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ABSTRACT

Fine-grained recognition aims to discriminate the sub-categories of the images
within one general category. It is fundamentally difficult due to the requirement
to extract fine-grained features from subtle regions. Nonetheless, a Convolutional
Neural Network typically applies strided operations to downsample the represen-
tation, which would excessively spoil the feature resolution and lead to a signifi-
cant loss of fine-grained information. In this paper, we propose Adaptive Region
Pooling (ARP): a novel downsampling algorithm that makes the network only
focus on a smaller but more critical region, and simultaneously increase the reso-
lution of sub-sampled feature. ARP owns a trade-off mechanism that allows users
to actively balance the scale of receptive field and the granularity of feature. Also,
without any learning-based parameters, ARP provides the network a stabler train-
ing process and an earlier convergence. Extensive experiments qualitatively and
quantitatively validate the effectiveness and efficiency of the proposed pooling
operation and show superior performance against the state-of-the-arts in both the
tasks of image classification and image retrieval.

1 INTRODUCTION

The main goal of fine-grained recognition is to discriminate the sub-categories of the images that
belong to a same general class. Its practical applications include fine-grained image classification
(Welinder et al., 2010; Krause et al., 2013; Maji et al., 2013), re-identification (Zheng et al., 2017b;
Liu et al., 2016b;a), etc. These tasks are fundamentally challenging due to considerable inter-class
similarity. Consequently, an ideal feature extractor should be capable of extracting discriminative
fine-grained features from subtle image regions, such as the beak to classify the bird species or the
stickers on the windshield to identify the vehicle.

While the general design of Convolutional Neural Network (CNN) (Simonyan & Zisserman, 2014;
He et al., 2016) applies either strided convolution or strided pooling as downsampling operations to
reduce the computational requirement of the network and also increase the receptive field of subse-
quent convolutions, these operations, however, have been substantiated to be harmful to fine-grained
recognition (Sun et al., 2018; Luo et al., 2019a). Its disadvantage is two-fold: 1) false assumption on
spatial equality which would overemphasize the background region while neglecting the smaller but
more discriminative regions and 2) excessive reduction of resolution which would spoil the granu-
larity of feature. To cope with the problem, existing approaches (Zhang et al., 2014; Fu et al., 2017;
Chen & Deng, 2019; Zhang et al., 2019) introduce cropping operation that guides the network to
only focus on the most critical region while preserving more details in the sampled part. However, to
maintain computational complexity, full conservation of feature resolution would instead restrict a
limited scale, or area, of the cropped region. Comprehensively, as shown in Figure 1(a)(c), the prob-
lems of two commonly used downsamplings can be summarized into a trade-off problem between
the scale of receptive field and the granularity of representation.

To tackle the problem, in this work, we introduce a novel pooling algorithm, named Adaptive Re-
gion Pooling (ARP), to bridge strided and cropping operations. It consists of two steps. First, ARP
automatically crops the feature from the most critical region with a well-estimated and adaptive
cropping scale. Second, after being cropped into different sizes, the feature is further downsam-
pled to a consistent size through bilinear downsampling. As illustrated in Figure 1(b), with the
meticulous evaluation of cropping scale, ARP can better handle the trade-off issue and leverage the
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Figure 1: Concept of Adaptive Re-
gion Pooling. We compare three
operations to downsample the fea-
ture into half size: (a) pooling with
stride = 2, (b) our Adaptive Region
Pooling (ARP), and (c) cropping op-
eration. ARP smoothly bridges two
widely used operations by automat-
ically sampling the feature from the
most critical region (red box) with a
well-estimated cropping scale. Fur-
thermore, as in two cases of (b),
users can manually balance the scale
of receptive field and the granular-
ity of downsampled feature through
a controllable trade-off mechanism.

beneficial properties of both strided and cropping operations. Besides, ARP also features other three
advantages. First, it is incorporated with a controllable mechanism that supports users to actively
reach a more satisfying balance in the trade-off problem, as in two cases in Figure 1(b). Second,
compared to the previous work (Lin et al., 2015a; Huang et al., 2016; Kim et al., 2018; Zheng et al.,
2019) which implement the cropping operations by an additional neural network, ARP utilizes a
more efficient yet effective operation without any learning-based parameters. Hence, it makes the
network achieve lower computational overhead, experience a stabler training process, and converge
more quickly. Finally, ARP can be simply plugged into any CNN layer and the network can be
optimized in a one-stage end-to-end manner, which is completely identical to the training of original
CNN backbone.

At last, we demonstrate that ARP could facilitate fine-grained recognition through our Multiple
Scale and Granularity Network (MSGN). In MSGN, ARP serves as a downsampling alternative
to extract the feature of finer details complementary to the coarse feature provided by the typical
downsampling method. The contributions of this paper can be summarized as follows:

• We introduce Adaptive Region Pooling (ARP): a novel downsampling that smoothly bridges
strided pooling and cropping operations. The sub-sampled representation focuses on the most
discriminative region and simultaneously contains more fine-grained information.

