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ABSTRACT

In contrast with the traditional offline learning, where complete data accessibil-
ity is assumed, many modern applications involve processing data in a streaming
fashion. This online learning setting raises various challenges, including concept
drift, hardware memory constraints, etc. In this paper, we propose the Recur-
rent Real-valued Neural Autoregressive Density Estimator (RRNADE), a flexible
density-based model for online classification and density estimation. RRNADE
combines a neural Gaussian mixture density module with a recurrent module. This
combination allows RRNADE to exploit possible sequential correlations in the
streaming task, which are often ignored in the classical streaming setting where
each input is assumed to be independent from the previous ones. We showcase
the ability of RRNADE to adapt to concept drifts on synthetic density estimation
tasks. We also apply RRNADE to online classification tasks on both real world
and synthetic datasets and compare it with multiple density based as well as non-
density based online classification methods. In almost all of these tasks, RRNADE
outperforms the other methods. Lastly, we conduct an ablation study demonstrat-
ing the complementary benefits of the density and the recurrent modules.

1 INTRODUCTION

Many tasks in classic supervised machine learning, such as regression and classification, involve
processing batched data in an offline fashion: the data, often coming as input-output pairs, is stored
first and then used to learn a predictive model for future unseen data. However, many modern
applications favor the form where the model update and predict while receiving new data entries.
This form is often referred to as learning from data streams. he problem of learning from data
streams is closely related to the problem of continual or incremental learning (Losing et al., 2018;
Zenke et al., 2017; Lopez-Paz & Ranzato, 2017) which have recently received an increasing interest
in the machine learning community

There are three major issues when learning from data streams: memory constrains, concept drifts
as well as temporal correlations. The sheer amount of data many modern applications process daily
makes it infeasible to store all data and perform offline update of the model (Naeem et al., 2022).
In addition, certain data sources do not allow the indefinite hold of the data due to potential privacy
regulations (Forti, 2021). Therefore, when learning data streams, it is often assumed that the model
only has access to the recent history. Furthermore, concept drifts and temporal correlations are
also common challenges when learning from data streams. Under the offline setting, data is often
assumed to have the i.i.d. assumption, i.e. each data entry is independently drawn from the identical
distribution. However, under the streaming data setting, the independent assumption can be violated,
causing temporal correlations in the data, while the violation of the identical assumption can lead
to concept drifts problem. These issues often invalidate the model learned from historical data,
resulting in further deterioration of its performance.

Density estimation is one of the core tasks in the field of unsupervised learning, branching out to
many applications such as classification and clustering. Under the offline setting, Real-valued Neural
Autoregressive Density Estimator (RNADE) leverages a neural network parameterized Gaussian
mixture model to estimate the density function of real-valued vectors. It is then curious if extending
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RNADE to its online form would be possible, namely, the model needs to be updated as new data
arrives and we only have a limited amount of history stored in memory. In this paper, we show that
the answer is in the positive. Concretely, our contributions are as follows:

1. We propose the Recurrent Real-valued Neural Autoregressive Density Estima-
tor (RRNADE), a versatile density estimator for online learning of data streams.

2. Moreover, we propose an RRNADE based Bayes classifier for online classification of
streaming data.

Our model uses a recurrent module to maintain a set of sufficient statistics for the future and capture
the potential temporal properties of the data. In addition, it also uses a neural networks parame-
terized Gaussian mixture model as the density module to compute the conditional density function
of the current input given the previous data. We theoretically show that RRNADE is strictly more
expressive than Gaussian hidden Markov models Bilmes et al. (1998). We present empirical results
demonstrating the ability of RRNADE to adapt to concept drifts and approximating density func-
tions with sequential relations. Moreover, we conduct extensive experiments on various benchmarks
of online classification and show that RRNADE outperforms all the compared methods on almost
every dataset. In addition, we further demonstrate the importance of both the recurrent module and
the density module in the ablation study.

Related Works For online density estimation on streaming data, many of the existing works focus
on the adoption of the kernel density estimation (KDE) method (Procopiuc & Procopiuc, 2005;
Heinz & Seeger, 2008; Kristan et al., 2011; Boedihardjo et al., 2008). These estimators often relies
on maintaining and updating (though merging) a specific number of kernels while incorporating new
instances, while in different fashions. In addition to these methods, KDE-Track (Qahtan et al., 2016)
leverages an adaptive resampling strategy to deal with concept drifts and improve the estimation
accuracy of the KDE-based methods. Another recent method, adaptive local online kernel density
estimator (ALoKDE) (Chen et al., 2021), leverages a statistical test for concept drift detection to
adapt fast to the concept drift. All these methods can be modified to a classification method via a
Bayes classifier.

For online classification on streaming data, there are a number of methods that are direct adaptations
of the original offline version to its online case. For example, the online SVM (OSVM) (Li & Yu,
2015), the adaptive random forest (ARF) (Gomes et al., 2017a), can be categorised to this type of
methods. In addition, (Liang et al., 2006; Cauwenberghs & Poggio, 2000; Lu et al., 2014) also
belong to this class of methods. Other methods like (Bifet & Gavalda, 2007; Bifet et al., 2013)
leverage an adaptive window size of the past, (Losing et al., 2016) takes advantage of the short-term
and long-term memories, while (Gomes et al., 2017b; Polikar et al., 2001) use ensemble method
to further improve the results. Another large class of online classification method is the prototype-
based classifiers, such as incremental learning vector quantization (ILVQ) (Losing et al., 2015),
generalized LVQ (Sato & Yamada, 1995), robust soft LVQ (Heusinger et al., 2019), and the sparse
prototype online kernel density estimator (SPOK) (Coelho & Barreto, 2022).

