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Abstract— Current approaches to implement eXplainable
Autonomous Robots (XAR) are dominantly based on Rein-
forcement Learning (RL), which are suitable for modelling
and correcting people’s first-order mental state attributions
to robots. Our recent findings show that people also rely on
attributing second-order beliefs (i.e., beliefs about beliefs) to
robots to interpret their behavior. However, robots arguably
form and act primarily on first-order beliefs and desires (about
things in the environment) and do not have a functional
“theory of mind”. Moreover, RL models may be incapable to
appropriately address second-order belief attribution errors.
This paper aims to open a discussion of what our recent findings
on second-order mental state attribution to robots imply for
current approaches to XAR.

I. INTRODUCTION

Robots are progressively spreading in everyday society,
incorporating roles in healthcare, education, and personal
and public services. To benefit human users, a robot’s de-
cisions, recommendations, and actions need to be intuitively
interpretable and understandable. Psychological research in-
dicates that people cannot help but infer mind and intentional
agency in other agents (e.g., [25]), including robots [14],
[26], [42], [57]. Since people have learned to construct
mental models based on their interaction with other living
beings [25], they run the risk of establishing incorrect mental
models of robots [56]. As a result, people perceive robot
behaviors as ambiguous [14], [27], wrongfully blame robots
for alleged errors [27], improperly trust robots’ abilities
[29], [41], and collaborate ineffectively with robots [12],
[54]. The increasingly complex but unintelligible algorithms
that govern the behavior of robots invoke the need for
interpretable robot behaviors that offer meaningful insights
into their decisions, recommendations, and actions [18], [44],
[52]. However, current research on the explainability of
intelligent autonomous systems is not only limited [28] but
lacks theoretical foundations and rigorous research methods
[9], [34], [50]. In our view, the challenge is to design human
interactions with such systems in such a way that people
attribute appropriate intentional (mental) states to them [50]
—a challenge that prompts researchers across several scien-
tific disciplines to advocate for a multidisciplinary approach
on explainability [9], [34], [37]. This paper provides an
overview of psychological findings on how people perceive
robot minds and how these insights can benefit the design
of explainable human-robot interactions (HRIs).
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II. How PEOPLE PERCEIVE ROBOT MINDS

A vast body of research in philosophy [43], psychology
[20], and social cognition [30] illuminates how people de-
fine, generate, select, evaluate, and present explanations of
behavior in general. People understand and explain their own
and others’ behaviors by the ascription of intentional states
to agents in social contexts [11]. When explaining behavior,
people use a sophisticated set of distinctions, which follow
directly from their folk concept of intentionality and specify
the constituent components of (un)intentional behavior [31].

People seek behavior explanations for two reasons [32]:
(1) to find meanings in behavior when they themselves
wonder why the behavior occurred, and (2) to manage social
interaction when they expect others to wonder why the
behavior occurred. This ”"wondering why” may be implicit.
When explaining any given behavior, be it our own or that of
someone or something else, people choose from a number
of explanatory tools that occur at three levels [30]: mode
(cause, reasons, causal-history of reasons, enabling factors),
type (either type of reason, e.g., belief versus desire, or type
of cause, e.g., trait versus non-trait), and linguistic form (e.g.,
reasons with or without mental state markers).

Work in numerous disciplines has shown that explanations
of human behavior are fundamentally grounded in a con-
ceptual framework of intentional agency and mind, typically
referred to as theory of mind [3], [38] or folk psychology
[19], [23]. This framework guides people’s explanations and
predictions of behavior as well as inferences about specific
mental states, such as specific beliefs, desires, or intentions
[8]. A substantial body of research indicates that people
ascribe mental states to robots [14], [26], [42], [57] (for a
review, see [48]), and further evidence suggests that people
spontaneously apply the same explanatory tools of folk
psychology when explaining robot behavior as they apply to
human behavior [10], [49]. To increase the predictability and
explainability of robots, human-robot interactions must be
designed in a way that facilitates the attribution of behavior-
congruent intentional states to robotic systems (i.e., design
that helps people make useful inferences about what robots
want, know, intend, etc.) [47], [50].