• To our knowledge, ARP is the first pooling algorithm with an adjustable trade-off mechanism that
allows users to apply the human domain knowledge of the target task to strike a more desirable
balance between the scale of receptive field and the granularity of downsampled feature.

• With the usage of ARP, MSGN outperforms the existing frameworks in terms of both effectiveness
and efficiency on multiple benchmarks for both the tasks of image classification and retrieval.

2 RELATED WORK

Fine-grained recognition focuses on learning discriminative representations to classify or identify
the images within a same general category. There are two common applications: re-identification
and fine-grained image classification.

Re-identification (re-ID) studies the problem of identifying the individuals of persons (Zheng et al.,
2015; 2017b; Ristani et al., 2016) or vehicles (Liu et al., 2016b;c;a) in different camera views. To
distinguish two similar targets with only slight differences, most of the existing methods (Yao et al.,
2019; Kalayeh et al., 2018; Liu et al., 2021; Wang et al., 2017; Zhou & Shao, 2018; Chen et al.,
2020b) adopt spatial attentive mechanism to emphasize the features extracted from critical parts,
such as the head for person re-ID or the tires for vehicle re-ID. While previous work get significant
improvement, they generally suffer from massive loss of fine-grained details when CNN backbone
downsamples the feature through strided operations. Sun et al. (2018) and Luo et al. (2019a) both
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Figure 2: Overall workflow of Adaptive Region Pooling.

find a huge performance gain in the task of person re-ID, numerically 1.4% for mAP on Market1501
(Zheng et al., 2015), by simply removing the pooling operation in the last CNN layer.

Fine-grained image classification (FGIC) aims to classify the sub-classes of images, such as the
species of birds (Welinder et al., 2010) or the models of vehicles (Krause et al., 2013). Compared
to re-ID, the datasets of FGIC have a severe problem of image misalignment which impels lots of
work to apply another sampling operation, cropping, to align the image or representation and also
guide the network to focus on the sampled region. Several prior work (Welinder et al., 2010; Zhang
et al., 2013; 2014; Lin et al., 2015a; Huang et al., 2016; Kim et al., 2018; He et al., 2019) leverage
extra object detection datasets or human-labeled bounding box annotations to learn the localization
of discriminative regions. However, such auxiliary labels are hard to acquire in the real-world and
large-scale scenarios. Recently, there have been emerging work with a more general setting by
proposing unsupervised approaches. Jaderberg et al. (2015) introduce a differentiable STN that can
learn to well align the images or representations by themselves. While it can perform well on the
digit datasets (LeCun et al., 1998; Netzer et al., 2011), lack of explicit guidance leads to the unstable
training process and being hard to converge on more sophisticated tasks (see Section 4.3 for more
details and discussions). As the following work, Fu et al. (2017) propose RACNN which is a cascade
coarse-to-fine CNN model. The similar architecture is also adopted by Chen & Deng (2019) and
Zhang et al. (2019). Although they show the great capability of cropping the discriminative region,
the cascade architecture requires multi-stage training for better optimization and struggles with the
requirement of heavy computation. In this work, we also introduce a sampling operation with an
unsupervised approach; however, Adaptive Region Pooling (ARP) contains neither additional neural
network nor extra learning-based parameters and makes the network using ARP more computation-
efficient and able to be optimized in a simple one-stage end-to-end manner.

3 PROPOSED METHODOLOGY

In this section, we introduce the proposed pooling algorithm in three parts. First, in Section 3.1,
Region Pooling (RP) considers a simplified task which aims to crop the hidden representation from
the most critical region with a fixed cropping scale. Then, in Section 3.2, Adaptive Region Pooling
(ARP) estimates the adaptive cropping scale for each representation to better capture the interesting
object. Finally, we introduce Multiple Scale and Granularity Network (MSGN) as an example of
network architecture with the usage of ARP in Section 3.3.

3.1 REGION POOLING

Given a CNN feature and a fixed downsampling rate, the main goal of Region Pooling (RP) is
to crop the feature from the most critical region into a consistent scale. An intuitive approach is
to use an extra network to predict the cropping center which nevertheless, often suffers from the
requirement of expensive bounding box annotations or complicated multi-stage learning strategy to
train the network. In contrast, RP uses a more efficient yet effective operation with two steps.
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In the first step, as shown in Figure 2 (a), RP would evaluate the significance score for each location
and generate the keypoint confidence map C based on the C-dim feature vectors, where C denotes
the number of channels. Here, we define “significance” in an engineering sense as follows: a loca-
tion, whose feature vector includes more highly-activated neurons, is more significant. The physical
meaning is that a channel-wise feature map is actually a detector of a certain semantic object (Chen
et al., 2017; 2020a), such as a bird’s beak or wings. For a well-trained CNN, most of the channels
would detect the objects which are more beneficial to the target task; thus, the locations activated by
more channels typically cover critical semantic objects and are more significant.

