD detection works (Nalisnick et al., 2019; Xiao et al., 2020) satisfy this principle
as well.

5
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In summary, the likelihood principle postulates that ℓ(ψ | x) (as a function of ψ) tells us everything
about x. If we make our decisions (e.g., OOD detection) based only on the likelihood function, our
decision satisfies the likelihood principle.

4.2 THE SUFFICIENCY PRINCIPLE

While the likelihood principle suggests that all information is contained in ℓ(ψ | x), it is a complex
function and does not directly tell us what statistics to include for RQ2. To better process such
overwhelming information, we seek to reduce our selection to the simplest set that still contains
sufficient information about ℓ(ψ | x). How do we formalize such information trimming in the context
of unsupervised learning?

• The information reduction procedure T should be a function of x, a statistic.

• T should be sufficient for describing p(x | ψ) or ψ: p(x | T (x), ψ) = p(x | T (x)).
• T should be minimal: F (T ) is no longer sufficient for ψ, for any non-invertible function F .

In summary, a minimal sufficient statistic T tells us everything about ψ that we can possibly learn
from observing x, and if we attempt to trim T further by any irreversible process, we would lose some
information for inferring ℓ(ψ | x) 2.

Alternatively, we can view sufficient statistics from an information-theoretic perspective. Let I denote
the mutual information. T (x) is sufficient for ψ if:

I(ψ;T (x)) = I(ψ;x). (17)

In other words, the data processing inequality I(ψ;T (x)) ≤ I(ψ;x) becomes an equality if T is
sufficient. This is useful for answering RQ2. Given a new sample x, the encoder and decoder neural
nets would produce millions of activations, all of which could be useful for OOD detection. However,
this is clearly overwhelming. The minimal sufficient statistic T (x) gives us the set of statistics that
cannot be reduced further without losing some information.

The standard Gaussian VAE’s encoder and decoder parameterizations by sample mean vectors and
sample covariance matrices (Eqs. 4 and 6) are minimal sufficient statistics (Wasserman, 2006). Here,
minimal sufficient statistics represent two optimal conditions for inference: They are sufficient
because once (µz(x),σz(x)) and (µx(z),σx(z)) are known, the conditional likelihood functions
can be defined. They are minimal because any other parameterization of a Gaussian will involve no
fewer parameters.

4.3 LIKELIHOOD PATH PRINCIPLE

Our proposed LPath principle states that:

Under imperfect likelihood estimation, there is more information in the computational path leading
to the marginal likelihood function pθ(x). Information can be optimally extracted by the minimal
sufficient statistics of the individual components of the factorization of the likelihood function.

For VAEs, this entails applying the likelihood principle twice in the VAE’s encoder and de-
coder conditional distributions and tracking their minimal sufficient statistics: T (x, z) =
(µx(z),σx(z),µz(x),σz(x)).

Recall the VAE formulation:

LHS has no closed
form likelihood nor
sufficient statistics.

log pθ(x) ≈ log

[
pθ (x | z) p (z)
qϕ (z | x)

] RHS contains more info-
rmation given by their
minimal sufficient statistics.

(18)

While it is not obvious how to apply likelihood and sufficiency principles to the VAE’s marginal
likelihood pθ(x), we can apply them to the Gaussian VAE’s encoder qϕ(z | x), prior p(z), and
decoder pθ(x | z), which completely characterize pθ(x).

6
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Figure 1: Left to right shows the information reduction via the likelihood principle (LP), maximum
likelihood estimation (MLE), and sufficiency principle (SP). T denotes sufficient statistics. The top
and bottom rows contrast inferences between xID and xOOD.

Let us make the above precise in our VAE’s LPath. Consider the following Markov chain when we
estimate the marginal likelihood of a sample x:

x −→ qϕ(z | x), p(z), pθ(x | z) −→ pθ(x). (19)

The data processing inequality from information theory says:

I(x; (qϕ(z | x), p(z), pθ(x | z))) ≥ I(x; pθ(x)). (20)

When density estimation is perfect, the above inequality becomes an equality. In practical cases,
perfect learning never happens. Mathematically, our LPath principle thus states:

I(x; (qϕ(z | x), p(z), pθ(x | z))) > I(x; pθ(x)). (21)

In a nutshell, the central theme in our work is to exploit the gap in Inequality 21.

The chain of information reduction for OOD inference and detection is summarized by Figure 1:

In the first column of Figure 1, it is hard to define a metric in the visible space to distinguish xID
and xOOD, even though they contain the most evidence. In the second column, we compare them by
comparing their corresponding likelihood functions, suggested by the likelihood principle. The third
column compares their maximum likelihood inferences. The last column suggests that it suffices to
know the sufficient statistics T to obtain θMLE, which completes the information reduction chain.

