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ABSTRACT

Time series imputation presents a significant challenge because it requires captur-
ing the underlying temporal dynamics from partially observed time series data.
Among the recent successes of imputation methods based on generative models, the
information bottleneck (IB) framework offers a well-suited theoretical foundation
for multiple imputations, allowing us to account for the uncertainty associated with
the imputed values. However, direct application of IB framework to time series data
without considering their temporal context can lead to a substantial loss of temporal
dependencies, which, in turn, can degrade the overall imputation performance. To
address such a challenge, we propose a novel conditional information bottleneck
(CIB) approach for time series imputation, which aims to mitigate the potentially
negative consequences of the regularization constraint by focusing on reducing the
redundant information conditioned on the temporal context. We provide a theoreti-
cal analysis of its effect by adapting variational decomposition. We use the resulting
insight and propose a novel deep learning method that can approximately achieve
the proposed CIB objective for time series imputation as a combination of evidence
lower bound and novel temporal kernel-enhanced contrastive optimization. Our
experiments, conducted on multiple real-world datasets, consistently demonstrate
that our method significantly improves imputation performance (including both
interpolation and extrapolation), and also enhances prediction performance based
on the imputed values.

1 INTRODUCTION

Multivariate time series data often includes missing features, with diverse missing ratios and patterns
depending on distinct sampling periods or measurement strategies (Johnson et al., 2016). Since these
missing features can significantly impair the performance of downstream tasks and comprehension
of the temporal dynamics, time series imputation, which aims to reconstruct the missing features,
has become a pivotal and pervasive topic across numerous practical domains, including healthcare,
environmental science, and various other fields. What makes time series imputation challenging is
that an imputation method must satisfy two essential requirements: i) it must account for underlying
temporal dependencies, and ii) it should allow for multiple imputations to facilitate uncertainty
quantification for real-world decision-making.

Generative models, particularly variational autoencoders (VAEs) (Kingma & Welling, 2014), have
been employed in the context of multiple imputation tasks due to their capability to generate samples
in a probabilistic manner. VAE-based imputation methods primarily focus on defining the evidence
lower bound, where the reconstruction error is computed only over the observed part of the incomplete
data (Sohn et al., 2015; Nazabal et al., 2020). These methods can be naturally interpreted under the
information bottleneck (IB) principle (Tishby & Zaslavsky, 2015), providing an information-theoretic
understanding of what constitutes an imputation-relevant representation. This understanding is based
on the fundamental trade-off between maintaining a concise representation (i.e., regularization) and
preserving good representation power (i.e., reconstruction) (Voloshynovskiy et al., 2019).

However, a direct application of the IB principle to time series imputation struggles with capturing
the underlying temporal dependencies. Our motivating examples in Figure 1(B) show that imputation
methods trained with the conventional IB framework lose a significant amount of information about
temporal dynamics relevant for imputing missing values. In this paper, we theoretically analyze that
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the overly strict regularization in the conventional IB may force the encoder to rely solely on the
observed features at a particular time point, rather than learning the underlying temporal dependencies
from the remaining observations from other time steps. To overcome such an issue, we propose a
novel conditional information bottleneck (CIB) framework for time series imputation. Our framework
adopts the reconstruction-regularization structure of the IB principle while preserving temporal
information through conditional regularization, allowing us to circumvent the strict regularization
constraints of the conventional IB. Throughout the experiments conducted on multiple real-world
datasets including image sequences, weather measurements, and electrical health records, our pro-
posed method consistently outperforms the state-of-the-art imputation methods with respect to both
imputation performance and prediction performance based on the imputed values.

2 PRELIMINARIES: INFORMATION BOTTLENECK APPROACH TO IMPUTATION

In this section, we first formally describe the information bottleneck (IB) principle (Tishby &
Zaslavsky, 2015; Alemi et al., 2017), which provides an information-theoretic understanding of what
a task-relevant representation is in terms of the fundamental trade-off between having a concise
representation and good representative power. Then, we present a generative model for imputing
missing features under the IB principle.

Let X and Y be random variables for the input feature and the target label, respectively. The IB
principle aims to find the bottleneck random variable Z that compresses the information in X while
keeping the information relevant for predicting Y as the following (Tishby & Zaslavsky, 2015),

min
ϕ,θ

Iϕ(Z;X)− βIθ(Y;Z) (1)

where β ∈ R is a Lagrangian multiplier that balances the two mutual information terms, and ϕ
and θ correspond to learnable parameters that define probabilistic mappings qϕ(Z|X) and qθ(Y|Z),
respectively. The core motivation of (1) is to find the optimal distribution of latent representation Z
and the corresponding inference model parameters ϕ that removes label-irrelevant information from
X while preserving the information about the class label Y.

This offers an information-theoretic perspective on generative model-based imputation methods
which generate missing observations from the observed features.
Definition 1. (Imputation) Let Xo and Xm be random variables for the partially observed features
and missing features of X, respectively, such that X = Xo ∪Xm. Then, we define imputation as an
unsupervised IB as follows:

min
ϕ,θ

Iϕ(Z;X
o)− βIθ(X;Z) (2)

where β ∈ R≥ is a Lagrangian multiplier, and ϕ and θ correspond to learnable parameters that
define probabilistic mappings qϕ(Z|Xo) and qθ(X|Z), respectively.

The above definition in (2) aims at finding the distribution of latent representation Z and the corre-
sponding parameters ϕ that preserves the core information for accurately reconstructing the (complete)
original input X while suppressing redundant information from its incomplete observation, Xo.

3 METHOD

3.1 PROBLEM FORMULATION

We consider a general temporal dynamics setting in which each instance of a (discrete) time series
input comprises a sequence of measurements (i.e., observations), denoted as x1:T

def
= [x1, . . . ,xT ],

collected during the time interval [0, τT ). Here, xt ∈ Rd is the complete input vector measured
at time t ∈ [τt−1, τt) and is a realization of a random variable Xt.1 However, in practice, time
series data often contains missing features with arbitrary patterns such that xl

t is not observed during
[τt−1, τt) for any feature l ∈ {1, . . . , d} at any time step t ∈ {1, . . . , T}. This phenomenon is
particularly common in domains such as healthcare (Johnson et al., 2016) where each feature may

1Throughout the paper, we will often use upper-case letters to represent random variables and lower-case
letters to represent their corresponding realizations. Please refer to Appendix E for a notation table.

2



Published as a conference paper at ICLR 2024

H(Xo
t )

H(Xt)

H(Xo
∖t) H(Xo

t ) H(Xo
∖t)

H(Xt)

IB CIB (Ours)

Minimize

Maximize

Interpolation Extrapolation

Ground Truth

Input

CIB (Ours)

IB (GP-VAE)

IB (HI-VAE)

(A) (B)

Figure 1: (A) Conceptual illustration of the IB and CIB principles. By conditioning regularization on
the remaining input time steps, the latent representation can better preserve the underlying temporal
dependency. (B) Motivating experimental results on interpolation (left) and extrapolation (right).
Because features in a single time step are completely missing, a model must collect information from
other time steps. The conventional IB approach (HI-VAE) shows deteriorating performance in both
cases. Another IB approach (GP-VAE) using a Gaussian process prior demonstrates enhanced perfor-
mance for interpolation but often significantly loses time series characteristics for extrapolation (i.e.,
the writing style is corrupted). The CIB approach (Ours) exhibits improved imputation performance
for both cases. Complete quantitative results are available in Table 1.

have a distinct sampling period or when non-uniform sampling strategies are employed. To denote
missing observations, we partition the input vector xt at each time step into observed features xo

t and
missing features xm

t , such that xt = xo
t ∪ xm

t .