Based on the definition, we then give a formal formulation as follows. For the input feature F ∈
RC×H×W with width W , height H and C channels and its element (or activated value) denoted as
x(i,j,k) at ith channel, jth row and kth column, in order to balance the influence of each channel in
the subsequent operations, we first standardize each channel-wise feature map as:

x̂(i,j,k) =
x(i,j,k) − µ(i)

σ(i)
, where µ(i) =

H∑
j

W∑
k

x(i,j,k)

H ·W
, σ2

(i) =

H∑
j

W∑
k

(x(i,j,k) − µ(i))
2

H ·W
, (1)

and x̂ represents the element of the standardized feature. Such standardization can be simply imple-
mented by Instance Normalization (Ulyanov et al., 2016). Afterwards, we evaluate the significance
score of each location based on the average of their feature vectors with the form as:

s(j,k) =

C∑
i=1

x̂(i,j,k)

C
(2)

where s(j,k) represents the significance score of the location (j, k). Complied with our definition,
Equation 2 assigns larger s for the locations that are highly activated in more channels. Next, we
estimate the confidence of a location to be a “keypoint”, or a critical location, by Sigmoid function
σ(·). Specifically, we generate a keypoint confidence map C ∈ RH×W by:

C = [ c(1,1), ..., c(H,W ) ] = [ σ(s(1,1)), ..., σ(s(H,W )) ] (3)

where c(j,k) denotes the keypoint confidence at the location (j, k). We visualize the generated
keypoint confidence maps C in Figure 5 and 6. If we project them to the original images, the
locations with larger keypoint confidences effectively represent the more discriminative regions,
such as the beak and colorful feather of a bird or the bumper and lamp of a vehicle.

In the second step, as in Figure 2(c), given a fixed downsampling rate DSR = [DSRH , DSRW ],
RP would crop the most critical region with height (H · DSRH ) and width (W · DSRW ). To
this end, we apply a convolution operation on the keypoint confidence map C with a kernel K ∈
R(H·DSRH)×(W ·DSRW ). The region with the largest weighted summation of keypoint confidences
would be selected as the cropped region, which can be written as:

(j∗, k∗) = arg max
(j,k)

(K� C(j,k)) (4)

where � represents inner product, C(j,k) is the cropped keypoint confidence map centered at the
location (j, k), and (j∗, k∗) indicates the center location of the selected cropped region.

Discussion of kernel K. Empirically, we find that using Gaussian filter as kernel K yields the best
performance. A potential explanation is that it tends to select the region with more keypoints locating
near the center of cropped region and hence, also solves the problem of feature misalignment.

3.2 ADAPTIVE REGION POOLING

Although Region Pooling demonstrates the great ability to sample the feature from the most critical
region, nonetheless, there is no single downsampling rate suitable for all features. Specifically, the
features with highly separate keypoints should have a larger downsampling rate to cover a wider
interesting region while in contrast, the ones with more concentrated keypoints should use a smaller
rate. To meet this requirement, we further introduce Adaptive Region Pooling (ARP) that automati-
cally estimates a better adaptive downsampling rate based on the distribution of keypoints, or more
precisely: the standard deviation (abbreviated as std) of keypoints distribution.

4



Under review as a conference paper at ICLR 2022

As depicted in Figure 2(b), to evaluate the adaptive downsampling rate of height DSRadp
H or width

DSRadp
W , ARP respectively refers the vertical or horizontal normalized distribution of keypoints:

Dv =

[
W∑
k=1

c(1,k)

Σ C
, ...,

W∑
k=1

c(H,k)

Σ C

]
∈ RH , Dh =

 H∑
j=1

c(j,1)

Σ C
, ...,

H∑
j=1

c(j,W )

Σ C

 ∈ RW (5)

where ΣC is the summation of keypoint confidence map.

Since the derivations of DSRadp
H and DSRadp

W take similar forms, we use the former as an example
in the following. Here, we first consider a simplified condition that each image only contains one
consecutive interesting object and the keypoints uniformly distribute in the target object. We will
explore more circumstances in the following discussion and Appendix A. Under this assumption,
the keypoints distribution can be regarded as a discrete uniform distribution:

Dv(y) =

 1

b− a
, a < y 6 b

0 , otherwise ,
∀ 0 ≤ a < b ≤ H, (6)

with its std:

σ(Dv) =

√
(b− a)2 − 1

12
≈ b− a√

12
. (7)

Note that Dv has the keypoints all lying within the interval (a, b]. Therefore, if the cropped region
is expected to cover all keypoints while ignoring the background, the ideal length of cropped region
should be (b− a) and hence, the expected downsampling rate should be (b− a)/H . Combing with
Equation 7, we can rewrite the adaptive downsampling rate as:

DSRadp
H =

b− a
H

=

√
12

H
· σ(Dv). (8)

Finally, with Equation 8, we can use the std of keypoints distribution to well estimate the adaptive
downsampling rate that could exactly include all keypoints in the cropped region.

