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ABSTRACT

Transformer-based methods have achieved impressive results in time series forecast-
ing. However, existing Transformers still exhibit limitations in sequence modeling
as they tend to overemphasize temporal dependencies. This incurs additional
computational overhead without yielding corresponding performance gains. We
find that the performance of Transformers is highly dependent on the embedding
method used to learn effective representations. To address this issue, we extract
multivariate features to augment the effective information captured in the embed-
ding layer, yielding multidimensional embeddings that convey richer and more
meaningful sequence representations. These representations enable Transformer-
based forecasters to better understand the series. Specifically, we introduce Hybrid
Temporal and Multivariate Embeddings (HTME). The HTME extractor inte-
grates a lightweight temporal feature extraction module with a carefully designed
multivariate feature extraction module to provide complementary features, thereby
achieving a balance between model complexity and performance. By combining
HTME with the Transformer architecture, we present HTMformer, leveraging the
enhanced feature extraction capability of the HTME extractor to build a lightweight
forecaster. Experiments conducted on eight real-world datasets demonstrate that

our approach outperforms existing baselines in both accuracy and efficiency.

1 INTRODUCTION

Long-term time series forecasting holds significant importance in
various fields such as finance and economics (Andersen et al.| [2006])),
climate science (Mudelseel [2019), healthcare (Zeger et al., [2006),
geophysics (Gubbins} [2004), industrial monitoring (Truong et al.|
2022), etc. Recently, Transformer (Vaswani et al., [2017)) and its
variants have achieved tremendous success in time series forecasting,
showing great promise. Current Transformer-based forecasters often
overemphasize modeling temporal dependencies. However, the
effective information within the temporal dimension is limited.

Unlike natural language sequences, time series data, particularly in
domains such as transportation, meteorology, and electricity systems,
are influenced by specific physics-based systems, e.g., traffic flow
is largely governed by the real-world road network. Therefore,
multivariate correlations are essential for time series forecasting
tasks (Zheng & Sun, [2024). Two key observations motivate our work:
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Figure 1: Performance (MSE) of
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yields better performance.

1) the vast majority of features

in time series are contained within the temporal dimension, and the depth of exploration in this
dimension significantly influences prediction accuracy (Hyndman & Athanasopoulos, 2021); 2) the
multivariate dimension also contains a large number of features (Pravilovic et al.,[2013), and fully

exploiting multivariate features can further boost performance.

Consequently, existing models incur increasing computational overhead without significant accuracy
improvements. Some predictors take multivariate correlations into account, focusing on explicitly
modeling dependencies across variables. However, the primary characteristics of time series data
reside in the temporal dimension. Such an approach incurs substantial computational overhead while
interfering with the extraction of temporal features as they share a common latent space or backbone
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Figure 2: Previous works have focused on redesigning Transformer architectures or attention mecha-
nisms. We propose a novel embedding strategy.

network. Existing methods have yet to achieve a optimal balance between feature extraction across
both dimensions and computational efficiency.

The performance of Transformer-based forecasters is highly dependent on the design of the embedding
layer. Before applying multi-head self-attention to the embeddings, effective feature extraction is
critical to enhancing the model’s sequence modeling capacity (Li et al., [2023al). We compared the
ground-truth values and the predictions obtained under different embedding strategies on four datasets
(see Appendix @ Specifically, models such as iTransformer (Liu et al.;,2024b) and PatchTST (Nie
et al.; 2023)), which employ an inverted embedding strategy or patch-based embedding strategy for
deeper time-series representation learning, achieve significantly better performance than the vanilla
Transformer, which only uses simple convolutional embeddings. Meanwhile, we also observed that
as the input length increased, the prediction loss failed to markedly decrease and even tended to rise.
These suggest that the modeling capacity of Transformer-based forecasters is inherently constrained
by the quality of embeddings, and this limitation cannot be eliminated by increasing the lookback
length.

To mitigate this issue, this paper proposes to jointly capture temporal and multivariate features in
the embedding layer, thereby yielding semantically rich embedding representations to overcome
the inherent limitations of the conventional embedding strategy (see Appendix [B). Leveraging this
design, we construct a novel Transformer-based forecaster, as illustrated in Figure[2] The proposed
forecaster achieves state-of-the-art performance on real-world benchmarks, as shown in Figure [I]
The contributions of this work are as follows:

* We propose the Hybrid Temporal and Multivariate Embedding (HTME) extractor, which
comprises a novel design temporal feature extractor and a lightweight multivariate feature
extractor. HTME can be seamlessly integrated with any forecasting architecture. Moreover,
its two parallel modules can be decoupled and individually paired with other embedding
schemes. Overall, HTME is highly extensible.

* We selected eight widely-used forecasting models and developed their HTME-augmented
versions. Extensive experiments demonstrate that HTME consistently enhances the ability of
diverse architectures to model complex time series, particularly for Transformer framework.

* We introduce a novel forecasting model, HTMformer, as the representative HTMPredictors,
to further validate the effectiveness of the HTME strategy. In this framework, the HTME
serves as input to a Transformer framework. Notably, HTMformer consistently achieves
state-of-the-art performance across various benchmarks.

2 RELATED WORK

Transformer-Based Time Series Forecasting. Well-designed Transformer-based forecasters have
achieved substantial success in time series forecasting tasks. They are not limited by the inability
of CNN-based methods (Liu et al,|2022)) to capture long-term temporal dependencies (Sutskever
et al., 2014} [Karim et al., |2017), nor do they encounter the vanishing and exploding gradient
problems (Bengio et al.||[1994; [Hochreiter & Schmidhuber, [2019) commonly observed in RNN-based
methods (Cho et al.,[2014; |Lai et al., 2018 Salinas et al.|[2020)). In recent years, advanced models such
as Informer (Zhou et al.,|2021), FEDformer (Zhou et al.,[2022)), and MultiPatchFormer (Naghashi
et al.|2025) have primarily introduced novel attention mechanisms and architectural modifications
for explicitly modeling long-term dependencies and temporal interactions in time series data. Unlike
prior works, we propose a novel embedding strategy for comprehensive feature extraction on the raw
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input before it is fed into the attention module, thereby substantially improving the modeling capacity
of diverse attention mechanisms.

Temporal Feature Extraction. Previous Transformer-based forecasters, such as FEDformer (Zhou
et al.,|2022) and MultiPatchFormer (Naghashi et al., [2025)), tend to overprioritize temporal feature
extraction, introducing various complex mechanisms to model temporal dependencies. This design
often incurs substantial computational overhead without delivering notable performance gains. We
argue that the informational content in the temporal dimension is inherently limited and should not
be excessively emphasized. In contrast, HTMformer performs full temporal feature extraction solely
within the embedding layer, thereby significantly reducing computational complexity.

Multivariate Correlation. iTransformer retains all native Transformer components without modifi-
cation. Instead, it adopts an inverted input representation, enabling the self-attention model to better
capture multivariate correlations and thereby yielding satisfactory performance. This underscores
the importance of modeling multivariate correlations in capturing the semantics of time series. In
CNN-based predictors, graph convolutional networks (Kipf & Welling| 2017} [Yu et al., 2018; |Guo
et al.l |2019) explicitly model correlations among variables by leveraging graph adjacency matri-
ces. This paradigm unifies the temporal dynamics of the data with the multivariate structure of
variables within a graph-based model, thereby substantially improving performance in time series
tasks. However, such explicit modeling entails significant computational overhead. HTMformer is
designed to efficiently extract multivariate features and integrate them with temporal information
within the embedding layer, yielding semantically enriched embeddings to enhance the efficiency
and performance of Transformers and reduce the computational costs.

3 HTMFORMER

This paper focuses on multivariate time series forecasting tasks, which can be formally defined as
follows: Given a historical observation matrix X € RZ*C, where L denotes the input sequence
length and C represents the number of variables, the goal is to predict the future values Y € R7*¢,
with H indicating the prediction horizon.

3.1 HTME EXTRACTOR

HTME avoids the use of complex mechanisms for modeling multivariate correlations. Instead, it
employs a lightweight method to extract multivariate features, projecting them into the latent space
of the temporal dimension during the embedding phase. HTME deeply extracts hybrid temporal-
multivariate features from the time series.

To fully capture informative representations from the raw time series, the HTME extractor incorporates
two core components: a temporal feature extractor and a multivariate feature extractor, which
enable the independent modeling of two dimensions. This parallel design reduces interference
between features from different dimensions. Finally, we employ a weighted summation for feature
fusion, enabling multivariate features to complement temporal features, thereby yielding a richer
representation. The HTME extractor takes raw multivariate time series as input and outputs embedding
representations that fuse informative features, as illustrated in Figure 3]

Within the two branches, we adopting a bottom-up fusion followed by a top-down decomposition
strategy. Bottom-up fusion encourages the model to focus on a single dimension at a time, minimizing
the interference from other dimensions. Top-down decomposition progressively extracts features
across multiple scales, while guiding the model to emphasize short-term patterns, resulting in more
effective feature embeddings.

3.1.1 TEMPORAL FEATURE EXTRACTOR

Appendix A clearly shows that time series exhibit both short-term and long-term correlations.
It is worth noting that short-term correlations are predominant, while the influence of long-term
correlations should not be neglected. The strategy of first merging and then progressively decomposing
features effectively guides the model to focus step-by-step on the most informative patterns.
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Figure 3: HTME consists of two independent and parallel feature extraction modules. It employs a
strategy of first merging the outputs and then hierarchically decomposing the resulting representation.

First, we perform hierarchical merging of the raw time series. Specifically, we adopt a patching
strategy to segment short-term temporal representations from the original sequence, and iteratively
merge all channels to obtain a short-step representation 7V *(L—K).K" It is worth noting that the
process merely partitions the time series without introducing trainable parameters at this stage.

P, Py, P3,....,P_g = X114k, Xoyk, X34k, XL—K:L (D
TN*L=K).K — Stack(Py, Py, Ps, ..., PL_k) )

This module first prioritizes the deep extraction of short-term temporal features, which are particularly
important. Specifically, we apply multiple convolutional filters to capture short-term temporal patterns
at multiple scales. We then fuse the convolutional outputs via a linear layer to obtain a feature
representation enriched with short-term dependencies.

EN*(L=K).8 _ | inear(Conv (TN *(L=K).KY) 3)
Finally, we unfold the temporal dimension and employ a second linear layer to capture the long-term
dependencies within the sequence, yielding a deep embedding that encapsulates both short-term and
long-term temporal dependencies.

Doy = Linear(Flatten( BN < (E=5).8Y) 4)

Compared with existing embedding strategies, our method achieves a more fine-grained modeling of
temporal contextual dependencies using only one convolutional layer and two linear layers.