Objective. Our aim is to reconstruct the complete time series input x1:T by filling in the missing
features from the observed time series input xo

1:T . Formally, we seek to generate xm
t from the

conditional distribution p(Xm
t |Xo

1:T ). By modeling the conditional distribution p(Xm
t |Xo

1:T ) instead
of using a deterministic mapping, we can generate multiple imputations, allowing us to capture the
uncertainty associated with the imputed values.

What makes this problem challenging is that we must account for the underlying temporal dynamics
represented by xo

1:T when imputing missing features xm
t for t ∈ {1, . . . , T}. We can straightfor-

wardly apply the unsupervised IB described in (2) to obtain latent representations Zt by discarding
information from the observed time series input Xo

1:T that is redundant for reconstructing Xt.
Formally, this can be achieved by minimizing Iϕ(Zt;X

o
1:T )− βIθ(Xt;Zt) with a comprehensive

encoder (e.g., RNN or Transformer) capable of effectively modeling the temporal dependencies
within the observed time series observations, i.e., qϕ(Zt|Xo

1:T ). However, enforcing such strict
regularization constraints on the encoder may lead to a significant loss of information regarding the
temporal context that can be achieved by observations at different time steps, which we denote as
Xo

\t
def
= (Xo

τ : τ ∈ {1, . . . , T} \ t). This may cause the imputation of Xm
t at time step t to heavily

rely on the observed features at that particular time point, i.e., Xo
t , rather than being able to learn

from temporal dependencies present in other observations, i.e., Xo
\t (as shown in Figure 1(B)).

To tackle this issue, we alleviate the potentially negative consequences of the regularization constraint
by directing our attention to the redundant information of the observed input at time step t when it
is conditioned on its temporal context represented by the remaining observed time series Xo

\t. This
offers a novel information-theoretic rationale for time series imputation, as defined below:
Definition 2. (Time Series Imputation) Let Xo

t and Xm
t be random variables for the partially

observed features and missing features of Xt at time step t. Then, given the observed time series
input Xo

1:T , we define time series imputation at time step t as an unsupervised CIB as follows:
min
ϕ,θ

Iϕ(Zt;X
o
t |Xo

\t)︸ ︷︷ ︸
Conditional Regularization

−βIθ(Xt;Zt)︸ ︷︷ ︸
Reconstruction

(3)

where Xo
\t represents the random variables for the remaining input observations, excluding Xo

t .

By conditioning on Xo
\t, (3) guides us to find latent representations Zt and the corresponding infer-

ence model parameter ϕ which encompass all retrievable information from the entire observed input
time series Xo

1:T (reconstruction), while discarding information that is redundant for capturing Xm
t

given the available temporal context from the remaining observed time series Xo
\t (conditional regu-

larization). Overall, the proposed objective in (3) enables us to more effectively utilize information
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from Xo
\t for imputing Xm

t compared to other IB-related alternatives, whose conceptual illustration
can be seen in Figure 1(A).

3.2 DEEP VARIATIONAL CONDITIONAL INFORMATION BOTTLENECK ON TIME SERIES

In this subsection, we will transform our objective (3) into a learnable form by utilizing variational
decomposition. (3) is represented as a combination of the traditional ELBO with mutual information
along the time axis, which can be approximately achieved by minimizing the contrastive loss.

3.2.1 MAXIMIZING RECONSTRUCTION: min
ϕ,θ

−I(Xt;Zt)

Following the derivations introduced in (Voloshynovskiy et al., 2019), we can find a lower bound of
the reconstruction term as the following:

Iθ(Xt;Zt)=H(xt)+DKL(p(xt|zt)||pθ(xt|zt))+Exo
1:T∼pdata

[
Ezt∼qϕ(zt|xo

1:T ) [log pθ(xt|zt)]
]

≥Exo
1:T∼pdata

[
Ezt∼qϕ(zt|xo

1:T ) [log pθ(xt|zt)]
]

def
= −L1

ϕ,θ (4)

where H(·) is the entropy and the last inequality holds due to the non-negativity of entropy
and KL-divergence. Here, we introduce a feature estimator, denoted as pθ(Xt|Zt), as a varia-
tional approximation of p(Xt|Zt). We model the feature estimator as an isotropic Gaussian, i.e.,
pθ(Xt|Zt) = N (µθ(Zt), diag(σθ(Zt))) where µθ(·) and σθ(·) are implemented by neural networks
parameterized by θ.

In many practical scenarios, the ground-truth values for missing features are unknown during training.
Thus, to accurately learn the reconstruction process given the latent representation of the observed
time series, we apply (4) only to the features observed at each time point, similar to the approach in
(Nazabal et al., 2020).

Discussion on the Conditional Reconstruction. One might question why the reconstruction term
is not conditioned on Xo

\t, as given by an alternative form of the CIB, i.e., minϕ,θ Iϕ(Zt;X
o
t |Xo

\t)−
βI(Xt;Zt|Xo

\t). Applying the chain rule of mutual information2 decomposes the conditional
reconstruction as the follows: I(Xt;Zt|Xo

\t) = I(Xt;Zt,X
o
\t)− I(Xt;X

o
\t). It turns out that the

first term can be bounded by a mathematically equivalent expression as shown in (4), suggesting that
this term encourages mitigating constraints on temporal context for reconstruction (see Appendix
A.1). However, minimizing the second term attempts to eliminate information about the target
Xt at time point t, which can be achieved from the observation other than time point t, i.e., X\t.
This contradicts the goal of time series imputation where we aim to capture temporal context from
the remaining observed time steps. Our empirical results also support that minimizing I(Xt;X

o
\t)

deteriorates the model performance (see Appendix A.2 for derivation, B.2 for experimental results).3

3.2.2 MINIMIZING CONDITIONAL REGULARIZATION: min
ϕ,θ

Iϕ(Zt;X
o
t |Xo

\t).

We employ the chain rule for mutual information on the conditional regularization term as follows:
min
ϕ,θ

I(Zt;X
o
t |Xo

\t) = min
ϕ,θ

I(Zt;X
o
1:T )− I(Zt;X

o
\t). (5)

It is worth highlighting that the application of the chain rule decomposes the conditional regularization
into two components: (i) minimizing the information between the latent representation Zt and the
entire observed time series input Xo

1:T that encourages the latent representation to be concise, while
(ii) maximizing the information from Xo

\t to capture the underlying temporal dynamics provided by
the observations at the remaining time steps. This prevents a significant loss of temporal context in
the IB and, in turn, enhances the utilization of temporal dependencies from the remaining time steps.

Minimizing I(Zt;X
o
1:T ). The first term in (5) can be bounded as follows (see Appendix A.3):

I(Zt;X
o
1:T ) ≤ Exo

1:T∼pdata [DKL(qϕ(zt|xo
1:T )||p(zt))] def

= L2
ϕ (6)

2Let V, W, and Y be random variables, then the chain rule gives I(Y;W|V) = I(Y;W,V)− I(Y;V).
3Conditional reconstruction can be appropriate for capturing information that exclusively depends on the

corresponding input, as introduced in (Fischer, 2020; Lee et al., 2023).
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where we utilize the unit isotropic Gaussian as the prior distribution, i.e., p(Zt) = N (0, I). We
model the stochastic encoder as a multivariate Gaussian distribution defined as qϕ(Zt|Xo

1:T ) =
N (µϕ(X

o
1:T ), diag(σϕ(X

o
1:T ))), where µϕ(·) and σϕ(·) are implemented as neural networks parame-

terized by ϕ. This explains why the (unconditional) IB struggles with modeling temporal dynamics,
as discussed in Section 3.1. That is, (6) forces the encoder mappings that depend on time series inputs
to converge to the unit Gaussian, imposing overly strict regularization. This hinders capturing of
temporal dependencies present in other observations, motivating us to explicitly capture temporal
dynamics by maximizing I(Zt;X

o
\t) rather than relying solely on the reconstruction signal in (4).

