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Abstract

We study differentially private mechanisms for
sharing training data in machine learning settings.
Our goal is to enable learning of an accurate pre-
dictive model while protecting the privacy of each
user’s label. Previous work established privacy
guarantees that assumed the features are public
and given exogenously, a setting known as label
differential privacy. In some scenarios, this can
be a strong assumption that removes the interplay
between features and labels from the privacy anal-
ysis. We relax this approach and instead assume
the features are drawn from a distribution that de-
pends on the private labels. We first show that
simply adding noise to the label, as in previous
work, can lead to an arbitrarily weak privacy guar-
antee, and also present methods for estimating
this privacy loss from data. We then present a new
mechanism that replaces some training examples
with synthetically generated data, and show that
our mechanism has a much better privacy-utility
tradeoff if the synthetic data is realistic, in a cer-
tain quantifiable sense. Finally, we empirically
validate our theoretical analysis.

1. Introduction
We consider the problem of privately sharing a dataset with
a learner. We are motivated by machine learning competi-
tions such as those hosted by Netflix (Bell and Koren, 2007),
Yahoo! (Chapelle and Chang, 2010), Criteo (Diemert et al.,
2022) and Kaggle (Kaggle). We consider the problem both
from the perspective of individual users who must decide
whether to contribute their labeled example to the dataset,
as well as a learner whose goal is to train a model that accu-
rately predicts the labels of new examples. We focus on the
local model of differential privacy, a mathematically rigor-
ous definition of privacy protection (Dwork and Roth, 2014).
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Since the dataset will be shared as part of a competition,
we also do not want to restrict the learner to any particular
training algorithm or model class.

Differentially private mechanisms typically protect all the
data belonging to a user. But for many types of real-world
training data, only the label contains sensitive information.
Label differential privacy is a relaxation of differential pri-
vacy that protects each training label, but not necessarily the
features (Chaudhuri and Hsu, 2011). Early mechanisms that
satisfied label differential privacy were bound to a specific
training algorithm and were very inefficient (Beimel et al.,
2013), while recent work has proposed more practical ap-
proaches that are based on applying randomized response
to each training label (Esfandiari et al., 2022; Ghazi et al.,
2021), which gives the learner the flexibility to use essen-
tially any training algorithm.

A key premise underlying all previous work on label dif-
ferential privacy is that the features are public knowledge.
However, the ramifications of this assumption may not al-
ways align with user’s privacy expectations. For example,
label differential privacy does not protect users from label
inference attacks (Wu et al., 2022) that use the features to
predict the training labels. Also, the assumption that an
attacker has a priori access to the features is a poor match
for many applications, notably when the attacker obtains all
training data, including both the features and labels, from
the same source.

For example, consider a hospital that wants to launch a ma-
chine learning competition to diagnose a sensitive illness
from X-ray images. The hospital must ask patients for con-
sent to share their data with external parties. Neither the
patients’ illness status nor their X-ray images are public
knowledge, and while the X-rays are not sensitive per se,
patients are unlikely to be satisfied with a data sharing mech-
anism that allows a learner to accurately predict whether
they have the illness from their X-rays. At the same time,
we want the learner to be able to train a model that can accu-
rately diagnose the illness in new patients from their X-rays.
In other words, we want a model that has low accuracy on
the training set, but high accuracy on the test set.

Our contributions. The traditional formalization of ma-
chine learning assumes that in a training set every example
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z = (x, y) with features x and label y is drawn from some
fixed but unknown joint distribution P on features and labels.
A training set Z = {z1, z2, . . . , zt} is generated by drawing
each example zi identically and independently from P .

The standard definition of label differential privacy assumes
that the training set Z is given, and the goal is to learn a
hypothesis from Z while protecting the label yi of every
user. Note, that by design this eschews worrying about any
correlations between features and labels that are present
in P . In this work, on the other hand, we assume each xi
is generated from the conditional distribution of P given
yi and ask how to protect the label yi in this case. To
distinguish between the two scenarios, we call the former
label differential privacy with static features, and the latter
as label differential privacy with conditional features.

Our specific contributions are as follows:

• We propose a new privacy definition, label differential
privacy with conditional features. Our definition is an
alternative to the existing definition of label differential
privacy, which assumes that the features are public
knowledge and static. Instead, we assume that the
features are drawn from a distribution that depends on
the private label. We show that any mechanism that
satisfies our new definition also provably prevents label
inference attacks on the training set, in contrast to the
existing definition.

• We prove that a large class of mechanisms that satisfy
label differential privacy with static features do not sat-
isfy label differential privacy with conditional features.
All recently proposed mechanisms for label differential
privacy are instances of this class. We complement the
worst-case analysis with an algorithm for empirically
estimating the privacy loss of mechanisms in this class.

• We propose a new mechanism that satisfies label differ-
ential privacy with static or conditional features. We
assume that our mechanism has access to a synthetic
feature generator than can produce ‘realistic’ features.

• We present experiments showing that our mechanism is
significantly less vulnerable to label inference attacks
on the training set than existing mechanisms that only
satisfy label differential privacy with static features,
while also enabling learning a model that makes nearly
as accurate predictions on the test set.

2. Related Work
Label differential privacy was introduced by Chaudhuri and
Hsu (2011), who also proved lower bounds on the sam-
ple complexity of any private learner. Beimel et al. (2013)
were the first to explicitly describe a learning algorithm that

satisfies label differential privacy, but its running time is ex-
ponential in the worst-case, since it is based on enumerating
a cover of the model class. Tractable mechanisms have been
proposed more recently (Bassily et al., 2018; Wang and Xu,
2019; Ghazi et al., 2021; Esfandiari et al., 2022), including
mechanisms that generate private training data that can be
used as input to any learning algorithm.

While previous work has shown that label-differentially
private mechanisms can learn highly accurate predictive
models, Wu et al. (2022) observed that these mechanisms
are also vulnerable to attacks that use the training features to
infer the training labels. Wu et al. (2022) did not propose any
methods for preventing label inference attacks, but instead
suggested quantifying their severity relative to what can be
inferred about the labels by an adversary who knows the
Bayes optimal classifier. By contrast, we propose a novel
definition of label differential privacy that provably prevents
label inference attacks.

Our definition of label differential privacy assumes that a
training example’s features are drawn from a distribution
that depends on its private label. Other privacy frameworks
also make distributional assumptions about the data, such as
Bayesian differential privacy (Triastcyn and Faltings, 2020).
One criticism of these frameworks is that an average-case
analysis is inappropriate for establishing privacy guarantees,
which should hold in the worst case (Steinke and Ullman,
2020). But we emphasize that in our proposed definition
only the non-private features are randomly distributed; the
private labels can be arbitrary.

3. Preliminaries
Let X be the feature space and Y = {1, . . . , k} be the label
space, where k > 1. A labeled example is an element of
X ×Y , typically denoted (x, y), and a dataset is an element
of (X × Y)n, typically denoted (x,y).

If P is a distribution on X × Y then PY is its marginal
distribution on labels Y . Also, PX|y is the conditional dis-
tribution of P on features X given label y ∈ Y , and PY|x is
the conditional distribution of P on labels Y given features
x ∈ X . Let fP : Y 7→ X be the random function that,
given label y ∈ Y , outputs features x ∈ X according to
distribution PX|y .

Let zi denote the ith component of vector z. For any func-
tion f(z) let fn(z) be the function that applies f component-
wise to z, such that if z′ = fn(z) then z′i = f(zi). For any
distribution P let z ∼ Pn denote that each zi is independent
and distributed according to P .

For any distribution P let P (z) denote the density of P at z.
Several of the privacy definitions we study in this paper are
based on the following definition of the divergence between
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two distributions.