3.1.2 MULTIVARIATE FEATURE EXTRACTOR

We adopt the same merge-decompose strategy as described above. It is worth noting that correlations
across variables may exhibit temporal lag. A change occurring at one node may exert influence on
other nodes at the subsequent time step. We segment and stack the time series to obtain 77N *(L—FK).K |
following exactly the same procedure as in the aforementioned module.

Subsequently, we merge the short-term temporal dimension with the multivariate dimension, and
employ a linear layer to process the multi-step variables, thereby obtaining multivariate features
N (L=K),512 that account for short-term temporal lags.

N(L*K).,512 — LineaI(TNX(LfK),K) (5)

Similar to Eq. (4), we employ multiple convolutional filters to extract multivariate features at different
scales, resulting in a more fine-grained multi-scale multivariate feature block. As this module is
substantial in size, we therefore apply a specialized GRU network to aggregate the multi-scale features
and obtain the integrated representation B,

BY = Gru(Conv(N(E~5)512y) (6)

Considering that the correlations among multivariate variables may differ across time stamps, we apply
L convolutional kernels to project the integrated representation B onto the temporal dimension,
thereby obtaining the final representation.

Vau = Conv(BY) (7



Under review as a conference paper at ICLR 2026

output4

‘ — ﬁ‘ Projection
{ fffff L \ i \ @
VALUE —» \ [ ] \ =
\

Add & Norm — ==
\ \

Temporal Features | | [ Feed Forward ] \\ e Generate Outputs
\

_l_ ! [ Add & Norm J

TIME ] " \
: \ - Q MAP
Multivariate
\ . p——

Time

Attention
Multivariate Features \| 1 \ V  mutil-Channels
[ HTME Extractor ] \ Correlations

input T

Figure 4: Architecture of HTMformer. HTME directly replaces the original iTransformer embeddings.
It also employs inverted input to enable the attention mechanism to capture channels correlations.

here, Doy, Vour € RY*P . We define a learnable fusion weight « to adaptively balance the contribu-
tions of the two modules to the downstream model, thereby enhancing the scalability of HTME for
adaptation to datasets with diverse characteristics. The final output is the sum of the two modules:

Y = aDgy + (1 - a)%uta (8)

where Y;, € RV*P denotes the embedded representation that fuses temporal and multivariate
features. HTME is fed into a vanilla Transformer encoder to generate the predictive representations.

3.2 STRUCTURE OVERVIEW

We construct HTMformer based on iTransformer, a state-of-the-art and generic Transformer archi-
tecture. It keeps the native components of the original Transformer intact. This implies that other
components within HTMformer can be flexibly interchanged with their respective variants. As shown
in Figure El], the model includes an HTME extractor, a vanilla Transformer encoder layer, and a
projection layer. RevIN (Kim et al.| 2022)) is a normalization technique, which can help models learn
and generalize better. Each data batch is first normalized with RevIN before being fed into the model.

In HTMformer, shown in Figure[d](Middle), the overall formulation for predicting the future sequence
Y € RH*C from the historical sequence X € RX*C is as follows:

Xin = CAT(X,T), Y = HTMEE(X,),

9
Your = Encode(Y;,), Y = Project(You)- ©

Following RevIN normalization, timestamps 7" are appended as an additional variable to the sequence
X € REXC before being fed into the model. Xj, € RL*N_ where N denotes the multivariate
dimension augmented with the timestamp. Y;, € RY*P denotes the hybrid temporal and multivariate
embedding representations after the HTME extractor, where the embedding dimension of each
variable is D. Yy, € RV*D represents the predictive features produced by the Transformer encoder.
Finally, a linear model serves as the projection layer to generate the final output Y € R7*C

3.3 ENCODER AND PROJECTION

The Transformer encoder layer is composed of a self-attention module and a position-wise feed-
forward network. We adopt an inverted input design, which enables the self-attention mechanism
to directly model global channel correlations. This inverted structure avoids forced alignment of
variables within timestamps and facilitates the concatenation of temporal and multivariate dimensions.
Consequently, it enables the attention mechanism to learn more appropriate sequence representations.

The attention mechanism projects Y;, € RY*P to generate query matrix Qy, key matrix K}, and
value matrix V}, where dj, denotes the projection dimension for each attention head. Then, the scaled
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dot-product is used to derive the attention output O}, € RN *dx:

QrKj

(Or)" = Softmax ( V. (10)
Vg

The self-attention block additionally consists of layer normalization and a position-wise feed-forward

network. Finally, a linear projection head serves as the decoder, mapping the learned representations to

the target dimensionality and yielding the final predictions. iTransformer (Liu et al.||2024b) observes

that this Transformer-based predictor architecture is more efficient for time series forecasting tasks.

3.4 COMPLEXITY ANALYSIS

HTME consists of two parallel extraction modules. The time and space complexities of the Feature
Extraction Modules are both O(LN). For each dimension, the computational complexity is linear,
which guarantees the high efficiency and scalability of HTME.Experiments show that for most
models, HTME only adds a slight increase to their computational overhead.

HTMformer’s computational complexity is primarily dictated by the Transformer encoder, as the
introduction of the inverted input design results in both time and memory complexity scaling as
O(N?). Compared with the state-of-the-art Transformer forecasters, HTMformer attains lower
complexity because the number of variate tokens is fixed and independent of the lookback length,
which confers clear advantages for long-term time series forecasting. Moreover, as the key component,
the HTME extraction module is flexibly compatible with Transformer variants integrating efficient
attention mechanisms. It allows for further reductions in computational and memory costs and
broadens the model’s applicability to a wider range of forecasting scenarios (see Appendix [C).

4 EXPERIMENTS

To validate the effectiveness and robust transferability of the HTME strategy, we integrate it into a
diverse set of forecasting models and assess its impact on their performance. Moreover, we conduct
a comprehensive evaluation of the proposed HTMformer on diverse time series forecasting and
analysis tasks to further validate the advantages of the HTME strategy. The detailed experimental
configurations and implementation details can be found in Appendix

4.1 EXPERIMENT SETTINGS

All models are evaluated under identical settings, following the Time-Series-Library (Wang et al.}
2024b), to ensure the fairness of comparison and the reliability of the drawn conclusions.

Datasets. We evaluated the performance of HTMformer on eight widely used datasets, including
Weather, Traffic, Electricity, ETTh2 adopted in Autoformer (Wu et al., 2021)), Solar-Energy proposed
in LSTNet (Lai et al.|[2018)), and three PEMS datasets (PEMS03, PEMS04, PEMSO08) investigated in
SCINet (Liu et al., [2022). These datasets span diverse domains and sampling frequencies, providing
a comprehensive experimental scenario for model evaluation.

Baselines and metrics. We employ eight carefully selected state-of-the-art Transformer-based
models and widely recognized non-Transformer-based models in the time series forecasting do-
main as baselines, encompassing iTransformer (Liu et al.| [2024b), PatchTST (Nie et al.| [2023)),
FEDformer (Zhou et al.| [2022)), Dlinear (Zeng et al., [2023)), WPMixer (Murad et al., |[2025)), Multi-
PatchFormer (Naghashi et al.; 2025), TimeMixer (Wang et al.|[2024a), and SegRNN (Lin et al., [2023)).
Mean Squared Error (MSE) and Mean Absolute Error (MAE) are utilized as the assessment criteria.

4.2 PERFORMANCE PROMOTION WITH HTME

To assess the effectiveness and scalability of HTME, Transformer Attention (Vaswani et al.,|2017)
and its variants are integrtated into the HTMformer framework, as shown in Table|l| Specifically,
HTMformers achieve consistent improvements across different variants, with average performance
gains of 35.8%, 34.3%, 43.6%, and 31.9% for Transformer, Reformer (Kitaev et al., |2020), In-
former (Zhou et al.l 2021), Flowformer (Ma et al., |2023), and Flashformer (Dao et al., [2022)),
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Table 1: Performance improvementst by HTME. Full results can be found in Appendix [E-T}

Models Transformer  Reformer Informer  Flowformer Flashformer

Metric |MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

Original | 0271 0343 | 0342 0417 | 0379 0442 | 0272 0.370 | 0.268 0.364
Electricity +HTME | 0.185 0.272 | 0201 0292 | 0202 0.292 | 0.198 0.289 | 0.194 0.287
Promotion |353% 20.6% | 41.2% 29.9% | 46.7% 33.9% |27.2% 19.4% |27.6% 21.1%

Original | 0.651 0572 | 0454 0.458 | 0.644 0.557 | 0.631 0.559 | 0.633 0.559
Weather +HTME | 0254 0278 | 0257 0.276 | 0.254 0.280 | 0.254 0.279 | 0.253  0.280
Promotion | 60.8% 51.3% | 45.1% 39.9% | 60.5% 49.7% | 57.9% 50.0% | 60.0% 49.9%

Original | 0.666 0366 | 0.706 0.389 | 0.825 0.465 | 0.655 0.359 | 0.661 0.362
Traffic +HTME | 0467 0312 | 0475 0314 | 0488 0.323 | 0.481 0321 | 0.474 0319
Promotion |29.8% 17.3% | 32.7% 19.2% | 40.8% 30.5% |26.5% 10.5% |28.2% 11.8%

Promotion Avg | 358% | 6% | 436% | 319% | 331%

respectively. These results demonstrate the HTME framework significantly strengthens the modeling
capacity of Transformer-based forecasters, allowing HTMformer frames for flexible utilization of

various attention mechanisms tailored to different application scenarios. ] ) )
To demonstrate the strong scalability of HTME strategy, we apply it to predictors with diverse

architectures, including the RNN-based SegRNN, and the linear-based DLinear. The results show
that HTME consistently improves the forecasting performance across all these models.For these two
models, we only supplement the original input with multivariate features.

More importantly, the temporal feature extraction module and the multivariate feature extraction
module within the HTME layer operate as entirely decoupled components. Consequently, the
multivariate representations produced by HTME can be seamlessly integrated with other embedding
schemes that emphasize temporal characteristics, thereby further enhancing the applicability and
versatility of HTME.

Table 2: The HTM version augments the original sequence with multivariate features, the -A version
is an ablation variant operating solely on multivariate features. The best results are marked in red.