Maximizing I(Zt;X
o
\t). To bound the second term in (5), we adopt the InfoNCE minimization

from the contrastive learning on latent representations that approximately achieves maximizing the
corresponding mutual information (Oord et al., 2018; Tian et al., 2020). Suppose we have the latent
representation at time step t given an observed time series xo

1:T as a reference, i.e., zt ∼ qϕ(Zt|xo
1:T ).

Since our aim is to maximize information from Xo
\t, we intentionally make missing observations at

time step t from the reference, and employ latent representations of time steps other than t as positive
pairs. For negative pairs, we consider latent representations at different time steps from other time
series observations. Finally, we define our novel contrastive learning loss with cosine similarity of
latent representations along the time axis as follows (see Appendix A.4):

I(Zt;X
o
\t) ≥ Exo

1:T∼pdata

log


∑
t′∈{1,...,T}\t

exp
(
zt

T z̃t′/τ
)

∑
x−
1:T∈X−

1:T

∑
t′∈{1,...,T},

z−
t′∼qϕ(z

−
t′ |x

−
1:T )

exp
(
ztT z

−
t′ /τ

)


 def
= −L3

ϕ (7)

where τ is the temperature parameter. Here, z̃t′ ∼ qϕ(Z̃t′ |xo
\t) denotes the positive pair obtained

by masking the reference time series, such that xo
\t is created by replacing xo

t with zeros from xo
1:T .

We regard such positive pairs as augmentations of a given time series since latent representations
with missing values at time step t share task-relevant information about the underlying temporal
dynamics of a given time series. We denote X−

1:T a set of negative samples comprising other time
series in the same mini-batch, where x−

1:T indicates an observed time series from X−
1:T . This makes

our encoder capture time series-level semantics – such as underlying disease progression patterns that
can be distinguished from others – by pushing these samples from the reference. Such an attribution
is necessary for reconstructing missing values (and associated downstream tasks in the experiments)
specific to the input time series. Please refer to Appendix C for implementation details.

3.2.3 OPTIMIZATION

Now, we introduce a novel imputation method, which we refer to as Time-series Imputation using
Conditional Information Bottleneck (TimeCIB), that consists of the stochastic encoder, qϕ, and the
feature estimator, pθ, introduced above. Please see Figure C1 for a schematic illustration of our
framework. Overall, we optimize our method based on the following objective by combining all the
loss functions that allows us to approximately achieve time series imputation defined in (3):

min
ϕ,θ

βL1
ϕ,θ + L2

ϕ + γL3
ϕ (8)

where γ ∈ R≥0 is a balancing coefficient that trades off the impact of L3
ϕ. We provide sensitivity

analysis on β, γ in Appendix B.4.

3.3 INTRODUCING INDUCTIVE BIAS ABOUT TEMPORAL DYNAMICS

Now, we illustrate how we can inject inductive bias about the underlying temporal dynamics by
employing temporal kernels to further improve the expressive power of TimeCIB.

The alignment of the latent representation (Wang & Isola, 2020), attained through contrastive learning
based on (7), renders the similarity between latent representations at two adjacent time points
indistinguishable from the similarity between those at two distant time points. This phenomenon
appears to contradict real-world temporal dynamics, such as gradually deteriorating or periodic
behavior of disease progression patterns. To address this, we employ conditional alignment (Dufumier
et al., 2021) that introduces inductive bias about the underlying temporal dynamics with temporal
kernels as the following:
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I(Zt;X
o
\t) ≥ Exo

1:T∼pdata

log


∑
t′∈{1,...,T}\t

ct,t′ exp
(
zt

T z̃t′/τ
)

∑
x−
1:T∈X−

1:T

∑
t′∈{1,...,T},

z−
t′∼qϕ(z

−
t′ |x

−
1:T )

exp
(
ztT z

−
t′ /τ

)


 def
= −L3′

ϕ (9)

where ct,t′ ∈ R is a kernel coefficient as a function of two time points t and t′.

Incorporating prior knowledge of underlying similarity into contrastive learning is not a novel
concept. Several previous works have leveraged supervisory information to adapt contrastive learning,
including semantic similarities for text classification (Suresh & Ong, 2021), angle similarity for
gaze estimation (Wang et al., 2022), and Gaussian priors for time series and video representation
learning (Tonekaboni et al., 2021; Chen et al., 2022). In this paper, we evaluate the following two
representative temporal kernels to evaluate our method on data with different temporal behaviors and
will leave the choice of the kernel as a hyperparameter:

ccauchy(τ, τ
′) = σ2

(
1 +

(τ − τ ′)2

l2

)−1

, cperiodic(τ, τ
′) = σ2 exp

(
−2 sin2 (π(τ − τ ′)/p)

l2

)
(10)

• Cauchy Smoothing. Under the assumption that two nearby time points should be more similar
than those far away, we smooth the latent representations of time series by assigning higher
weights to nearby time points when pulling the representations, utilizing the Cauchy kernel
defined as ccauchy(τ, τ

′) in (10) which is the mixture of infinite RBF kernels with different time
scales (Rasmussen, 2004). This is a generalized form that reduces to uniform weights as in (7),
i.e., l = ∞ gives c(τ, τ ′) = σ2.

• Periodic Smoothing. Unfortunately, Cauchy smoothing may not be appropriate when the
underlying temporal dynamics exhibit periodic behavior (e.g., seasonality). To incorporate our
domain knowledge about periodic time series data, we utilize the exponentiated sine-squared
kernel given as cperiodic(τ, τ

′) in (10) where l ∈ R corresponds to the length scale and p ∈ R
reflects the periodicity.

4 RELATED WORKS

Time Series Imputation: Predictive Methods. Earlier works on time series imputation have
been proposed for single imputation utilizing predictive models. M-RNN (Yoon et al., 2018b) and
BRITS (Cao et al., 2018) are representative RNN-based methods that predict missing observations by
employing bidirectional RNNs to capture both past and future temporal dependencies. Inspired by
the recent success of transformers in modeling time series data over conventional RNN architectures,
recent predictive methods for time series imputation employ a self-attention mechanism to enhance
imputation performance (Bansal et al., 2021; Du et al., 2023; Shan et al., 2023). However, these
methods cannot provide multiple imputations and, therefore, fail to incorporate the uncertainty
associated with imputed values.

Time Series Imputation: Generative Methods. Two main strands of generative models – VAEs
(Kingma & Welling, 2014) and generative adversarial networks (GANs) (Makhzani et al., 2015) –
have been introduced for multiple imputation due to their ability to stochastically generate samples.
Here, we describe VAE-based methods. See Appendix D.3 for more related works.

VAE-based imputation methods primarily focus on defining the evidence lower bound, where the
reconstruction error is computed only over the observed part of the incomplete data while missing
values are filled with arbitrary values (e.g., zeros) during inference (Sohn et al., 2015; Nazabal et al.,
2020). Fortuin et al. (2020) proposed GP-VAE which adopts a similar approach to efficiently handle
incomplete (missing) data in a temporal setting by assuming that the latent representation of input time
series evolves smoothly over time according to a Gaussian process (GP). While introducing the GP
prior improves the ability to capture the underlying temporal dynamics, GP-VAE still cannot capture
shared temporal structures across time series data, as it employs an independent GP prior for each time
series. More recently, L-VAE (Ramchandran et al., 2021) and its conditional extension (Ramchandran
et al., 2022) further improve the GP prior of GP-VAE by utilizing auxiliary covariates information.
We focus our comparison on VAE-based models since these models can be information-theoretically
interpreted as optimizing the IB(Voloshynovskiy et al., 2019).
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It is worth clarifying that TimeCIB can be distinguished from GP-VAE in terms of how they achieve
time series imputation and leverage temporal kernels. Under the IB framework, GP-VAE models the
smooth temporal evolution of latent variables by replacing the traditional unit Gaussian prior with a
GP prior specified by temporal kernels. However, TimeCIB is motivated by the inherent limitation
of the IB in discarding temporal information (see Section 3.1) and proposes a novel CIB principle
that alleviates the strict regularization of IB. Temporal kernels are optionally adopted to introduce an
inductive bias to the underlying temporal dynamics.