Discussion of different distributions D. Intuitively, in Equation 8, the adaptive downsampling rate
is proportional to the std of keypoints distribution. Therefore, for more sparse or dense keypoints
distribution (e.g., M-shaped or bell-shaped distribution), the cropped region could automatically be
wider or narrower to better capture the interesting object. In Appendix A, we also empirically test
the stability and rationality of Equation 8 on various randomly simulated distributions and show
that Equation 8 can consistently evaluate an intelligible adaptive downsampling rate that can exactly
cover most of the keypoints.

Subsequently, as in Figure 2, ARP first crops the feature F from the most critical region based on
Equation 4 and adaptive downsampling rate as Fcrop ∈ RC×(H·DSRadp

H )×(W ·DSRadp
W ) and then, sub-

samples it to a consistent size as F′ ∈ RC×(H·DSRH)×(W ·DSRW ) through bilinear downsampling.
Such a “cropping and downsampling” process can be viewed as the trade-off between the scale of
receptive field and the resolution of feature. Specifically, the feature with a larger cropped region
would encounter a huge reduction of the feature granularity in the following downsampling which
makes ARP act as strided operation. In contrast, a smaller cropped region would preserve more fine-
grained details in the downsampled feature; in such a case, ARP intrinsically behaves like cropping
function. To allow users to strike a better balance in the trade-off problem, we further incorporate
ARP with a controllable mechanism by revising Equation 8 as:

DSRadp
H = min

(
max

(
k ·
√

12

H
· σ(Dv), DSRH

)
, 1

)
. (9)

k is the trade-off coefficient and min-max operation ensures a reasonable downsampling rate.

Discussion of trade-off coefficient k. k is a meaningful coefficient. When it is set to 1, the cropped
region would nearly cover the whole target object, such as an entire bird or vehicle. And if a smaller
k is set, the length of cropped region would be proportionally decreased. Through k, users can
actively reach a satisfying sampling scale according to the human domain knowledge of the target
task. Take the below case of Figure 1(b) as an example, users can set a smaller k to extract the
feature only from the front face of vehicle, which usually contains many identity-relative features,
rather than the whole vehicle. Hence, the sub-sampled feature would keep richer fine-grained details.
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Figure 3: Architecture of Multiple Scale and Granularity Network.

3.3 MULTIPLE SCALE AND GRANULARITY NETWORK

We introduce Multiple Scale and Granularity Network (MSGN) as an example of the network ar-
chitecture that uses ARP as the downsampling operations. As in Figure 3, MSGN has one low-level
feature extractor followed by multiple parallel high-level extractors. Considering that the hidden rep-
resentations before Conv3 merely contain the information of low-level patterns which are unreliable
to determine the critical region, we only adopt ARP with k = 1 in Conv3 to remove some back-
ground regions in the early stage. As for the following high-level extractors, including one global
and several local view branches, we respectively apply strided operation and ARP with smaller k in
Conv4 to downsample the feature with different scales and granularities. We also follow the strategy
from Sun et al. (2018) and Luo et al. (2019a) to remove pooling operations in Conv5 of local view
branches. Finally, the features extracted from the multiple branches would be concatenated and fed
into a fully connected layer to comprehensively generate the final representative embedding by re-
ferring to the features from both global and local views. We will first validate MSGN with one local
view branch in Section 4 and further, discuss the network with more branches in Appendix B.

4 EXPERIMENTS

In the following, we evaluate ARP through MSGN in both tasks of fine-grained image classification
(FGIC) and vehicle re-identification (re-ID) for image retrieval.

4.1 IMPLEMENTATION DETAILS

We implement MSGN with three backbones: ResNet-50, ResNet-101 and ResNeXt-101 32x8d (He
et al., 2016; Xie et al., 2017). For a fair comparison, we set DSR of ARP as [0.5, 0.5] to share the
same height and width of the downsampled feature as from the pooling with stride = 2. Following
the same protocol by Zhang et al. (2019) and Ji et al. (2020), we augment input images by resizing
to 512× 512 then randomly cropping to 448× 448 with random horizontal flipping and use cross-
entropy to supervise the training. For vehicle re-ID, as in standard literature (Luo et al., 2019a; Chen
et al., 2020b), we directly resize images to 224× 224 and use the combinations of batch-hard triplet
loss (Hermans et al., 2017) and cross-entropy loss for the supervision. The training lasts for 100
epochs. More training and testing details can be found in Appendix C.