Models |HTMDLinear DLinear DLinear-A |HTMSeann SegRnn SegRnn-A
Metric |MSE MAE |MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

Electricity|0.219 0.314 [0.225 0.318 [0.500 0.531|0.190 0.283 |0.194 0.288 | 0.416 0.470

Weather |0.261 0.286 |0.269 0.289 | 0.274 0.348 | 0.249 0.296 | 0.254 0.301 | 0.258 0.308

Traffic |0.609 0.383 |0.672 0.418 |0.976 0.546|0.750 0.392|O.761 0.397|1.263 0.590

4.3 LONG-TERM FORECASTING

Long-term forecasting holds significant importance in various application domains, including meteo-
rology, traffic management, and energy utilization. We conduct a comprehensive evaluation of the
effectiveness of HTMformer in long-term forecasting. Table [3] presents the experimental forecasting
results. Within each row, the lowest averaged MSE and MAE values across four prediction horizons
are highlighted in red, and the second-lowest values are underscored in blue. HTMformer achieves
the best average performance across the majority of datasets, especially on high-dimensional datasets
such as Traffic. We further provide a visualization of the long-term forecasting results produced by
HTMformer (see Appendix [[). HTMformer effectively captures the periodic characteristics of time
series, delivers accurate trend forecasts for complex sequences, and demonstrates strong robustness
against large-scale fluctuations. In conclusion, HTMformer demonstrates significant performance
improvements and tangible practical benefits in long-term forecasting tasks.
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Table 3: Average performance for long-term forecasting over prediction horizons H €
{96,192, 336, 720} with fixed lookback L = 96. Notably, MPFormer is short for MultiPatchFormer.
Full results are listed in Appendix [E.2]

HTMformer iTransformer  PatchTST DLinear FEDformer =~ MPFormer WPMixer TimeMixer SegRNN
(Ours) (2024b) 2023 2023 2022 2025 2025 2024a 2023

Metric ‘MSE MAE‘MSE MAE‘MSE MAE‘MSE MAE‘MSE MAE‘MSE MAE‘MSE MAE‘MSE MAE‘MSE MAE

Models

ECL [0.185 0272|0244 0290 [0.202 0286 [0.225 0318 |0.222 0.333 |0.186 0273 [0.196 0.281|0.241 0328 [0.218 0.302

Weather | 0.254 0.277 [0.259 0.279 [0.255 0278 [0.265 0.316 |0.313 0362 | 0252 0274 |0.246 0.273]0.262 0286 [0.253 0.3

Traffic [0.467 0312|0474 0.317]0.507 0324 [0.672 0418 [0.610 0.378 | 0.462 0.304 | 0.484 0.338|0.713 0.445 [0.795 0408

ETTh2 |0.379 0.399|0.383 0.406 | 0.382 0404 |0.563 0.519|0.442 0.454 | 0.381 0.406 | 0387 0.410|0.385 0.409 | 0381 0414

Solar [0.235 0.265

0246 0.278]0.253 0289 [0329 0400 |0.311 0.392 [0.235 0267 | 027 0.303]0.302 0323 [0.252 0.304

PEMS03|0.289 0.369 |0.360 0.421 |0.502 051 0442 0498|0467 0.503 |0336 0.413 [0.511 0497 |0.726 0.614 |0.413 0.456

PEMS04|0.284 0.376 | 0.406 0.455 |0.624 0.575|0.441 0.494 |0.471 0.507 [0.381 0441 ]0.586 0.548 | 0.800 0.652 | 0452 0.485

PEMS08]0.508 0.448 | 0.598 0.498 [0.719 0573 | 0.69 0.556 |0.758 0.61 |0.521 0462 |0.724 0.557|0.956 0.664 | 0.621 0.511

Count | 6 6 | o 0] o 0] o 0] o o3 1|1 1]o 0] o o

4.4 SHORT-TERM FORECASTING

Short-term time series forecasting tasks are also prevalent across a wide range of application domains.
TableE]presents the experimental results on the PEMS (PEMS03, PEMS04, and PEMSO0S) datasets.
The proposed HTMformer demonstrates better performance across all three PEMS datasets. It
outperforms the second-best model, MultiPatchFormer, yielding a 21.7% reduction in MSE and a
12.0% reduction in MAE, respectively. We attribute this performance gain to the exploitation of
rich multivariate representations in HTME. Since short-term forecasting, constrained by the limited
prediction length, does not entail intricate long temporal dependencies, it renders inter-variable
correlations more salient. These results validate the robust performance of the HTMformer on
short-term forecasting tasks, further complementing its strong performance in long-term forecasting.

Table 4: Short-term forecasting results, averaged across four prediction lengths H € {12, 24, 48,96}
with a fixed lookback window of L = 96. Full results are available in Appendix

HTMformer iTransformer  PatchTST DLinear FEDformer =~ MPFormer WPMixer TimeMixer
(Ours) (2024b) 2023 2023 2022 2025 2025 2024a

Metric |MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

PEMSO03|0.138 0.245 | 0.181 0.283 |0.267 0.350 [0.278 0.377 |0.206 0.325]0.172 0.278 | 0.262 0.336 | 0.348 0.391

Models

PEMS04|0.138 0.249 | 0216 0308 | 0323 0385 [0.295 0.388 |0.206 0.328 |0.207 0305 |0.304 0369 [0.387 0426

PEMS08|0.187 0.278 | 0238 0.31 |0.297 0361 |0.377 0.414]0.286 0.359 |0.213 0.296 | 0314 0360 [0.392 0.408

Comt | 3 3]0 oo oo oo oo o]o oo o

Compared with iTransformer (Liu et al.| 2024b), which explicitly models multivariate correlations,
and PatchTST (Nie et al.} [2023)), which excels at capturing fine-grained temporal patterns, HTM-
former achieves broadly superior performance on both long-term and short-term forecasting tasks.
Even when compared with the previously best-performing Transformer-based forecaster, Multi-
PatchFormer, HTMformer consistently achieves either superior or comparable predictive accuracy.
This performance gain is particularly pronounced on high-dimensional time series datasets, such as
Traffic and Solar-Energy. Such effectiveness is attributed to the use of the HTME extractor, which
facilitates multi-dimensional feature fusion in time series. HTME adaptively integrates temporal
and multivariate representations to achieve comprehensive, multidimensional feature complementar-
ity. Furthermore, it encapsulates richer and more discriminative semantic representations, enabling
Transformer-based forecasters to more fully leverage sequence information. This demonstrates the
broad applicability across diverse datasets, thereby highlighting the effectiveness of HTME.
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Table 5: Results (Average) of different variants under prediction lengths H € {96,192, 336, 720}.
The input lookback L is set to 96.

Models HTMformer HTMformerV1 HTMformerV2 iTransformer iTransV3  MPFormer
Metric |MSE MAE|MSE MAE |MSE MAE |MSE MAE |MSE MAE|MSE MAE

ECL |0185 0272 |0.184 0273 |0275 0357 |0244 0290 | 0.194 0288 | 0.186 0273

Weather | 0254 0277 [ 0253 0278 |0262 0290 [0259 0279 |0.252 0267 | 0252 0274

Traffic | 0467 03120477 0318 |0748 0440 | 0474 0317 |0473 0321 | 0462 0.304

ETTh2 |0379 0399 | 0381 0405 |0444 0444 |0383 0406 |0.384 0406 | 0.381 0406

Solar |0235 0265|0243 0278 [0288 0311 |0246 0278 | 0244 0280 | 0235 0267

PEMSO03| 0289 0369 | 0340 0410 |0351 0403 |0360 0421 |0294 0375 | 0336 0413

PEMS04|0.284 0376 | 0391 0431 |0315 0402 |0406 0455 | 0300 0386 | 0.381 0441

PEMSO08 0.508 0448 | 0594 0492 [0.558 0465 |0598 0498 | 0485 0434 | 0521 0462

5 MODEL ANALYSES

5.1 ABLATION STUDIES

To evaluate the contribution and reliability of each module within HTMformer, we conducted ablation
studies (see Appendix[F). Specifically, we examined two different variants of HTMformer: 1)
HTMformerV1, which utilizes only the temporal feature extraction module of the HTME extractor; 2)
HTMformerV2, which utilizes only the multivariate feature extraction module of the HTME extractor.
We also examined another variant 3) iTransformerV3 (iTransV3), which integrates the multivariate
feature extraction module of the HTME extractor into the embedding layer of iTransformer. We
adopt iTransformer (Liu et al., [2024b) as the state-of-the-art baseline. Sharing a highly similar
architectural design with HTMformer, both models employ a dedicated embedding module and
process inverted inputs before feeding them into the Transformer encoder. However, in iTransformer,
the embedding layer conducts feature extraction exclusively along the temporal dimension. Notably,
since all experiments were performed under identical configurations, the HTMformer variants are
directly comparable to the other models. We also adopt MultiPatchFormer (Naghashi et al.| [2025)),
attaining the second-best performance in various forecasting tasks, as a representative proxy for other
forecasting models. Specific results are documented in Table[5]

Effect of the temporal extractor. Compared with other time series forecasting models, HTM-
formerV1 already outperforms several baselines and suffers only a marginal accuracy drop even
when benchmarked against state-of-the-art approaches. Blue numbers indicate the cases where HTM-
formerV1 outperforms iTransformer. This observation suggests that our temporal feature extraction
module has effectively captured informative temporal patterns.

Effect of the multivariate features. To facilitate an intuitive comparison, we evaluate HTM-
formerV1 against HTMformerV2, with numerical values underlined when HTMformerV2 achieves
better performance over HTMformerV1. Across most datasets, particularly those with a large number
of variables, HTMformerV2 performs substantially worse than other time series forecasting models,
highlighting that effective forecasting primarily depends on accurate temporal dependency modeling.
Nevertheless, on certain datasets, HTMformerV?2 attains superior or comparable results relative
to most baseline models. This emphasizes that multivariate features are crucial and indispensable
sources of information in time series forecasting.

Effect of the hybrid strategy. We further conduct comparative evaluations between HTMformer
and HTMformerV1, as well as between iTransformerV1 and the original iTransformer. Red numbers
indicate cases where the versions augmented with multivariate integration in the embedding layer
outperform their original counterparts. Across most datasets, both HTMformer and iTransformerV1
consistently achieve superior performance. This provides strong evidence for the effectiveness of our
proposed strategy for incorporating multivariate features into embedding representations.



Under review as a conference paper at ICLR 2026

Training Time (s/iter) GPU Memory Footprint (MB) Model Parameters (MB)

[ [ [

HTMformer (0.1010) HTMformer  (1613.82) HTMformer (19.88)

[ | [

MPformer (0.3472) MPformer (6483.46) MPformer (46.76)

[ | [

WPMixer (0.3849) WPMixer (10125.27) WPMixer (42.41)

[ | [

PatchTST  (0.3909) PatchTST  (6152.02) PatchTST  (20.58)

[ | [
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Figure 5: We compare HTMformer with three state-of-the-art models on eight benchmark datasets.
The input sequence length is uniformly set to 96, and the prediction sequence length is 192.