Information Bottleneck with Conditional Information. Several works have tailored the IB
principle (Tishby & Zaslavsky, 2015; Alemi et al., 2017) by introducing conditional reconstruction or
applying conditional regularization to extract information in alignment with their specific objectives.
(Gondek & Hofmann, 2003) proposed conditional reconstruction to discover a new meaningful
set of clusters that is orthogonal to the known class labels. (Fischer, 2020; Tezuka & Namekawa,
2021) introduced conditional regularization for supervised learning, which minimizes only redundant
information given label information, thereby preventing the loss of label-related information due to
overly strict regularization in the conventional IB principle. More recently, (Lee et al., 2023) utilized
both conditional reconstruction and regularization to discover a label-related core subgraph from a
pair of two molecular graphs.

From this perspective, our work aligns with conditional regularization approaches. While previous
works have primarily focused on mitigating regularization concerning target label information, our
method aims to alleviate overly strict regularization that can hinder the learning of underlying
temporal dynamics. Moreover, to the best of our knowledge, this is the first work that presents an
information-theoretic definition for time series imputation and proposes a novel conditional IB that
can effectively preserve temporal dynamics for better imputation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Evaluation Metrics. We evaluate the imputation performance from two perspectives: i) Imputation
performance which measures feature-wise (pixel-wise) reconstruction. Specifically, we assess the
negative log-likelihood (NLL) and mean squared error (MSE) of the imputed values on artificially
missing features. ii) Prediction performance, which indirectly measures how well the imputed values
preserve task-relevant information, which is a crucial aspect of imputation methods in practice.
Following the experimental setup in (Fortuin et al., 2020) and (Yoon et al., 2019), we train separate
classifiers or predictors with imputed values to predict the target labels. Then, we evaluate the area
under the receiver operating characteristic (AUROC) for classification tasks and the MSE of the
forecast (ForecastMSE) for forecasting tasks to measure the discriminative and predictive performance
of imputation methods, respectively.

Baseline Models. We focus our comparison on VAE-based models since these models can be
interpreted under the IB principle as suggested in (Voloshynovskiy et al., 2019). Moreover, these
multiple imputation methods can provide uncertainty of the imputed values, which is often crucial to
support decision-making processes such as clinical interventions in healthcare. Hence, for baseline
models, we compare our proposed method with the following: i) GP-VAE (Fortuin et al., 2020)
which utilizes the Gaussian process (GP) prior to model time dependency, ii) HI-VAE (Nazabal et al.,
2020) and iii) VAE (Kingma & Welling, 2014), both of which use an autoencoder architecture and
are capable of imputing values at each time step. In addition to the above baselines, we compare
with cutting-edge predictive methods: an RNN-based method, BRITS (Cao et al., 2018), and a
transformer-based methods, SAITS (Du et al., 2023). Moreover, we also compare with state-of-
the-art generative imputation methods, attention-based autoencoder approach, mTANs (Shukla &
Marlin, 2021) , and diffusion-based approach, CSDI (Tashiro et al., 2021).4 For a fair comparison,
the magnitudes of the number of parameters are set to be equivalent among the evaluated methods.
More detailed explanations about baseline models are provided in Appendix D.

4We compare NLL only with two VAE-based methods, since NLL cannot be measured for predictive methods;
mTAN is probabilistic but uses fixed variance; and NLL of CSDI affected by the noise schedule. (please refer to
Appendix F.2 of Tashiro et al. (2021)). We mark asterisks (*) in Table 2 and Table 3 to specify this.
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Table 1: Imputation and prediction performance on the image sequence datasets.

Methods HealingMNIST (missing with MNAR pattern) RotatedMNIST (interpolation & extrapolation)
NLL(↓) MSE(↓) AUROC(↑) NLL(↓) MSE(↓)

No Imp. - 0.293 ± 0.000 0.920 ± 0.000 - 0.133 ± 0.000
Mean Imp. - 0.168 ± 0.000 0.938 ± 0.000 - 0.085 ± 0.000
Forward Imp. - 0.177 ± 0.000 0.946 ± 0.000 - 0.080 ± 0.000
VAE 0.480 ± 0.002 0.232 ± 0.000 0.922 ± 0.000 1.773 ± 0.127 0.133 ± 0.000
HI-VAE 0.290 ± 0.001 0.134 ± 0.003 0.962 ± 0.001 0.207 ± 0.007 0.087 ± 0.001
GP-VAE 0.261 ± 0.001 0.114 ± 0.002 0.960 ± 0.002 0.190 ± 0.001 0.080 ± 0.004
Ours(Uniform) 0.204 ± 0.002 0.090 ± 0.001 0.967 ± 0.001 0.184 ± 0.001 0.077 ± 0.001
Ours(Cauchy) 0.202 ± 0.004 0.088 ± 0.002 0.967 ± 0.000 0.184 ± 0.001 0.076 ± 0.002

(a) Robustness on missing patterns. (b) Robustness on missing ratios.

Figure 2: Robustness analysis for missing patterns and missing ratios on HealingMNIST.

5.2 MAIN RESULTS

Imputation on image sequences. To evaluate imputation performance on diverse missing scenarios,
we assess imputation performance on two MNIST sequence benchmarks with various missing patterns.
HealingMNIST (Krishnan et al., 2015) has approximately 60% of missing pixels under a missing-
not-at-random (MNAR) pattern on every time step, where the missing probability of white pixels is
twice larger than that of black pixels. Given that the model is not provided with information about
the underlying missing mechanism, this task is particularly challenging, yet it mirrors many practical
scenarios. For example, in healthcare, patients with depression are more likely to refuse answers
about the severity of their condition (Gliklich et al., 2014). RotatedMNIST (Ramchandran et al.,
2021) evaluates performance on interpolation and extrapolation, where all features at an arbitrary
time step are completely missing. This makes imputation more challenging since the model must
reconstruct all the missing values at a given time step solely based on the temporal dependency. Table
1 demonstrates that TimeCIB provides state-of-the-art imputation and prediction performance on
both datasets, and the application of the Cauchy kernel (10) can further improve the performance.

We further evaluate the robustness of our model on HealingMNIST with four additional missing
patterns with 60% of missing ratio (Figure B2a) and that with different missing ratios ranging from
10% to 90% with the random missing pattern (Figure B2b). To assess the robustness of missing
patterns, we employ Random, Spatial (i.e., neighboring pixels have correlated missing probabilities),
and Temporal+/− (i.e., positive/negative temporal correlation). The imputation performance of
our proposed method is most robust on diverse missing patterns and missing ratios. Please refer to
Appendix B for more experimental details and results.

Imputation for weather forecasting. Weather forecasting is one of the representative fields where
we can observe diverse scales of seasonality – such as daily, weekly, monthly, or yearly basis –
which is one of the most important characteristics of time series data. In this experiment, we focused
on two weather forecasting datasets - Beijing Air Quality (Zhang et al., 2017) and US Local5 -
whose time series measurements are collected every hour. Our model is capable of using the prior
knowledge on the periodicity of the target data, by applying conditional alignment with temporal
kernels (Section 3.3); we assume daily periodicity by setting p = 24. Inspired by the experiments
outlined in (Yoon et al., 2019), we also evaluate the utility of imputation methods on forecasting
by assessing the prediction performance (ForecastMSE) of a separately trained LSTM using time
series data with imputed values. As shown in Table 2, TimeCIB outperforms the benchmarks on
both weather forecasting datasets in terms of both imputation and prediction performance. The

5https://www.ncei.noaa.gov/data/local-climatological-data/

8



Published as a conference paper at ICLR 2024

Table 2: Imputation and prediction performance on the weather forecasting datasets.