Definition 3.1 (Rényi α-divergence). For any α > 1 the
Rényi α-divergence between distributions P and Q is

Dα(P‖Q) =
1

α− 1
log Ez∼Q

[(
P (z)

Q(z)

)α]
.

A mechanism is a random function. With an abuse of nota-
tion, if M is a mechanism then we write Dα(M(z)‖M(z′))
to denote the Rényi α-divergence between the distributions
of M(z) and M(z′).

4. Privacy Definitions
In this section we present and compare several definitions
of the privacy of a mechanism. All the mechanisms we
study are local; given a private labeled example they output
a noisy version of the labeled example. Thus a dataset is
privately released by having each user independently apply
a mechanism to their labeled example.

Definitions 4.1, 4.2 and 4.3 below are based on the frame-
work of Rényi differential privacy (Mironov, 2017), which
quantifies how well an attacker can infer the input to a mech-
anism from its output. Definition 4.4 below quantifies the
vulnerability of a mechanism to a label inference attack, and
is based on a definition introduced by Wu et al. (2022).

Definition 4.1 (Differential privacy). Let α > 1 and ε ≥ 0.
Mechanism M : X × Y 7→ X × Y satisfies (α, ε)-Rényi
differential privacy if for all x, x′ ∈ X and y, y′ ∈ Y

Dα(M(x, y)‖M(x′, y′)) ≤ ε.

Rényi differential privacy is closely related to both ε-
differential privacy and (ε, δ)-differential privacy (Dwork
and Roth, 2014), with larger values of α indicating
stronger privacy. In particular, (∞, ε)-RDP is equivalent
to ε-differential privacy, and (α, ε)-RDP implies (ε′, δ)-
differential privacy for all δ ∈ (0, 1) and ε′ = ε+ log(1/δ)

α−1
(Mironov, 2017).

Definition 4.1 protects the privacy of both the label and
the features. But this is overkill for applications where the
features are not sensitive, and will therefore introduce much
more noise than necessary. An alternative is to protect the
privacy of the labels only, by assuming the features are fixed
and publicly available.

Definition 4.2 (Label differential privacy with static fea-
tures). Let α > 1 and ε ≥ 0. Mechanism M : X × Y 7→
X × Y satisfies (α, ε)-label Rényi differential privacy if for
all x ∈ X and y, y′ ∈ Y

Dα(M(x, y)‖M(x, y′)) ≤ ε.

Figure 1. From left to right: The original training example. Noisy
label and feature vector (satisfies Definition 4.1). Noisy label only
(satisfies Definition 4.2). Noisy label and sample synthetic but
realistic examples (satisfies Definition 4.3).

Definition 4.2 is a straightforward generalization of the
definition of label differential privacy proposed by Chaud-
huri and Hsu (2011), with Rényi differential privacy used
in place of ε-differential privacy. Note that the same fea-
tures x appear on both sides of the inequality in Definition
4.2, which implies that the features are public, and so this
definition does not penalize the mechanism for revealing
information about the label via the features. But there are
many applications where the learner has no a priori access
to the features.

In this paper we propose a new privacy definition that is
suitable for applications where the features are not assumed
to be sensitive (as in Definition 4.1), but also not assumed
to be public (as in Definition 4.2). Instead, Definition 4.3
assumes the features are randomly drawn from a distribution
that depends on the private label.

Definition 4.3 (Label differential privacy with conditional
features). Let α > 1, ε ≥ 0 and P be a distribution on
X × Y . Mechanism M : X × Y 7→ X × Y satisfies
(α, ε, P )-label Rényi differential privacy if for all y, y′ ∈ Y

Dα(M(fP (y), y)‖M(fP (y′), y′)) ≤ ε

where fP : Y 7→ X is the random function that, given input
y, outputs x according to PX|y .

Definition 4.3 only penalizes a mechanism for information
it reveals about the features if doing so indirectly reveals
information about the label via their correlation according
to P . Figure 1 shows different noise models and how they
fit the above definitions.

Our final privacy definition quantifies the ability of an at-
tacker to recover the labels of the dataset that was input to
a mechanism. An attack algorithm is a random function
that, given a dataset generated by a mechanism, outputs a
prediction of each label in the original dataset. Definition
4.4 bounds the average loss of these predictions assuming
the dataset is an i.i.d. sample from P .

Definition 4.4 (Expected attack utility). Let ε ≥ 0. Let
P be a distribution on X × Y . Let ` : Y × Y 7→ [0, 1]
be a loss function. Mechanism M : X × Y 7→ X × Y
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has (ε, P )-expected attack utility if for any attack algorithm
A : (X × Y)n 7→ Yn we have

E (x,y)∼Pn,
(x′,y′)∼Mn(x,y),

ŷ∼A(x′,y′)

[
1

n

n∑
i=1

`(yi, ŷi)

]
≥ 1− ε.

Definition 4.4 is almost identical to the definition of ex-
pected attack utility proposed by Wu et al. (2022), except
in our definition the features are drawn from a distribution
instead of being fixed. As with differential privacy, smaller
values of ε in the definition of expected attack utility indicate
a stronger privacy guarantee.

Importantly, while a small expected attack utility implies
that no attacker can fully recover the training labels using
the output of the mechanism, it may still be possible to use
the output of the mechanism to accurately predict unseen
test labels. Indeed, in Section 8 we demonstrate empirically
that the output of a mechanism with low expected attack
utility can be used to estimate a good predictive model.

5. Preventing Label Inference Attacks
Wu et al. (2022) showed that the most widely used definition
of label differential privacy (Definition 4.2) does not prevent
label inference attacks.
Theorem 5.1 (Wu et al. (2022)). For any ε ≥ 0 there exists
an (∞, ε)-label Rényi differentially private mechanism M
and a distribution P on X × Y such that M does not have
(ε̃, P )-expected attack utility for any ε̃ < 1.

Note that every mechanism trivially has (1, P )-expected
attack utility for any distribution P , since the loss function
is bounded between 0 and 1. So Theorem 5.1 says that
even a mechanism with arbitrarily strong label differential
privacy has no non-trivial bound on its expected attack utility
when the features are public. This can happen whenever
an example’s features are a strong predictor of its label,
because if the features are public, no amount of noise added
to the training labels can prevent a label inference attack.

In contrast to Theorem 5.1, we show in Theorem 5.2 that
our definition of label differential privacy (Definition 4.3),
which does not assume that the features are public, is strong
enough to prevent label inference attacks.
Theorem 5.2. For any ε ≥ 0, δ ∈ (0, 1), α > 1 and dis-
tribution P on X × Y , if mechanism M is (α, ε, P )-label
Rényi differentially private then M has (ε̃, P )-expected at-
tack utility, where

ε̃ = 1−
(

exp(−ε)δ
1

α−1 (1− p∗)− (k − 1)δ
)
`∗,

p∗ = maxy PY(y) is the marginal probability of the most
common label, and `∗ = miny 6=ŷ `(y, ŷ) is the minimum
loss when the predicted label differs from the true label.

Note that ε̃ in Theorem 5.2 can be made arbitrarily close to
1−(1−p∗)`∗ from above by choosing ε, δ sufficiently small
and α sufficiently large. Also note that if the loss function
`(y, ŷ) = 1[y 6= ŷ], then an attacker can trivially achieve
expected attack utility of (ε̃, P ) with ε̃ = 1 − (1 − p∗)`∗
by always predicting the most common label, since that
strategy will mispredict 1 − p∗ fraction of the labels on
average. Thus Theorem 5.2 is asymptotically tight, and
shows that a sufficiently private mechanism (when privacy
is defined as in Definition 4.3) can prevent any non-trivial
label inference attack.