5.2 MODEL EFFICIENCY

To assess the computational efficiency of HTMformer, we perform a comparative analysis of its
training time, GPU memory footprint, and parameter count against state-of-the-art models, including
MultiPatchFormer (Naghashi et al., 2025), WPMixer (Murad et al., 2025)), and PatchTST (Nie et al.,
2023). All models are evaluated on the same GPU under identical lookback windows, prediction
horizons, and batch sizes to ensure fair comparison. As shown in Figure[5] using the state-of-the-art
MultiPatchFormer as the reference baseline, HTMformer achieves a training runtime approximately
one-third of that of MultiPatchFormer, while requiring only 20% to 45% of its GPU memory footprint.
Moreover, HTMformer’s model parameters are just half those of MultiPatchFormer. Importantly,
these gains are achieved without sacrificing predictive accuracy, as HTMformer consistently attains
superior or comparable MSE and MAE across eight benchmark datasets. These results indicate that
HTMformer enables faster training and inference under the same hardware conditions, and its smaller
memory footprint also enhances the model’s applicability (see Appendix [G).

It is noteworthy that the ablation studies and the long-term forecasting experiments were conducted
under identical configurations, rendering the results directly comparable. We observe that for time
series data, using patching and convolutions for local patterns and linear layers for long-range
dependencies is generally sufficient for effective temporal modeling. Excessive modeling of temporal
dependencies yields limited gains in forecasting accuracy while substantially increasing compute
and memory overhead. In this study, we adopt a hybrid design in the embedding layer, employing
two lightweight models to extract multidimensional features. The resulting hybrid embeddings
extract richer informative representations from the sequences, thereby assisting Transformer-based
forecasters in modeling time series. This approach not only improves predictive performance but also
markedly reduces both computational demand and memory footprint.

6 CONCLUSION AND LIMITATIONS

Motivated by the inherent properties of multivariate time series, we introduce the HTME strategy.
The HTME module jointly encodes temporal dynamics and inter-variate dependencies present in the
raw sequences, yielding embedding representations that are richer and more informative than prior
designs. The HTME strategy demonstrated superior performance across various experiments.

The HTME strategy can be seamlessly and efficiently integrated with various forecasting frameworks,
and it consistently enhances predictive performance across diverse architectures, particularly for
Transformer-based predictors. HTMformer delivers state-of-the-art forecasting performance with
faster training and a reduced GPU memory footprint, thereby validating the effectiveness of injecting
multivariate information into the embedding space.

Through numerous experiments, this paper further highlights that incorporating both temporal and
multivariate information enables Transformer-based predictors to make more accurate predictions.
The detailed discussion is provided in Appendix[J] However, time series data exhibit complex corre-
lations, and simply adding multivariate features to the temporal dimension through the embedding
layer cannot fully model such a complex pattern. Jointly modeling spatiotemporal dependencies
in time series remains an open problem that requires further exploration. Future improvements in
Transformers can focus on devising methods to efficiently capture multivariate correlations.

10
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7 Al USAGE STATEMENT

Al tools were used only for minor language polishing to standardize expressions. No Al assistance was
employed for idea generation, data analysis, experiment design, or content creation. All intellectual
contributions, results, and conclusions are the authors’ own.

8 REPRODUCIBILITY STATEMENT

All relevant implementation details, such as dataset specifications, main model hyperparameters, and
experimental setups, are provided in the Appendix. The source code will be released publicly once
the manuscript is accepted.

9 ETHICS STATEMENT

This study only focuses on the domain of time series forecasting. All datasets employed are widely
recognized, real-world, and publicly available. Therefore, there is no potential ethical risk.
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A EXPERIMENTS OF DIFFERENT EMBEDDING METHODS

To demonstrate that Transformer-based forecasters have limited ability to understand sequences
and the necessity of deeply mining sequence features in the embedding layer, we compared the
prediction performance of Transformer (Vaswani et al.| 2017), iTransformer 2024b), and
PatchTST [2023)) with different embedding approaches on four datasets: ECL, Weather,
ETTh2, and Solar. The input sequence length is set to 48, 96, 144, 192, 240, and 288, with the
prediction length being 96. The experimental results are shown in Figure[6]

Experimental results reveal that increasing the input sequence length initially leads to a significant
decline in prediction loss. However, as the sequence length continues to grow, this benefit markedly
lessens, and in some cases, prediction loss may even increase. These findings suggest that Transformer-
based models exhibit limitations in proficiency in capturing effective features from raw series data.
Simply increasing the lookback window does not consistently capture more informative patterns and
will also incur additional computational overhead. This is because time series forecasting focuses
on capturing short-term dependencies 2025) and the temporal dimension inherently
offers limited contextual information. Therefore, traditional Transformer-based forecasters encounter
bottlenecks in reliably improving prediction accuracy. Notably, employing more sophisticated
embedding methods to capture complex spatiotemporal dependencies can effectively address this
problem. Motivated by these findings, we propose a novel embedding strategy that moderately

15



Under review as a conference paper at ICLR 2026

extracts features along the temporal dimension to balance prediction accuracy and computational
complexity, while integrating multivariate features to enhance informative content, thereby enabling
the efficient acquisition of high-quality embeddings. Combined with input inversion, this approach
brings comprehensive improvements to Transformer-based forecasters.

ELC

Weather

ETTh2

0.240|

Solar

—

0.187 0.187 0L 0194

0.207

Transformer:MSE and MAE iTransformer:MSE and MAE PatchTST:MSE and MAE

Figure 6: On the ECL, Weather, ETTh2, and Solar, we compared three models with input lengths of
48, 96, 144, 192, 240, 288 and an output length of 96. The evaluation metrics were MSE and MAE.

B LIMITATIONS OF CONVENTIONAL EMBEDDING

Time series data inherently exhibits both temporal and multivariate (spatial) characteristics. A
growing body of research has demonstrated the effectiveness of explicitly capturing intra- and
inter-channel dependencies (Zhang & Yan| 2023} [Liu et al.,2024bffa). In prevailing Transformer-
based forecasting frameworks, the embedding stage typically consists of three main components:
timestamp embedding, positional embedding, and time series convolution. These components are
primarily designed to capture temporal patterns while often overlooking the intrinsic correlations
among different variables within the data. In fact, many types of time series data exhibit significant
multivariate correlations, such as traffic flow and weather forecasting (Li et all, 2018} [Wu et al}
, where sensors are installed at fixed spatial locations. However, conventional embeddings
capture only temporal patterns, while the subsequent attention layer also primarily models temporal
dependencies, thereby overlooking multivariate dependencies and leading to information loss. Due to
the overemphasis on temporal modeling and the loss of multivariate information under such designs,
existing Transformer-based forecasters have encountered significant bottlenecks in capturing the
contextual relationships essential for accurate multivariate time series forecasting.

16



Under review as a conference paper at ICLR 2026

Furthermore, the temporal feature extraction approach of the embedding layer, inspired by large
language models (LLMs), is ill-suited for time series analysis. Unlike the Transformers used in natural
language and vision tasks (Kirillov et al.l 2023;|OpenAl, |2023)), which require learning dependencies
among thousands to millions of tokens, Transformers in time series forecasting generally operate
within relatively limited contexts, involving no more than hundreds of time series tokens. A smaller
number of tokens makes it difficult for the attention mechanism to learn clear temporal correlations.
However, time series convolution is limited to extracting local patterns from the original sequence
and lacks the capability for fine-grained feature extraction. Additionally, PRformer (Yu et al., 2025)
highlights that traditional Transformer algorithms attempt to learn sequence variation patterns by
combining positional encoding with multivariate data at different time instants. However, real-world
time series are frequently non-stationary, and the assumption of translation invariance makes it
difficult for the Transformer’s self-attention mechanism to learn correct temporal dependencies. Our
experimental results (see Appendix [A) indicate that the quality of the embeddings has a substantial
impact on the performance of Transformer-based forecasters. Therefore, it is imperative to redesign
the embedding model to capture more effective representations.

The HTME extractor discards positional encoding and treats timestamp information as a separate
variable, concatenated to the time series inputs. This method has enhanced the model’s ability to learn
the relationship between the sequence and time. It employs patch-based operations and convolution to
more effectively capture short-term dependencies, and a linear layer to capture long-term correlations.
This method can extract temporal features more effectively and is better suited for Transformer-based
architectures in time series forecasting tasks. We further employ a well-designed multivariate feature
extractor to enrich the embedding representations with multivariate features. Notably, we do not
explicitly model multivariate correlations, as doing so would incur substantial computational overhead.
Finally, it incorporates multivariate features into temporal features to complement and adaptively
balances the contributions of the two feature components, thereby enhancing the scalability of the
embeddings. The resulting HTME incorporates rich temporal information and thoroughly accounts
for multivariate correlation effects. It is more effective than existing embeddings in extracting
informative representations from raw time series. This approach has already achieved good results in
temporal feature extraction, making it unnecessary to overemphasize temporal correlations through
the attention mechanism. So HTMformer utilizes inverted input to enable the attention mechanism to
capture correlations among multiple features. iTransformer (Liu et al.| 2024b) demonstrates that this
approach leads to improved performance.

C TIME AND MEMORY COMPLEXITY

Table [6] provides a detailed comparison of the time complexity and memory usage across various
Transformer-based forecasters. L denotes the input sequence length, N denotes the number of
variables, and S denotes the stride length of PatchTST.

Table 6: Time and memory complexity of different Transformer-based forecasters.

Methods Time Memory
Transformer |  O(L?) O(L?)
Informer | O(Llog L) (Llog L)

|

)| O
Reformer | O(LlogL) | O(LlogL)
PatchTST | O(L?/S?) | O(L?/S?)
|
|

iTransformer | O(N?) O(N?)
HTMformer | O(N?) O(N?)
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D DETAILED EXPERIMENT SETTINGS

D.1 DATASET DESCRIPTIONS

We perform extensive experiments on eight real-world datasets to evaluate the effectiveness of the
proposed HTME strategy. These datasets cover diverse domains and temporal resolutions, including:

* ECL. Contains hourly electricity consumption data of 321 clients from 2012 to 2014.

* Weather. Includes 21 meteorological variables collected every 10 minutes in 2020 from the
meteorological station at the Max Planck Institute for Biogeochemistry.

* Traffic. Consists of hourly road occupancy rates collected from 862 sensors on highways in
the San Francisco Bay Area between January 2015 and December 2016.

e ETTh. Comprises hourly electricity transformer temperature readings collected over two
years from two counties in China, with seven recorded variables.

* Solar-Energy. Records 10-minute solar power production records of 137 photovoltaic (PV)
plants in Alabama from the year 2006.

* PEMS. Includes PEMS03, PEMS04, and PEMSO08 datasets, each containing public trans-
portation network data collected at 5S-minute intervals in California.