4.2 COMPARISON WITH THE STATE-OF-THE-ARTS

Fine-grained image classification. We first evaluate MSGN on FGIC in terms of both effective-
ness and efficiency and report the results in Table 1. MSGN achieves the new state-of-the-art per-
formance: 90.2% on CUB-200-2011, 95.6% on Stanford Cars, and 94.4% on FGVC-Aircraft with
ResNeXt-101. With ResNet-50 or ResNet-101, MSGN also shows a consistent improvement over
the previous counterparts with the same CNN backbone. In addition to effectiveness, our model also
achieves a significant enhancement in efficiency. While previous work apply the additional network
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Table 1: Comparison on fine-grained image classification. We report Top-1 classification ac-
curacy (%) on CUB-200-2011 (Wah et al., 2011), Stanford Cars (Krause et al., 2013), and FGVC-
Aircraft (Maji et al., 2013). We also compare floating-point operations (FLOPs) with the recent
work using an input image size of 224× 224. All models are from the official repositories.

Method Backbone GFLOPs ↓ CUB Cars Aircraft
Acc. Acc. Acc.

STN (Jaderberg et al., 2015) GoogleNet - 84.1 - -
B-CNN (Lin et al., 2015b) VGG-16 - 84.1 91.3 84.1
RA-CNN (Fu et al., 2017) VGG-19 - 85.3 92.5 -
MA-CNN (Zheng et al., 2017a) VGG-19 - 86.5 92.8 89.9
HBP (Yu et al., 2018) VGG-16 - 87.1 93.7 90.3
DFL-CNN (Wang et al., 2018) VGG-16 - 87.4 93.8 92.0
TASN (Zheng et al., 2019) ResNet-50 37.4 87.9 93.8 -
MGE (Zhang et al., 2019) ResNet-101 69.2 89.4 93.6 -
S3N (Ding et al., 2019) ResNet-50 40.8 88.5 94.7 92.8
CrossX (Luo et al., 2019b) ResNet-50 32.1 87.7 94.6 92.7
ACNet (Ji et al., 2020) ResNet-50 49.8 88.1 94.6 92.4
MSGN (Ours) ResNet-50 17.8 (44.5%↓) 89.1 95.0 93.6
MSGN (Ours) ResNet-101 32.7 (52.7%↓) 89.8 95.1 94.1
MSGN (Ours) ResNeXt-101 32.8 90.2 95.6 94.4

Table 2: Comparison on vehicle re-identification. We report Mean Average Precision (Zheng
et al., 2015) (%) and rank-1 and rank-5 accuracy in Cumulative Matching Characteristics (%) on
VeRi-776 (Liu et al., 2016b;c) and VehicleID (Liu et al., 2016a). We use ResNet-50 as the backbone.

Method VeRi VID-800 VID-1600 VID-2400
mAP R-1 R-1 R-5 R-1 R-5 R-1 R-5

OIFE (Wang et al., 2017) 48.0 89.4 - - - - 67.0 82.9
VAMI (Zhou & Shao, 2018) 50.1 - 63.1 83.3 52.9 75.1 47.3 70.3
RAM (Liu et al., 2018) 61.5 88.6 75.2 91.5 72.3 87.0 67.7 84.5
EALN (Lou et al., 2019) 57.4 84.4 75.1 88.1 71.8 83.9 69.3 81.4
AAVER (Khorramshahi et al., 2019) 61.2 89.0 74.7 93.8 68.6 90.0 63.5 85.6
PRN (He et al., 2019) 74.3 94.3 78.4 92.3 75.0 88.3 74.2 86.4
PVEN (Meng et al., 2020) 79.5 95.6 84.7 97.0 80.6 94.5 77.8 92.0
VehicleX (Yao et al., 2020) 73.3 95.0 79.8 93.2 76.7 90.3 73.9 88.2
SAVER (Khorramshahi et al., 2020) 79.6 96.4 79.9 95.2 77.6 91.1 75.3 88.3
MSGN (Ours) 81.8 97.3 85.0 97.1 80.7 94.5 78.0 92.1

to generate the sub-sampling parameters (Lin et al., 2015a; Zheng et al., 2019; Ding et al., 2019)
or implement the cascade coarse-to-fine architecture (Fu et al., 2017; Chen & Deng, 2019; Zhang
et al., 2019), ARP only utilizes efficient operations for sampling. Therefore, the computational cost
of MSGN is approximately half of the previous models, specifically 44.5% lower than CrossX (Luo
et al., 2019b) on ResNet-50 and 52.7% lower than MGE (Zhang et al., 2019) on ResNet-101.

