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Abstract

MT of specialised texts poses particular chal-
lenges due to domain-specific terminology,
phraseology and structural conventions. LLMs
offer a promising alternative to traditional MT
approaches, especially in domains with limited
parallel corpora (specialised texts being a no-
table example). However, their performance
remains underexplored, despite the fact that
this type of translation has significant socio-
economic implications. In this study, we eval-
uate the ability of LLMs and state-of-the-art
translation models to translate specialised texts,
using an error typology designed for the eval-
uation of specialised translation to provide a
qualitative assessment. Our approach provides
detailed insights into translation challenges and
investigates whether LLMs can also detect er-
rors in LSP translations.

1 Introduction

Specialised translation refers to the translation of
technical, scientific or professional texts written in
specific language often referred to as LSP (Lan-
guage for Specific Purposes). They are charac-
terised by precise terminology and phraseology,
specific textual conventions and specific discourse
structures. This type of translation plays a crucial
economic role: In a globalised world, the dissemi-
nation of scientific knowledge, international expert
communication and the development of specialised
markets depend heavily on high-quality translations.
However, specialised translation is a particularly
demanding task. It requires not only a deep under-
standing of the subject matter, but also the ability
to convey concepts that may not exist in the target
language, sometimes requiring the creation of new
terms, as well as cross-cultural and cross-linguistic
text type knowledge (Rogers, 2015).

Traditional MT systems, such as phrase-based
and neural MT systems, which rely primarily on su-
pervised learning approaches, face a major obstacle

in this context: the scarcity of parallel corpora in
specialised domains (Bouamor and Sajjad, 2018).
Unlike general language texts, specialised corpora
are often limited in size, heterogeneous and expen-
sive to produce (Aston, 1999). LLMs, which are
trained on large monolingual and multilingual cor-
pora, offer a promising alternative. Their ability to
generalise from unaligned data and reason about
linguistic structures allows them to approach trans-
lation in a fundamentally different way. Moreover,
their creative flexibility could be valuable in adapt-
ing or inventing terms that do not exist in the target
language.

In this study, we propose to evaluate the ability of
LLMs to evaluate specialised translated texts: Our
first contribution consists of an evaluation of MT on
a corpus of scientific abstracts in NLP. Conducting
this type of evaluation presents two main challenges:
(i) the lack of an annotated translation corpus in this
domain, and (ii) the uncertainty regarding the reli-
ability of automatic metrics for these specific text
types. To address these issues, we propose an eval-
uation approach that prioritises manual evaluation
over automatic scoring. Instead of assigning a nu-
merical score to translations, we adopt an error ty-
pology and ask an expert to identify and categorise
errors. This approach not only overcomes the lim-
itations of automated metrics, but also provides
a more interpretable and qualitatively rich assess-
ment of translation quality. Our results (Section 3)
show that existing general-public translation sys-
tems are still a long way from being able to translate
this type of text: the particularities of LSPs remain
challenging, leading to translations of insufficient
quality.

This methodological choice also led us to explore
another aspect of LLMs’ abilities to understand and
manipulate LSP texts: their ability to detect errors
in specialised translations. Using prompt-based
evaluation, we assess whether different models can
reproduce the annotations made by our expert, pro-



viding new insights into their understanding of spe-
cialised language phenomena. Experiments, re-
ported in Section 4, show that at least ChatGPT-40
is able to identify a good proportion of LSP trans-
lation errors, suggesting it is trained on sufficient
specialised data to provide some help to translators
in their translation or quality assessment tasks.

2 A Corpus for Identifying Translation
Errors in LSPs

An Error Typology for LSP Translation There
are two main approaches to evaluating MT quality.
The first consists in assigning numerical scores to
translations based on overall quality assessments
or comparisons with reference corrections. The
second approach involves identifying specific errors
in the translated texts and categorising them using
labels that describe the nature of each error. In
this study, we adopt the latter method, as it allows
for a qualitative analysis of translation errors. This
approach is particularly beneficial for determining
whether errors arise from the inherent limitations
of the MT system or from the linguistic and domain-
specific characteristics of the texts we are analysing,
specifically in the context of LSP.