2 BACKGROUND

In this section we will background knowledge including the real-valued neural autoregressive den-
sity estimator (RNADE), recurrent models. We will also introduce the formulation of the online
density estimation and classification tasks.

Real-valued neural autoregressive density estimator (RNADE) The real-valued neural autore-
gressive density estimator (RNADE) (Uria et al., 2013) is a generalization of the original neural
autoregressive density estimator (NADE) (Uria et al., 2016) to continuous variables. The core idea
of RNADE is to estimate the joint density using the chain rule and approximate each conditional
density via neural networks, i.e. p(x1, · · · , xn) =

∏n
i=1 p(xi|x<i) with p(xi|x<i) = pM (xi|θi),

where x<i denotes all attributes preceding xi ∈ R in a fixed ordering*, pM is a mixture of
m Gaussians with parameters θi = {βi ∈ Rm,µi ∈ Rm,σi ∈ Rm}. Moreover, we have:

*Later we will also use the notation x[a,b], where a < b ∈ N, to denote xa+1, · · · ,xb ∈ Rd
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pM (xi|θi) =
∑m

j=1 β
j
iN (xi|µj

i ,σ
j
i ), where βj

i denotes the jth element of βi, same for µj
i and

σj
i and N (xi|µj

i ,σ
j
i ) denotes the Gaussian density with mean µj

i and standard deviation σj
i evalu-

ated at xi. Note that βi,µi,σi are functions of x<i. These functions are often chosen to be various
forms of neural networks. In the classic setting, RNADE with m mixing components and k hidden
states has the following update rules:

hi = hi−1 + xiwi, βi = softmax(Vβ
i hi−1 + bβi ) (1)

µi = Vµ
i hi−1 + bµi , σi = exp(Vσ

i hi−1 + bσi ), (2)

where Vβ
i ,V

µ
i and Vσ

i are m × k matrices, bβi , b
µ
i and bσi are vectors of size m, and w is a size

n vector. The softmax function (Bridle, 1990) ensures the mixing weights β are positive and sum
to one and the exponential ensures the variances are positive. RNADE is trained to minimize the
negative log likelihood: L(x1 · · ·xn, θi) = −

∑n
i=1 log(pM (xi|θi)) via gradient descent.

Recurrent models Recurrent neural networks (RNN) are a class of neural networks designed to
handle sequential data. An RNN takes as input a sequence (of arbitrary length) of elements from
an input space X and outputs an element in the output space Y . In most applications, X is a vector
space, typically Rd. RNNs process sequential data by reading one input at a time and updating a
real-valued vector referred to as the hidden state. Let g : Rk × Rd → Rk be the transition function
between the hidden states at time step t − 1: ht−1 ∈ Rk and at time step t. Formally, we have the
following definition for RNNs:
Definition 1. Let X and Y be the input and output space, respectively. A recurrent model with k
hidden states is defined by a tuple R = ⟨g, ξ,h0⟩ where g : X ×Rk → Rk is the recurrent function,
ξ : Rk → Y is the output function and h0 ∈ Rk is the initial state. A recurrent model R computes a
function fR : X ∗ → Y defined by the (recurrent) relation:

fR(x1x2 · · ·xn) = ξ(hn) where ht = g(xt,ht−1) for 1 ≤ t ≤ n and x1,x2, . . . ,xn ∈ X .

The difference of many kinds of recurrent models often resides in the transition functions. For ex-
ample, in long short-term memory networks (LSTMs) (Hochreiter & Schmidhuber, 1997), through
introducing memory cells and gating mechanisms in the transition functions, it avoids the gradient
vanishing/exploding problem that vanilla RNNs often struggle with. In addition, gated recurrent unit
networks (GRUs) (Chung et al., 2014) simplify the transition functions of LSTMs and significantly
reduce the number of parameters of the model. However, most of these variants focus on the additive
relation between the input vector and the hidden state, rarely exploring the multiplicative relation
between these vectors. Second order RNNs (2RNN) (Lee et al., 1986) include both the second order
(multiplicative) and the first order relations (additive) in the transition functions.

Online density estimation and classification for streaming data In this paper, we focus on den-
sity estimation and classification for streaming data. Formally, for the density estimation task, let
S = {x1, · · · ,xn, · · · } be a sequential data stream governed by some distribution ft(·), where
xt ∼ ft and the subscript denotes the timestamp of the data entry, and ft : Rd → R+

0 denotes the
distribution at time step t. We are then interested in finding an accurate approximation of the density
function f at each time step. For a C classes classification task, let yt ∈ {1, · · · , C} be the label
at time t and SL = {(x1, y1), · · · , (xn, yn), · · · } be a sequence of input label pairs. Moreover, the
label yt is drawn from the distribution qt while xt is drawn from the distribution fyt

t , i.e. xt ∼ fyt

t
where fyt

t (xt) = p(xt|yt) denotes the input distribution of class yt at time step t. In this setting, we
are interested in predicting the correct label at each time step t. As we are approaching these tasks
in the streaming setting, it is infeasible to store all the data one have seen so far. Therefore, for both
of these tasks, we constrain ourselves to only have access to a short window of data at each time
step, e.g. xt−l, · · · ,xt, where l is the window size and controlled to be a relatively small number.