Vehicle re-identification. We also evaluate the representation learning of MSGN on vehicle re-
ID and report the results in Table 2. Prior approaches (Wang et al., 2017; Zhou & Shao, 2018;
Meng et al., 2020; Chen et al., 2020b) mostly focus on spatial attentive mechanism but ignoring the
loss of fine-grained information when the representation are sub-sampled through strided operation.
In contrast, MSGN effectively solves the problem by using ARP as the downsampling operation.
Hence, MSGN outperforms the previous frameworks on both VeRi-776 and VehicleID, especially
on VeRi-776 by a notable margin of 2.2% on mAP compared to SAVER (Khorramshahi et al., 2020).

4.3 COMPARISON WITH SPATIAL TRANSFORMER NETWORK

Spatial Transformer (ST) (Jaderberg et al., 2015) module is a differentiable sampling operation that
can automatically learn to perform an affine transformation on an image or a hidden representation.
In light of the similar functionality between ST module and ARP, we additionally compare these two
poolings. In the experiment, we adopt ST module or ARP as the downsampling operation in Conv4
of local view branch in MSGN and plot the learning curves and the learned sampling outcomes in
Figure 4. We then discuss the comparison under two aspects: stability and intervenability.
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Figure 4: Learning progress of MSGN or STN on VeRi-776. We evaluate the network using ST
module (Jaderberg et al., 2015) or ARP as the downsampling operation and respectively show the
learning curves in (a) and the projections of learned downsamplings to the input images in (b).

Table 3: Effectiveness analysis of the proposed components. We validate the components in the
proposed model including the usage of local view branch (LVB) and the pooling operation in Conv4.

Method Components CUB VeRi
LVB Downsampling Acc. (%) mAP (%)

Baseline 7 stride of 2 85.6 79.5
Baseline w/ ARP 7 ARP (k = 0.9) 86.2 80.0
MSGN w/ stride 3 stride of 2 87.1 80.4
MSGN w/ RP 3 RP 88.0 81.1
MSGN w/ ARP (Ours) 3 ARP (k = 0.7) 89.1 81.8

First, as shown in Figure 4(a), the network using ST module comparably experiences a slower
learning progress, reaches later convergence, and eventually performs worse at the end of training.
We can find a possible explanation from Figure 4(b); since ST module relies on learning-based
parameters for sampling, in the first ten epochs, it performs unstably and generates unaccountable
downsampling results which instead disturb the training. In contrast, ARP is able to correctly sample
from the foreground object (red box in Figure 4(b)) even in the first epoch. Following the training,
with more channels detecting the beneficial vehicle parts, the sampled region progressively covers
the entire front face of vehicle which contains more identity-relative features. It is also worth noting
that due to the instability of ST module, in the paper (Jaderberg et al., 2015), ST module is restricted
to perform the 2 DoF transformation (i.e., only translation) in the harder task, like FGIC.

Next, at the end of the training, ST module fails to learn an effective transformation which is sup-
posed to concentrate on the more critical region. It leads to the subsequent discussion: for learning-
based cropping operations, users can only passively accept the training results and lack interpretable
parameters to adjust the sampling operation to better fit the target task. Conversely, owing to a
meaningful trade-off mechanism, ARP allows users to actively use the prior knowledge to intervene
in the representation learning and reach the more desirable sub-sampling characteristic.

4.4 ABLATION STUDIES

We evaluate the effectiveness of each component in the proposed framework and report the re-
sults in Table 3. The baseline model simply uses the original ResNet-50 as the extractor. We then
replace the downsampling in Conv4 with ARP of k = 0.9. Leveraging the attention on more dis-
criminative regions, the model achieves the improvement of 0.6% on CUB-200-2011 and 0.5% on
VeRi-776. Next, as listed in the third to fifth rows in Table 3, we apply another high-level extrac-
tor with three different downsampling operations in Conv4, including strided convolution, RP with
DSR = [0.5, 0.5], and ARP with k = 0.7. It shows that, with a parallel branch, the performances
are all boosted. However, without using RP and ARP, the network comparably performs worse due
to the lack of fine-grained information. Furthermore, the network with ARP yields the best per-
formance, which describes that ARP can adaptively estimate the better downsampling rate for each
representation and properly cover the critical region. Finally, with all proposed components, MSGN
with ARP outperforms the baseline model by 3.5% on CUB-200-2011 and 2.3% on VeRi-776.
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Figure 5: Visualization on CUB-200-2011. The first
and second rows respectively show the input images
and the keypoint confidence maps C with the cropped
regions (red box). DSRadp is also listed at the bottom.
(a)(b) represent the results from Conv3 and Conv4.

Figure 6: Study of k on VeRi-776. The
second to fourth columns show the cropped
regions (red box) determined by ARP with
different k. The corresponding validation
results are also listed at the bottom.