To ensure the consistency of our experimental approach and make sure there are no data leakage issues,
we split the ETT and PEMS datasets into the training, validation, and test sets, with a 6:2:2 ratio and
other datasets with a 7:1:2 ratio, following the protocols recommended in recent literature (Wu et al.|
2021 |Zeng et al.,[2023). In all forecasting experiments, the lookback window was fixed at 96 time
steps, with prediction horizons of 96, 192, 336, 720 for the long-term experiments and 12, 24, 48, 96
for the short-term experiments. The details of all datasets are provided in Table

Table 7: Detailed dataset descriptions. Dim denotes the number of variables in each dataset. Dataset
Size indicates the number of time points in splits respectively. Prediction Length is the number of
future time points to forecast. Frequency denotes the sampling interval of the time points.

Dataset | Dim |  Prediction Length | Dataset Size | Frequency | Forecastability | Information
ETTh2 | 7 | {96, 192, 336, 720} | (8545,2881,2881) | 15min | 0.45 | Temperature
Electricity | 321 | {96, 192, 336, 720} | (18317,2633,5261) | Hourly | 0.77 |  Blectricity

Traffic | 862 | {96, 192, 336, 720} | (12185,1757,3509) | Hourly | 0.68 | Transportation
Weather | 21 | {96, 192,336, 720} | 36792, 5271,10540) | 10 min | 0.75 | Weather

Solar-Energy | 137 | {96, 192, 336, 720} | (36601, 5161, 10417) | 10 min | 0.33 | Solar Energy
PEMS03 | 358 | {12,24,48,96,192,336,720} | (15617,5135,5135) | S5min | 0.65 | Transportation
PEMS04 | 307 | {12,24,48,96,192,336,720} | (10172,3375,3375) | S5min | 0.45 | Transportation
PEMS08 | 170 | {12,24.48,96,192,336,720} | (10690, 3548,265) | 5min | 0.52 | Transportation

* The forecastability is calculated by one minus the entropy of Fourier decomposition of time series (Goerg]2013).
A larger value indicates better predictability.

D.2 BASELINE DETAILS

We employ five state-of-the-art Transformer-based models, such as iTransformer (Liu et al., |2024b)),
PatchTST (Nie et al.| [2023)), FEDformer (Zhou et al., [2022), WPMixer (Murad et al., [2025)), and
MultiPatchFormer (Naghashi et al.| 2025)), as well as three well-acknowledged non-Transformer-
based models, Dlinear (Zeng et al., 2023), TimeMixer (Wang et al., 2024a), and SegRNN (Lin et al.,
2023)). We utilized the official repositories of the Time-Series-Library (Wang et al.,[2024b)) directly
for reproduction, and adopted the same comparison settings. The Time-Series-Library consolidates
and integrates implementations of prior time-series forecasting models, making it convenient for us to
conduct experiments. Among these models, MultiPatchFormer is a highly advanced architecture and
yields the best overall forecasting accuracy. Both iTransformer and our model utilize input inversion to
enable the attention mechanism to effectively capture multivariate correlations. WPMixer efficiently
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captures both the frequency-domain and time-domain information in time series data, enabling
deep temporal feature extraction. FEDformer achieves high forecasting accuracy and computational
efficiency through an innovative architecture that integrates seasonal-trend decomposition with
frequency-domain enhancement. Meanwhile, DLinear is a state-of-the-art linear model with a non-
Transformer architecture. SegRNN has demonstrated outstanding performance on multiple benchmark
time series forecasting datasets by employing segment-wise iterative processing and parallelized
multi-step prediction. TimeMixer is a linear time series forecasting model that leverages a multi-scale
decomposable mixing mechanism, demonstrating robust performance on high-dimensional datasets.
Note that SegRNN is incompatible with short-term forecasting, so no comparison is conducted.

D.3 EXPERIMENT DETAILS

All experiments were implemented in PyTorch (Paszke et al.l |2019) and conducted on a dedi-
cated NVIDIA Quadro RTX 6000 GPU. We trained the model for 10 epochs using the Adam
optimizer (Kingma & Bal[2015)), with an early stopping mechanism configured at a patience value of
3. The key parameter configurations are listed in Table [§](WPMixer is configured with d_model = 16
and d_ff = 32). We verified that, for these baselines, all other hyperparameters were taken from their
official repositories within the Time-Series-Library (Wang et al.| [2024b)), which consolidates imple-
mentations of prior time-series forecasting models. This ensures consistency with the established fair
comparison protocol. Unless otherwise stated, all models adopt the aforementioned configurations
across all experiments. The only modification was to the output sequence lengths.

* dropout: Dropout rate.

* batch size: Batch size used for training.

* I_rate: The learning rate used in the optimization process.
* d_ff: Dimension of Fully FFN

* d_model: Dimension of model

* e_layers: Number of Transformer encoder layers.

* n_heads: Num of heads

* seq_len: Inputs sequence length

label_len: Start token length
* loss: Loss function used for training

Table 8: Experiments of all models on all datasets follow the following experimental settings to
ensure the accuracy of the experiments.

dropout batch size 1_rate d_ff d_model e_layers n_heads seq_lenl label len loss
0.1 32 0.0001 1024 512 2 8 96 48 L2

E FuULL RESULTS

E.1 PERFORMANCE PROMOTION WITH HTME

To assess the effectiveness and scalability of the HTME for enhancing the Transformer’s capacity to
learn temporal sequence representations, we integrated HTME into the Transformer and its variants:
Transformer (Vaswani et al., [2017), Reformer (Kitaev et al., [2020), Informer (Zhou et al., 2021)),
Flowformer (Ma et al.l 2023)), and Flashformer (Dao et al., [2022). The length of historical data
sequences was set to 96 time steps, with the forecast horizon varying among 96, 192, 336, and 720
time steps. The full predictive outcomes are detailed in Table[9] On three benchmark datasets (ECL,
Traffic, and Weather), the HTME versions yield significant improvements over all four models across
all proposed prediction horizons, thereby confirming their effectiveness and scalability. We further
integrated the multivariate feature extraction module from the HTME extractor into iTransformer
to assess the scalability capability of this module, with the detailed results presented in the ablation
study. This component was seamlessly incorporated into the iTransformer’s embedding layer, leading
to a substantial improvement in its overall performance.
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Table 9: Full results of original Transformers and Transformers with HTME.

Transformer Reformer Informer Flowformer Flashformer
2017) 2020 2021 2023 2022

Dataset | Type | Step | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

Models

96 | 0264 0363 | 0304 0391 | 0330 0415 | 0272 0371 | 0263 0.361

192 | 0275 0375 | 0350 0426 | 0356 0438 | 0269 0.371 | 0270 0.369

Original | 336 | 0262 0362 | 0354 0429 | 0.376 0454 | 0264 0364 | 0.263  0.360

720 | 0286 0373 | 0361 0422 | 0454 0464 | 0284 0374 | 0279  0.368

\ | Avg | 0271 0363 | 0342 0417 | 0.379 0442 | 0272 0370 | 0.268 0.364
Electricity 96 | 0.157 0247 | 0.169 0266 | 0.170 0266 | 0.170 0.266 | 0.163  0.262
192 | 0.171 0260 | 0.190 0283 | 0.187 0279 | 0.188 0.280 | 0.183 0277

+HTME | 336 | 0.192 0277 | 0200 0.293 | 0.207 0296 | 0202 0294 | 0.199 0.292

720 | 0220 0304 | 0248 0.329 | 0.247 0329 | 0235 0319 | 0229 0316

\ | Avg | 0.185 0272 | 0201 0292 | 0.202 0.292 | 0.198 0289 | 0.194 0.287

96 | 0372 0417 | 0311 0355 | 0420 0452 | 0283 0364 | 0326 0.395

192 | 0632 0580 | 0453 0464 | 0.423 0455 | 0.548 0.541 | 0.587 0.544

Original | 336 | 0.699 0.606 | 0.476 0474 | 0.588 0.539 | 0.614 0.548 | 0.714 0.614

720 | 0903 0.688 | 0.579 0.541 | 1.146 0784 | 1.079 0.783 | 0.906 0.684

\ | Avg | 0.651 0572 | 0454 0458 | 0.644 0557 | 0.631 0559 | 0.633 0.559
Weather 96 | 0.163 0209 | 0.164 0209 | 0.170 0213 | 0.167 0212 | 0.168 0215
192 | 0222 0261 | 0214 0255 | 0220 0260 | 0216 0255 | 0218 0.258

+HTME | 336 | 0272 0290 | 0270 0288 | 0274 0298 | 0279 0302 | 0275 0.298

720 | 0359 0352 | 0351 0348 | 0.354 0351 | 0.354 0350 | 0352 0.349

\ | Avg | 0254 0277 | 0.249 0275 | 0254 0280 | 0.254 0279 | 0253 0.380

96 | 0.658 0364 | 0.715 0399 | 0.731 0413 | 0.646 0359 | 0.637 0.353

192 | 0655 0359 | 0705 0390 | 0.761 0431 | 0.646 0.355 | 0.659 0.364

Original | 336 | 0.657 0361 | 0703 0386 | 0.840 0.474 | 0.657 0358 | 0.653 0.357

720 | 0.697 0380 | 0.703 0.383 | 0.969 0.545 | 0.671 0364 | 0.697 0.375

| Avg | 0.666 0366 | 0.706 0389 | 0.825 0465 | 0.655 0359 | 0.661 0.362

Traffic 96 | 0439 0300 | 0.445 0302 | 0466 0314 | 0451 0309 | 0439  0.300
192 | 0450 0302 | 0463 0308 | 0.468 0312 | 0466 0.310 | 0.460 0.310

+HTME | 336 | 0462 0310 | 0478 0313 | 0488 0322 | 0484 0320 | 0480 0.321

720 | 0517 0339 | 0514 0334 | 0.530 0347 | 0.524 0345 | 0516 0.342

\ | Avg | 0467 0312 | 0475 0314 | 0488 0323 | 0.481 0321 | 0474 0319

E.2 LONG-TERM FORECASTING RESULTS

The results of the multivariate long-term forecasting tasks are summarized in Table|10} Lower Mean
Squared Error (MSE) and Mean Absolute Error (MAE) values indicate superior predictive accuracy.
The best results are highlighted in red, and the second-best results in blue. Notably, HTMformer
achieves state-of-the-art performance in most evaluation scenarios, ranking first in 26 out of 40 MSE
metrics and 29 out of 40 MAE metrics. Moreover, our model consistently ranks within the top
two across the majority of evaluation scenarios. Table [TT]also reports the standard deviations of
HTMformer over five runs with different random seeds, demonstrating its performance stability.