One of the most challenging problems in learning data streams is the concept drift. Intuitively,
a concept drift happens when the underlining distribution ft changes overtime. This change can
happen abruptly, when the data changes significantly and occasionally (Iwashita & Papa, 2018).
This distribution shift can also occur gradually, when the data values slowly but constantly changes
over time. In addition, for classification tasks, concept drifts can occur not only in fyt

t but also in qt.
For example, in video frames classification, the goal is to classify different objects that the current
frame contains. In this case, a shift in the camera angle will result in a concept drift in the label’s
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Figure 1: The Recurrent Real-valued Neural Autoregressive Density Estimator for online density
estimation (left) and online classification (right), where the window size is l and the likelihood length
p = l − 1. Blue, orange and green boxes denote input data, functions and outputs, respectively.

distribution, i.e. qt. This shift, naturally can occur abruptly (snap movement of the camera), or
gradually (steady movement of the camera), resulting in different types of concept drifts.

3 METHODOLOGY

In this section, we introduce the Recurrent Real-valued Neural Autoregressive Density Estimator
(RRNADE): a versatile model for density estimation and classification of stream data.

3.1 RECURRENT REAL-VALUED NEURAL AUTOREGRESSIVE DENSITY ESTIMATOR
(RRNADE) FOR ONLINE DENSITY ESTIMATION

It is natural to wonder if it is possible to use RNADE for online density estimation. There are two
major issues for this adaptation: 1) the original RNADE model has one set of parameters per feature,
which would lead to an infinite amount of parameters to estimate for indefinite length of the stream,
and 2) the offline stochastic gradient descent routine needs to be adjusted to its online setting.

To tackle the first problem, instead of approximating the conditionals p(xi|x<i) via the classic
RNADE treatment (see Eq. 12), we use a recurrent model R = ⟨g, ξ,h0⟩ to model the conditionals:
p(xi|x<i) = fR(x1, · · · ,xi). In contrast with RNADE, using a recurrent model allows us to
make the state update function independent of the time step, enabling RRNADE to generalize to
sequences of arbitrary lengths. Inspired by RNADE, we constrain the output of the recurrent model
to be a mixture of Gaussians with diagonal covariance matrices. We now formally introduce the
Recurrent Real-valued Neural Autoregressive Density Estimator (RRNADE) model:

Definition 2. A Recurrent Real-valued Neural Autoregressive Density Estimator (RRNADE) with
k states and m components is a tuple R = ⟨g, ϕ,h0, ξ⟩ , where h0 ∈ Rk is the initial state,
g : Rk × Rd′ → Rk is the recurrent module, ξ : Rk × Rd → R+

0 is the density module and
ϕ : Rd → Rd′

is the input encoder. An RRNADE computes a function fR : (Rd)∗ → R+
0

†. Given a
sequence x1, · · · ,xn, fR computes in the following fashion:

hi = g(hi−1, ϕ(xi)), βi = softmax(Vβhi−1 + bβ) (3)
Mi = Vµ •1 hi−1 +Bµ, Σi = exp(Vσ •1 hi−1 + Bσ) (4)

ξ(hi−1,xi) =

m∑
j=1

βj
iN (xi|Mj

i ,diag(Σ
j
i )), fR(x1, · · · ,xn) = ξ(hn−1,xn) (5)

where Vµ ∈ Rk×m×d,Vσ ∈ Rk×m×d,Bµ ∈ Rm×d,Bσ ∈ Rm×d, Vβ ∈ Rm×k, bβ ∈ Rm, Mj
i =

(Mi)j,: ∈ Rd,Σj
i = (Σi)j,: ∈ Rd, diag(Σj

i ) denotes the diagonal matrix having the components
of Σj

i on the diagonal and V •1h denotes the mode-1 product defined by (V •1h)j,k =
∑

i Vi,j,khi.

†(Rd)∗ denotes the set of all possible sequences of arbitrary length constructed with d dimensional real-
valued vector at each time step.
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As outlined by Equation 5, RRNADE models the conditional density of the current input data, given
the history, as a Gaussian mixture. For simplicity, in the rest of the paper, we let d′ = d and
approximate each conditional via a mixture of Gaussian with a diagonal covariance matrix. This
can be changed to a full covariance matrix, should the corresponding assumption (positive semi-
definite) of the matrix is satisfied. Note this simplification does not affect the expressiveness of the
model, as a Gaussian mixture with a diagonal covariance matrix is also an universal approximator
for densities and can approximate a GMM with a full covariance matrix (Benesty et al., 2008), given
enough components. Furthermore, although we give specific forms of βi, Mi and Σi in Definition 2,
in practice, one can use any differentiable function of hi to compute βi, Mi and Σi, so long as βi

is positive and sums to one and Σi is positive definitive. For ease of notation, we will denote by
R(h, ξ′) an RRNADE with h0 = h and ξ = ξ′, when necessary.