6. Quantifying Privacy Loss
Many previously proposed mechanisms that satisfy label
differential privacy with static features are model-based.
These mechanisms use a model to replace some of the labels
in the original training set with synthetic labels, and then
train a new model on the partially-synthetic training set
using any non-private learning algorithm. This approach
can be iterated in an bootstrap fashion, by first partitioning
the original training set, and then successively applying the
mechanism and learning algorithm to each partition. It has
been shown empirically that this technique can learn high-
quality predictive models (Esfandiari et al., 2022; Ghazi
et al., 2021).

Mechanism 1 below includes several model-based mecha-
nisms from the literature as special cases (Esfandiari et al.,
2022; Ghazi et al., 2021). The mechanism performs random-
ized response on the label only, choosing a random label
from a synthetic distribution that depends on the features.
The features themselves are output without any randomiza-
tion.

Mechanism 1 Model-based randomized response on label
1: Given: Noise level λ ∈ [0, 1]; synthetic label distribu-

tion P̂Y|x for each feature x ∈ X .
2: Input: Labeled example (x, y).
3: Output: Noisy labeled example (x, ỹ).
4: with probability 1− λ:
5: Let ỹ = y.
6: otherwise:
7: Draw ỹ from distribution P̂Y|x.
8: return (x, ỹ).

While Mechanism 1 satisfies label differential privacy with
static features, Theorem 6.1 shows that it cannot satisfy
any non-trivial guarantee for label differential privacy with
conditional features.

Theorem 6.1. There is a distribution P such that Mech-
anism 1 does not satisfy (α, ε, P )-label Rényi differential
privacy for any α > 1 and ε <∞.
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Theorem 6.1 proves that there exists a single distribution P
for which Mechanism 1 has arbitrarily bad privacy. In the re-
mainder of this section, we describe methods for empirically
estimating the privacy loss of Mechanism 1 with respect to
a given distribution. For ease of exposition, we focus on the
special case of binary labels (i.e., Y = {0, 1}) and where
each synthetic label distribution P̂Y|x in Mechanism 1 is
the same for all x ∈ X . Accordingly, the mechanisms we
study in this section have the formM : (x, y)→ (x,M ′(y))
where M ′ : {0, 1} → {0, 1} is a fixed randomized function.

We begin by providing a semantic interpretation of the con-
cept of label differential privacy with conditional features.

Theorem 6.2. Let M : (x, y) → (x,M ′(y)) where M ′(y)

is a randomized mechanism with output Ỹ . Let Py denote
the distribution over X × Y induced by (fP (y),M ′(y)).
Then M satisfies

Dα(M(fP (y), y)||M(fP (1− y), 1− y)) =

1

α− 1
log EPy

[
e(α−1)ν(y,Ỹ ,X)

]
where ν(y, ỹ, x) is defined by

P (Y = y|X = x, Ỹ = ỹ)

P (Y = 1− y|X = x, Ỹ = ỹ)
=
eν(y,ỹ,x)P (Y = y)

P (Y = 1− y)
.

That is, label differential privacy with conditional features
is proportional to the cumulant generating function at α− 1
of the random variable ν(y, Ỹ ,X).

We call ν(y, ỹ, x) from Theorem 6.2 the instance-based pri-
vacy loss function, since it quantifies the information about
the label Y gained by an observer of the output of the mech-
anism as well as the feature vector x. This interpretation
further confirms that our notion of privacy is capturing the
information leakage on the label due to the release of fea-
tures. The following corollary, which is a consequence of
Jensen’s inequality, makes this connection more explicit:

Corollary 6.3. The following inequality holds for all α > 1

Ey∼PY [Dα(M(fP (y), y)||M(fP (1−y), 1−y))]

≥ E[ν(Y, Ỹ ,X)] (1)

That is, if the randomized response mechanism is (α, ε, P )-
label differentially private, then the expected instance-based
privacy loss on the true label must also be less than ε. In
view of this, the following theorem provides a sufficient
condition on P for the mechanism to not be private for any
ε <∞.

Theorem 6.4. The instance-based privacy loss function can
be written as

eν(y,ỹ,x) =
P (Ỹ = ỹ|Y = y)

P (Ỹ = y|Y = 1− y)
× (2)

P (Y = y|X = x)

P (Y = 1− y|X = x)

P (Y = 1− y)

P (Y = y)
.

In particular if the setA = {x : P (Y = 1−y|X = x) = 0}
is such that PX (A) > 0 then the expectation in (1) would
be infinite and consequently the mechanism wouldn’t be
label differentially private with conditional features.

A second interpretation of Corollary 6.3 is that any estimate
on E[ν(Y, Ỹ ,X)] provides a lower bound on the privacy
leakage of mechanism M . Instead of directly estimating
this quantity however, we opt to estimate the following
distribution

J(τ) = P (ν(X) ≥ τ)

where ν(x) = E[ν(Y, Ỹ , x)]. This not only allows us to
derive a lower bound on (1) via Markov’s inequality (or
by integrating J(τ)) but also provides us with a better se-
mantic interpretation of the privacy loss by answering the
question: if one were to release data using mechanism M ,
for what fraction of the users would the information gain
on their label be greater than τ? We conclude the sec-
tion by presenting an estimator for J(τ). Our estimator
requires the feature space X to have a metric ρ and a stan-
dard smoothness assumption on the so called regression
function η(x) : P (Y = 1|X = x).

Assumption 6.5 (Smoothness assumption). Let β ∈
(0, 1], Cβ > 0. We say that P satisfies the measure-
smoothness assumption with parameters β, Cβ if the fol-
lowing holds for all x0, x1 ∈ X : |η(x0)− η(x1)| ≤
Cβ · µ

(
Bρ(x0,x1)(x0)

)β
, where Br(x) is the ball of radius

r centered at x and µ(A) = Pr[X ∈ A] is the marginal
distribution of the features.

Theorem 6.6. Let δ > 0 and let Sn = (xi, yi)
n
i=1 denote

an i.i.d. sample drawn from P . Suppose that Assumption
6.5 holds for β, Cβ . Then there exists a nearest neighbor
estimator Ĵn such that with probability at least 1− δ over
Sn:

J(τ) ≥ Ĵn(τ)− 2

√
log(2/δ)

2n
− δ.

7. Guaranteeing Label Differential Privacy
with Conditional Features

In Section 5 we showed that label differential privacy with
conditional features (Definition 4.3), unlike label differential
privacy with static features (Definition 4.2), implies protec-
tion against label inference attacks. In Section 6 we showed
that existing model-based mechanisms do not satisfy label
differential privacy with conditional features. Below we de-
scribe a new model-based mechanism (Mechanism 2) that
achieves both privacy guarantees. Unlike previous mecha-
nisms, our mechanism uses a model to generate synthetic
features instead of synthetic labels.
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Mechanism 2 performs randomized response on both the
label and the features. The mechanism uses a synthetic
distribution P̂X|y , close to PX|y for each possible label y to
generate the features in the randomized response.

Mechanism 2 Model-based double randomized response
1: Given: Noise level λ ∈ [0, 1]; synthetic feature distri-

bution P̂X|y for each label y ∈ Y .
2: Input: Labeled example (x, y).
3: Output: Noisy labeled example (x̃, ỹ).
4: with probability 1− λ:
5: Let ỹ = y.
6: otherwise:
7: Draw ỹ uniformly at random from Y .
8: with probability 1− λ:
9: Let x̃ = x

10: otherwise
11: Draw y′ uniformly at random from Y .
12: Draw x̃ from distribution P̂X|y′ .
13: return (x̃, ỹ).