ITI. FOLK-PSYCHOLOGICAL APPROACHES TO
EXPLAINABILITY

Current approaches toward explainable autonomous in-
telligent systems lack theoretical foundations and rigorous
methodological evaluations [1]. They mainly focus on mak-
ing the robot’s algorithms more transparent (e.g., [27], [36],
[51], [56]), often based on researchers’ own intuition of



what constitutes transparency or interpretability [34]. More
importantly, these approaches typically fail to consider that
human interpretations of behavior are shaped within a folk-
conceptual framework and that explanations must be phrased
in the language of this framework to create the meaning,
understanding, and trust that people seek within interactions
[9], [34], [50]. Given that previous research indicates that
people readily apply the concepts and linguistic tools of folk
psychology to explain robot behavior [10], [49], it stands to
reason that people will be comfortable when robots explain
their own behavior using this framework. Therefore, we have
previously proposed that robots should explain their own in-
tentional actions (planned or already performed) by reference
to reasons for their actions and using the language of beliefs
and desires that is so strongly present in human interactions
[9], [10], [50]. Here, we highlight several open challenges
for explainable HRIs mainly based on our previous work:

o The Perceptual Belief Problem: Robots perceive the
world differently from humans and people may not
readily understand their perspective on the world [50].
References to objects and events in the shared physical
space must therefore be made in terms that make
referents identifiable to humans when they occur as part
of behavior explanations.

o The Language of Explanation: The behavior explana-
tions people expect of robots will have to be phrased
in the language familiar to people as communicators
and audiences of ordinary explanations [9] (as opposed
to, for example, being communicated in the form of an
algorithmic decision tree or other types of information
structures that are important for software and hardware
engineers in terms of traceability and verification [7],
[15]). Research shows that people prefer explanations
that are compatible with the interpretative framework
of folk psychology —that is, explanations referring to
beliefs, desires and other mental states that motivated
their decisions.

o Distinct Classes of Behavior, Distinct Explanations:
Any robot that explains its behavior the manner that
people expect it to should possess two cognitive abilities
that are fundamental to folk psychological reasoning.
First, the robot must be able to distinguish intentional
actions from accidental events (at least in itself but,
ideally, also in other agents). Second, the robot must
be able to explain each of these classes of behaviors
in reference to the expected fype of explanation —
unintentional behaviors to (mere) causes, intentional
behaviors to reasons.

o Selecting Relevant Explanations: People do not want
to hear a complete account of all the beliefs, goals,
sub-goals, or rejected actions that a system tracked
[39], [40]. This shows that in addition to expecting
explanations to address the relevant level in the hi-
erarchy of capabilities, people will also choose and
assess explanations based on some sort of relevance
criterion. In psychology, this is sometimes called the

“causal selection problem” —the difficulty of selecting a
small number of causes/reasons that sufficiently explain
a particular event. For example, when people ask about
why a certain action was taken, they often actually
mean to ask why some other action was not [35]. This
counterfactual is typically not explicitly articulated, yet
understood by humans. The type of explanation that
people would like to hear from a robot might further
depend on whether the behavior was expected or not
[39]. Together, these features enable a common ground
on the basis of which explanations can be formulated
(see below).

o Explanation Timing: Explanations may serve different
pragmatic goals: audience design [5], [22], which is
tailoring to the assumptions, knowledge, and specific
interests that an audience has when decoding the ex-
planation [16], [24]; and impression management [4],
[17], where the goal of the explainer is not merely
to optimize communication but also to influence the
audience’s perceptions and evaluations [33]. When to
provide an explanation may depend on the commu-
nicative purpose of the given explanation, and wrongly
timing the provided explanation may negatively impact
people’s evaluations of the robot [46].

e From Structure to Content: Simply knowing that an
agent has some desires that could (possibly) be satisfied
by a particular action does not adequately explain that
action; understanding an action critically involves being
able to identify what specific desire gave rise to that
action. A broad knowledge structure of associative,
social, and causal linkages is necessary for the right
interaction between the contents of beliefs, desires, and
behaviors —the dreaded “common sense” [13], [45].

o Common Ground of Explanation: Although people in
interactions typically use implicit means of negotiating
what knowledge, skills, and information needs they have
and what their partners can rely on [6], it remains un-
clear how common ground (i.e., the mutual knowledge,
beliefs, and assumptions that partners in a conversation
rely on in order to communicate and interact efficiently)
may be reached in HRIs and, as a result, how the criteria
for a successful explanation can be satisfied given that
these implicit mechanisms only partially work in HRIs.