4.4 COMBINATORIAL CANCELLATION

We analyzed the LPath Principle for OOD detection from the statistical perspective. We can gain more
concrete insights on why the LPath Principle works if we take a combinatorial perspective, which
can act as an empirical method to select statistics, answering RQ2. The key insight is that factors
in the likelihood function risk getting canceled in the likelihood itself, and the signals they contain
for OOD detection will be drowned out. This is how information is lost in Eq. 21. To address this,
we could separate each factor out and capture the signal they contain with their sufficient statistics,
arriving at our LPath Principle.

In the case of VAEs, the encoder and decoder contain complementary information for OOD detection,
but they could be canceled out in log pθ(x). Recall the VAE’s likelihood estimation:

log pθ(x) ≈ log

[
pθ (x | z) p (z)
qϕ (z | x)

]
.

The decoder’s conditional likelihood pθ (x | z) being too large and prior p (z) (evaluated at samples
from the encoder qϕ (z | x)) being too small both suggest x could be an anomaly, but their scalar
product can be well-ranged, which drowns out the signal for OOD discovery. A more concrete
interpretation of this cancellation phenomenon from the pixel texture vs. semantics perspective can
be found in Appendix C.

For xID and xOOD, we would anticipate different likelihood paths. This difference can be detected
by their corresponding sufficient statistics: T (xID, zID) = (µx(zID),σx(zID),µz(xID),σz(xID))
and T (xOOD, zOOD) = (µx(zOOD),σx(zOOD),µz(xOOD),σz(xOOD)). In other words, a new sample
may be considered as ID if its sufficient statistics are similar to T (xID, zID) for some xID ∈ PID
(because the encoder and decoder distributions are completely characterized by T ).

7
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ID CIFAR10 SVHN FMNIST MNIST
OOD SVHN CIFAR100 Hflip Vflip CIAFR10 Hflip Vflip MNIST Hflip Vflip FMNIST Hflip Vflip

ELBO 0.08 0.54 0.5 0.56 0.99 0.5 0.5 0.87 0.63 0.83 1.00 0.59 0.6

LR (Xiao et al., 2020) 0.88 N/A N/A N/A 0.92 N/A N/A 0.99 N/A N/A N/A N/A N/A

BIVA (Havtorn et al., 2021) 0.89 N/A N/A N/A 0.99 N/A N/A 0.98 N/A N/A 1.00 N/A N/A

DoSE (Morningstar et al., 2021) 0.97 0.57 0.51 0.53 0.99 0.52 0.51 1.00 0.66 0.75 1.00 0.81 0.83

Fisher (Bergamin et al., 2022) 0.87 0.59 N/A N/A N/A N/A N/A 0.96 N/A N/A N/A N/A N/A

DDPM (Liu et al., 2023) 0.98 N/A 0.51 0.63 0.99 0.62 0.58 0.97 0.65 0.89 N/A N/A N/A

LMD (Graham et al., 2023) 0.99 0.61 N/A N/A 0.91 N/A N/A 0.99 N/A N/A 1.00 N/A N/A

LPath-1M-COPOD (Ours) 0.99 0.62 0.53 0.61 0.99 0.55 0.56 1.00 0.65 0.81 1.00 0.65 0.87

LPath-2M-COPOD (Ours) 0.98 0.62 0.53 0.65 0.96 0.56 0.55 0.95 0.67 0.87 1.00 0.77 0.78

LPath-1M-MD (Ours) 0.99 0.58 0.52 0.60 0.95 0.52 0.52 0.97 0.63 0.82 1.00 0.75 0.76

Table 1: AUROC of OOD Detection with different ID and OOD datasets. LPath-1M is LPath with
one model, LPath-2M is LPath with two models.

5 EXPERIMENTS

We compare our methods with state-of-the-art OOD detection methods (Kirichenko et al., 2020; Xiao
et al., 2020; Havtorn et al., 2021; Morningstar et al., 2021; Bergamin et al., 2022; Liu et al., 2023;
Graham et al., 2023), under the unsupervised, single batch, no data inductive bias assumption setting.

Following the convention in those methods, we have conducted experiments with a number of
common benchmarks, including CIFAR10 (Krizhevsky & Hinton, 2009), SVHN (Netzer et al.,
2011), CIFAR100 (Krizhevsky & Hinton, 2009), MNIST (LeCun et al., 1998), FashionMNIST
(FMNIST) (Xiao et al., 2017), and their horizontally flipped and vertically flipped variants.