Theorem 7.1. Let α > 1. Let P be a distribution on X ×
Y . If Dα(PX|y‖P̂X|y) ≤ ∆ for each label y ∈ Y , then
Mechanism 2 satisfies (α, ε)-label Rényi differential privacy
and (α, ε, P )-label Rényi differential privacy for all

ε ≥ 2 log

(
1 +

(1− λ)k

λ

)
+ ∆.

Theorem 7.1 states that the privacy of Mechanism 2 depends
on the quality of the synthetic distributions P̂X|y . If each of
these synthetic distributions is close to the true distribution
PX|y (as measured by the Rényi divergence between them)
then the mechanism satisfies a strong privacy guarantee.
Essentially, the synthetic data generated by the mechanism is
difficult to distinguish from the original data, which protects
its privacy.

To place the privacy guarantee for Mechanism 2 in context,
we next consider a simple mechanism that outputs no in-
formation about the true features. Instead, Mechanism 3
performs uniform randomized response on the label while
always outputting ‘dummy’ features. Even though the out-
put of this mechanism is obviously not useful for learning,
its privacy will serve as a baseline for comparison with
Mechanism 2.

Theorem 7.2. Let α > 1. Let P be a distribution on X ×Y .
If Mechanism 3 satisfies (α, ε, P )-label Rényi differential
privacy then

ε ≥ α

α− 1
log

(
1 +

(1− λ)k

λ

)
− 1

α− 1
log

k

λ
.

Comparing Theorems 7.1 and 7.2, we see that in the high-
privacy regime (α and λ are large), the bound on Mechanism

Mechanism 3 Uniform randomized response on label (and
output dummy features)

1: Given: Noise level λ ∈ [0, 1].
2: Input: Labeled example (x, y).
3: Output: Noisy labeled example (x̃, ỹ).
4: Let x̃ = ⊥. // Dummy features
5: with probability 1− λ:
6: Let ỹ = y.
7: otherwise:
8: Draw ỹ uniformly at random from Y .
9: return (x̃, ỹ).

2 approaches that of Mechanism 3 (modulo a factor of 2),
provided that the synthetic feature distributions are good
(in other words, ∆ is small). So Mechanism 2 can release
information about how features are correlated with labels at
almost no additional privacy cost relative to a mechanism
that releases no such information.

In applications, many options exist for realistic synthetic
feature generation. For example, deep neural networks for
generating extremely realistic language and image data are
now widely available (such as GPT (OpenAI, 2023) and
Imagen (Saharia et al., 2022), among others). Crucially,
these models are trained on publicly available data.

8. Experiments
In this section we validate the theoretical findings in our
paper by conducting simulations on real-world datasets. We
provide a thorough analysis for the estimation of privacy risk
of mechanisms that are only label differential privacy for
static features as well as a comparison of the label inference
attack for both Mechanism 1 and Mechanism 2.

8.1. Privacy Loss of Randomized Response

We begin by validating the estimator of J(τ) defined in
Theorem 6.6. As we pointed out, J(τ) can be used to lower
bound the privacy budget ε with static features (see Corol-
lary 6.3 and Definition 4.2). We present examples that show
that the finite-sample estimator can help asses privacy viola-
tions and tune the flipping probability λ. We use four large
scale binary classification datasets, as described in Table
1. For each dataset we computed an approximate k-nearest
neighbor graph under the L2 distance, using k = 1000 for
SUSY and k = 10000 for the rest. We use the Clopper-
Pearson confidence interval (Clopper and Pearson, 1934),
which is an exact confidence interval, and thus tighter than
the Chernoff bound used in our analysis in the Appendix.

Figure 2 shows the estimates of J(τ) according to Theorem
6.6. To interpret the figures, consider the kag14 dataset with
label flipping probability λ = 0.01 (left plot). Note that in
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Name #Train #Test #Feat. P (Y = 1)
kag14 40M 5.8M 1M 0.256
kdd12 118M 29.9M 54.6M 0.044
kdd10 19.2M 0.7M 29.8M 0.861
SUSY 4.5M 0.5M 18 0.457

Table 1. The main parameters of the benchmark datasets. kag14
dataset used in Kaggle Display Advertising Challenge and it is
released by Criteo (Criteo, 2014). kdd12 dataset is the official
dataset of KDD Cup 2012 Track 1 (https://www.kaggle.
com/c/kddcup2012-track1) and released by Tencent Inc.
kdd10 dataset is the official dataset of KDD Cup 2010 (Stamper
and Koedinger, 2010). SUSY is taken from UCI repository.

this scenario the mechanism is (α, ε)-label differentially for
static features for ε ∼ 5.19. What our plot shows it that
for kag14 (at the black cross), P (ν(X) > 6) ∼ 0.05. This
means that only about 5% of the users have a privacy risk
significantly higher than the protection implied by static
features.

On the other hand, consider the kdd12 dataset with label
flipping probability λ = 0.001 (right plot). Here, the mech-
anism is label differentially private for static features for
ε ∼ 7.6. However, for kdd12 we note that there is a non-
trivial mass of points for which the privacy leakage, as
measured by ν, can be almost 10.

8.2. Evaluation of Mechanism 2

We now empirically verify the theoretical results of our
paper. We focus on measuring the label inference attack
described in Definition 4.4.

Inspired by Definition 4.4, we measure the label inference
accuracy of two different mechanisms on the MNIST (Deng,
2012) dataset: Mechanism 1 (Randomized Response) with
P̂Y|x constant over x and our proposed Mechanism 2 (Dou-
ble Randomized Response).

Methodology. Let X = [0, 1]28×28, Y = {0, 9} and S =
((xi, yi))

n
i=1 ⊂ X × Y denote the MNIST dataset with

normalized features. For each mechanism M defined above
let (x̃i, ỹi) = M(xi, yi) and D̃ = ((x̃i, ỹi)) denote the data
set released by the mechanism. Let h : X → Y denote
a model trained on D̃. We measure the label inference
accuracy as 1

n

∑n
i=1 1[h(x̃i) = yi].

To understand the utility of the mechanism, we measure the
ability of the learned model h to predict on a test sample
ST ⊂ X ×Y . For this we use the tesing data of MNIST and
measure the test accuracy as 1

n

∑
(x,y)∈ST 1[h(x) = y].

Recall that Mechanism 2 requires a feature generation func-
tion. We train a conditional GAN (Mirza and Osindero,
2014) model on the training dataset. We vary λ ∈ (0, 0.4]

and generate private datasets using randomized response
and double randomized response with parameter λ. For the
prediction task, we train a standard convolutional network
using an unbiased version of the loss for each dataset (see
Appendix G).

The results are present in Figure 3, which shows both
the label inference accuracy and test accuracy for both
mechanisms—Randomized Response and Double Random-
ized Response—as a function of λ. We observe that label
inference accuracy remains high for the Randomized Rre-
sponse mechanism for all values of λ. On the other hand, as
expected, it drops precipitously for the Double Randomized
Response mechanism. Thus our proposed mechanism offers
much stronger guarantees against label inference attacks.

And yet, as the second plot shows, while there is a degra-
dation in test accuracy as a function of λ, the Double Ran-
domized Response mechanism remains competitive, still
achieving accuracy far above 95% even when λ > 1/3.
This validates the ability of the mechanism to produce a
training set which can be used to train accurate models.

Finally, we describe a method for estimating the (α, ε, P )-
label Rényi differential privacy of Double Randomized Re-
sponse, which by Theorem 7.1 depends on both the noise
level λ and the Rényi divergence Dα(PX|y‖P̂X|y) between
the true and synthetic feature distributions. To estimate the
latter quantity, we use a recent method from Birrell et al.
(2020), who showed that Dα(P‖Q) can be approximated
by plugging the function φ∗(x) = log P (x)

Q(x) into a data-
dependent variational bound (see their Theorem 3.1 and
Corollary 3.2). Consider a random variable X defined by
choosing Z ∈ {0, 1} uniformly at random and then drawing
X from P if Z = 1 and from Q otherwise. It is easy to see
by Bayes rule that

φ∗(x) = log
Pr[Z = 1 | X = x]

Pr[Z = 0 | X = x]
.