To systematically annotate translation errors, we
use a translation error typology. In this context, “ty-
pology” refers to a structured classification system
that organises translation errors into a hierarchical
framework with varying levels of granularity, de-
pending on the degree of precision of the error types
contained in the typology. At the highest level, our
typology consists of three primary error categories:

* Content Transfer errors, which encompass 6
subcategories and a total of 9 individual error
types;

» Language errors, divided into 8 subcategories
for a total of 28 error labels, 10 of them being
terminological errors;

¢ Tool-related errors, which contain 4 error
types (see Figure 2 in Appendix A for the full
typology).

This hierarchical organisation allows for a more pre-
cise identification of error types and facilitates tar-
geted improvements in MT models and workflows.
Our typology is based on MeLLANGE (Castagnoli
et al., 2011; Kiibler, 2008), a typology designed for
pedagogical purposes in translation training. This
typology was adapted to evaluate human and ma-
chine translation, along with post-editing quality.
We then extended it to detect system-induced er-

rors and enriched it with several error types from
the Multidimensional Quality Metrics typology
(MQM) introduced in Burchardt (2013), a flexible
typology developed as part of the QTLaunchPad
project to assess the quality of machine and human
translation across domains.

Among the 41 error types contained in our typol-
ogy, 11 errors are directly related to the specialised
nature of the texts. These errors can be caused
by various aspects, such as the suitability of the
register expected in LSPs, the domain-specific ter-
minology and phraseology, as well as terminologi-
cal inconsistencies. The remaining 30 error types
are generally related to the translation process, in-
cluding overly literal translations or distortions of
the source text’s meaning. By systematically cate-
gorising and analysing these errors, we gain valu-
able insights into the challenges posed by MT in
specialised domains and can propose strategies for
improving translation quality in these contexts.

A Corpus of MT of NLP Articles In all our
experiments, we considered a corpus specifically
created for this study. This corpus consists of 35
abstracts of articles in English published in NLP
conference proceedings.! On average, these ab-
stracts contain 9 sentences and 159 words, totalling
331 sentences and 5,718 words.> While this corpus
is smaller than those usually considered in NLP
research, it includes detailed manual annotations
that can only be performed by an expert and are
particularly time-consuming to collect.

These articles were automatically translated into
French using two publicly available machine trans-
lation systems: DeepL and ChatGPT. DeepL is
a commercial translation model available online,
while ChatGPT is a general-purpose LLM not
specifically designed for translation but frequently
used for this purpose.> ChatGPT’s translation ca-
pabilities have already been the subject of several
publications (cf. e.g. Lyu et al. (2024); Wang et al.
(2023); Siu (2023); Jiao et al. (2023); He (2024)).

'All these articles are distributed under a CreativeCom-
mons free license. Our corpus will be distributed upon publi-
cation.

ZSegmentation in sentences and tokenization in words
have been done using spacy with the en_core_web_sm
model (Honnibal and Montani, 2017).

3We used a prompt in French to ask ChatGPT to translate
the text. Here is the translation of the prompt in English: “You
are a translator who specialises in translating research articles
on natural language processing. Translate the following text
into French, respecting the structure of the original text and
not omitting any elements.”



Exploring commercial systems with limited pub-
licly available information may seem contrary to
a scientific approach. But, our choice is driven by
practical considerations: both systems are widely
used by professional translators in their work, mak-
ing it essential to accurately assess their capabilities.

A professional translator, specialised in transla-
tion evaluation and experienced in NLP translation
and evaluation, annotated all of DeepL translations
and 25 (out of 35) translations by ChatGPT follow-
ing the typology we have just introduced. An ex-
ample of reference annotation is provided in Fig-
ure 1. This example illustrates that annotations
involve both identifying errors in the abstract and
describing them by assigning one or more labels.
While it is challenging to precisely measure the
time required for this annotation work, we estimate
that annotating one abstract takes between 30 and
90 minutes, depending on the length of the text and
the level of difficulty/specialisation.

3 Evaluating State-of-the-Art Translation
Models’ Ability to Translate LSP

The annotations produced by our expert allow us
to assess the overall ability of the two translation
systems to translate LSP. A simple preliminary
metric shows that the translations produced by
ChatGPT contain an average of 1.2 errors per sen-
tence, whereas those produced by DeepL contain
1.8 errors per sentence. Although the translations
produced by ChatGPT clearly contain fewer errors,
the quality of both systems is far from satisfactory:
a translator still has to correct at least one error per
sentence, a considerable amount of work.