Experimental Results. Table 1 show that our methods surpass or are on par with the state-of-the-art
(SOTA). Because our setting assumes no access to labels, batches of test data, or any inductive bias
on the dataset, OOD datasets like Hflip and Vflip become very challenging. Most prior methods
achieved only near-chance AUROC on Vflip and Hflip for CIFAR10 and SVHN as ID data. This is
expected because horizontally flipped CIFAR10 or SVHN differs from the in-distribution only by one
latent dimension. Even so, our methods still managed to surpass prior SOTA in some cases, though
only marginally. More experimental details, including various ablation studies, are in Appendix D, E.

Achieving More with Less. This improvement is more significant given that we only used a
very small VAE architecture. Compared to other SOTA methods, we used a much smaller model
(DC-VAEs from (Xiao et al., 2020)’s architecture) with a parameter count of 3M, compared to 44M
for Glow (Kingma & Dhariwal, 2018) in DoSE (Morningstar et al., 2021) and 46M for the diffusion
model (Rombach et al., 2022; Liu et al., 2023). Specifically, our method clearly exceeds other
VAE-based methods (Xiao et al., 2020; Havtorn et al., 2021), and is the only VAE-based method
that is competitive against bigger models. DoSE (Morningstar et al., 2021) conducted experiments
on VAEs with five carefully chosen statistics. They reported their MNIST/FMNIST results on their
VAEs and used Glow on more difficult datasets like CIFAR/SVHN. We assume the reason is that
Glow performed better on more complex datasets. Our methods surpass their Glow-based results,
which should, in turn, be better than their method applied to VAEs. On one hand, Glow’s likelihood
is arguably much better estimated than our small DC-VAE model. On the other hand, their statistics
appear to be more sophisticated. However, our simple method manages to surpass their scores. This
showcases the efficiency and effectiveness of our method.

6 CONCLUSION

We presented the Likelihood Path Principle applied to unsupervised, one-sample OOD detection. We
provided in-depth analyses from the neural (fast-slow weights), statistical (likelihood and sufficiency
principles), and combinatorial (cancellation effect) perspectives. Our method is principled and
supported by SOTA results. In future work, we plan to adapt our principles and techniques to more
powerful DGMs, such as Glow or diffusion models.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

REFERENCES

Amirhossein Ahmadian and Fredrik Lindsten. Likelihood-free out-of-distribution detection with
invertible generative models. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI-21, pp. 2119–2125. International Joint Con-
ferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/292. URL
https://doi.org/10.24963/ijcai.2021/292. Main Track.

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past. Advances in neural information processing systems, 29, 2016.

Dara Bahri, Heinrich Jiang, Yi Tay, and Donald Metzler. Label smoothed embedding hypothesis for
out-of-distribution detection, 2021.

Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger Grosse, and Jörn-Henrik Jacobsen. Understand-
ing and mitigating exploding inverses in invertible neural networks. In International Conference
on Artificial Intelligence and Statistics, pp. 1792–1800. PMLR, 2021.

Federico Bergamin, Pierre-Alexandre Mattei, Jakob Drachmann Havtorn, Hugo Senetaire, Hugo
Schmutz, Lars Maaløe, Soren Hauberg, and Jes Frellsen. Model-agnostic out-of-distribution
detection using combined statistical tests. In International Conference on Artificial Intelligence
and Statistics, pp. 10753–10776. PMLR, 2022.

James O Berger and Robert L Wolpert. The likelihood principle. IMS, 1988.

Milan Cvitkovic and Günther Koliander. Minimal achievable sufficient statistic learning. In Interna-
tional Conference on Machine Learning, pp. 1465–1474. PMLR, 2019.

Bin Dai, Li Kevin Wenliang, and David Wipf. On the value of infinite gradients in variational
autoencoder models. In Advances in Neural Information Processing Systems.

Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

Nicholas Frosst, Nicolas Papernot, and Geoffrey Hinton. Analyzing and improving representations
with the soft nearest neighbor loss, 2019.

Mark S Graham, Walter HL Pinaya, Petru-Daniel Tudosiu, Parashkev Nachev, Sebastien Ourselin,
and Jorge Cardoso. Denoising diffusion models for out-of-distribution detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2947–2956, 2023.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Théo Guénais, Dimitris Vamvourellis, Yaniv Yacoby, Finale Doshi-Velez, and Weiwei Pan. Bacoun:
Bayesian classifers with out-of-distribution uncertainty. arXiv preprint arXiv:2007.06096, 2020.

Jakob D Drachmann Havtorn, Jes Frellsen, Soren Hauberg, and Lars Maaløe. Hierarchical vaes know
what they don’t know. In International Conference on Machine Learning, pp. 4117–4128. PMLR,
2021.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Geoffrey E Hinton and David C Plaut. Using fast weights to deblur old memories. In Proceedings of
the ninth annual conference of the Cognitive Science Society, pp. 177–186, 1987.