Moreover, if P = PX|y and Q = P̂Y|y then the conditional
distribution Pr[Z = 1 | X = x] is exactly what is learned
by the discriminator during GAN training, since the discrim-
inator’s goal is to distinguish true features from synthetic
features. So we can plug the discriminator’s model into
the variational approximation from Birrell et al. (2020) to
estimate the α-Rényi divergence between the true and syn-
thetic feature distributions, and then apply Theorem 7.1 to
estimate the privacy parameter ε of Double Randomized
Response as a function of α and the noise level λ. See Fig-
ure 4 below for these estimates, which show that even for
small values of λ, Double Randomized Response provides
a non-trivial privacy guarantee, which improves as λ in-
creases. By contrast, Randomized Response cannot provide
a comparable privacy guarantee (see Theorem 6.1).
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Figure 2. High probability approximation for J(τ) with δ = 0.01. These graphs show Ĵ(τ) defined in Theorem 6.6 computed on the
training data.
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Figure 3. Evaluation of the label inference attack (left) and model accuracy (right). Observe that while Label Inference Attack risk is high
for Randomized Response at all levels of λ, for the Double Randomized Response mechanism Label Inference Attack risk drops below
65%) even as the accuracy remains high (above 95%).

Figure 4. Estimated privacy of Double Randomized Response. The
mechanism is estimated to be (α, ε, P )-label Rényi differentially
private (Definition 4.3), where ε is determined by λ and α accord-
ing to the figure. Note that privacy will improve if the synthetic
feature distribution becomes more realistic, and that Randomized
Response provides no privacy under this definition (Theorem 6.1).

9. Conclusion
We have provided a new framework for understanding the
privacy risks releasing a training dataset when only the label
is sensitive. By establishing a connection with the label
inference attack, we demonstrated that our new privacy defi-
nition captures the risks of an attacker learning the sensitive
label of a user through correlations in the dataset. We also
showed that common mechanisms that protect only the la-
bel on a dataset but assume that features are static, do not
satisfy our notion of privacy and provided a way for a data
curator to evaluate the potential privacy risks of using such
mechanisms. Finally, we proposed a new mechanism that
not only satisfies the standard notion of label differential
privacy for static features but also satisfies our stronger no-
tion of privacy with conditional features. Our experiments
demonstrate that when the label inference attack is a con-
cern, our algorithm provides significantly more protection
against such attacks at a negligible cost on utility.
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A. Proof of Theorem 5.2
We first define some additional notation. Let si : Yn 7→ Y be the function si(y) = yi. Let y = (yi,y−i) ∈ Yn denote that
yi ∈ Y is the ith label in y and y−i ∈ Yn−1 are the remaining labels. Recall that fP : Y 7→ X is the random function that,
given input y, outputs x according to conditional distribution PX|y. Also recall that for any function f(z) we let fn(z) be
the function that applies f component-wise to z, such that if z′ = fn(z) then z′i = f(zi).

For any i ∈ [n] let M̂i : Yn 7→ Y be the mechanism

M̂i(y) = si(A(Mn(fnP (y),y))).

In other words, given a vector of labels y, mechanism M̂i first draws features for each label from the corresponding
conditional distribution, applies mechanism M to each labeled example to generate a noisy dataset, and then passes the
noisy dataset to the attack algorithm, which outputs a prediction for the ith label. Thus we have

E(x,y)∼Pn,(x′,y′)∼Mn(x,y),ŷ∼A(x′,y′)

[
1

n

n∑
i=1

`(yi, ŷi)

]
=

1

n

n∑
i=1

E
y∼PnY ,ŷi∼M̂i(y)

[`(yi, ŷi)]. (3)

We will lower bound each term in the sum on the right-hand side of Eq. (3), which will suffice to prove the theorem.

For any i ∈ [n] and vector of labels y−i ∈ Yn−1 let M̂i,y−i : X × Y 7→ Yn be the mechanism

M̂i,y−i(x
′, y′) = si(A((x′, y′),Mn−1(fn−1P (y−i),y−i))).

In other words, mechanism M̂i,y−i uses the ‘hard-wired’ labels y−i to perform the same operations as mechanism M̂i to
generate n− 1 noisy labeled examples, but uses its input for the ith noisy labeled example. Both mechanisms then pass the
noisy dataset to the attack algorithm, which outputs a prediction for the ith label. Thus for any i ∈ [n] and vector of labels
y ∈ Yn we have

M̂i(y) = M̂i(yi,y−i) = M̂i,y−i(M(fP (yi), yi)).

Therefore for all y−i ∈ Yn−1 and y, y′ ∈ Y we have

Dα(M̂i(y,y−i)‖M̂i(y
′,y−i)) = Dα(M̂i,y−i(M(fP (y), y))‖M̂i,y−i(M(fP (y′), y′)))

≤ Dα(M(fP (y), y)‖M(fP (y′), y′))

≤ ε

where the first inequality follows because Rényi differential privacy is preserved under post-processing (Mironov, 2017)
and the second inequality uses Definition 4.3. Thus, by the reduction from Rényi differential privacy to (ε, δ)-differential
privacy (Mironov, 2017), for all for all y−i ∈ Yn−1 and y, y′, ŷ ∈ Y we have

Pr[M̂i(y,y−i) = ŷ] ≥ exp(−ε′) Pr[M̂i(y
′,y−i) = ŷ]− δ (4)

where ε′ = ε+ log(1/δ)
α−1 . Let y∗ = arg maxy PY(y) be the most common label. We are now ready to prove a lower bound

on each term on the right-hand side of Eq. (3).

E
y∼PnY ,ŷi∼M̂i(y)

[`(yi, ŷi)]

= Ey−i∼Pn−1
Y

[
E
yi∼PY ,ŷi∼M̂i(yi,y−i)

[`(yi, ŷi)]
]

(5)

= Ey−i∼Pn−1
Y

∑
y,ŷ

PY(y) Pr
[
M̂i(y,y−i) = ŷ

]
`(y, ŷ)


≥Ey−i∼Pn−1

Y

∑
y

∑
ŷ 6=y

PY(y) Pr
[
M̂i(y,y−i) = ŷ

] `∗ (6)

≥Ey−i∼Pn−1
Y

∑
y

∑
ŷ 6=y

PY(y)
(

exp(−ε′) Pr
[
M̂i(y

∗,y−i) = ŷ
]
− δ
) `∗ (7)
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= Ey−i∼Pn−1
Y

exp(−ε′)
∑
y

∑
ŷ 6=y

PY(y) Pr
[
M̂i(y

∗,y−i) = ŷ
]
− (k − 1)δ

 `∗ (8)

= Ey−i∼Pn−1
Y

exp(−ε′)
∑
ŷ

Pr
[
M̂i(y

∗,y−i) = ŷ
]∑
y 6=ŷ

PY(y)− (k − 1)δ

 `∗
≥Ey−i∼Pn−1

Y

exp(−ε′)
∑
y 6=y∗

PY(y)− (k − 1)δ

 `∗ (9)

=(exp(−ε′)(1− p∗)− (k − 1)δ)`∗

=
(

exp(−ε)δ
1

α−1 (1− p∗)− (k − 1)δ
)
`∗.