The labels assigned by the expert provide a more
detailed understanding of the nature of the errors.
Each error received between 1 and 6 different labels
(2.24+0.08 on average,* 2.05+0.11 for translation
by ChatGPT and 2.31 £ 0.09 for those of DeepL).
Of the 41 error labels defined in the error typology
considered, 38 were used at least once. The five
most frequently used labels are for each MT system
considered are reported in Table 1. It is interest-
ing to note that both systems tend to make simi-
lar errors, primarily involving terminology. More
broadly, 41.5 % of ChatGPT’s errors include at least
one label related to the specificity of LSPs, while
this proportion increases to 51.3 % for DeepL (over-
all 58.9 % of the errors include at least one error

“In all reported results, we include the 95% CI intervals

calculated using using the bca bootstrap method of Efron and
Tibshirani (1993).

Error label % Error with

this label
ChatGPT
Akward Style (LA-ST-AW) 40.4 %
Incorrect terminology (LA-TL-INS) $X 39.9 %
Too litteral (Tr-sI-TL) 36.5 %
Incorrect lexis (LA-TL-ING) 16.9 %
Inappropriate collocation wLA-TL-ics) X 10.7 %
DeepL
Incorrect terminology (LA-TL-INS) $X 46.6 %
Akward Style (LA-ST-AW) 17.8 %
Too litteral (TrR-SI-TL). 16.9 %
Distortion (tr-p1) 15.7 %
Incorrect lexis (LA-TL-ING) 15.2 %

Table 1: Most frequent error labels. Labels in bold
only appear in one of the two lists and X indicates
an error specific to LSPs. ‘Awkward style’ is an error
marked by unidiomatic word sequences that don’t fit
lexical, terminological, collocational, or syntactic norms,
resulting in unnatural style. ‘Incorrect terminology’ is
the mistranslation of a specialised term. ‘Too literal’ is
a stylistic error when the translation too closely mirrors
the source. ‘Incorrect lexis’ refers to a mistranslated
general-language term. ‘Inappropriate collocation’ is the
mistranslation of a specialised collocation. ‘Distortion’
is a content transfer error altering the source’s meaning.

type specific to LSPs). The mere fact that an er-
ror annotated with several different labels includes
at least one LSP-related error label is sufficient to
classify it as an LSP error; in fact, LSP errors are
often associated with other labels that describe the
impact of the LSP error (for example, a terminology
error can distort the meaning of the source text, thus
resulting in two labels: terminology + distortion).

4 Detecting Error in LSP Translations

Context In addition to this first task, we consid-
ered a secondary task to assess LLMs’ ability to
understand and manipulate LSPs: Identifying er-
rors in the translation of technical texts. This task
automates the annotations from the previous sec-
tion. Intuitively, it is simpler as it only requires the
detection of ‘mismatches’ between a source text
and its translation, without translating it correctly.

This task has considerable practical value as it
can assist translators in their daily work. Further-
more, although we do not specifically explore this
aspect in our study, it could also assist translation
trainers in correcting and marking students’ work.
Because of its practical importance, it has recently
received increasing attention.

Prompts for Error Detection Following the ap-
proach proposed by Fernandes et al. (2023), and



Une analyse contrastive des techniques d’évaluation de la traduction automatique Dans ce chapitre, une
enquéte [A-TL-INS, LATL-ING, LATL-FC  est présentée  Tr-sitL, La-staw sur les différentes manieres d’évaluer la

sortie Tr-SLTL, LA-TL-INS, LA-IA-NU de la traduction automatique. Les méthodologies présentées incluent I’éval-
uation de la qualité par des évaluateurs humains, les techniques d’évaluation automatisée, 1’évaluation

sur la base d’une analyse des erreurs pa-ri-iNs, LA-TL-Ics €t sur la base pa-staw,La-stta du temps de post-édition,

et elles sont mises a I’épreuve pa-st-aw, LA-TL-ING SUr un corpus d’échantillon pa-rr-iNs.

Figure 1: Example of human reference annotation, each error being identified by its span (text on an orange

background) and one or several labels (in subscript).

recognising the lack of sufficiently large corpora
for fine-tuning and other ML methods, we used
prompt-based techniques. Specifically, we designed
two types of prompts: a simple prompt, which in-
structed an LLM to identify errors in a zero-shot
context (i.e., without providing the model with any
information about MT errors or any examples), and
a complex prompt, which included our full annota-
tion guidelines and required the model to assign an
error category to each detected error. Full prompts
can be found in Appendix B.