4.5 VISUALIZATION

Qualitative results of Adaptive Region Pooling. To understand the practical effect of ARP, we plot
the keypoint confidence maps C and the cropped regions in Figure 5 and 6 (especially for the final
setting of k = 0.7). Note that the demonstrated images are in various manners, such as different
actions of birds (e.g., standing and flying) and different viewpoints or types of vehicles (e.g., truck,
bus, SUV, and sedan) to validate the robustness of ARP. First, as in Figures 5(b) and 6, the keypoint
confidence maps C from Conv4 are able to recognize the critical locations in images, such as the
bird’s beak and colorful feathers or the vehicle’s bumper and decoration. Along with the proper
adaptive downsampling rate, the sampled regions can cover the most critical and consistent part in
different images. Also, as in Figure 5(a), ARP in Conv3 can eliminate some negligible background
regions in the early stage while enriching the feature resolution in the foreground object.

Selection of trade-off coefficient k. We visualize the cropped regions and list the validation results
with different k in Figure 6. As in the second to fourth columns, users can set k = 0.5 or 0.7 or
0.9 if the sampled region is respectively expected to cover merely a part of front face, or the whole
front face with the windshield, or nearly the entire vehicle. Commonly, the front face of vehicle
includes several important but fine identity-relative features which are beneficial to vehicle re-ID.
Hence, with the aid of domain knowledge, the final setting of k = 0.7 yields the best performance.

5 CONCLUSION

In this paper, we propose a novel downsampling operation, Adaptive Region Pooling (ARP), which
automatically samples the feature from the most critical region and in the same time, increases the
feature granularity. Besides, ARP owns an adjustable trade-off mechanism which supports users to
actively balance the scale of receptive field and the resolution of sub-sampled feature. Without any
learning-based parameters, ARP can be simply integrated into a CNN backbone and the network
can be stably end-to-end optimized. The experiments show the effectiveness and efficiency of the
proposed model in both the tasks of image classification and image retrieval.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Binghui Chen and Weihong Deng. Hybrid-attention based decoupled metric learning for zero-shot
image retrieval. In IEEE Conference on Computer Vision and Pattern Recognition, 2019. 1, 3, 7

Long Chen, Hanwang Zhang, Jun Xiao, Liqiang Nie, Jian Shao, Wei Liu, and Tat-Seng Chua. Sca-
cnn: Spatial and channel-wise attention in convolutional networks for image captioning. In IEEE
Conference on Computer Vision and Pattern Recognition, 2017. 4

Tsai-Shien Chen, Man-Yu Lee, Chih-Ting Liu, and Shao-Yi Chien. Viewpoint-aware channel-wise
attentive network for vehicle re-identification. In IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops, 2020a. 4

Tsai-Shien Chen, Chih-Ting Liu, Chih-Wei Wu, and Shao-Yi Chien. Orientation-aware vehicle
re-identification with semantics-guided part attention network. In European Conference on Com-
puter Vision, 2020b. 2, 6, 7

Yao Ding, Yanzhao Zhou, Yi Zhu, Qixiang Ye, and Jianbin Jiao. Selective sparse sampling for
fine-grained image recognition. In IEEE International Conference on Computer Vision, 2019. 7

Jianlong Fu, Heliang Zheng, and Tao Mei. Look closer to see better: Recurrent attention convo-
lutional neural network for fine-grained image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, 2017. 1, 3, 7

Bing He, Jia Li, Yifan Zhao, and Yonghong Tian. Part-regularized near-duplicate vehicle re-
identification. In IEEE Conference on Computer Vision and Pattern Recognition, 2019. 3, 7

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition, 2016. 1, 6

Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for person re-
identification. arXiv preprint arXiv:1703.07737, 2017. 6

Shaoli Huang, Zhe Xu, Dacheng Tao, and Ya Zhang. Part-stacked cnn for fine-grained visual cate-
gorization. In IEEE Conference on Computer Vision and Pattern Recognition, 2016. 2, 3

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In Ad-
vances in Neural Information Processing Systems, 2015. 3, 7, 8

Ruyi Ji, Longyin Wen, Libo Zhang, Dawei Du, Yanjun Wu, Chen Zhao, Xianglong Liu, and Feiyue
Huang. Attention convolutional binary neural tree for fine-grained visual categorization. In IEEE
Conference on Computer Vision and Pattern Recognition, 2020. 6, 7

Mahdi M Kalayeh, Emrah Basaran, Muhittin Gökmen, Mustafa E Kamasak, and Mubarak Shah.
Human semantic parsing for person re-identification. In IEEE Conference on Computer Vision
and Pattern Recognition, 2018. 2

Pirazh Khorramshahi, Amit Kumar, Neehar Peri, Sai Saketh Rambhatla, Jun-Cheng Chen, and Rama
Chellappa. A dual-path model with adaptive attention for vehicle re-identification. In IEEE
International Conference on Computer Vision, 2019. 7