Eq. (5) follows because each label yi is drawn independently from distribution PY . Eq. (6) follows because the loss function
` is non-negative and `∗ = miny 6=ŷ `(y, ŷ). Eq. (7) follows from Eq. (4). Eq. (8) follows because∑

y

∑
ŷ 6=y

PY(y) =
∑
y

(k − 1)PY(y) = k − 1.

Finally, to see why Eq. (9) holds, let αŷ = Pr
[
M̂i(y

∗,y−i) = ŷ
]

and βŷ =
∑
y 6=ŷ PY(y). We have

∑
ŷ

Pr
[
M̂i(y

∗,y−i) = ŷ
]∑
y 6=ŷ

PY(y) =
∑
ŷ

αŷβŷ ≥ min
ŷ
βŷ = βy∗ =

∑
y 6=y∗

PY(y)

where the inequality follows because αŷ ≥ 0 and
∑
ŷ αŷ = 1.

B. Proof of Theorem 6.1
We assume for simplicity that the feature space X is finite and contains at least two elements, and also that there are at least
two labels in Y . Let x1, x2 ∈ X be distinct, and let y1, y2 ∈ Y be distinct. Let P be the distribution on X × Y that assigns
probability 1

2 to (x1, y1) and probability 1
2 to (x2, y2). Let M be Mechanism 1. It suffices to show that

Dα(M(fP (y1), y1)‖M(fP (y2), y2)) > ε

for any ε <∞. We have

Dα(M(fP (y1), y1)‖M(fP (y2), y2)) = Dα(M(x1, y1)‖M(x2, y2)) ∵ Definition of P

=
1

α− 1
log E(x̃,ỹ)∼M(x2,y2)

[(
Pr[M(x1, y1) = (x̃, ỹ)]

Pr[M(x2, y2) = (x̃, ỹ)]

)α]
≥ 1

α− 1
log
∑
y

(
Pr[M(x1, y1) = (x1, y)]α

Pr[M(x2, y2) = (x1, y)]α−1

)
, (10)

where the second equality holds by Definition 3.1. Each denominator in Eq. (10) is zero (since M always outputs the same
features that it receives as input) and at least one numerator in Eq. (10) must be positive (since M always outputs some
label). Since α > 1, this proves that Eq. (10) cannot be less than any finite quantity.

C. Proof of Theorem 6.2
Fix the values of x, y, ỹ. And let us consider the distribution of M(fP (y), y) which by definition is given by Py .

Py(x, ỹ) = P (X = x, Ỹ = ỹ|Y = y) =
P (Y = y|X = x, Ỹ = ỹ)P (x = x, Ỹ = ỹ)

P (Y = y)
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Similarly we have

P1−y(x, ỹ) = P (X = x, Ỹ = ỹ|Y = 1− y) =
P (Y = 1− y|X = x, Ỹ = ỹ)P (x = x, Ỹ = ỹ)

P (Y = 1− y)

Taking the ratio of these expressions, it is easy to see that:

Py(x, ỹ)

P1−y(x, ỹ)
=

P (Y = y|X = x, Ỹ = ỹ)

P (Y = 1− y|X = x, Ỹ = ỹ)

P (Y = 1− y)

P (Y = y)
=: eν(y,ỹ,x)

Finally, we have:

(1− α)Dα(M(fP (y), y)||M(fP (1− y), 1− y)) = log E(X,Ỹ )∼P1−y

[(
Py(X, Ỹ )

P1−y(X, Ỹ )

)α]

= log E(X,Ỹ )∼P1−y

( Py(X, Ỹ )

P1−y(X, Ỹ )

)α−1
Py(X, Ỹ )

P1−y(X, Ỹ )


= log E(X,Ỹ )∼Py

( Py(X, Ỹ )

P1−y(X, Ỹ )

)α−1
= log E(X,Ỹ )∼Py

[
e(α−1)ν(y,Ỹ ,X)

]
D. Proof of Theorem 6.6
Lemma D.1. The average instance based privacy loss of the randomized response mechanism with probability π is given by

ν(x) = (2η(x)− 1)
[
log η(x)

1−η(x) − log p+
1−p+

]
+ (2π − 1) log π

1−π

Proof. Straightforward computation yields

E
[
ν(Y, Ỹ , x)|X = x

]
= [(1− η(x))(1− π)] log

(1− η(x))(1− π)(1− p+)

η(x)πp+

+ [(1− η(x))π] log
(1− η(x))π(1− p+)

η(x)(1− π)p+

+ η(x)π log
η(x)πp+

(1− η(x))(1− π)(1− p+)

+ η(x)(1− π) log
η(x)(1− π))p+

(1− η(x))π(1− p+)

= (2η(x)− 1) log
η(x)

1− η(x)
+ (2π − 1) log

π

1− π
− (2η(x)− 1) log

p+
1− p+

In order to build the estimator for J(τ) we will require the definition of 2 types of level sets. Let H : [0, 1]→ R be given by

H(z) = (2z − 1) log
z

1− z
+ (2π − 1) log

π

1− π
− (2z − 1) log

p+
1− p+

Note that H(z) is symmetric around 1/2. Therefore its inverse admits two branches. Let H−10 : R→ [0, 1/2] be its first
branch and H−11 : R → [1/2, 1] be its second branch. For a fixed τ let Gτ = {x : η(x) ≤ H−10 (τ)}. Gτ = {x : η(x) >
H−11 (τ)}

12
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Lemma D.2. The following holds for all τ

J(τ) = P (ν(X) > τ) = P (Gτ ) + P (Gτ )

Proof. The proof is straightforward since ν(X) = H(η(X)). Since H is decreasing in [0, 1/2] and increasing in [1/2, 1] it
follows that H(η(X)) ≥ τ if and only if η(X) < H−10 (τ) or η(X) > H−1(τ).

Thus we are left with estimating the probability of these sets. We will show how this can be done using nearest neighbor
estimators.

D.1. Nearest neighbor estimators

We will work in the non-parametric regime using k-nearest neighbor estimator which is a plug-in estimator, i.e. it estimates
η(x) by using the conditional empirical distribution using the neighbors of x. We will denote the estimate of η by η̂(x).
The motivation for using plug-in estimates is that, under mild assumptions, one can show that the L1 error of the estimator
vanishes under mild smoothness assumption on the conditional distribution of labels, therefore we do not have to deal with
approximation error.

Let S = {(x1, y1), . . . , (xn, yn)}. Given x ∈ X we let {τn,q(x)}q∈[n] be an enumeration of [n] such that for each
q ∈ [n − 1], ρ

(
x, xτn,q(x)

)
≤ ρ

(
x, xτn,q+1(x)

)
. In words, given x ∈ X , {τn,i(x)}i∈[n] sorts {x1, . . . , xn} in increasing

order of ρ-distance to x.

The k-nearest neighbor regression estimator η̂n,k : X → [0, 1] is given by

η̂n,k(x) :=
1

k
·
∑
i∈[k]

yτn,i(x). (11)

We recall the following lemma which upper bounds the probability measure of the ball around a point x ∈ X that contains
its k nearest neighbors. The proof immediately follows from the multiplicative Chernoff bound (see, e.g., Lemma 3.2 in
(Reeve and Kabán, 2019)).

Lemma D.3. Given x ∈ X , k ∈ [n] with k ≥ 4 log(1/δ), with probability at least 1 − δ over S = {xi}i∈[n] we have

µ

(
B
ρ
(
x,xτn,k(x)

)(x)

)
≤ 2k

n .

When we combine Assumption 6.5 with Lemma D.3, we get the following corollary.

Corollary D.4. Suppose that the measure-smoothness assumption (Assumption 6.5) holds with parameters β, Cβ . Then
for all x ∈ X , k ∈ [n] with k ≥ 4 log(1/δ), with probability at least 1 − δ over S, the following holds for all j ∈ [k]:∣∣η(xτn,j(x))− η(x)

∣∣ ≤ Cβ · (2k/n)
β
.