We show in the following theorem that RRNADE is strictly more expressive than Gaussian HMMs,
which are well known for sequential modeling (Bilmes et al., 1998).
Theorem 3.1. Given a Gaussian HMM η with k states, there exists a k states k mixtures RRNADE R
with full covariance matrices such that the density function over all possible trajectories sampled by
η can be computed by R: pη(x1 · · ·xn) =

∏n
i=1 fR(x≤n) for any trajectory x1 · · ·xn. Moreover,

there exists an RRNADE R′ such that no Gaussian HMM can compute its density.

For the second problem, by design, RRNADE approximates a conditional density function of the
current input given the history. In the offline setting, one can learn such RRNADE via gradient
ascent of the sequences likelihood, i.e, maximizing the likelihood function: Loffline(x1, · · · ,xn) =
p(x1, · · · ,xn) = Πn

i=1fR(x≤i). In the online setting, we assume that we have access to the past
data entries from a window of size l, i.e., xt−l, · · · ,xt, at each time step t. One solution would be to
maximize the likelihood over the entire window, i.e. L(xt−l+1, · · · ,xt) = Πt

i=t−l+1fR(x[t−l,i]).

However, this procedure falls short when concept drift occurs. For example, if the data has abrupt
drifts (infrequent), then choosing l could be a dilemma: to capture and adapt to this concept drift
fast, l is preferable to be small to provide a significant gradient update, which, however, prevents
the model from learning temporal dependencies in the data. To address this issue, we propose to
have a second hyperparameter p ≤ l, referred to as the likelihood length, to control the number
of past observations that are taken into account in the loss function. That is, RRNADE takes all l
past entries as input but the parameters are trained by maximizing the likelihood of only the past p
observations. Therefore, not only can we capture temporal dependencies up to the window size l,
but the choice of p enables us to adjust how fast RRNADE adapt to potential concept drifts in the
data. Formally, we maximize the following likelihood function:

Lonline(xt−l+1, · · · ,xt) = Πt
i=t−p+1fR(x[t−l,i]) (6)

The core idea of this procedure is to obtain and maintain a set of sufficient statistics for the future. At
time t = l, the model starts with the hidden state h0. After updating the parameters by maximizing
the likelihood Πl

i=l−p+1fR(h0)(x[1,i]), the internal state of RRNADE is then updated to h1 =

g(h0,x1). At the next time step, t = l+1, the first observation x1 is discarded but h1 still represents
sufficient statistics of all past observations, including x1. The parameters are then optimized to
maximize the likelihood Πl+1

i=l−p+2fR(h1)(x[2,i]). This process then iterates over the future time
steps, carrying the sufficient statistics forward (i.e., at a future time step t, even though only the past
l observations are stored in memory, ht−l captures sufficient statistics of all past observations).

The training procedure is detailed in Algorithm 1 and a graphical illustration is presented on the left
side of Figure 1. We use L and L to denote the likelihood function and the log likelihood function,
respectively. In our experiments, we select l and p using validation over the first n data points. For
practical online learning, this can be done by training several RRNADE models in parallel and select
the one with the best overall performance after training and predicting on the validation sequence.

3.2 RRNADE FOR ONLINE CLASSIFICATION

One straightforward application of approximating densities is online classification. Recall that
RRNADE approximates the conditional density of the current input given the history, i.e.,
fR(x[t−l,t]) ≃ p(xt|x<t). For the online classification problem, we are interested in the condi-
tional probability of the current label given the history, i.e. p(yt|x1 · · ·xt). Using Bayes rule:

p(yt|x1 · · ·xt) ∝ p(yt)p(xt|x<t, yt) ≃ p(yt)fR(x[t−l,t])
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Algorithm 1 RRNADE for Online Density Estimation and Classification
1: INPUT: Input data stream S = {x1, · · · ,xn, · · · } for density estimation, or SL =

{(x1, y1), · · · , (xn, yn), · · · } for C classes classification; window size l; likelihood length p;
a randomly initialized RRNADE: R(h0, ξ1); for classification, extra C − 1 density modules
ξ2, · · · , ξC .

2: for t = l, l + 1, · · · , n, · · · do
3: Compute the log likelihood for each input (and for each class):
4:

Lc
j(xj |x[t−l,j−1]) = log(fR(ht−l,ξc)(x[t−l,j])) for j = t− p+ 1, · · · , t

5: if running density estimation task then
6: Compute the sum of the log likelihood over the past p time steps:

Lonline(xt−l+1, · · · ,xt) =

t∑
i=t−p+1

L1
i (xi|x[t−l,i−1])

7: Perform gradient ascent update to R(ht−l, ξ1), w.r.t. Lonline.
8: Obtain the conditional density estimation at time step t:

p(xt|x<t) ≃ fR(ht−l)(xt−l+1, · · · ,xt)

9: else if running classification task then
10: Compute the predicted class distribution: P j

C(yt = c) =
exp(Lc

j)∑C
i=1 exp(Li

j)

11: Obtain the predicted label at current time step: ŷt = argmaxc P
t
C(yt = c)

12: Perform gradient descent update to R(ht−l, ξ1), ξ2, · · · , ξC w.r.t. the categorical cross
entropy: 1

p

∑t
j=t−p+1 CCE(P j

C , yt)

13: end if
14: Update ht−l to ht−l+1 via the transition function g of R(ht−l):

ht−l+1 = g(ht−l,xt−l+1)