Methods Beijing (T=24) US Local (T=168)
NLL(↓) MSE(↓) ForecastMSE(↓) NLL(↓) MSE(↓) ForecastMSE(↓)

No Imp. - 1.015 ± 0.000 0.539 ± 0.000 - 1.113 ± 0.000 0.610 ± 0.000
Mean Imp. - 0.460 ± 0.000 0.517 ± 0.000 - 0.509 ± 0.000 0.432 ± 0.000
Forward Imp. - 0.399 ± 0.000 0.502 ± 0.000 - 0.391 ± 0.000 0.401 ± 0.000
BRITS - 0.396 ± 0.002 0.490 ± 0.005 - 0.384 ± 0.001 0.398 ± 0.027
SAITS - 0.283 ± 0.013 0.450 ± 0.005 - 0.275 ± 0.002 0.350 ± 0.067
mTANs * 0.287 ± 0.005 0.436 ± 0.005 * 0.268 ± 0.018 0.337 ± 0.033
CSDI(n=5) * 0.287 ± 0.003 0.423 ± 0.003 * 0.378 ± 0.001 0.364 ± 0.036
CSDI(n=25) * 0.270 ± 0.001 0.423 ± 0.006 * 0.340 ± 0.000 0.347 ± 0.036
VAE 1.427 ± 0.001 1.016 ± 0.002 0.524 ± 0.006 1.462 ± 0.002 1.086 ± 0.004 0.467 ± 0.034
HI-VAE 1.081 ± 0.003 0.321 ± 0.008 0.464 ± 0.008 1.078 ± 0.005 0.317 ± 0.010 0.380 ± 0.060
GP-VAE 1.077 ± 0.006 0.316 ± 0.011 0.463 ± 0.008 1.078 ± 0.005 0.318 ± 0.010 0.385 ± 0.051
Ours(Uniform) 1.063 ± 0.001 0.291 ± 0.004 0.445 ± 0.003 1.052 ± 0.001 0.265 ± 0.002 0.351 ± 0.060
Ours(Periodic) 1.060 ± 0.002 0.283 ± 0.004 0.443 ± 0.004 1.049 ± 0.002 0.260 ± 0.003 0.327 ± 0.022

(a) Beijing (b) US Local (c) Physionet2012

Figure 3: Comparison of the imputed values for examples in (a) Beijing, (b) US Local, and (c) Phys-
ionent2012 datasets, highlighting that TimeCIB provides more accurate imputations by considering
temporal dependencies. Dots and crosses are observed and missing ground-truth values, respectively.

performance of our method is further enhanced when equipped with a temporal periodic kernel (10),
highlighting our model’s ability to incorporate the correct inductive bias.

Table 3: Imputation and prediction performance on
the clinical dataset.
Methods Physionet2012 (mortality prediction))

NLL(↓) MSE(↓) AUROC(↑)
No Imp. - 0.962 ± 0.000 0.692 ± 0.000
Mean Imp. - 0.511 ± 0.000 0.703 ± 0.000
Forward Imp. - 0.613 ± 0.000 0.710 ± 0.000
BRITS - 0.529 ± 0.004 0.700 ± 0.005
SAITS - 0.501 ± 0.024 0.713 ± 0.007
mTANs * 0.499 ± 0.008 0.721 ± 0.004
CSDI(n=5) * 0.548 ± 0.014 0.705 ± 0.005
CSDI(n=25) * 0.478 ± 0.002 0.683 ± 0.033
VAE 1.400 ± 0.000 0.962 ± 0.000 0.691 ± 0.001
HI-VAE 1.345 ± 0.009 0.852 ± 0.018 0.696 ± 0.004
GP-VAE 1.227 ± 0.007 0.616 ± 0.013 0.730 ± 0.006
Ours(Uniform) 1.183 ± 0.007 0.528 ± 0.014 0.744 ± 0.009
Ours(Cauchy) 1.179 ± 0.006 0.521 ± 0.012 0.744 ± 0.009

Imputation for electrical health records.
Time series imputation is of special impor-
tance in healthcare where each feature may
have a distinct sampling period and strategies.
In this context, we evaluate imputation meth-
ods on Physionet2012 – Mortality Prediction
Challenge (Silva et al., 2012), which aims to
predict in-hospital mortality of intensive care
unit (ICU) patients from 48 hours of records
with roughly 80% of missing features. Fur-
thermore, we conduct additional evaluations
to assess whether the imputation methods pre-
serve the critical characteristics of a given
time series – i.e., whether a patient’s status is
deteriorating or not – after replacing the missing features with imputed values. Table 3 shows that
TimeCIB provides imputation performance comparable to the best benchmark while outperforming
the VAE-based methods by a great margin. Furthermore, it achieves the best classification perfor-
mance, successfully capturing information about the temporal dynamics of patients’ status. Note that
while the mean imputation provides better imputation performance, the imputed values drastically
lose the crucial information for discriminating patient’s status.

6 CONCLUSION

In this paper, we have presented TimeCIB, a novel information-theoretic approach for time series
imputation. While inheriting the multiple imputation and uncertainty measurement properties of
the IB, TimeCIB addresses the limitation of the IB principle in capturing underlying temporal
dynamics by replacing conventional regularization with conditional regularization. Our variational
decomposition showed that CIB could be approximated by optimizing the evidence lower bound
(ELBO) and the contrastive objective. We also demonstrated that introducing inductive bias based on
temporal kernels can further enhance expressive power, acting as a form of conditional alignment.
Our empirical results on image sequences, weather forecasting, and electrical health records prove
that TimeCIB is effective in a wide range of practical cases.
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A DERIVATIONS

A.1 VARIATIONAL APPROXIMATION OF FIRST TERM IN CONDITIONAL RECONSTRUCTION.

Here, we show that the first term of the conditional reconstruction I(Xt;Zt,X
o
\t) can be approxi-

mated as in (4) based on the following derivation:

I(Xt;Zt,X
o
\t) = Ep(xt,zt,xo

\t)

[
log

p(xt|zt,xo
\t)

p(xt)

]
= Ep(xt,zt,xo

\t)

[
log p(xt|zt,xo

\t)
]
− Ep(xt) [log p(xt)]

=

∫
xt

∫
zt

∫
xo
\t

p(xt, zt,x
o
\t) log p(xt|zt,xo

\t)dxtdztdx
o
\t +H(xt)

≥
∫
xt

∫
zt

∫
xo
\t

p(xt, zt,x
o
\t) log p(xt|zt,xo

\t)dxtdztdx
o
\t

(11)

The last inequality holds because of the non-negativity of entropy.

Note that p(Xt,Zt,X
o
\t) can be marginalized by introducing Xo

t :

p(Xt,Zt,X
o
\t) =

∫
Xo

t

p(Xt,X
o
1:T )qϕ(Zt|Xo

1:T )dX
o
t (12)

Then, putting (12) into the (11) gives

I(Xt;Zt,X
o
\t) ≥

∫
xt

∫
zt

∫
xo
1:T

p(xt,x
o
1:T )qϕ(zt|xo

1:T ) log p(xt|zt,xo
\t)dxtdztdx

o
1:T

= Ep(xt,xo
1:T )

[
Eqϕ(zt|xo

1:T )

[
log p(xt|zt,xo

\t)
]]

= Ep(xt,xo
1:T )

[
Eqϕ(zt|xo

1:T )

[
log p(xt|zt,xo

\t)
pθ(xt|zt)
pθ(xt|zt)

]]
= Ep(xt,xo

1:T )

[
Eqϕ(zt|xo

1:T ) [log pθ(xt|zt)]
]
+ Ep(xt,zt,xo

\t)

[
log

p(xt|zt,xo
\t)

pθ(xt|zt)

]
(13)

The last term can be expressed in a form of the KL-divergence:

Ep(xt,zt,xo
\t)

[
log

p(xt|zt,xo
\t)

pθ(xt|zt)

]
= Ep(zt,xo

\t)

[
Ep(xt|zt,xo

\t)

[
log

p(xt|zt,xo
\t)

pθ(xt|zt)

]]
= Ep(zt,xo

\t)

[
DKL(p(xt|zt,xo

\t)||pθ(xt|zt))
] (14)

Due to the non-negativity of the KL-divergence, plugging (14) into (13) gives (4) as

I(Xt;Zt,X
o
\t) ≥ Ep(Xt,Xo

1:T )

[
Eqϕ(Zt|Xo

1:T ) [log pθ(Xt|Zt)]
]
. (15)
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A.2 VARIATIONAL APPROXIMATION OF SECOND TERM IN CONDITIONAL RECONSTRUCTION.