Agnan Kessy, Alex Lewin, and Korbinian Strimmer. Optimal whitening and decorrelation. The
American Statistician, 72(4):309–314, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. Foundations
and Trends® in Machine Learning, 12(4):307–392, 2019.

9

https://doi.org/10.24963/ijcai.2021/292


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

Polina Kirichenko, Pavel Izmailov, and Andrew G Wilson. Why normalizing flows fail to detect
out-of-distribution data. Advances in neural information processing systems, 33:20578–20589,
2020.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. arXiv preprint arXiv:1612.01474, 2016.

Charline Le Lan and Laurent Dinh. Perfect density models cannot guarantee anomaly detection.
Entropy, 23(12):1690, 2021.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. Advances in neural information processing
systems, 31, 2018.

Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. Copod: copula-based outlier
detection. In 2020 IEEE International Conference on Data Mining (ICDM), pp. 1118–1123. IEEE,
2020.

Zhenzhen Liu, Jin Peng Zhou, Yufan Wang, and Kilian Q Weinberger. Unsupervised out-of-
distribution detection with diffusion inpainting. arXiv preprint arXiv:2302.10326, 2023.

Henryk Maciejewski, Tomasz Walkowiak, and Kamil Szyc. Out-of-distribution detection in high-
dimensional data using mahalanobis distance-critical analysis. In Computational Science–ICCS
2022: 22nd International Conference, London, UK, June 21–23, 2022, Proceedings, Part I, pp.
262–275. Springer, 2022.

Warren Morningstar, Cusuh Ham, Andrew Gallagher, Balaji Lakshminarayanan, Alex Alemi, and
Joshua Dillon. Density of states estimation for out of distribution detection. In International
Conference on Artificial Intelligence and Statistics, pp. 3232–3240. PMLR, 2021.

Tsendsuren Munkhdalai and Adam Trischler. Metalearning with hebbian fast weights. CoRR,
abs/1807.05076, 2018. URL http://arxiv.org/abs/1807.05076.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do
deep generative models know what they don’t know? arXiv preprint arXiv:1810.09136, 2018.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji Lakshminarayanan. Detecting out-of-
distribution inputs to deep generative models using typicality. arXiv preprint arXiv:1906.02994,
2019.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Genki Osada, Tsubasa Takahashi, Budrul Ahsan, and Takashi Nishide. Out-of-distribution detection
with reconstruction error and typicality-based penalty. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 5551–5563, 2023.

Kazuki Osawa, Siddharth Swaroop, Anirudh Jain, Runa Eschenhagen, Richard E Turner, Rio Yokota,
and Mohammad Emtiyaz Khan. Practical deep learning with bayesian principles. arXiv preprint
arXiv:1906.02506, 2019.

Nicolas Papernot and Patrick McDaniel. Deep k-nearest neighbors: Towards confident, interpretable
and robust deep learning, 2018.

10

http://arxiv.org/abs/1807.05076


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tim Pearce, Felix Leibfried, and Alexandra Brintrup. Uncertainty in neural networks: Approximately
bayesian ensembling. In International conference on artificial intelligence and statistics, pp.
234–244. PMLR, 2020.

Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon, and
Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. In Advances in
Neural Information Processing Systems, pp. 14707–14718, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Chandramouli Shama Sastry and Sageev Oore. Detecting out-of-distribution examples with Gram
matrices. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 8491–8501.
PMLR, 13–18 Jul 2020.

Joan Serrà, David Álvarez, Vicenç Gómez, Olga Slizovskaia, José F Núñez, and Jordi Luque.
Input complexity and out-of-distribution detection with likelihood-based generative models. In
International Conference on Learning Representations, 2019.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks, 2020.

Larry Wasserman. All of nonparametric statistics. Springer Science & Business Media, 2006.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Zhisheng Xiao, Qing Yan, and Yali Amit. Likelihood regret: An out-of-distribution detection score
for variational auto-encoder. Advances in neural information processing systems, 33:20685–20696,
2020.

Lily Zhang, Mark Goldstein, and Rajesh Ranganath. Understanding Failures in Out-of-Distribution
Detection with Deep Generative Models. In Proceedings of the 38th International Conference on
Machine Learning, pp. 12427–12436. PMLR, July 2021. URL https://proceedings.mlr.
press/v139/zhang21g.html. ISSN: 2640-3498.