15: end for

One approach would be to train C different RRNADE models, one for each class: fRc(x[t−l,t]) ≃
p(xt|x<t, yt = c), where Rc denotes the RRNADE model for class c. However, as we are learning
online, each gradient update is often of high variance. This approach introduces too many model
parameters, which will further increase the model’s variance, resulting in a suboptimal performance.
To reduce the number of parameters, we propose to share the recurrent module of all RRNADE
models, while keeping the density module specific to each class. RRNADE’s prediction at time t is
thus given by

ŷt = argmax
c

[p(yt = c)fRc(x[t−l,t])] (7)

For the choice of the prior distribution p(yt), we recommend using a uniform distribution as extra
effort needs to be taken to mitigate the shift in the true prior distribution caused by concept drifts
in the data. We defer the study of estimating proper prior for data streams with concept drifts to
the future work. We present RRNADE for online classification in Algorithm 1 and a graphical
illustration of the model is presented on the right side of Figure 1.

4 EXPERIMENTS

In this section, we present empirical results on RRNADE for online density estimation and classi-
fication. For density estimation, we experiment with synthetic data to evaluate RRNADE’s ability
of adapting to concept drifts and to verify Theorem 3.1. For classification, we conduct experiments
on both synthetic as well as real world streaming data and compare with multiple density based
and non-density based online classification methods. Finally, we show an ablation study to further
showcase the significance of both the density module and the recurrent module of the RRNADE.
We experimented with three different variants of the RRNADE model. By using LSTM, GRU and
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Figure 2: Top row (left to right): Log likelihood of (1a) Gaussian with abrupt drift. (1b) Gaussian
with gradual drift. (1c) Gaussian HMM. Bottom row: Snapshots of learned density at corresponding
time steps of Gaussian with abrupt drift, red curve represent the ground truth density function.

AUC ALoKDE oKDE odKDE LAIM KDE
-Track

RRNADE
-2RNN

RRNADE
-LSTM

RRNADE
-GRU

Sea 83.11 78.74 75.13 77.17 81.29 88.12 (1.9) 87.42 (3.6) 88.88 (2.3)
Hyperplane 83.44 82.36 82.36 75.56 82.8 93.12 (2.9) 93.14 (4.2) 94.32 (3.1)
Mixed drift 90.12 88.16 70.43 55.65 88.48 98.13 (1.2) 97.66 (1.1) 96.11 (1.9)

Transient chessboard 79.6 77.4 77.08 77.18 77.98 89.16 (3.6) 86.39 (2.8) 91.34 (3.2)
Weather 76.81 68.43 66.26 73.47 76.1 85.23 (6.4) 86.67 (3.3) 84.14 (2.2)

Electricity 52.51 51.57 42.45 43.25 44.06 92.14 (4.5) 90.68 (5.3) 91.01 (6.7)
Cover type 97.31 57.86 96.67 93.04 96.04 98.01 (1.1) 96.13 (1.8) 90.79 (2.7)
Poker hand 91.01 88.36 82.92 82.19 91.01 94.39 (2.8) 96.24 (3.4) 93.15 (2.9)

Rialto 92.67 70.55 87.71 83.49 82.37 99.11 (0.9) 98.13 (1.5) 94.35 (0.8)

Table 1: Averaged online AUC score of RRNADE over 5 seeds (standard deviation in the brackets),
compared with (Chen et al., 2021)

2RNN for the recurrent module, we have RRNADE-LSTM, RRNADE-GRU and RRNADE-2RNN,
respectively. In all experiments, we use Adam optimizer (Kingma & Ba, 2015).

4.1 DENSITY ESTIMATION

To evaluate the performance on density estimation, we first conduct experiments on learning drifting
Gaussian to examine RRNADE’s ability of adapting to concept drifts. We generate samples from
a shifting Gaussian with random initial mean and variance 1. Recall there are two major types of
concept drifts, abrupt and gradual drift. For the abrupt drift, the mean is increased by 2 every 100
time steps, while for the gradual drift, the mean is increased by 0.01 every time step. For the model
hyperparameters of RRNADE, we set the number of components to be 10, both the window size and
the likelihood size is set to 1, number of hidden states of the recurrent module is set to 5 and we use
a one layer fully connected neural networks with 5 neurons to be the input encoder ϕ.

The results are displayed in Figure 2. In Figure 2 (1a) and (1b), we show the log likelihood of
Gaussian density function with abrupt and gradual drift on its mean. From the figures, we can see
that all three different variants of RRNADE are able to learn the density function and adapt to both
of these drifts. The black boxes in (1a) indicates the first two abrupt drifts (time step 100 and 200)
of the Gaussian distribution, where visible drops of model performance are observed. Moreover,
the adaptation speed increases w.r.t. the time step. The bottom row of Figure 2 shows the learned
Gaussain at various time steps. We observe that, at time steps 210 the mean of the mixture model
has not been correctly adjusted after 10 time steps of adaptation, while at 410, the model has already
adapted to the drift occurred at time step 400.