Lemma D.5. Suppose that the measure-smoothness assumption (Assumption 6.5) holds with parameters β, Cβ . Let
S = ((xi, yi))

n
i=1 be an i.i.d. sample. Let δ > 0 and let k > 4 log(2/δ). Then with probability at least 1 − δ over the

sample S the following bound holds for all i:

|η̂n,k(xi)− η(xi)| ≤
√

log(8n/δ)

2k
+ Cβ

(
2k

n

)λ
. (12)

Proof. Fix a value x ∈ X . Note that, conditioned on xi the nearest neighbor rule is a sum of binomial random variables
with mean

∑k
j=1 η(xτn,i(x)). Therefore by Hoeffding’s inequality we have with probability at least 1− δ

2n∣∣∣∣η̂n,k(x)− 1

k

∑
η(xτn,j(x))

∣∣∣∣ ≤
√

log(8n/δ)

2k

In particular, by the union bound we have that for all i, with probability at least 1− δ/2∣∣∣∣η̂n,k(xi)−
1

k

∑
η(xτn,j(xi))

∣∣∣∣ ≤
√

log(8n/δ)

2k

13
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On the other hand, by Corollary D.4 we know that for our choice of k. With probability at least 1− δ/2 over the sample S
the following holds: ∣∣∣∣1k∑ η(xτn,j(xi))− η(xi)

∣∣∣∣ ≤ Cβ (2k

n

)λ
Combining these two bounds and using the union bound yields the desired result.

Lemma D.6. Let η satisfy the smoothness assumption with parameters β,Cβ . Let δ > 0, k > 4 log(4/δ) and C :=

C(n, k, δ) =
√

log(16n/δ)
2k + Cβ

(
2k
n

)λ
. Let z > 0 A = {x : η(x) < z}. Then with probability at least 1− δ the following

bound holds:

P (A) ≥ 1

n

n∑
i=1

1η̂(xi)+C<z −
√

log(2/δ)

2n
− δ

2

Proof. Let U denote the event |η̂(xi)− η(xi)| < C(n, k, δ) for all i, by Lemma D.5 we know that P (U) > 1− δ/2. We
also know that

1

n

n∑
i=1

1η̂(xi)+C<z =
1

n

n∑
i=1

1η̂(xi)+C<z1U +
1

n

n∑
i=1

1η̂(xi)+C<z1Uc

≤ 1

n

n∑
i=1

1η(xi)<z1U +
1

n

n∑
i=1

1Uc

≤ 1

n

n∑
i=1

1η(xi)<z + 1Uc

Taking expectations over both sides of the inequality yield:

1

n

n∑
i=1

1η̂(xi)+C<z ≤ P (A) + P (U c) ≤ P (A) + δ/2

.

By Hoeffding’s inequality we thus have that with probability at least 1− δ/2:

1

n

n∑
i=1

1η̂(xi)+C<z ≤ P (A) +
δ

2
+

√
log(2/δ)

2n
(13)

By the union bound it follows that G and (13) will both happen with probability at least 1− δ.

We are now in a position to prove the statement of Proposition 6.6.

Proof. Let k > 4 log(8/δ) and let C(n, k, δ) =
√

log(16n/δ)
2k + Cβ

(
2k
n

)λ
. Fix τ > 0 and define

Ĵn(τ) =

n∑
i=1

1η̂n,k(xi)+C≤H−1
0 (τ) + 1η̂n,k(xi)−C≥H−1

0 (τ) (14)

By Lemma D.6 and using the union bound we have that with probability at least 1− δ:

J(τ) ≥ Ĵn(τ)− 2

√
log(2/δ)

2n
− δ.

14
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E. Proof of Theorem 7.1
Here we prove the privacy properties that Mechanism 2 satisfies. For the rest of the section, we will denote by X a random
variable representing the features and Y a random variable representing the label. The measure for this random variables may
vary across the proofs. Note also that mechanism M defined by Mechanism 2 can actually be expressed as two independent
mechanisms: M(x, y) = (MX (x, y),MY(x, y)). We will analyze each mechanism separately.

Lemma E.1. For all α > 1, MY satisfies

Dα(MY(x, y)‖MY(x, y′)) ≤ log

(
1 +

k(1− λ)

λ

)
Proof. Fix label y and let Py denote the distribution over the output of the mechanism when the input label to the mechanism
is y.

Let Ỹ denote the random variable representing the output of the mechanism MY . By definition of the mechanism we have:

Py(ỹ) = P (Ỹ = ỹ|Y = y) = (1− λ)1ỹ = y +
λ

k
.

Thus the ratio of densities is bounded as
Py(ỹ)

P ′y(ỹ)
=

(1− λ)1ỹ=y + λ
k

(1− λ)1ỹ=y′ + λ
k

Note that this ratio is clearly maximizes when y 6= y′ and ỹ = y.In which case the ratio is given by

Py(ỹ)

P ′y(ỹ)
=

(1− λ) + λ
k

λ
k

= 1 + k
1− λ
λ

.

We thus have that

Dα(M(x, y)‖M(x, y′)) ≤ 1

α− 1
EPy log

[(
1 + k

1− λ
λ

)α−1]
.

Simplifying this expression shows the result of the lemma.

Corollary E.2. For all α > 1, Mechanism 2 satisfies (α, ε)-label differential privacy if

ε ≥ log

(
1 +

k(1− λ)

λ

)
Proof. The proof follows immediately from the above lemma and the fact that mechanism MX is applied on the same
feature vector. Hence there distribution over both examples is the same.

We now proceed to show that the mechanism also satisfies (α, ε, P )-label differential privacy. We first introduce a very
simple lemma.

Lemma E.3. Let a, b, k > 0 and λ ∈ (0, 1). Then

(1− λ) + λ/k

λ/k
≤

(1− λ)a+ λ
k b

λ
k b

(15)

if and only if b ≤ a.

Proof. Simplifying terms and multiplying both sides of (15) we see that the inequality is true if and only if:

(1− λ)b+
λ

k
b ≤ (1− λ)a+

λ

k
b.

The result follows since all terms in the above inequality are positive.

15
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Lemma E.4. Mechanism MX satisfies the following

Dα(MX (fP (y), y)‖MX (fP (y), y) ≤ log

(
1 +

k(1− λ)

λ

)
+Dα(PX|y‖P̂X|y)

Proof. For a fixed y let Py(·) denote the probability distribution associated with the mechanism MX (fP (y), y). For a fixed
value of x we want to bound the ratio:

Py(x)

P ′y(x)

Let A = {x :
Py(x)
P ′y(x)

≤ λ/k+1−λ
λ/k }. Then we can decompose the above ratio as

Py(x)

P ′y(x)
=
Py(x)

P ′y(x)
1x∈A +

Py(x)

P ′y(x)
1x/∈A (16)

By definition of A the first term satisfies:

Py(x)

P ′y(x)
1x∈A ≤

λ/k + 1− λ
λ/k

=

(
1 +

k(1− λ)

λ

)
1x∈A

Let us understand the scenario where x /∈ A. By definition of the mechanism we know that

Py(X = x) = (1− λ)PX|y(x) +
λ

k

k∑
j=1

P̂X|j(x))

Applying the same argument to y′ we obtain:

Py(X = x)

Py′(X = x)
=

(1− λ)PX|y(x) + λ
k

∑k
j=1 P̂X|j(x)

(1− λ)PX|y′(x) + λ
k

∑k
j=1 P̂X|j(x)

≤
(1− λ)PX|y(x) + λ

k

∑k
j=1 P̂X|j(x)

λ
k

∑k
j=1 P̂X|j(x)

Moreover for x /∈ A we must have, in view of Lemma E.3, that

PX|y(x) ≥
k∑
j=1

P̂X|j(x)

Using this inequality and the fact that
∑k
j=1 P̂X|j(x) ≥ P̂X|y(x) (for the denominator) we obtain

Py(x)

P ′y(x)
1x/∈A ≤

(1− λ+ λ
k )PX|y(x)

λ
k P̂X|y)(x)

1x/∈A =

(
1 +

k(1− λ)

λ

)
PX|y(x)

P̂X|y(x)
1x/∈A

We can replace this expression in (16) to obtain:

Py(x)

P ′y(x)
≤
(

1 +
k(1− λ)

λ

)(
1x∈A +

PX|y(x)

P̂X|y(x)
1x/∈A

)
We can now calculate the divergence between the output distributions of the mechanism.