Analogous to the derivation in (Alemi et al., 2017), I(Xt;X
o
\t) is upper bounded as follows:

I(Xt;X
o
\t) = Ep(xt,xo

\t)

[
log

p(xt|xo
\t)

p(xt)

]

= Ep(xt,xo
\t)

[
log

p(xt|xo
\t)q(xt)

p(xt)q(xt)

]

= Ep(xt,xo
\t)

[
log

p(xt|xo
\t)

q(xt)

]
− Ep(xt,xo

\t)

[
log

p(xt)

q(xt)

]
= Ep(xo

\t)

[
DKL(p(xt|xo

\t)||q(xt))
]
−DKL(p(xt)||q(xt))

≤ Ep(xo
\t)

[
DKL(p(xt|xo

\t)||q(xt))
]

(16)

where we set q(Xt) = N (0, I) (Alemi et al., 2017; Lee et al., 2023). Specifically, in our imple-
mentation, we deterministically encode Z̃t by taking µϕ(X

o
\t) and then calculate the KL-divergence

between the decoder distribution pθ(Xt|Z̃t) with q(Xt).

A.3 VARIATIONAL APPROXIMATION OF FIRST TERM IN CONDITIONAL REGULARIZATION.

I(Zt;X
o
1:T ) = Eqϕ(zt,xo

1:T )

[
log

qϕ(x
o
1:T , zt)

qϕ(zt)pdata(xo
1:T )

]
= Eqϕ(zt,xo

1:T )

[
log

qϕ(zt|xo
1:T )

qϕ(zt)

p(zt)

p(zt)

]
= Eqϕ(zt,xo

1:T )

[
log

qϕ(zt|xo
1:T )

p(zt)

]
+ Eqϕ(zt,xo

1:T )

[
log

p(zt)

qϕ(zt)

]
= Epdata(xo

1:T ) [DKL(qϕ(zt|xo
1:T )||p(zt))]−DKL(qϕ(zt)||p(zt))

≤ Epdata(xo
1:T ) [DKL(qϕ(zt|xo

1:T )||p(zt))]

(17)

The last inequality holds because of the non-negativity of KL-divergence.
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A.4 CONTRASTIVE APPROXIMATION OF SECOND TERM IN CONDITIONAL REGULARIZATION.

In Section 3.2.2, we optimize I(Zt;X
o
\t) by approximate the mutual information into a contrastive

form, which is similar to (Oord et al., 2018; Tian et al., 2020).

I(Zt;X
o
\t) = −EX log

[
p(Xo

\t)

p(Xo
\t|Zt)

]

= −EX log

[
p(Xo

\t)

p(Xo
\t|Zt)

N

]
+ log(N)

≥ −EX log

[
p(Xo

\t)

p(Xo
\t|Zt)

N

]

≥ −EX log

[
1 +

p(Xo
\t)

p(Xo
\t|Zt)

(N − 1)

]

= −EX log

[
1 +

p(Xo
\t)

p(Xo
\t|Zt)

(N − 1)EXo,j
\t

p(Xo,j
\t |Zt)

Xo,j
\t

]

≈ −EX log

1 + p(Xo
\t)

p(Xo
\t|Zt)

∑
X−

\t∈X−

p(X−
\t|Zt)

p(X−
\t)



= EX log


p(Xo

\t|Zt)

p(Xo
\t)

p(Xo
\t|Zt)

p(Xo
\t)

+
∑

X−
\t∈X−

p(X−
\t|Zt)

p(X−
\t)


≈ EX log

 p(Xo
\t|Zt)

p(Xo
\t)∑

X−
1:T∈X−

p(X−
1:T |Zt)

p(X−
1:T )


= EX log

[
f(Zt,X

o
\t)∑

X−
1:T∈X− f(Zt,X

−
1:T )

]

(18)

There remain two design choices: i) selection of X− and ii) formulation of function f . For i), we use
a mini-batch approach that X−

1:T are chosen from other time series inputs in the same mini-batch.
For ii), we adopt the average of cosine similarities along the time axis. Specifically, we define the
function f using an alternative representations Z̃t′ which is obtained by inputting the masked input
qϕ(Z̃t′ |Xo

\t):

f(Zt,X
o
\t) =

∑
t′∈{1:T}\t

f(Zt, Z̃t′) =
∑

t′∈{1:T}\t

exp
(
Zt

T Z̃t′/τ
)

(19)

where τ ∈ ℜ is a temperature hyperparameter.

Alternatively, we can also define the function for negative samples in a similar way.

f(Zt,X
−
1:T ) =

∑
t′∈{1:T}

f(Zt,Z
−
t′ ) =

∑
t′∈{1:T}

exp
(
Zt

TZ−
t′ /τ

)
(20)

Then I(Zt;X
o
\t) is lower bounded by

I(Zt;X
o
\t) ≥ log


∑

t′∈{1:T}\t
exp

(
Zt

T Z̃t′/τ
)

∑
X−

1:T∈X−
1:T

∑
t′∈{1:T}

exp
(
Zt

TZ−
t′ /τ

)
 (21)

We can observe that I(Zt;X
o
\t) is lower bounded by the similar form of NT-Xent objective function

in (Sohn, 2016) and specifically in-version of the supervised contrastive loss in (Khosla et al., 2020).
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B ADDITIONAL RESULTS

B.1 MORE ON ROBUSTNESS

Missing Patterns. To assess the robustness of our model on diverse missing patterns, we tested our
model on five different types of missingness generated by the missing mechanism outlined in (Fortuin
et al., 2020). Here, we describe the data-generating process of each missing pattern as the folowing:
Spatial: Define a spatial Gaussian process with RBF kernel, and draw the missingness patterns by
sampling from this process. Temporal+: Define a temporal Gaussian process with RBF kernel for
each feature dimension, and draw from this process. Temporal-: Implement with determinantial point
process for each feature dimension.

Table B1: Robustness on missing patterns, HealingMNIST (NLL)

Pattern Mean imp. Forward imp. VAE HI-VAE GP-VAE Ours
Random - - 0.3360 ± 0.0010 0.2218 ± 0.0008 0.1957 ± 0.0006 0.0887 ± 0.0010
Spatial - - 0.4802 ± 0.0016 0.2259 ± 0.0010 0.1779 ± 0.0007 0.1509 ± 0.0038
Temporal- - - 0.1940 ± 0.0006 0.1349 ± 0.0005 0.1175 ± 0.0004 0.0879 ± 0.0004
Temporal+ - - 0.1918 ± 0.0006 0.1332 ± 0.0005 0.1206 ± 0.0004 0.0927 ± 0.0006
MNAR - - 0.4798 ± 0.0016 0.2896 ± 0.0010 0.2606 ± 0.0008 0.2017 ± 0.0041

Table B2: Robustness on missing patterns, HealingMNIST (MSE)

Pattern Mean imp. Forward imp. VAE HI-VAE GP-VAE Ours
Random 0.069 ± 0.000 0.099 ± 0.000 0.100 ± 0.000 0.046 ± 0.001 0.036 ± 0.000 0.036 ± 0.000
Spatial 0.090 ± 0.000 0.099 ± 0.000 0.122 ± 0.000 0.097 ± 0.000 0.071 ± 0.001 0.059 ± 0.000
Temporal- 0.086 ± 0.000 0.093 ± 0.000 0.101 ± 0.000 0.046 ± 0.001 0.037 ± 0.001 0.036 ± 0.000
Temporal+ 0.107 ± 0.000 0.117 ± 0.000 0.101 ± 0.000 0.047 ± 0.001 0.038 ± 0.001 0.037 ± 0.000
MNAR 0.168 ± 0.000 0.177 ± 0.000 0.232 ± 0.000 0.134 ± 0.003 0.114 ± 0.002 0.088 ± 0.002

Missing Ratio. Analogous to (Fortuin et al., 2020), we validate the robustness of our model on a
variety of different missing ratios using random missing patterns, ranging from 10% to 90%.