To verify Theorem 3.1 and show RRNADE can approximate density functions of data streams with
sequential features. We generate 1,000 examples from a random Gaussian HMM of 3 states. In this
experiment, we set the hyperparameters to be the same as in the above experiment except l = p = 5.
In Figure 2 (1c), we show the learning curves w.r.t. log likelihood on all three variants. Here we can
see all three variants are able to approximate the density function that the HMM emits at each time
step. Note there is also a gradual concept drift with the HMM data, as the density function at each
time is a mixture of a set of Gaussians, where the mixing weights are the state distributions that the
HMM maintains.
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Accuracy ISVM LASVM ORF ILVQ LPP IELM SGD NB RRNADE
-2RNN

RRNADE
-LSTM

RRNADE
-GRU

Electricity N/A N/A 0.699 0.725 0.675 0.548 0.846 0.632 0.864 (0.02) 0.878 (0.01) 0.858 (0.01)
Inter RBF N/A N/A 0.459 0.768 0.294 0.295 0.443 0.299 0.901 (0.02) 0.922 (0.02) 0.924 (0.03)

Moving RBF N/A N/A 0.456 0.766 0.18 0.159 0.406 0.172 0.744 (0.01) 0.739 (0.02) 0.772 (0.01)
Cover Type N/A N/A 0.896 0.883 0.397 0.513 0.946 0.546 0.960 (0.01) 0.929 (0.02) 0.951 (0.02)

Border 0.985 0.976 0.94 0.947 0.884 0.88 0.375 0.944 0.955 (0.05) 0.957 (0.02) 0.943 (0.03)
Overlap 0.817 0.788 0.782 0.811 0.727 0.748 0.679 0.675 0.754 (0.01) 0.734 (0.01) 0.770 (0.01)
Outdoor 0.864 0.823 0.342 0.826 0.685 0.733 0.18 0.65 0.958 (0.03) 0.963 (0.02) 0.942 (0.02)
COIL 0.754 0.663 0.666 0.791 0.587 0.631 0.096 0.702 0.851 (0.03) 0.859 (0.01) 0.832 (0.02)

Table 2: Averaged online accuracy of RRNADE over 5 seeds with standard deviations, compared
with (Losing et al., 2018)

Accuracy L++.NSE DACC LVGB KNNs KNNwa SAM SPOK RRNADE
-2RNN

RRNADE
-LSTM

RRNADE
-GRU

CoverType 0.850 0.899 0.909 0.958 0.932 0.952 0.883 0.960 (0.01) 0.929 (0.02) 0.951 (0.02)
Electricity 0.728 0.831 0.832 0.713 0.739 0.825 0.742 0.864 (0.02) 0.878 (0.01) 0.858 (0.01)
Outdoor 0.422 0.644 0.601 0.86 0.837 0.888 0.810 0.958 (0.03) 0.963 (0.02) 0.942 (0.02)

Poker Hand 0.779 0.790 0.864 0.829 0.721 0.816 0.731 0.847 (0.02) 0.851 (0.02) 0.840 (0.01)
Rialto 0.596 0.711 0.604 0.772 0.750 0.814 0.618 0.887 (0.05) 0.936 (0.04) 0.915 (0.04)

Weather 0.771 0.732 0.781 0.785 0.769 0.783 0.741 0.786 (0.00) 0.790 (0.01) 0.783 (0.01)

Table 3: Averaged online accuracy of RRNADE over 5 seeds with standard deviations, compared
with (Coelho & Barreto, 2022)

4.2 CLASSIFICATION

In this subsection, we present experiment results for online classification on various classic bench-
marks of online classification and compare RRNADE to both density based as well as non density
based methods. The results of these methods are obtained from the corresponding papers. To keep
the fairness, we conduct data preprocessing and evaluation procedure the same way as mentioned
in each of these papers. We validate on the first 1,000 examples or first 10% of the data (whichever
is smaller) to select the number of mixture components, number of hidden states, window size l as
well as likelihood length p, while l is set to be no larger than 10. The input encoder is still a one
layer fully connected neural networks with number of neurons being one of the hyperparameters as
well. This validation routine is consistent with all three papers we compare with.

First, we compare with several density based classifiers listed in (Chen et al., 2021). Note the ”Cover
type”, ”Poker hand”, ”Transient chessboard”, ”Rialto” as well as ”Mixed drift” are originally multi-
class data streams. Following the same procedure as in (Chen et al., 2021), we generate their binary
versions by extracting the largest two classes from each data stream, respectively. The AUC scores
on various datasets are presented in Table 1. From this table, we can see all RRNADE variants
consistently outperforming the other methods. In addition, in many datasets, e.g. ”Electricity”,
”Hyperplane” etc., we outperform the best compared method by a significant margin.

Second, we compare with multiple non-density based classification methods in both (Coelho &
Barreto, 2022; Losing et al., 2018). The running average of the classification accuracy is reported
in Table 3 and Table 2, respectively. In Table 2, N/A indicates that the corresponding result is not
reported in the original paper. We can see that in almost every datasets, we achieve competitive
results, if not significantly better. For synthetic datasets, in ”Inter RBF”, various Gaussians are
replacing each other every 3000 samples, representing an abrupt concept drift, while the dataset
”Moving RBF” is constructed such that Gaussian distributions with random initial positions, weights
and standard deviations are moved with constant speed, representing a gradual concept drift. Here
we can see, on both of these datasets, we outperform other methods, further showcasing RRNADE’s
ability to adapt to concept drift. For real world data, ”Weather”, ”Electricity”, ”Outdoor”, ”COIL”
as well as ”Rialto” are all data streams with sequential dependencies. Here we can also see that on
these datasets, RRNADE outperforms other compared methods.