11

https://proceedings.mlr.press/v139/zhang21g.html
https://proceedings.mlr.press/v139/zhang21g.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A VAES BACKGROUND

We use P to denote distributions and p as their associated densities. Variational Autoencoders
(VAEs) (Kingma & Welling, 2013) are a distinct member of the family of deep generative models
(DGMs), where the likelihood is computed by marginalizing the following joint model likelihood
pθ(x, z), parameterized by θ: pθ(x) =

∫
z∼P (z)

pθ(x, z) dz.

Here, pθ(x) is called the marginal likelihood and is treated as a function of θ. VAEs are classified as
latent variable models (Kingma et al., 2019), where latent variables z represent unobserved random
variables modeled as the source of the data-generating process. The marginal likelihood can be
expressed as:

pθ(x) =

∫
z∼P (z)

pθ(x, z) dz =

∫
z∼P (z)

pθ(x | z)p(z) dz. (22)

When both the prior P (z) and the conditional distribution Pθ(x | z) are Gaussian, the marginal
likelihood pθ(x) can be thought of as an infinite Gaussian mixture model, making it highly ex-
pressive. However, in high-dimensional settings (e.g., images), directly estimating log pθ(x) =

log [pθ(x | z)p(z)] ≈ log( 1
K

∑K
k=1 [pθ(x | zk)p(zk)]) with finite samples becomes computationally

inefficient. VAEs introduce an efficient sampling method via an encoder qϕ(z | x) that serves as an
importance-weighted sampler, making computation much more tractable. This is formalized as:

pθ(x) =

∫
z∼P (z)

pθ(x | z)p(z) dz =

∫
z∼qϕ(z|x)

pθ(x | z)p(z)
qϕ(z | x)

dz, (23)

with a one-sample approximation:

log pθ(x) ≈ log

[
pθ(x | z)p(z)
qϕ(z | x)

]
. (24)

For out-of-distribution (OOD) detection, we utilize the test-time latent variable inference of VAEs, so
we omit the training dynamics here. For more details on VAEs, see Doersch (2016); Kingma et al.
(2019).

B RELATED WORK

Prior works have approached OOD detection from various perspectives and with different data
assumptions, e.g., with or without access to training labels, batches of test data, or single test data
points in a streaming fashion, and with or without knowledge and inductive bias of the data. In the
following, we give an overview organized by different data assumptions with a focus on where our
method fits.

The first assumption is whether the method has access to training labels. There has been extensive
work on classifier-based methods that assume access to training labels (Hendrycks & Gimpel, 2016;
Frosst et al., 2019; Sastry & Oore, 2020; Bahri et al., 2021; Papernot & McDaniel, 2018; Osawa et al.,
2019; Guénais et al., 2020; Lakshminarayanan et al., 2016; Pearce et al., 2020). Within this category,
there are different assumptions as well, such as access to a pretrained network or knowledge of OOD
test examples. See Table 1 of Sastry & Oore (2020) for a summary of such methods.

When we do not assume access to the training labels, the problem becomes more general and also
harder. Under this category, some methods assume access to a batch of test data where either all
the data points are OOD or not (Nalisnick et al., 2019). A more general setting does not assume
OOD data would come in batches. Under this setup, there are methods that implicitly assume prior
knowledge of the data, such as the input complexity method (Serrà et al., 2019), where the use of
image compressors implicitly assumes an image-like structure, or the likelihood ratio method (Ren
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et al., 2019), where a noisy background model is trained with the assumption of a background-object
structure.

As mentioned in Section 1, our method is among the most general and difficult settings where we
assume no access to labels, batches of test data, or any inductive bias of the dataset (Xiao et al., 2020;
Kirichenko et al., 2020; Havtorn et al., 2021; Ahmadian & Lindsten, 2021; Morningstar et al., 2021;
Bergamin et al., 2022; Liu et al., 2023; Graham et al., 2023). Xiao et al. (2020) fine-tune the VAE
encoders on the test data and take the likelihood ratio as the OOD score. Kirichenko et al. (2020)
trained RealNVP on EfficientNet (Tan & Le, 2020) embeddings and use log-likelihood directly as
the OOD score. Havtorn et al. (2021) trained hierarchical VAEs such as HVAE and BIVA and used
the log-likelihood directly as the OOD score. We compare our method with the above methods in
Table 1.

Some recent works on OOD detection (Ahmadian & Lindsten, 2021; Bergamin et al., 2022; Morn-
ingstar et al., 2021; Graham et al., 2023; Liu et al., 2023; Osada et al., 2023) indeed start to consider
other information contained in the entire neural activation path leading to the likelihood. Examples
include entropy, KL divergence, and Jacobian in the likelihood (Morningstar et al., 2021). However,
they do not address RQ2 and provide a principled method to select such statistics.