E.3 SHORT-TERM FORECASTING RESULTS

Table [12] presents the short-term forecasting results. The evaluation metrics comprise the Mean
Squared Error (MSE) and Mean Absolute Error (MAE) computed over four prediction horizons. Our
approach consistently achieves substantial improvements across all horizons on the selected datasets.
In particular, on the PEMS04 dataset, our proposed model achieved a 33.3% reduction in average
MSE and an /8.3% reduction in average MAE compared to the second-best results. The standard
deviations, computed over five independent runs with different random seeds, are reported in Table
For short-term forecasting, the limited length of the input sequence constrains the model’s capacity to
capture sufficient temporal dependencies. Consequently, modeling multivariate correlations becomes
crucial, in which HTMformer demonstrates superior performance.
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Table 10: Full results for the long-term forecasting task. We compare extensive competitive models
under different prediction lengths. Avg is averaged from all four prediction lengths.

HTMformer iTransformer PatchTST  DLinear ~FEDformer MPFormer WPMixer TimeMixer SegRNN

Models
(Ours) (2024b) 2023 2023 2022 2025 2025 2024a 2023

Metric MSE MAE‘MSE MAE | MSE MAE | MSE MAE | MSE MAE|MSE MAE| MSE MAE| MSE MAE|MSE MAE

96 10.157 0.247|0.163 0.252|0.180 0.266|0.210 0.301{0.195 0.309{0.159 0.2490.170 0.259|0.213 0.301|0.191 0.278
192 10.171 0.260 (0.175 0.263 [0.185 0.271|0.210 0.304|0.202 0.315|0.171 0.260{0.180 0.267|0.225 0.316(0.202 0.287
336 |0.192 0.277 [0.282 0.299]0.202 0.2880.223 0.319(0.229 0.342(0.188 0.277]0.196 0.284/0.242 0.334|0.221 0.305
720 (0.220 0.304[0.357 0.348]0.241 0.319(0.257 0.349|0.264 0.367|0.228 0.309{0.238 0.317(0.285 0.363(0.261 0.339

Electricity

Avg ‘0.185 0.2720.244 0.290{0.202 0.286{0.225 0.318|0.222 0.333|0.186 0.273|0.196 0.281{0.241 0.328|0.218 0.302

96 [0.164 0.209 [0.176 0.216]0.174 0.217]0.196 0.256[0.224 0.304]0.168 0.209(0.165 0.209]0.179 0.225]0.167 0.230
192 [0.222 0.261(0.223 0.255/0.220 0.256(0.238 0.299(0.281 0.348|0.213 0.250|0.210 0.251 |0.230 0.268(0.214 0.275
336 {0.272 0.290 |0.280 0.298(0.276 0.296/0.281 0.330[0.339 0.381{0.273 0.293 |0.266 0.291|0.284 0.304|0.271 0.317
720 |0.359 0.352 [0.353 0.346 |0.353 0.346|0.345 0.381|0.408 0.417(0.354 0.347|0.345 0.344|0.356 0.350(0.360 0.378

Weather

Avg ‘0.254 0.2770.259 0.279(0.255 0.278|0.265 0.316|0.313 0.362|0.252 0.274|0.246 0.273|0.262 0.286(0.253 0.300

96 10.439 0.300 |0.442 0.302|0.494 0.313]0.696 0.428|0.580 0.362(0.433 0.290|0.516 0.336|0.688 0.429|0.781 0.401
192 10.450 0.302 {0.459 0.308|0.490 0.330{0.646 0.407(0.606 0.379|0.450 0.296(0.512 0.331{0.687 0.434|0.789 0.405
336 [0.462 0.310 (0.479 0.319]0.502 0.317(0.653 0.409|0.613 0.380{0.467 0.306{0.353 0.334(0.719 0.451(0.797 0.405
720 (0.517 0.339]0.516 0.342|0.545 0.337(0.694 0.428|0.641 0.393]0.500 0.326|0.558 0.353]0.761 0.466|0.813 0.421

Traffic

Avg ‘0.467 0.312 |0.474 0.317]0.507 0.324]0.672 0.418]0.610 0.378|0.462 0.304|0.484 0.338|0.713 0.445(0.795 0.408

96 10.300 0.3480.295 0.3440.293 0.343]0.341 0.395|0.350 0.391{0.299 0.350(0.293 0.345|0.296 0.345|0.295 0.355
192 10.389 0.402 {0.375 0.398(0.373 0.393|0.481 0.479|0.441 0.449|0.384 0.401{0.382 0.401|0.384 0.401(0.375 0.397
336 (0.409 0.408[0.436 0.435]0.422 0.430(0.592 0.542|0.498 0.490{0.411 0.4280.424 0.437(0.429 0.439(0.414 0.436
720 (0.421 0.439{0.429 0.447]0.440 0.452(0.840 0.661|0.480 0.487|0.430 0.446(0.449 0.458(0.433 0.451(0.443 0.469

ETTh2

Avg ‘0.379 0.399 {0.383 0.406{0.382 0.40410.563 0.519(0.442 0.4540.381 0.406(0.387 0.410{0.385 0.409|0.381 0.414

96 10.199 0.2390.213 0.2530.214 0.257|0.289 0.377]0.279 0.363|0.203 0.2400.232 0.278|0.256 0.292|0.232 0.294
192 10.233 0.263]0.242 0.274]0.254 0.296{0.319 0.397|0.288 0.378|0.237 0.268|0.268 0.303|0.286 0.315|0.253 0.306
336 (0.252 0.279]0.262 0.29010.284 0.314(0.352 0.415|0.316 0.399(0.249 0.280(0.291 0.316(0.323 0.337(0.264 0.310
720 (0.259 0.280(0.270 0.296]0.263 0.291(0.356 0.412|0.363 0.430{0.254 0.283]0.290 0.315(0.346 0.349(0.260 0.306

Solar-Energy

Avg ‘0.235 0.265 {0.246 0.278(0.253 0.289(0.329 0.400|0.311 0.392|0.235 0.267(0.270 0.303(0.302 0.323|0.252 0.304

96 |0.25 0.343|0.337 0.4130.504 0.516]0.458 0.517]0.325 0.423/0.302 0.395|0.514 0.505|0.731 0.625|0.381 0.438
192 10.297 0.378 |0.374 0.436|0.547 0.544|0.477 0.527|0.475 0.515{0.349 0.428]0.557 0.526/0.797 0.648|0.447 0.478
336 (0.274 0.356|0.332 0.395]0.432 0.460(0.396 0.456|0.425 0.480{0.313 0.3880.440 0.450(0.614 0.545(0.380 0.432
720 (0.336 0.401|0.397 0.4400.527 0.521|0.439 0.492|0.644 0.596|0.383 0.441]0.533 0.509(0.762 0.638(0.447 0.478

PEMSO03

Avg ‘0.289 0.369 [0.360 0.421{0.502 0.510{0.442 0.498|0.467 0.503|0.336 0.413(0.511 0.497(0.726 0.614|0.413 0.456

96 10.226 0.3350.387 0.4460.645 0.594]0.452 0.504{0.300 0.411[0.356 0.428|0.584 0.554|0.794 0.658|0.415 0.468
192 10.286 0.383(0.429 0.473(0.688 0.615(0.477 0.527]0.458 0.513|0.398 0.459(0.650 0.586(0.891 0.697(0.496 0.510
336 (0.286 0.372(0.369 0.426|0.536 0.516(0.396 0.456|0.411 0.474|0.348 0.413]0.511 0.499/0.703 0.596|0.420 0.461
720 (0.338 0.414|0.440 0.476(0.629 0.578(0.439 0.492|0.718 0.630{0.423 0.467(0.601 0.556(0.812 0.660(0.479 0.502

PEMS04

Avg ‘0.284 0.376 |0.406 0.455(0.624 0.575[0.441 0.494/0.471 0.507|0.381 0.441|0.586 0.548]0.800 0.652{0.452 0.485

96 10.365 0.409(0.477 0.470|0.567 0.534]0.672 0.564|0.504 0.506/0.406 0.437|0.648 0.556|0.854 0.657|0.516 0.487
192 10.513 0.462{0.627 0.518]0.794 0.620{0.726 0.580(0.726 0.608|0.539 0.479|0.766 0.581{1.048 0.702|0.646 0.528
336 (0.530 0.435]0.599 0.47210.709 0.539(0.650 0.518|0.803 0.615|0.538 0.44410.696 0.518(0.906 0.615(0.617 0.490
720 [0.624 0.487(0.691 0.532]0.807 0.599(0.713 0.562(1.000 0.711]0.603 0.489{0.789 0.575[1.019 0.682(0.707 0.541

PEMS08

| Avg [0.508 0.448[0.598 0.498]0.719 0.573]0.690 0.556]0.758 0.610] 0.521 0.462|0.724 0.557|0.956 0.664|0.621 0.511

Count| 26 29| 0 o |2 2|0 o|o o]0 96 3[0 0]O0 o0
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Table 11: Robustness of HTMformer performance is evaluated over five random seeds.

Dataset ‘ ECL ‘ Weather ‘ Traffic ETTh2

Horizon | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 0.157+0.003  0.247+£0.002 | 0.164+0.004  0.2090.002 | 0.439+0.002  0.3000.002 | 0.300+0.003  0.348 + 0.004
192 0.1714£0.003  0.260 £0.002 | 0.222+0.005 0.261£0.004 | 0.450+0.002  0.3020.003 | 0.38940.004  0.402+0.003
336 0.192+£0.005  0.277£0.005 | 0.272+0.005  0.290£0.010 | 0.462+0.004  0.310£0.005 | 0.40940.004  0.408 4 0.004
720 0.220+0.006  0.304 +0.007 | 0.359+0.004  0.352+0.002 | 0.517+0.009  0.339+0.007 | 0.421+0.007  0.439 +0.007
Dataset | Solar-Energy | PEMS03 | PEMS04 PEMS08

Horizon | MSE MAE | MSE MAE | MSE MAE MSE MAE

96 0.199+0.004  0.239+0.003 | 0.250+0.003 0.343+0.002 | 0.226+0.008 0.335+0.004 | 0.365+0.003  0.409 + 0.005
192 0.233£0.004  0.263+0.006 | 0.297+0.005 0.378£0.010 | 0.286+0.010  0.3830.005 | 0.51340.005  0.462 + 0.006
336 0.252£0.006  0.279+£0.007 | 0.274+0.010  0.356+£0.009 | 0.286+0.010  0.372+0.005 | 0.53040.006  0.435+0.010
720 0.259£0.006  0.280£0.009 | 0.336+0.007 0.401£0.008 | 0.338+0.009 0.4140.007 | 0.62440.003  0.487 = 0.006

Table 12: Full results for the short-term forecasting task. We compare extensive competitive models
on PEMS datasets. Avg means the average results from all four prediction lengths.