Pirazh Khorramshahi, Neehar Peri, Jun-cheng Chen, and Rama Chellappa. The devil is in the details:
Self-supervised attention for vehicle re-identification. arXiv preprint arXiv:2004.06271, 2020. 7

Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang. Bilinear attention networks. In Advances in
Neural Information Processing Systems, 2018. 2, 3

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In IEEE International Conference on Computer Vision Workshops, 2013. 1, 3, 7
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A ROBUSTNESS TESTING OF ADAPTIVE DOWNSAMPLING RATE

In Equation 8, we show that the adaptive downsampling rate of height or width can be respectively
derived by the standard deviation (abbreviated as std) of 1-D vertical or horizontal keypoints distri-
bution. In this section, we further evaluate the stability and rationality of Equation 8 on the various
simulated keypoints distributions. We comply with the following rules to simulate the distributions:
1) most of the keypoints locate in one consecutive interval; 2) the interval can have any length and
can be anywhere in the entire distribution; 3) the distribution within the interval is random. These
rules reflect the fact that the images for fine-grained recognition typically contain only one target
object (e.g., a bird or a vehicle) with various scales and locations, and the critical features (e.g., a
bird’s beak or a vehicle’s tires) are randomly distributed in the target object. Following these prin-
ciples, we simulate the distributions by first assigning a random significance score at each location
and filtering by a 1-D Gaussian kernel with a random mean and std. We plot the distributions and
also show the cropped lengths and regions in Figure 7.

We can observe that for each keypoints distribution with different sparsity or at a different location,
Equation 8 can consistently evaluate an appropriate adaptive downsampling rate that can cover most
of the keypoints while removing the negligible background region with a relatively few keypoints.
Subsequently, through the trade-off mechanism, users can actively adjust the scale of cropped region
to better capture the interesting parts in the target object.

Figure 7: Visualization of the cropped regions on the simulated keypoints distributions. For
each sub-figure, x-axis indicates different locations and y-axis represents the accumulated keypoint
confidences at each location (i.e., Equation 5). The blue line is the simulated 1-D keypoints distri-
bution while the color under the line means whether each location is within the cropped region or
not (red means yes while blue means no).

B MULTIPLE SCALE AND GRANULARITY NETWORK WITH MORE LOCAL
VIEW BRANCHES

In Section 4, we have shown the effectiveness of MSGN with one local view branch (LVB) and will
further discuss the behavior of MSGN with more (i.e. 2 and 4) LVBs in the following. To avoid
excessive overlaps among the sampled regions from different LVBs, we set a smaller k = 0.5 for
Adaptive Region Pooling (ARP) in Conv4 to reduce the scale of cropped region. We evaluate the
models on two datasets: CUB-200-2011 (Wah et al., 2011) and VeRi-776 (Liu et al., 2016b;c), and
respectively report the visualization results and the validation performance in Figure 8 and Table 4.

We observe that, for MSGN with two LVBs, two branches can learn to focus on the scattered parts
in the target object, such as the head and torso of a bird, and can jointly cover larger critical regions
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in contrast to the one-branch model (by the comparison with the visualization in Figure 5). Also,
due to smaller k, the model can leverage the higher resolution of sub-sampled feature and the richer
details in the cropped region. Therefore, as listed in Table 4, we can get a performance gain when
we increase the number of LVB from one to two. However, there is no more improvement when we
further apply four LVBs. A possible explanation is that the sampled regions from the two-branches
model have already covered most of the parts in the interesting object; therefore, the extra LVBs
would merely focus on the overlapping regions and provide redundant information.

Figure 8: Visualization of the cropped regions from two-branches MSGN. The green and red
boxes respectively represent the cropped regions by different branches of MSGN.

Table 4: Effectiveness of MSGN with different number of LVBs.

Method Backbone CUB VeRi
Acc. (%) mAP (%) R-1 (%)

MSGN w/ 1 LVB ResNet-50 89.1 81.8 97.3
MSGN w/ 2 LVB ResNet-50 89.5 82.1 97.8
MSGN w/ 4 LVB ResNet-50 89.5 82.0 97.5

C TRAINING AND VALIDATING DETAILS

The network is initialized with ImageNet pretrained weights. During the training phase of 100
epoch, we set the initial learning rate as 0.001 and adopt a linear warm-up strategy to linearly
increase the learning rate to 0.01 in the first ten epochs; then, we use a multi-stage learning rate
scheduler by multiplying the learning rate by 0.1 in 40th and 70th epoch. We use SGD optimizer
with a weight decay of 0.0005 and momentum of 0.9. Considering that the images for vehicle re-
identification are usually well-aligned, hence, we use original strided pooling as downsampling in
Conv3. As for fine-grained image classification, during the inference phase, the input images are
resized to 512×512 then center-cropped to 448×448. Our network is implemented in PyTorch and
all experiments have been conducted on one NVIDIA Titan RTX GPU with 24GB memory.
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