Evaluation The model’s output quality using
these prompts was evaluated through precision and
recall, measuring predicted errors against gold an-
notations. Errors were considered matched if they
shared at least one character, ensuring the transla-
tor’s attention to problematic text. We used macro
scores, averaging values across documents.

Experimental Results We begin by evaluating
the ability of different LLMs to locate errors in
the 35 translations of DeepL, considering only the
simple prompt. The results, reported in Table 2,
show that while all the systems achieve relatively
high accuracy, their recall remains consistently low.
This suggests that they only identify errors they
are very confident about. ChatGPT is the only one
not to have a low recall, showing once again that
this model has a good knowledge of LSPs and the
difficulties encountered when translating them.

In order to refine our results, we conducted a
second, more detailed experiment in which we
used ChatGPT not only to locate errors, but also
to categorise them according to the typology de-
scribed in §2. We considered both DeepL transla-
tions and those produced by ChatGPT itself. Our
results show that for DeepL translations, ChatGPT
performs these two tasks quite well, achieving a
precision of 0.79 + 0.04 and a recall of 0.6540.05,
with 64.1 % of the labels assigned matching one of
those given by our expert. However, the quality of
its responses varies considerably across documents

model P R Fy
LLama2 0.51 0.21 0.29
(7B params. (Touvron et al., 2023)) +0.032 +0.02 +0.023
LLama3 0.71 0.33 0.44
(8B params. (Grattafiori et al., 2024)) +0.074 + 0.044 + 0.054
Deepseek 0.64 0.25 0.32
(7B params. (DeepSeek-Al et al., 2025)) +0.082 + 0.077 + 0.069
EuroLLM-instruct 0.65 0.19 0.29
(1.7B params.(Martins et al., 2024)) +0.18 =+ 0.065 + 0.09
Mistral 0.79 0.2 0.29
(7B. params. (Jiang et al., 2023)) +0.034 + 0.024 +0.025
ChatGPT—do 075 067 070
=+ 0.06 =+ 0.05 =+ 0.05

Table 2: Evaluation of the ability of different LLMs to
locate translation errors in LSP texts. EuroLLM is an
LLM fine-tuned on an instruction dataset, with a focus
on general instruction-following and machine translation.

(see their distribution in Appendix C), raising con-
cerns about their reliability for professional transla-
tors: Inconsistent performance makes post-editing
unpredictable, undermining efficiency gains. Fur-
thermore, the results are significantly worse when
ChatGPT evaluates its own translations: precision
falls to 0.47 4= 0.09, recall to 0.57 = 0.11 and only
45.3 % of the labels are correct. This observation
suggests that either its errors are inherently more
difficult to detect, or that asking a model to evaluate
its own translations poses specific challenges.

5 Conclusion

In this study, we evaluated the ability of two MT
systems commonly used by professional transla-
tors to translate LSP texts, specifically abstracts of
scientific articles in NLP, using a specific error ty-
pology. Our results indicate that these tools still
produce translations of insufficient quality, high-
lighting that MT remains an unsolved challenge in
this context. Additionally, we demonstrated that
LLMs can be leveraged to identify errors in LSP
translations. Future research should explore other
domains and languages and assess whether and to
what extent automatic error detection can assist
translators in their daily work.



Limitations

As previously mentioned, our study relies on com-
mercial translation engines, whose underlying mod-
els and training data remain largely unknown. This
significantly limits the depth of analysis we can per-
form on these systems’ results. This methodologi-
cal choice is primarily due to the complexity of the
required annotations, which demand extensive and
time-consuming manual work. Given our limited
capacity for annotation, we focused on evaluating
tools that professional translators use in their daily
work. However, in our second experiment on er-
ror identification, we also included freely available
models to broaden our analysis.

Moreover, our study is limited to a single lan-
guage and a single specialised domain, restricting
the generalisability of our findings. This choice
stems from the difficulty of obtaining high-quality
annotations necessary for evaluating translations in
specialised contexts.