HTMformer iTransformer PatchTST
(Ours) 2024b) 2023

DLinear
2023

FEDformer MPFormer
2022 2025

WPMixer
2025

TimeMixer
2024a

Models

Metric MSE MAElMSE MAE | MSE MAE | MSE MAE | MSE MAE| MSE MAE | MSE MAE | MSE MAE

12 10.067 0.174|0.075 0.184]0.102 0.217|0.122 0.245]0.125 0.251{0.089 0.199{0.093 0.204
24 10.093 0.204]0.115 0.229{0.187 0.298|0.201 0.320|0.152 0.279]0.114 0.225]0.151 0.263
48 10.151 0.261]0.195 0.305{0.278 0.369(0.334 0.428|0.222 0.347|0.186 0.296/0.292 0.373
96 [0.241 0.341{0.340 0.417]0.504 0.516(0.458 0.517|0.325 0.423]0.300 0.393/0.514 0.505

0.107 0.220
0.1850.292
0.375 0.428
0.731 0.625

PEMSO03

| Avg |0.138 0.245 0.181 0.283]0.267 0.350|0.278 0.377]0.206 0.325[0.172 0.278 (0.262 0.336|0.348 0.391

12
24
48
96

0.076 0.183
0.097 0.209
0.146 0.263
0.233 0.342

0.112 0.231
0.187 0.301
0.355 0.422
0.638 0.587

0.147 0.272
0.224 0.340
0.356 0.437
0.453 0.504

0.136 0.263
0.156 0.284
0.226 0.351
0.308 0.417

0.109 0.218
0.138 0.248
0.226 0.326
0.358 0.430

0.095 0.202
0.140 0.249
0.238 0.333
0.394 0.449

0.111 0.223
0.181 0.289
0.343 0411
0.584 0.554

0.126 0.239
0.208 0.312
0.422 0.456
0.794 0.658

PEMS04

| Avg |0.138 0.24910.216 0.3080.323 0.385|0.295 0.388]0.206 0.328|0.207 0.305|0.304 0.369[0.387 0.426

12
24
48
96

0.081 0.187
0.120 0.227
0.198 0.297
0.352 0.401

0.086 0.190
0.135 0.240
0.247 0333
0.486 0.478

0.108 0.225
0.173 0.284
0.341 0.404
0.567 0.534

0.152 0.274
0.246 0.351
0.438 0.469
0.672 0.564

0.175 0.273
0.212 0.307
0.296 0.375
0.463 0.481

0.099 0.205
0.127 0.234
0.219 0.312
0.410 0.434

0.103 0.212
0.174 0.279
0.332 0.396
0.648 0.556

0.117 0.230
0.196 0.302
0.402 0.443
0.854 0.657

PEMSO07

| Avg [0.187 0.278[0.238 0.310]0.297 0.3610.377 0.414|0.286 0.359|0.213 0.296|0.314 0.360[0.392 0.408

v |Countf 15 15| 0 0[O OO OO0 o|O OO O|O0O O

Table 13: Results on short-term time series forecasting are obtained from five random seeds.

Dataset | PEMS03 \ PEMS04 \ PEMS08

Horizon | MSE MAE |  MSE MAE |  MSE MAE

12 0.067 £ 0.000  0.1740.000 | 0.076 +0.000 0.183 40.000 | 0.081+0.002 0.187 = 0.002
24 0.0930.001  0.204 £ 0.000 | 0.097 +0.001  0.209 40.002 | 0.120 +0.001 0.227 = 0.001
48 0.1510.003  0.2610.001 | 0.146 +-0.004 0.263 +0.004 | 0.198 £ 0.002 0.297 = 0.002
96 0.241£0.000 0.341£0.003 | 0.233+0.005 0.342 +0.005 | 0.352+0.006 0.401 = 0.002
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F ADDITIONAL ABLATION STUDIES

To investigate the functional rationale of HTMformer components, we conduct detailed ablation
experiments involving both component replacement and component removal. The detailed results
are reported in Table [T4] of the main text. As all experiments were conducted under identical
configurations, the HTMformer variants are directly comparable to other models.

Effect of the temporal feature extraction module. By comparing iTransformer and HTM-
formerV1, blue numbers are used to denote cases where HTMformerV 1 outperforms iTransformer.
Observations indicate that HTMformerV1 demonstrates improvements in 63/80 cases. By comparing
HTMformerV1 and HTMformerV2, numbers prefixed with an underline indicate that HTMformerV1
outperforms HTMformerV2. Notably, HTMformerV1 performs better in 57/80 cases. Significantly,
on Solar and PEMS datasets lacking timestamps, HTMformerV?2 often exhibits superior performance,
verifying our first hypothesis: 1) The majority of time series features are stored in the temporal
dimension, and the depth of temporal feature mining substantially influences prediction accuracy.

Effect of the multivariate features. Using iTransformer and HTMformerV1 as baselines, we
compare them against iTransformerV3 and HTMformer versions. Red highlighted numbers indicate
cases where the multivariate-integrated versions outperform their original counterparts. Experimental
results show that iTransformerV3 achieves superior performance in 61/80 cases compared to iTrans-
former, while HTMformer outperforms its baseline in 68/80 cases. The gains are particularly evident
on the PEMS datasets, which are derived from public transportation network data characterized
by strong correlations among sensor nodes. This finding corroborates our second hypothesis: 2)
The spatial dimension (multivariate dimension) also contains abundant features, and comprehensive
multivariate feature mining can further reduce errors.

Effect of the hybrid strategy. Among all models and their variants, HTMformer excels in 68/80
cases. This demonstrates the effectiveness of the combination. In most cases, temporal features
are the primary characteristics of time series data, but the correlations between multiple variables
cannot be overlooked. It is of great significance for improving the accuracy of Transformer-based
predictors. Different datasets vary in the depth of temporal and multivariate features. Therefore,
we use a learnable parameter to control the proportion of the two modules, allowing the fusion of
multivariate features to still reduce errors to an extent. In conclusion, the strategy of fusing temporal
features and multivariate features is superior to using either of them alone. This strategy can enhance
the accuracy and scalability of Transformer-based predictors.

G DETAILS OF MODEL EFFICIENCY

For a comprehensive efficiency comparison, we evaluate HTMformer against three highly competitive
baselines, including MultiPatchFormer (Naghashi et al., [2025), WPMixer (Murad et al.,[2025), and
PatchTST (Nie et al., 2023)), across eight datasets. The evaluation considers three key metrics:
training time, GPU memory footprint, and total parameter count, with the input sequence length
fixed at 96 and the prediction length at 192. Moreover, the experimental hardware conditions and
parameter configurations follow those described in Appendix [B] and the best results are marked in
red. The full results are shown in Table|15|(Left) and Table 15| (Right). The training time and GPU
usage serve as an intuitive indicator of total parameter count, so detailed reporting is omitted. Across
all datasets, HTMformer achieves the best training time and GPU memory footprint. Notably, for
high-dimensional datasets, particularly when the number of variate dimensions exceeds one hundred,
HTMformer delivers nearly three times the training speed of the second-best model and requires
only one-third of its memory footprint. Moreover, this advantage becomes increasingly pronounced
as dimensionality grows. This superiority stems from our lightweight design philosophy, in which
HTME avoids overemphasizing temporal feature extraction and HTMformer adopts only a vanilla
Transformer encoder combined with the inverted input strategy.
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Table 14: We compare different variants under different prediction lengths on multiple datasets (MSE
and MAE). The input sequence length is set to 96.

Models HTMformer HTMformerV1l  HTMformerV?2 iTransformer iTransV3 MPFormer
Metric ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE

96 0.157 0.247 | 0.153 0.246 | 0.255 034 | 0.163 0.252 | 0.165 0.262 | 0.159 0.249
192 | 0.171 0.260 | 0.169 0.260 | 0.264 0349 | 0.175 0.263 | 0.184 0278 | 0.171 0.260
ECL 336 | 0.192 0277 | 0.187 0.277 | 0.273  0.357 | 0.282 0.299 | 0.199 0.294 | 0.188 0.277
720 | 0.220 0.304 | 0.227 0.311 0.31 0.384 | 0.357 0348 | 0.231 0.318 | 0.228 0.309

| AVG | 0.185 0272 | 0.184 0.273 | 0275 0357 | 0244 029 | 0.194 0288 | 0.186 0.273

96 0.164 0.209 | 0.169 0.212 | 0.175 0229 | 0.176 0.216 | 0.167 0.167 | 0.168  0.209
192 | 0222 0261 | 0.218 0.256 | 0.223  0.264 | 0.223 0.255 | 0.217 0.256 | 0.213  0.250

Weather | 336 | 0.272 0.290 | 0.275 0.298 | 0.287  0.31 028 0298 | 0.272 0.297 | 0.273  0.293
720 | 0.359 0352 | 0353 0349 | 0364 0358 | 0.357 0.349 | 0.353 0349 | 0.354 0.347

‘AVG 0.254  0.277 ‘ 0.253  0.278 | 0.262  0.29 ‘0.259 0.279 ‘ 0.252  0.267 | 0.252 0.274

96 0.439 0.300 | 0447 0303 | 0.648 0.405 | 0442 0.302 | 0.440 0309 | 0.433 0.290
192 | 0450 0.302 | 0460 0.307 | 0.737 0.438 | 0459 0.308 | 0.457 0.305 | 0.450 0.296
Traffic 336 | 0462 0310 | 0482 0319 | 0.745 0.435 | 0479 0.319 | 0478 0321 | 0.467 0.306
720 | 0.517 0.339 | 0522 0.343 | 0.863 0.484 | 0.516 0.342 | 0.520 0.349 | 0.500 0.326

| AVG | 0467 0312 | 0477 0318 | 0.748 044 | 0474 0317 | 0.473 0321 | 0.462 0.304

96 0.300 0.348 | 0298 0348 | 0.375 0399 | 0.295 0.344 | 0.304 0352 | 0.299 0.350
192 | 0389 0402 | 0.387 0402 | 045 0435 | 0375 0.398 | 0.391 0.406 | 0.384 0.401
ETTh2 336 | 0.409 0408 | 0416 0427 | 0481 0469 | 0436 0435 | 0419 0428 | 0411 0428
720 | 0421 0439 | 0426 0443 | 0471 0474 | 0429 0.447 | 0422 0.438 | 0.430 0.446

‘AVG 0.379  0.399 ‘ 0.381 0.405 | 0.444 0.444 ‘0.383 0.406 ‘ 0.384 0.406 | 0.381 0.406

96 0.199 0.239 | 0209 0.252 | 0.244 0284 | 0.213 0.253 | 0.207 0.249 | 0.203  0.240
192 | 0233 0.263 | 0.238 0.274 | 0277 0306 | 0.242 0.274 | 0.240 0279 | 0.237 0.268
Solar 336 | 0.252 0279 | 0.261 0.292 | 0323 0326 | 0262 029 | 0.256 0.290 | 0.249 0.280
720 | 0.259 0.280 | 0.265 0.295 | 0311 0329 | 027 0.296 | 0.275 0.303 | 0.254 0.283

| AVG | 0235 0265 | 0243 0.278 | 0.288 0311 | 0.246 0278 | 0.244 0.280 | 0.235 0.267

96 0.250 0.343 | 0.304 0393 | 0.302 0363 | 0.337 0.413 | 0.240 0.340 | 0.302 0.395
192 | 0.297 0.378 | 0.353 0.424 | 0373 0422 | 0.374 0.436 | 0.300 0.384 | 0.349 0.428
PMESO3 | 336 | 0.274 0.356 | 0.318 0.388 | 0.32  0.388 | 0.332 0.395 | 0.286 0.365 | 0.313 0.388
720 | 0336 0.401 | 0.387 0.438 | 0409 044 | 0397 044 | 0352 0414 | 0383 0.441