4.3 ABLATION STUDY

In this ablation study, we are looking into the significance of RRNADE’s two components, i.e.
the density module ξ and the recurrent module g. We compare RRNADE with three baselines:
RRNADE without recurrent module (NR), RRNADE without density module (ND), as well as
RRNADE without both recurrent and density module (NRND). For NR, we replace the recurrent
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Accuracy RRNADE
-2RNN

RRNADE
-LSTM

RRNADE
-GRU NR NRND ND

-LSTM
ND

-2RNN
ND

-GRU
Border 0.96 (0.05) 0.96 (0.02) 0.94 (0.03) 0.90 (0.03) 0.80 (0.02) 0.81 (0.02) 0.80 (0.02) 0.81 (0.01)
Overlap 0.75 (0.01) 0.73 (0.01) 0.77 (0.01) 0.75 (0.03) 0.65 (0.02) 0.64 (0.01) 0.65 (0.02) 0.66 (0.02)

Inter RBF 0.90 (0.02) 0.92 (0.02) 0.92 (0.03) 0.87 (0.02) 0.46 (0.05) 0.87 (0.09) 0.66 (0.08) 0.79 (0.04)
Moving RBF 0.74 (0.01) 0.74 (0.02) 0.77 (0.01) 0.51 (0.02) 0.42 (0.01) 0.59 (0.03) 0.44 (0.02) 0.58 (0.04)

Outdoor 0.96 (0.03) 0.96 (0.02) 0.94 (0.02) 0.95 (0.01) 0.31 (0.02) 0.42 (0.02) 0.45 (0.03) 0.39 (0.02)
Weather 0.79 (0.00) 0.79 (0.01) 0.78 (0.01) 0.78 (0.01) 0.78 (0.01) 0.79 (0.01) 0.78 (0.01) 0.79 (0.0)
Rialto 0.89 (0.05) 0.94 (0.04) 0.92 (0.04) 0.82 (0.04) 0.73 (0.01) 0.92 (0.04) 0.83 (0.05) 0.93 (0.03)

Figure 3: Comparison of RRNADE with three baselines NR, ND, NRND

module of RRNADE by a two layered fully connected neural networks, which only takes the data at
the current and previous time step as the input. For ND, we replace the density module of RRNADE
by a two layered fully connected neural networks, while for NRND, a two layered neural network is
used to map from the current step input to its label. To correspond to the three variants of RRNADE,
ND also has three different recurrent units, namely GRU, LSTM, and 2RNN. A graphical illustration
of the baseline models can be seen in Figure 4 in the Appendix. The hyperparameters are selected
using validation in the same fashion as we mentioned before. We present the results in Table 3.

From the table, we can see that on all examined datasets, RRNADE outperforms all baselines. In
some datasets, e.g. ”Moving RBF” and ”Inter RBF”, only by using both of the modules, i.e. the
density module ξ and the recurrent module g, can the model reach to the best performance. However,
on some other datasets, e.g. ”Rialto”, the missing of the recurrent module alone is detrimental,
while for datasets like ”Overlap”, the density module is of great importance. On one hand, recurrent
module captures the temporal relations in the data, which in some cases are the key to predicting
the correct label. In the top right figure of Figure 3, we show the learning curves of the three
variants of RRNADE and NR on ”Rialto” dataset. We can see clearly that NR converges slower
and to a worse solution compared to RRNADE. This is due to the fact that the label has a specific
ordering, which, if not using the recurrent module, is hard to capture. On the other hand, the use of
density module provides a proper inductive bias in some cases, which accelerate the convergence and
improve the final solution. For example, both ”Inter RBF” and ”Moving RBF”, as explained earlier,
are generated from Gaussians with concept drifts. Therefore we can see that they overall have much
better performance with the density module. In addition, we train the NRND model on ”overlap”
dataset in an offline fashion using gradient descent with batch size 1 without random permutation of
the data. Note under this training routine, the first epoch is equivalent to learning under streaming
setting. In bottom right figure of Figure 3, we show the learning curves of such trained NRND
model of the first 10 epochs (the increasing color gradient corresponds to the increase in the number
of epochs) as well as of NR and RRNADE-GRU. As the number of epochs increases, NRND slowly
reaches to the performance of NR. However, in the first epoch, i.e. the online setting, we can see
although all the methods start at close positions, the ones with density module improve much faster.

5 CONCLUSION

In this paper, we propose the Recurrent Real-valued Neural Autoregressive Density Estima-
tor (RRNADE), an extension of the classic RNADE model to its online setting. The core idea
of RRNADE is to maintain a set of sufficient statistics for the future via recurrent function (recur-
rent module) and approximate the conditional density function using mixture of Gaussian (density
module), parameterized by neural networks. We show that theoretically, RRNADE is strictly more
expressive than the Gaussian hidden Markov model, which is a classic model for learning sequential
data. We then propose learning algorithms for using RRNADE on online density estimation and
classification of data streams, respectively. For the empirical studies, we conduct experiments on
synthetic data showing RRNADE is able to learn the density function parameterized by a Gaussian
HMM and RRNADE is efficient in adapting to concept drifts. For the classification tasks, we com-
pare RRNADE with various methods on multiple synthetic and real world datasets. We show that
RRNADE outperforms all the methods on almost every dataset. In the ablation study, we further
showcase the importance of both the recurrent module and the density module, where the recurrent
module helps capture the sequential dependencies of the data stream, while the density module helps
with the online optimization. For the future work, recall that we use uniform distribution as the prior
for RRNADE on classification tasks. In the future, we would like to investigate a more adaptive way
of estimating the prior. In addition, since our model is a density model, it would be interesting to
investigate the possibility of online clustering.
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A APPENDIX