C INTERPRETATION OF LIKELIHOOD CANCELLATION

Recall VAEs’ likelihood estimation (parameterized by θ):

log pθ(x) ≈ log

[
pθ (x | z) p (z)
qϕ (z | x)

]
, (25)

The decoder pθ (x | z)’s reconstruction focuses on the pixel textures, while encoder qϕ (z | x)’s
samples evaluated at the prior, p (z), describe semantics. Consider xOOD, whose lower level features
are similar to ID data, but is semantically different. We can imagine pθ (x | z) is large while p (z) is
small. However, (Havtorn et al., 2021) demonstrates pθ(x) is dominated by lower level information.
Even if p (z) wants to reveal xOOD’s OOD nature, we cannot decipher it through pθ(xOOD). The
converse: pθ (x | z) can flag xOOD when the reconstruction error is big. But if p (z) is unusually high
compared to typical xID, pθ(x) may appear less OOD.

D EXPERIMENTAL DETAILS

D.1 VAE ARCHITECTURE AND TRAINING

For the architecture and the training of our VAEs, we followed Xiao et al. (2020). In addition,
we have trained VAEs of varying latent dimensions, {1, 2, 5, 10, 100, 1000, 2000, 3096, 5000,
10000}, and instead of training for 200 epochs and taking the resulting model checkpoint, we took
the checkpoint that had the best validation loss. For LPath-1M, we conducted experiments on VAEs
with all latent dimensions and for LPath-2M, we paired one high-dimensional VAE from the group
{3096, 5000, 10000} and one low-dimensional VAE from the group {1, 2, 5}.

In addition to Gaussian VAEs as mentioned in Section D.1.3, we also empirically experimented with
a categorical decoder, in the sense the decoder output is between the discrete pixel ranges, as in Xiao
et al. (2020). Strictly speaking, this no longer satisfies the Gaussian distribution anymore, which
may in turn violate our sufficient statistics perspective. However, we still experimented with it to
test whether LPath principles can be interpreted as a heuristic to inspire methods that approximate
sufficient statistics that can work reasonably well, and we observed that categorical decoders work
similarly with Guassian decoders.

D.1.1 DIMENSIONALITY TRADE-OFF

In this section, we discuss heuristics for training VAEs in the context of OOD detection, focusing on
the trade-offs involved in selecting the latent dimension.

Balancing the Trade-off in Latent Dimension A single VAE encounters a trade-off when selecting
the latent dimension for effective OOD detection:
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• Higher Latent Dimension Benefits the Encoder: Increasing the latent dimension enhances
the encoder’s ability qϕ to discriminate between in-distribution (ID) and OOD data. A
higher-dimensional latent space allows the encoder to map ID and OOD data to more
distinct regions, reducing overlap and improving separability. This increased capacity
enables the encoder to capture complex features of the data, improving its discriminative
power.

• Lower Latent Dimension Benefits the Decoder: Decreasing the latent dimension en-
hances the decoder’s ability pθ to identify OOD data through reconstruction errors. A
lower-dimensional latent space constrains the decoder, making it less capable of accurately
reconstructing OOD data that it hasn’t seen during training. This constraint leads to larger
reconstruction errors u(x) = ∥x − x̂∥2 for OOD samples, providing a useful signal for
detection.

This trade-off poses a challenge: adjusting the latent dimension to favor one component (encoder or
decoder) may compromise the performance of the other. Increasing the latent dimension benefits
the encoder but may reduce the decoder’s effectiveness in generating meaningful reconstruction
errors. Conversely, decreasing the latent dimension enhances the decoder’s ability to produce larger
reconstruction errors for OOD data but may impair the encoder’s discriminative capacity.

Implications for VAE Design When designing a single VAE for OOD detection, it’s essential to
consider this trade-off:

• For the Encoder: Aim for a higher latent dimension to improve the separation between ID
and OOD data in the latent space.

• For the Decoder: Consider a lower latent dimension to increase reconstruction errors for
OOD data, enhancing detection based on reconstruction discrepancies.

However, finding an optimal latent dimension that satisfies both requirements within a single VAE
can be challenging. Adjusting the latent dimension to favor one aspect inherently affects the other,
leading to suboptimal performance in at least one component.

Two VAEs Face No Such Trade-off To overcome this trade-off inherent in a single VAE, we
propose using two VAEs with different latent dimensions, as discussed in the next section. By pairing
a high-dimensional VAE with a low-dimensional one, we can leverage the strengths of both models
without being constrained by the conflicting requirements of a single latent dimension.

D.1.2 PAIRING VAES: LEVERAGING DUAL LATENT DIMENSIONS

Two VAEs Overcome the Trade-off To resolve the trade-off in latent dimension selection, we
propose training two VAEs with different latent dimensions:

1. High-Dimensional VAE: This VAE has an overparameterized (large) latent dimension. Its
encoder qϕ is capable of capturing complex features and provides informative statistics such
as v(x) and w(x) that help discriminate between ID and OOD data.