(α− 1)Dα(MX (fP (y), y)‖MX (fP (y′), y′)) = logEx∼Py

[(
Py(x)

P ′y(x)

)α−1]

= logEx∼Py

(1 +
k(1− λ)

λ

)α−1(
1x∈A +

PX|y(x)

P̂X|y(x)
1x/∈A

)α−1
16
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= (α− 1) log

(
1 +

k(1− λ)

λ

)
+ (α− 1) log(Py(A)) + logEx∼Py

(PX|y(x)

P̂X|y(x)
1x/∈A

)α−1
≤ (α− 1) log

(
1 +

k(1− λ)

λ

)
+ logEx∼Py

(PX|y(x))

P̂X|y(x)
1x/∈A

)α−1 , (17)

where we have used the fact that log(Py(A)) ≤ 0. Let us handle the expectation term in the above expression. Note that for
x /∈ A, again by Lemma E.3, we must have that PX|y(x) ≥

∑k
j=1 P̂X|j(x). Therefore

PX|y(x) ≥ (1− λ+
λ

k
)PX|y(x)

≥ (1− λ)PX|y(x) +
λ

k

k∑
j=1

P̂X|j(x) = Py(x).

In particular for all x /∈ A we have that
PX|y(x)

Py(x)
≥ 1

Thus we have

logEx∼Py

(PX|y(x)

P̂X|y(x)
1x/∈A

)α−1 ≤ logEx∼Py

(PX|y(x)

P̂X|y(x)
1x/∈A

)α−1
PX|y(x)

Py(x)


≤ logEx∼PX|y

(PX|y(x)

P̂X|y(x)

)α−1
= Dα(PX|y‖P̂X|y)

The proof is finalized by replacing this bound in (17).

We are now in a position to prove the main theorem for Mechanism 2.

Proof of Theorem 7.1. By Corollary E.2 we know that the mechanism satisifies (α, ε)-label differential privacy. To show
that it also satisfies (α, ε, P )-label differential privacy, notice that the random variable generated by MX is independent of
MY conditioned on the true label y. Therefore, by the additive properties of the Rényi divergence for product distributions
we have:

Dα(M(fP (y), y)‖M(fp(y
′), y′)) = Dα(MX (fP (y), y)‖M(fp(y

′), y′)) +Dα(MY(fP (y), y)‖M(fp(y
′), y′)).

The result now follows from Lemmas E.1 and E.4 as well as the assumption that Dα(PX|y‖P̂X|y) ≤ ∆.

F. Proof of Theorem 7.2
Throughout this section, let M be Mechanism 3. Recall that fP : Y 7→ X is the random function that, given label y ∈ Y ,
outputs features x ∈ X according to distribution PX|y .

Proof of Theorem 7.2. We shall prove the contrapositive: If

ε <
α

α− 1
log

(
1 +

(1− λ)k

λ

)
− 1

α− 1
log

k

λ

then M does not satisfy (α, ε, P )-label Rényi differential privacy. By Definition 4.3, it suffices show that there exist labels
y, y′ ∈ Y such that Dα(M(fP (y), y)‖M(fP (y′), y′)) > ε. Choose any y, y′ ∈ [k] such that y 6= y′. We have

E(x̃,ỹ)∼M(y′)

[(
Pr[M(fP (y), y) = (x̃, ỹ)]

Pr[M(fP (y′), y′) = (x̃, ỹ)]

)α]
17
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≥Pr(x̃,ỹ)∼M(fP (y′),y′)[ỹ = y] · E(x̃,ỹ)∼M(fP (y′),y′)

[(
Pr[M(fP (y), y) = (x̃, ỹ)]

Pr[M(fP (y′), y′) = (x̃, ỹ)]

)α ∣∣∣∣∣ ỹ = y

]

=
λ

k
· E(x̃,ỹ)∼M(fP (y′),y′)

[(
Pr[M(fP (y), y) = (x̃, ỹ)]

Pr[M(fP (y′), y′) = (x̃, ỹ)]

)α ∣∣∣∣∣ ỹ = y

]

=
λ

k
·
(

Pr[M(fP (y), y) = (⊥, y)]

Pr[M(fP (y′), y′) = (⊥, y)]

)α
=
λ

k

(
(1− λ) + λ

k
λ
k

)α
=
λ

k

(
1 +

(1− λ)k

λ

)α
. (18)

Therefore

Dα(M(fP (y), y)‖M(fP (y′), y′)) =
1

α− 1
log E(x̃,ỹ)∼M(y′)

[(
Pr[M(fP (y), y) = (x̃, ỹ)]

Pr[M(fP (y′), y′) = (x̃, ỹ)]

)α]
∵ Definition 3.1

≥ 1

α− 1
log

(
λ

k

(
1 +

(1− λ)k

λ

)α)
∵ Eq. (18)

=
α

α− 1
log

(
1 +

(1− λ)k

λ

)
− 1

α− 1
log

k

λ

> ε By assumption

G. Unbiasing the loss
We discuss how a learner may unbias the loss of a model being trained using the data released by our mechanism. Given a
prediction space Ŷ and loss function ` : Ŷ × Y → R we are interested with measuring

EP [`(h(x), y)]

However, if X̃, Ỹ are the outputs of Mechanism 2. We may only observe

E[`(h(X̃), Ỹ ))]

The following lemma provides us with a relation between both terms.

Lemma G.1. Under the above notation, the following equality holds.

EP [`(h(x), y)] =
E[`(h(X̃), Ỹ )]− p

k

∑k
j=1 EX̃ [`(h(X̃, j)]

(1− p)2
+

p
k

1− p

k∑
j=1

Ex,y∼P̂X|i×PY [`(h(x), y)]

Proof. We begin by taking the expectation over the randomness of our mechanism. Fix y and for simplicity let be the
distribution of the mechanism for input y.

EM [`(h(X̃, Ỹ )] = (1− p)EMX [`(h(X̃, y)] +
p

k

k∑
j=1

EMX [l(h(X̃, j)]

= (1− p)2 Ex∼PX|y [`(h(x, y)] +
(1− p)p

k

k∑
j=1

Ex∼PX|j [`(h(x, y)] +
p

k

k∑
j=1

EMX [l(h(X̃, j)]

18
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Taking expectation over the label y we have

E[`(h(X̃, Ỹ )] = (1− p)2 EP [`(h(x, y)] +
(1− p)p

k

k∑
j=1

Ex,y∼PX|j×PY [`(h(x, y)] +
p

k

k∑
j=1

E[l(h(X̃, j)]

Solving for EP [`(h(x), y)] yields the result.

Note that the above expression for the expected loss on the true distribution can be expressed as two terms. The first one
is something we can simulate from the output of Mechanism 2. The second term however, depends on synthetic data
distribution P̂ which the learner may not have access to. In our experiments, we approximate the expectation of the loss
using only the first term.
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