A.1 PROOF OF THEOREM

Theorem A.1. Given a Gaussian HMM with k states η = ⟨µ,T, O⟩, where O : Rk × Rd → R+
0

is the Gaussian emission function, µ ∈ Rk is the initial state distribution and T ∈ [0, 1]k is the
transition matrix, there exists a k states k components RRNADE R with full covariance matrices
such that the density function over all possible trajectories sampled by η can be computed by R:
pη(x1 · · ·xn) =

∏n
i=1 fR(x≤n) for any trajectory x1 · · ·xn. Moreover, there exists an RRNADE

R′ such that no Gaussian HMM can compute its density.

Proof. For the Gaussian HMM η, given an observation sequences x1 · · ·xn, its density under η is:

pη(x1 · · ·xn) = O(m⊤,x1)O(m⊤T,x2) · · ·O(m⊤Tn−1,xn),

where O(h,x) =
∑k

i=1 hiN (x|µ,Σ) for some mean vector µ and covariance matrix Σ. Let
R = ⟨h0, g, ξ, ϕ⟩ be an RRNADE, more specifically, let h0 = m, g(h,x) = A •1 h⊤ •2 ϕ(x)
A:,i,: = T for i ∈ [k], ϕ(x) = [ 1k ,

1
k , · · · ,

1
k ]

⊤ and ξ = O. Note it reasonable to let ξ = O, since
as long as we let βi = h⊤

0 T
i−1, β0 = h⊤

0 , µi = µ and Σi = Σ, following equations 4, then
for any h ∈ Rk,x ∈ Rd, we have ξ(h,x) = O(h,x). Then under this parameterization, we have
A •2 ϕ(xj) = T. Then the RRNADE computes the following function:

fR(x1, · · · ,xi) = ξ((A •1 h⊤
0 •2 ϕ(x1))

⊤(A •2 ϕ(x2)) · · · (A •2 ϕ(xi−1)),xi)

= ξ(h⊤
0 T

i−1,xi) = O(m⊤Ti−1,xi)

Therefore, we have:
pη(x1 · · ·xn) = O(m⊤,x1)O(m⊤T,x2) · · ·O(m⊤Tn−1,xn)

= fR(x1)fR(x1,x2) · · · fR(x1, · · · ,xn) =

n∏
i=1

fR(x≤n)

For the proof of the second half of the theorem, consider a shifting Gaussian HMM, where the mean
vector of the Gaussian emission is a function of the time steps, i.e., µ = q(i), where i = 1, 2, · · · .
For simplicity, assume the shifting Gaussian HMM is for one dimensional sequences and has one
components. In addition, let q(i) = i and assume the variance is 1. Then the emission function can
be written as Ot(x) = N (x|t, 1). Then the density of a sequence x1, · · · , xn under this shifting
Gaussian HMM ηs is:

pηs(x1, · · · , xn) = O1(x1)O
2(x2) · · ·On(xn).

We show that this density cannot be computed by a Gaussian HMM of finite states. If pηs can be
computed by a Gaussian HMM, then for the mean vector µ there exists an initial weight vector m,
a transition matrix T satisfying the following linear system:

m⊤µ = 1

m⊤Tµ = 2
...

m⊤Tn−1µ = n
...

This linear system is, however, overdetermined, as µ is a vector of finite size, while there are infi-
nite linearly independent equations to satisfy. Therefore, a Gaussian HMM of finite states cannot
compute the density function of a shifting Gaussian HMM.

We now show such density can be computed by a RRNADE. Let h⊤
0 = [1, 1], and A:,i,: =

[
1 1
0 1

]
,

Mi = ⟨hi−1, [0, 1]⟩, ϕ(x)⊤ = [0.5, 0.5], Σi = 1. Then we have:

fR(x1, · · · , xi) = ξ((A •1 h⊤
0 •2 ϕ(x1))

⊤(A •2 ϕ(x2)) · · · (A •2 ϕ(xi−1)), xi)

= ξ(h⊤
0 T

i−1, xi) = ξ([1, i], xi) = N (xi|i, 1)
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Therefore:

pηs(x1, · · · , xn) = N (x1|1, 1)N (x2|2, 1) · · · N (xn|n, 1)

= fR(x1)fR(x1, x2) · · · fR(x1, · · · , xn) =

n∏
i=1

fR(x≤n)

Therefore, for the given shifting Gaussian HMM density, it can be computed by a RRNADE, but
cannot be computed by a Gaussian HMM with finite states.

A.2 THREE BASELINE MODELS FOR ABLATION STUDY

For NR, we replace the recurrent module of RRNADE by a two layered fully connected neural
networks, which only takes the data at the current and previous time step as the input. For ND, we
replace the density module of RRNADE by a two layered fully connected neural networks.

Figure 4: The three baseline models NR (left), ND (middle), NRND (right).
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