‘AVG 0.289  0.369 ‘ 0.340 0.410 | 0.351 0.403 ‘ 036 0421 ‘ 0.294  0.375 | 0.336  0.413

96 0.226  0.335 | 0364 0433 | 0236 0348 | 0.387 0.446 | 0.235 0.344 | 0.356 0.428
192 | 0.286 0.383 | 0.406 0.406 | 0.326 0.413 | 0429 0473 | 0.307 0.395 | 0.398 0.459
PMES04 | 336 | 0.286 0.372 | 0.359 0.417 | 0312 0398 | 0.369 0.426 | 0.297 0378 | 0.348 0413
720 | 0.338 0414 | 0436 0471 | 0.387 0.451 044 0476 | 0362 0428 | 0.423 0.467

| AVG | 0284 0.376 | 0.391 0431 | 0.315 0402 | 0406 0455 | 0.300 0.386 | 0.381 0.441

96 0.365 0.409 | 0469 0.461 | 0401 0416 | 0477 047 | 0338 0.388 | 0.406 0.437
192 | 0.513 0462 | 0.612 0.507 | 0.567 0.481 | 0.627 0.518 | 0.487 0.444 | 0.539 0.479
PMESO08 | 336 | 0.530 0435 | 0.606 0471 | 0.567 0452 | 0.599 0472 | 0.516 0.425 | 0.538 0.444
720 | 0.624 0487 | 0.692 0531 | 0.697 0512 | 0.691 0.532 | 0.600 0.479 | 0.603 0.489

‘ AVG ‘ 0.508  0.448 ‘ 0.594  0.492 ‘ 0.558  0.465 ‘ 0.598  0.498 ‘ 0.485 0.434 ‘ 0.521  0.462

Table 15: Comparison of training time (s \iter) and GPU memory footprint (MB).

Datasets HTMFormer|MPFormer| WPMixer|PatchTST Datasets| HTMFormer|MPFormer| WPMixer|PatchTST
Models Ours 2025 2025 2023 Models Ours 2025 2025 2023

ECL 0.1004 0.3319 | 0.4143 | 0.5088 ECL 1623.47 7471.94 13784.07| 7195.99
Weather|  0.0282 0.0320 | 0.0392 | 0.0292 Weather 151.83 584.33 | 651.45 | 538.76

Traffic 0.2682 0.9648 | 1.2374 | 1.0294 Traffic 6221.31 20860.23 |29560.07|19152.58
ETTh2 0.0199 0.0279 | 0.0183 | 0.0190 ETTh2 102.48 265.89 | 455.10 | 430.54

Solar 0.0502 0.1435 | 0.1745 | 0.2200 Solar 647.04 3219.13 | 5970.26 | 3130.73
pems03 0.0982 0.3868 | 8344.82 | 0.5797 pems03 1849.57 8344.82 | 8015.67 | 8015.67
pems04 0.1514 0.5801 | 0.3894 | 0.4857 pems04 1536.60 7141.78 [13195.91| 6882.86
pems07 0.0915 0.3108 | 0.2154 | 0.2552 pems07 778.26 3979.58 | 7369.67 | 3869.06
AVG 0.1010 0.3472 | 0.3849 | 0.3909 AVG 1613.82 6483.46 |10125.27| 6152.02
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H HYPERPARAMETER SENSITIVITY

We assess the sensitivity of HTMformer to variations in key hyperparameters, including the learning
rate [r, the number of Transformer blocks L, the FCN dimension K, and the hidden dimension D of
the variate tokens. This study can provide guidance for hyperparameter selection of HTMformer in
practical applications. As shown in Figure[7} our analysis leads to the following key observations:
Increasing hyperparameter values does not necessarily translate into improved forecasting accuracy.
The model attains its best performance on most datasets when configured with [ = 0.0005, L = 2,
K =1024, and D = 512.

Learning Rate Block Number
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w  — D G | w —
203" 2 0.34 * = —e
0.2 1 021
0.001 0.0005 0.0001 S5e-05 1 2 4
FCN Dimension Hidden Dimension
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w — w ° —»
€031 * - —*| Lo3{" * * .
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= - ! —o — o — o
256 512 1024 2048 256 512 1024 2048
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0.35 - .-___“‘“——-.L * —e 0.35 .—-__—‘.————.-___.
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Figure 7: Hyperparameter sensitivity with respect to Ir, L, K, and D . All results are obtained using
a lookback window of 7" = 96 time steps and a forecast horizon of S = 96 time steps.
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I VISUALIZATION OF PREDICTION RESULTS

We visualize HTMformer’s ability to predict trends across various time series datasets, including ECL,
Traffic, Solar-Energy, Weather, and PEMS (PEMS03, PEMS04 and PEMSO0S), as shown in Figures E]
to[T5] Each example uses a 96-step input to generate 96-step predictions. In the visualizations, the
orange lines indicate the ground truth values, and the blue lines show the model’s predictions. It
accurately captures the cyclical patterns and oscillatory behaviors, and successfully forecasts the
overall directional trends.

To assess the performance of various models, we perform a qualitative comparison by visualizing
the final forecasting results derived from two representative datasets (Weather and ETTh2). Among
the various models, HTMformer exhibits superior or comparable performance in predicting the most
series variations. Prediction showcases are listed in Figure[T6|and Figure

J DISCUSSION ON TRANSFORMER-BASED PREDICTORS

Recent studies (Lu et al.| [2023; [Li et al., |2023b) have found that Channel Dependence ideally
gains from higher capacity, while Channel Independence can significantly enhance performance
due to sample scarcity. In time series forecasting, an increasing number of models employ Channel
Independence (Nie et al.| |2023)), as most current forecasting benchmarks are not sufficiently large.
These models treat time series variates independently and utilize a shared backbone, achieving good
performance. However, Channel Independence inevitably overlooks the multivariate correlations that
exist in most datasets, resulting in the loss of some information. We believe that making variates
independent is desirable, but multivariate correlations should not be ignored. However, previous
improvements to models have mainly focused on extracting features in the temporal dimension.
Excessive extraction of temporal features does not further improve prediction accuracy, but rather
significantly increases computational overhead.

Notably, as demonstrated in both the introduction and ablation studies of this paper. The main
reason why traditional Transformer-based predictors encounter performance bottlenecks is that the
embedding model extracts only limited effective information from the sequence, which in turn
affects the performance of subsequent models. Due to the inherent limitations of Transformer-based
predictors, simply enlarging the input sequence length cannot further enhance accuracy. Constructing
an embedding model that deeply extracts sequence information can effectively address this problem.
Therefore, we propose a novel strategy, specifically extracting multivariate features in the embedding
layer and using them to complement temporal features. This approach incorporates multivariate
correlations, thereby further extracting effective information from the sequence. Moreover, it does
not affect the subsequent attention mechanism to utilize Channel Independence.

We find that extracting local patterns in time series through patching and convolution, together with
capturing long-term dependencies using linear layers, is sufficient for effectively modeling temporal
features. For Transformer-based predictors, this is sufficient to extract temporal representations, and
it is unnecessary to employ attention mechanisms to model temporal correlations.

Graph Convolutional Networks (GCNs) typically construct an adjacency matrix to represent multivari-
ate correlations (Kipf & Welling, [2017; Bruna et al.| |2014). However, the adjacency matrix is often
non-learnable. Although the physical locations of sensors are relatively fixed, the correlations among
variables are not necessarily constant, which severely affects the performance of GCNs. Introducing
a learnable adjacency matrix (Wang et al.| 2019) can substantially increase computational overhead
and lead to model instability (Wu et al.l 2020a} [Franceschi et al.,[2019). Therefore, this paper adopts
a "weak learning" strategy, whereby multivariate correlations are simply extracted and incorporated
as features into tokens to correct temporal features.

We validate the effectiveness and scalability of the proposed HTME strategy by integrating it into
various Transformer variants. HTME can be seamlessly combined with various attention mechanisms
across a wide spectrum of time series forecasting tasks to achieve optimal performance. Our model
demonstrates superior performance in short-term sequence forecasting. On the selected datasets,
PEMS03, PEMS04, and PEMSO08, our model achieves the best results compared with the second-best
methods. In long-term sequence forecasting, our model ranks first or second on eight selected datasets
in most cases. This demonstrates the effectiveness of the HTME strategy in advancing time series
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forecasting. We also compared the Inference Time, GPU Memory Footprint, and Model Parameters of
HTMformer with those of three models that have good forecasting performance: MultiPatchFormer,
WPMixer, and PatchTST. On the selected datasets, HTMformer achieves superior or equivalent
performance with only about 0.2-0.45 times the memory of the three models, and is two to three
times faster. These results suggest that the HTME model is highly flexible for deployment across a
broader spectrum of devices and can better accommodate real-time forecasting tasks, thereby creating
greater potential for practical applications and future scalability.
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Figure 8: Examples of forecasts for the ECL dataset with a 96-step predictions.
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Figure 9: Examples of forecasts for the Traffic dataset with a 96-step predictions.

01z — Prediction — prediction — Prediction — prediction
— GrounaTuth 00 — GroundTruth — GroundTruth 0201 — GroundTruth
014
010
015
008
010
006
005
004
002 000
000 -005
0 25 so 75 100 125 150 175 200 0 25 s0 75 100 125 150 175 200 o 25 so 75 100 125 10 175 200 0 25 so 75 100 125 150 155 200
014
— Prediction — prediction 0.050{ — Prediction — prediction
007 —— GroundTruth — GroundTruth — GroundTruth 016 — GroundTruth
006
005
004
003
002
001 o
O 25 S0 75 100 125 150 175 200 0 25 so 75 100 125 150 175 200 0 25 s0 75 100 125 150 175 200 0 25 so 75 100 125 150 175 200

Figure 10: Examples of forecasts for the Weather dataset with a 96-step predictions.
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Figure 14: Examples of forecasts for the PEMS04 dataset with a 96-step predictions.
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Figure 15: Examples of forecasts for the PEMSO0S8 dataset with a 96-step predictions.
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Figure 16: Visualization of results on the Weather dataset across all selected models.
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