Table B3: Robustness on random missingness, HealingMNIST (NLL)

Missing VAE HI-VAE GP-VAE Ours
10 % 0.1319 ± 0.0039 0.0783 ± 0.0022 0.0695 ± 0.0010 0.0666 ± 0.0004
20 % 0.1506 ± 0.0054 0.0844 ± 0.0009 0.0744 ± 0.0009 0.0688 ± 0.0004
30 % 0.1637 ± 0.0042 0.0874 ± 0.0057 0.0799 ± 0.0008 0.0734 ± 0.0005
40 % 0.1950 ± 0.0061 0.0974 ± 0.0102 0.0864 ± 0.0007 0.0782 ± 0.0003
50 % 0.2164 ± 0.0046 0.1172 ± 0.0127 0.0937 ± 0.0012 0.0849 ± 0.0005
60 % 0.2634 ± 0.0108 0.1264 ± 0.0070 0.1040 ± 0.0008 0.0944 ± 0.0001
70 % 0.2800 ± 0.0051 0.1489 ± 0.0034 0.1197 ± 0.0003 0.1088 ± 0.0002
80 % 0.2928 ± 0.0058 0.1698 ± 0.0177 0.1408 ± 0.0002 0.1317 ± 0.0009
90 % 0.3071 ± 0.0054 0.2290 ± 0.0042 0.1852 ± 0.0003 0.1691 ± 0.0006

Table B4: Robustness on random missingness, HealingMNIST (MSE)

Missing VAE HI-VAE GP-VAE Ours
10 % 0.0582 ± 0.0023 0.0336 ± 0.0009 0.0295 ± 0.0004 0.0274 ± 0.0008
20 % 0.0700 ± 0.0030 0.0367 ± 0.0000 0.0311 ± 0.0004 0.0283 ± 0.0001
30 % 0.0857 ± 0.0033 0.0373 ± 0.0029 0.0336 ± 0.0007 0.0305 ± 0.0002
40 % 0.1185 ± 0.0033 0.0420 ± 0.0051 0.0362 ± 0.0000 0.0328 ± 0.0001
50 % 0.1317 ± 0.0006 0.0517 ± 0.0063 0.0390 ± 0.0005 0.0356 ± 0.0001
60 % 0.1328 ± 0.0000 0.0561 ± 0.0036 0.0436 ± 0.0001 0.0402 ± 0.0000
70 % 0.1328 ± 0.0000 0.0681 ± 0.0018 0.0505 ± 0.0001 0.0470 ± 0.0000
80 % 0.1328 ± 0.0000 0.0787 ± 0.0108 0.0594 ± 0.0001 0.0584 ± 0.0008
90 % 0.1328 ± 0.0000 0.1088 ± 0.0076 0.0826 ± 0.0009 0.0755 ± 0.0002
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B.2 ABLATION STUDY ON THE CONDITIONAL RECONSTRUCTION.

As derived in Section 3.2, the conditional reconstruction term is given as the follows:
I(Xt;Zt|Xo

\t) = I(Xt;Zt,X
o
\t)− I(Xt;X

o
\t). To support our claim that the effect of minimizing

I(Xt;X
o
\t) deteriorates the model performance, we introduce an auxiliary weight ω and make a

weighted version of the conditional reconstruction term as

Ĩ(Xt;Zt|Xo
\t) = I(Xt;Zt,X

o
\t)− ωI(Xt;X

o
\t). (22)

Then, we can see the effect of I(Xt;X
o
\t) by varying the value of ω from 0 to 1 by assessing the

imputation performance on the Physionet2012 dataset. Figure B2 shows that, starting from ω = 0
which is equivalent to the CIB objective in (8), focusing more on I(Xt;X

o
\t) gradually deteriorates

both the imputation performance (MSE) and the classification performance (AUROC).

Figure B1: The effect of ω in the weighted conditional reconstruction in (22).

B.3 QUANTITATIVE ASSESSMENT ON I(Zt;X
o
\t)

In addition to the qualitative assessment on I(Zt;X
o
\t) shown in Figure 1 and empirical performances

in Section 5, we compare the approximated quantity on I(Zt;X
o
\t) using (9) to assert that our CIB

objective indeed preserves more information. Please note that, as derived in (A.4), the lower bound is
given by I(Zt;X

o
\t) ≥ logN − L3

ϕ, which depends on the batch size N and the objective L3
ϕ. Table

B5 shows the values of L3
ϕ, indicating that a lower value corresponds to more preserved information.

This result demonstrates that our CIB objective preserves more information in I(Zt;X
o
\t) based on

the approximation.

Table B5: Quantitative results on I(Zt;X
o
\t). Lower value indicates more preservation of information.

Dataset VAE HI-VAE GP-VAE Ours(Uniform) Ours(Kernel)
RotatedMNIST 3.619 ± 0.005 3.577 ± 0.008 3.435 ± 0.001 3.428 ± 0.006 3.418 ± 0.002
Beijing 3.950 ± 0.015 3.822 ± 0.012 3.762 ± 0.012 3.700 ± 0.008 3.686 ± 0.006
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B.4 SENSITIVITY ANALYSIS

Here, we provide the sensitivity analysis on β and γ in (8). Before presenting results, we rewrite our
objective as follows to analyze the effects of individual regularization terms given fixed reconstruction,

min
ϕ,θ

L1
ϕ,θ + β′L2

ϕ + γ′L3
ϕ (23)

where β′ = 1/β and γ′ = γ/β. Now, (23) shares the same notational convention used in β-VAE
(Higgins et al., 2017), where we can systematically assess the sensitivity of TimeCIB on the two
regularization objectives.

Ground 
Truth

(a) Sensitivity on β′

Ground 
Truth

(b) Sensitivity on γ′

Figure B2: Sensitivity analysis on the regularization objectives, β′ and γ′. γ′ = 0.5 for (a), and
β′ = 0.1 for (b).

Sensitivity on β′. β′ is related to the regularization trade-off that low-β′ (weak regularization)
can cause lack of timeseries-wise information and eventually overfitting on observed values, while
high-β′ (strong regularization) can cause loss of timepoint-wise information since all distribution
would become a unit Gaussian, as well-studied by previous works.

Sensitivity on γ′. Since γ′ also works as a regularization term, sensitivity on γ′ is similar to β′, but
the cause of behaviour is slightly different. For low-γ′ (weak regularization), there is no driving force
on conserving temporal dynamics (see Section 3.1), thereby cause loss of temporal dynamics and
would eventually become HI-VAE (Nazabal et al., 2020) when γ′ = 0. On the other hand, high-γ′

(strong regularization) cause loss of timepoint-wise information, since L3
ϕ will map all zt from the

same time series into a single point, which means that we cannot distinguish individual timepoints.
Figure B2 illustrates quantitative and qualitative results on the HealingMNIST.