Finally, our experiments were conducted on a
computer equipped with an NVIDIA A100 GPU
with 40GB of memory, except for those involving
ChatGPT-40, which were performed via OpenAl’s
APIL. We estimate that executing all our prompts
required a total of less than 5 computing hours.
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A Error typology

We have reproduced in Figure 2 the typology of
errors used to annotate our data. Errors specific to
LSPs are shown in red. In the final version, we will
include a link to the full annotation guide, which
provides a detailed description and examples of
each error (the link cannot be provided at this time
to respect the anonymity of the submissions).

B Prompts

Figure 3 describes the full prompt (in French!) for
ChatGPT to locate and categorise errors in our cor-
pus. The simpler prompt we used to ask all LLMs
to locate errors (without categorising them) is given
in Figure 4

C Score Distribution

We have represented in Figure 5 the distributions of
precision, recall and F; scores across documents.
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Figure 2: The error typology used in our experiments.
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1. Tache : annoter une traduction
Objectif : repérer des erreurs sur la base d’une typologie d’erreurs
— que je te fournis.
Type de texte : résumé d’article scientifique dans le domaine du TAL
Fichier joint : MANUEL D’ANNOTATION, qui contient des explications plus
— détaillées et des exemples des types d’erreurs que je vais te
— fournir ci-dessous.
Présentation de la sortie
- 1lre phrase source
- 1re phrase cible dans la traduction
- liste les erreurs
Etc. jusqu’a la fin de la traduction

Je vais te donner la typologie d’erreurs.

2. Typologie d’erreurs a suivre méticuleusement : veille & utiliser les
— types d’erreurs présents et n’en invente aucun. De méme, respecte
— les codes liés & chaque type d’erreur & la lettre ; ne prends donc
< aucune liberté.
Explication de la typologie : elle est divisée en 3 grandes catégories
— d’erreurs : les erreurs de transfert de contenu (erreurs altérant
— le sens du message ou entravant sa compréhension), les erreurs de
— langue, et les erreurs liées aux outils ou & leur maitrise.
Voici la typologie
1. Transfert-contenu (GRANDE CATEGORIE, NE PAS UTILISER)
1.1. Omission_TR-0M
* Une omission se produit lorsqu’il manque, dans la traduction, une
idée qui est présente dans le texte source. Il ne faut pas
confondre omission et implicitation. Une omission a lieu sans
réelle raison valable, alors qu’une implicitation est un moyen
d’éviter une surtraduction.
Rajout_TR-AD
1’instar de la différence entre omission et implicitation, on peut
souligner une différence de nuance entre le rajout et

*Srororog

= N

1’explicitation. L’ajout est considéré comme une erreur, alors que
1’explicitation peut s’expliquer par le fait que le traducteur ou
le post-éditeur souhaite éviter la sous-traduction.

jusqu’au bout de la typologie

rr g

- Préte attention a tous les aspects, autant le transfert de contenu
— que la langue et la terminologie et les erreurs liées aux outils.
- Si tu as besoin d’exemples, référe toi au manuel d’annotation en

< piéce jointe.

Je vais te donner la traduction a évaluer avec son texte source.

3. Voici le texte source et sa traduction a annoter
(source text)
(target text)
PROCEDE A L’ANNOTATION. Attention, n’annote QUE les erreurs, pas des
— améliorations ou suggestions ! Il peut y avoir plusieurs erreurs
\\7 — dans une méme phrase. //
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Figure 3: Prompt used on GPT-40
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Your task is to annotate a translation by identifyin;\;x
errors it contains.

I will give you abstracts of scientific articles writteg in
English that are translated into French.

Pay attention to all aspects, from content transfer to
language and terminology and tool-related errors.

Here is the source text:
{{source_text}}
and here is its translation that you must annotated:

{{target_text}}

There may be several errors in the same sentence. Your
answer must be a JSON list containing the list of errorg.
Each error must be described by a dictionary with the
following key:

- "span": a substring of the translation that indicates
the words in the translation that must be corrected for
the translation to be correct and nothing else.

You must identify the smallest span possible.

- "beginning": the position of the error in the translation,
described as the index of the first character in the
translation.

For each error only select the smallest span possible.
Return only the JSON and do not include any other
information or comment.

PROCEEDS WITH THE ANNOTATION. Please note that you shoul
ONLY annotate errors, not propose improvements or

\\\fuggestions!

Figure 4: The “small” prompt we used for error identifi-
cation.
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Figure 5: Distribution of metrics across documents for the different prompts we consider.
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