2. Low-Dimensional VAE: This VAE has an underparameterized (small) latent dimension. Its
decoder pθ is constrained, leading to higher reconstruction errors u(x) for OOD data due to
its limited capacity to represent unfamiliar inputs.

By combining the strengths of both VAEs, we can effectively detect OOD data. The high-dimensional
VAE’s encoder excels at distinguishing ID from OOD data in the latent space, while the low-
dimensional VAE’s decoder amplifies reconstruction errors for OOD samples.

Implementation Details In practice, we extract the following statistics:

• From the High-Dimensional VAE:
v(x) = ∥µz(x)∥2, (26)
w(x) = ∥σz(x)∥2, (27)

where µz(x) and σz(x) are the encoder’s mean and standard deviation in the latent space.
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• From the Low-Dimensional VAE:

u(x) = ∥x− x̂∥2, (28)
s(x) = ∥σx(µz(x))∥2, (29)

where x̂ is the reconstructed input, and σx(µz(x)) is the decoder’s standard deviation.

By integrating these statistics, we create a comprehensive feature set for OOD detection that leverages
both the encoder’s discriminative ability and the decoder’s reconstruction error signal.

Empirical Results This approach has led to improvements in challenging OOD detection scenarios.
For instance, when training on CIFAR-10 as the in-distribution dataset and using CIFAR-100,
vertically flipped (VFlip), and horizontally flipped (HFlip) images as OOD datasets, our method
achieved state-of-the-art results.

Remarkably, this was accomplished even though both VAEs, when considered individually, might
have limitations:

• The Overparameterized VAE (high latent dimension) may overfit the training data, poten-
tially reducing its generalization to unseen data.

• The Underparameterized VAE (low latent dimension) may struggle to reconstruct even
some ID data accurately due to its limited capacity.

However, by combining their complementary strengths, we surpassed the performance of larger
model architectures specifically designed for image data (see Table 1).

Pairing two VAEs with different latent dimensions allows us to capitalize on the advantages of both
high and low-dimensional latent spaces without being constrained by the trade-offs inherent in a
single model. This strategy provides a practical and effective solution for improving OOD detection
performance, demonstrating that sometimes “it takes two to transcend.”

D.1.3 CONSTANT DECODER COVARIANCE

In typical VAE learning, the decoder’s variance is fixed Dai et al., so it cannot be used as an inferential
parameter. We initially treated the decoder as an isotropic Gaussian with a learnable scalar covariance
matrix σx(z)2I , where I is the identity matrix and σx(z)2 is a learnable scalar. We later observed
that the scalar σx(z) always converge to a small value and remains fixed for any ID or OOD data.
And given that in typical VAE learning, the decoder’s variance is fixed Dai et al.. We decided to use a
fixed scalar as well and exclude this term from our algorithm.

This reduces the minimal sufficient statistics for encoder and decoder pair:

(µz(x), σz(x), µx(z), σx(z)) −→ (µz(x), σz(x), µx(z)) (30)

D.1.4 TRAINING OBJECTIVE MODIFICATION FOR STRONGER CONCENTRATION

Inspired by the well known concentration of Gaussian probability measures, to encourage stronger
concentration of the latent code around the spherical shell with radius

√
m for better OOD detection,

we propose the following modifications to standard VAEs’ loss functions:

We replace the initial KL divergence by:

Dtypical[Qϕ(z | µz(x), σ(x))∥P (z)] (31)

=Dtypical[N (µz(x), σz(x))∥N (0, I)] (32)

=
1

2

(
tr(σz(x)) + |(µz(x))

⊤(µz(x))−m| −m− log det(σz(x))
)

(33)

where m is the latent dimension.

In training, we also use Maximum Mean Discrepancy (MMD) Gretton et al. (2012) as a discriminator
since we are not dealing with complex distribution but Gaussian. The MMD is computed with
Gaussian kernel. This extra modification is because the above magnitude regularization does not take
distribution in to account.
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The final objective:
Ex∼PIDEz∼Qϕ

En∼N [logPθ(x | z)]− Dtypical[Qϕ(z | µz(x), σ(x))∥P (z)]− MMD(n, µz(x))
(34)

The idea is that for PID, we encourage the latent codes to concentrate around the prior’s typical sets.
That way, POOD may deviate further from PID in a controllable manner. In experiments, we tried the
combinations of the metric regularizer, Dtypical, and the distribution regularizer, MMD. This leads to
two other objectives:

Ex∼PIDEz∼Qϕ
[logPθ(x | z)]− Dtypical[Qϕ(z | µz(x), σ(x))∥P (z)] (35)

Ex∼PIDEz∼Qϕ
En∼N [logPθ(x | z)]− D[Qϕ(z | µz(x), σ(x))∥P (z)]− MMD(n, µz(x)) (36)

where D is the standard KL divergence.