Optimization Strategy. Simultaneous optimization of β′ and γ′ could be difficult. However,
motivated from the above sensitivity analysis, one can first set γ′=0 and find optimal β′ (which is
HI-VAE). Second-stage parameter search within the close range of order of magnitude of β′ could
help finding optimal γ′.
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C IMPLEMENTATION DETAILS

Here, we provide implementation details, including illustration of overall frameworks, algorithms,
and hyperparameters. The overall framework is illustrated in Figure C1.

qϕqϕ

pθ

xt xo
t ztxm

t

xo1:T

z1:T

x1:T

z̃∖t

xo
∖t

qϕ

x−1:T

z−1:T

zt

max Iθ(xt; zt)

min Iϕ(zt; xo
t |xo

∖t)

Iϕ(zt; xo
∖t)(a) Conditional Information Bottleneck (b) Calculation of 

MinimizeMaximize

Maximize similarity (with temporal kernels)

Minimize similarity

Notations: xmasked
t

Figure C1: Illustration of TimeCIB framework.(A) Conceptual illustration TimeCIB framework.
CIB maximizes Iθ(xt; zt), while minimizing Iϕ(zt;x

o
t |xo

\t). (B) Implementation of optimizing
Iϕ(zt;x

o
\t).

C.1 TRAINING AND INFERENCE.

At training stage, input time sequences are first fed into the stochastic encoder qϕ(Zt|Xo
1:T ) =

N (µϕ(X
o
1:T ), diag(σϕ(X

o
1:T ))) where we use a 2 layers of bidirectional LSTM. For image dataset,

we used CNN preprofessor before the encoder module. We then sample zt from resulting latent
distribution, and decoder pθ(Xt|Zt) = N (µθ(zt), σθI) reconstructs the complete observation from
the latent vector. In addition to previous conventional ELBO procedures, we also encodes Xo

\t, which
are generated by masking Xo

t with zeros. These masked input series are also mapped by the same
encoder and latent vectors are obtained. Consequently, we use two sets of time series representations:
z1:T and z̃1:T for calculating (7). For training efficiency, we optimized (7) stochastically, which
is, we randomly sampled t at every epoch and minimized contrastive loss on that time step. At
single prediction, we use the mean of the latent distribution µϕ(X

o
1:T ) as the corresponding latent

representation and also reconstruct the observation from the mean of the decoder distribution µθ(zt).
All experiments were conducted using a 48GB NVIDIA RTX A6000.
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C.2 ALGORITHM

We provide the pseudo-algorithm of TimeCIB as below:

Algorithm 1 Conditional Information Bottleneck on Time Series

input batch size B, time length T
for sampled minibatch {Xo

1:T }B1 do
sample t ∈ {1 : T}
generate masked input {Xo

\t}
B
1

for k ∈ {1, . . . , B} in parallel do
for t′ ∈ {1 : T} in parallel do

encode and sample Zk
t′ ∼ qϕ(Z

k
t′ |X

o,k
1:T ) = N (µϕ(X

o,k
1:T )σϕ(X

o,k
1:T )I)

encode and sample Z̃k
t′ ∼ qϕ(Z̃

k
t′ |X

o,k
\t′ ) = N (µϕ(X

o,k
\t′ ), σϕ(X

o,k
\t′ )I)

decode pθ(X
k
t′ |Zt′) = N (µθ(Zt′), diag(σθ(Zt′))

L1
ϕ,θ = L1

ϕ,θ − log(pθ(X
k,o
t′ |Zt′))

L2
ϕ = L2

ϕ + KL[qϕ(Z̃k
t′ |X

o,k
\t′ )||N (0, I)]

end for
end for
for k ∈ {1, . . . , B}in parallel do

L3
ϕ = L3

ϕ + Contrastive Loss(Zk
t′ , Z̃

k
\t,Z

\k
1:T )(9)

end for
L = βL1

ϕ,θ + L2
ϕ + γL3

ϕ

update ϕ, θ to minimize L
end for

C.3 HYPERPARAMETER SPECIFICATION.

We provide hyperparameter settings used for our experiments.

Table C1: Hyperparameter specifications.

Hidden Dim Batch Size Epochs Learning Rate Temperature Kernel parameter
HealingMNIST 128 64 30 1e − 3 1.0 2.0
RotatedMNIST 128 64 30 1e − 3 1.0 2.0
Beijing 128 64 100 1e − 3 1.0 4.0
US Local 64 16 20 1e − 4 1.0 2.0
Physionet2012 16 256 50 1e − 3 1.0 32

For a fair comparison, the magnitudes of the number of parameters are set to be equivalent among the
evaluated deep learning methods.

Table C2: Number of learnable parameters.

Ours VAE HI-VAE GP-VAE BRITS SAITS mTANs CSDI
HealingMNIST 1.2M 1.2M 1.2M 1.2M - - - -
RotatedMNIST 1.2M 1.2M 1.2M 1.2M - - - -
Beijing 368K 368K 368K 368K 343K 362K 398K 375K
US Local 68K 68K 68K 68K 51K 87K 63K 62K
Physionet2012 21K 21K 21K 21K 24K 27K 29K 33K

20



Published as a conference paper at ICLR 2024

D DATASET, BASELINES, AND MORE RELATED WORKS

D.1 DATASET STATISTICS

We provide baseline statistics of the benchmark datasets.

Table D1: Data Statistics.

# Samples Len (T ) Feature Dim # Classes Missing Ratio (ori/art)
HealingMNIST 50000/10000/10000 10 28 × 28 × 1 10 - /60%
RotatedMNIST 50000/10000/10000 10 28 × 28 × 1 10 - /60%
Beijing 851/304/306 24 132 - 2%/60%
USLocal 847/298/298 168 11 - -/60%
Physionet2012 3997/3993/3997 48 35 2 80%/ 2%

D.2 BASELINE MODELS

HI-VAE (Nazabal et al., 2020) HI-VAE proposes a general generative framework that extends
the VAE structure to be suitable for fitting incomplete heterogeneous data. Nazabal et al. (2020)
proposed likelihood models for diverse data – real-valued, positive real-valued, interval, categorical,
ordinal, and count data – and also expanded the conventional VAE to handle missing features. In this
paper, we followed their approach to calculate reconstruction only to the observed features.

GP-VAE (Fortuin et al., 2020) GP-VAE expands information bottleneck on time series impu-
tation, by using Gaussian process prior in the latent space. To use the Gaussian process, GP-
VAE’s inference model encodes the input with respect to each latent dimension, q(z1:T,j |xo

1:T ) =

N (mj ,Λ
−1
j ), where j indexes the dimensions in the latent space. The latent prior is formalized

by zt ∼ GP(mz(·), kz(·, ·)) where m and k are the mean and covariance functions, respectively.
GP-VAE also utilizes the Cauchy kernel as a covariance function to capture temporal dynamics.

D.3 MORE RELATED WORKS

GAN-based imputation methods generate imputed values adversarially, assisted by a masked re-
construction loss, with the goal of making the generated samples closely resemble the original
ones based on their observed values and indistinguishable from the original incomplete data by a
discriminator. GAIN (Yoon et al., 2018a) uses a random masking and hinting mechanism to aid
the discriminator in better distinguishing real and generated samples, thereby improving imputation
performance. GRUI-GAN (Luo et al., 2018) and its extension E2GAN (Luo et al., 2019) adopted
the GAN framework into a temporal setting by enhancing the GRU cell to account for temporal
dynamics, considering time lag influences related to observations and missing values.
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E TABLE OF NOTATIONS

Notations

X1:T Complete data features of one time series

Xo
1:T Observed features of one time series

Xm
1:T Missing features of one time series

X\t Complete data features of one time series, except the time t

Xo
\t Observed features of one time series, except the time t

Xm
\t Missing features of one time series, exept the time t

Xt Complete data features at time t

Xo
t Observed features at time t

Xm
t Missing features at time t

Zt Representation features at time t, generated from Xo
1:T

Z̃t Representation features at time t, generated from Xo
\t

ϕ Set of parameters of an encoder

θ Set of parameters of a decoder
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