IV. IMPLICATIONS OF SECOND-ORDER BELIEF
REASONING FOR EXPLAINABLE ROBOTICS

The scientific literature on people’s perceptions of robot
minds has so far focused primarily on attributions of first-
order mental states, i.e., mental states, such as beliefs and
desires, that are oriented toward physical states of affairs in
the world (e.g., that Pepper believes the ball is under the
red cup (see Figure |l) In attributing first-order mental states
to robots, people must consider what robots are likely to
want and know given their physical environment. Current
approaches to implement XAR are dominantly based on RL
[55], which are for the most part suitable for modelling
and correcting people’s first-order mental state attributions



Fig. 1.

Location-change task employed in our recent experiments.

to robots (which is instrumental to address many of the chal-
lenges listed above). However, our recent findings show that
people also attribute second-order mental states to robots,
that is, mental states that are about the mental states of
others. Reasoning about the second-order mental states of
robots require people to consider what robots know about
the mental states of themselves or others (e.g., whether a
robot understands that a human wishes to deceive it).

We recently tested whether people attribute second-order
beliefs to social robots and how this affects the way in
which they interact with such robots. In an online survey
experiment, participants (n = 155) watched a video in which
a human attempted to deceive a Pepper robot in a location
change task (i.e., by moving a ball from underneath a blue
cup to a red cup when the robot is purposely distracted
and looking the other way, Figure [T). Our results show that
19% of the participants attributed the robot’s behavior to a
second-order belief about being deceived by the human. This
finding contributes to the preexisting literature on mental
state attribution to robots [10], [14], [26], [42], [49], [57],
which so far only focused on the attribution of first-order
mental states. It is an important contribution considering that
robots arguably form and act primarily on first-order beliefs
and desires (about things in the environment) and do not have
a functional “theory of mind”. Hence, the results suggest that,
with respect to holding second-order mental states, people
may expect more of robots than they can “deliver’. We
also found that participants who ascribed the second-order
belief to the robot (about being intentionally deceived) were
less willing to accept offers made by the robot that were
considered as unfair in the context of a resource allocation
negotiation task. Importantly, this finding suggests a link
between people’s second-order mental state attributions and
how they interact with robots.

These recent results suggest that robots need to provide
explanations or other types of interaction-managing inter-
ventions to support people in attributing second-order mental
states to robots. However, the dominantly used RL techniques
in XAR [55] may be unsuitable to address people’s second-
order belief attribution errors. Although some attempts of
computational cognitive modeling of second-order false be-
lief reasoning have been presented in the literature (e.g., [21],
[53]), Arslan et al. [2] advocate the use of Instance-Based

Learning (IBL) models to update incorrect mental models
of the second-order kind instead. Hence, RL-based robotic
systems might not be able to cope with human misinterpreta-
tion of their second-order beliefs and thus might not be able
to provide relevant behavior explanations (either proactively
or reactively) to support such reasoning. Although both RL
and IBL models strengthen or modify their techniques based
on experience and the feedback “Correct/Wrong” without
further explanation, the way each handle this feedback dif-
ferentiates them from one another [2]. An IBL model adds an
instance of a different strategy whereas a RL model penalizes
the methods that result in an incorrect response, given that
the strategy selection is explicit in the IBL. model while it is
implicit in the RL model. Additionally, because it explicitly
raises the level of mental state attribution to a higher level in
response to feedback that includes additional explanations,
the IBL model is more likely to employ a second-order
mental state attribution strategy. The RL model, on the other
hand, seems helpless in the face of such further explanations.

V. CONCLUSION

The increasingly complex but unintelligible algorithms
that underlie the behavior of robots require us to build
interpretable robot behaviors that offer meaningful insights
into their decisions, recommendations, and actions [18], [44],
[52]. The challenge is to design human-robot interactions that
facilitate the attribution of behavior-congruent intentional
states to such systems [47], [50], which prompts numerous
researchers to advocate for a multidisciplinary approach on
explainability [9], [34], [37]. Our recent findings suggest
that people attribute not only first-order but also second-
order beliefs to social robots, which, in turn, affects the
way in which people interact with robots. More importantly,
these findings imply that the dominantly used RL models
to address XAR [55] may be unsuitable as they are argued
to be incapable to appropriately address second-order belief
attribution errors [2]. This paper aims to open a discussion
about the implications of these findings for XAR.
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