But we did not observe a significant difference in the final AUROC different variations. We still
include those attempted modifications for future work.

D.2 FEATURE PROCESSING TO BOOST COPOD PERFORMANCES

Like most statistical algorithms, COPOD/MD is not scale invariant, and may prefer more dependency
structures closer to the linear ones. When we plot the distributions of u(x) and v(x), we find that
they exhibit extreme skewness. To make COPOD’s statistical estimation easier, we process them by
quantile transform. That is, for ID data, we map the the tuple of statistics’ marginal distributions to
N (0, 1). To ease the low dimensional empirical copula, we also de-correlate the joint distribution
of (u(x), v(x)), w(x)). We do so using Kessy et al. (2018)’s de-correlation method, similar to
Morningstar et al. (2021).

D.3 WIDTH AND HEIGHT OF A VECTOR INSTEAD OF ITS l2 NORM TO EXTRACT
COMPLEMENTARY INFORMATION

In our visual inspection, we find that the distribution of the scalar components of (u(x), v(x), w(x))
can be rather uneven. For example, the visible space reconstruction x− x̂ error can be mostly low
for many pixels, but very high at certain locations. These information can be washed away by the l2
norm. Instead, we propose to track both lp norm and lq norm for small p and large q.

For small p, lp measures the width of a vector, while lq measures the height of a vector for big
q. To get a sense of how they capture complementary information, we can borrow intuition from
lp ≈ l0, for small p and lq ≈ l∞, for large q. ∥x∥0 counts the number of nonzero entries, while ∥x∥∞
measures the height of x. For x with continuous values, however, l0 norm is not useful because it
always returns the dimension of x, while l∞ norm just measures the maximum component.

Extreme measures help screen extreme data. We therefore use lp norm and lq norm as a continuous
relaxation to capture this idea: lp norm will “count” the number of components in x that are unusually
small, and lq norm “measures” the average height of the few biggest components. These can be more
discriminitive against OOD than l2 norm alone, due to the extreme (proxy for OOD) conditions they
measure. We observe some minor improvements, detailed in Table 2’s ablation study.

ID: CIFAR10 OOD
OOD Dataset SVHN CIFAR100 Hflip Vflip
l2 norm 0.96 0.60 0.53 0.61
(lp, lq) 0.99 0.62 0.53 0.61

Table 2: Comparing the AUC of l2 norm versus our (lp, lq) measures.

E ABLATION STUDIES

E.1 INDIVIDUAL STATISTICS

To empirically validate how (u(x), v(x), w(x)) complement each other suggested by Theorem ??,
we use individual component alone in first stage and fit the second stage COPOD as usual. We notice
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OOD Dataset
Statistic SVHN CIFAR100 Hflip Vflip
u(x) 0.96 0.59 0.54 0.59
v(x) 0.94 0.56 0.54 0.59
w(x) 0.93 0.58 0.54 0.61

v(x) & w(x) 0.94 0.58 0.54 0.60
u(x) & v(x) 0.97 0.61 0.53 0.61
u(x) & w(x) 0.98 0.61 0.54 0.61

Table 3: COPOD on individual statistics. ID dataset is CIFAR10.

signigicant drops in performances. We fit COPOD on individual statistics u(x), v(x), w(x) and show
the results in Table 3. We can see that our original combination in Table 1 is better overall.

E.2 MD

To test the efficacy of (u(x), v(x), w(x)) without COPOD, we replace COPOD by a popular algorithm
in OOD detection, the MD algorithm Lee et al. (2018) and report such scores in Table 1. The scores are
comparable to COPOD, suggesting (u(x), v(x), w(x)) is the primary contributor to our performances.

E.3 LATENT DIMENSIONS

One hypothesis on the relationship between latent code dimension and OOD detection performance is
that lowering dimension incentivizes high level semantics learning, and higher level feature learning
can help discriminate OOD v.s. ID. We conducted experiments on the below latent dimensions and
report their AUC based on v(x) (norm of the latent code) in Table 4

Latent dimension 1 2 5 10 100 1000 3096 5000
v(x) AUC 0.39 0.63 0.52 0.45 0.22 0.65 0.76 0.59

Table 4: Lower latent code dimension doesn’t help to discriminate in practice.

Clearly, lowering the dimension isn’t sufficient to increase OOD performances.
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