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Abstract

The success of Large Language Models
(LLMs) in other domains has raised the ques-
tion of whether LLLMs can reliably assess and
manipulate the readability of text. We approach
this question empirically. First, using a pub-
lished corpus of 4,724 English text excerpts, we
find that readability estimates produced “zero-
shot” from GPT-4 Turbo exhibit relatively high
correlation with human judgments (r = 0.76),
out-performing estimates derived from tradi-
tional readability formulas. Then, in a pre-
registered human experiment (N = 59), we
ask whether Turbo can reliably make text eas-
ier or harder to read. We find evidence to sup-
port this hypothesis, though considerable vari-
ance in human judgments remains unexplained.
We conclude by discussing the limitations of
this approach, including concerns about data
contamination, as well as the validity of the
“readability” construct and its dependence on
context, audience, and goal.

1 Introduction

The ease with which a text can be read or under-
stood is called readability. Measuring and mod-
ifying readability has been a topic of interest for
decades (Lively and Pressey, 1923; Flesch, 1948;
Crossley et al., 2023b), with potential applications
ranging from selecting and curating educational
materials (Solnyshkina et al., 2017; Creutz, 2024;
Liu and Lee, 2023) to making legal, medical, or
other technical documents more accessible (Ghosh
et al., 2022; Rosati, 2023; Chen et al., 2023). Meth-
ods for assessing readability, in turn, include: tests
of reading comprehension, formulas incorporat-
ing basic text features (Lively and Pressey, 1923;
Flesch, 1948) or psycholinguistic variables (Kyle
and Crossley, 2015), and approaches using super-
vised learning to estimate readability from labeled
text data (Schwarm and Ostendorf, 2005; Martinc
etal., 2021).

Recent advances in Large Language Models
(LLMs) (Brown et al., 2020) has led to interest in
exploring the capacities and applications of these
systems—including measuring and modifying the
readability of text (Ribeiro et al., 2023; Li et al.,
2023; Crossley et al., 2023a; Patel et al., 2023;
Farajidizaji et al., 2023). In the current work, we
approach this question empirically.

In Section 2, we describe in more detail past
work on measuring and modifying readability of
text automatically. We then empirically assess the
ability of a state-of-the-art LLM (GPT-4 Turbo)
to measure (Section 3) and modify (Section 4)
the readability of text. Finally, we conclude by
discussing the implications of the current work
(Section 5), as well as its limitations (Section 6)—
including the construct of “readability” itself.

2 Related work

As described in Section 1, efforts to quantify the
readability of text date back at least a century
(Lively and Pressey, 1923). For many decades,
approaches relied on hand-crafted features thought
to correlate with (or be causally implicated in) text
readability, such as the average length of words
or sentences (Flesch, 1948). As Vajjala (2022) de-
scribe, dominant approaches have gradually shifted
towards treating readability assessment as a super-
vised machine learning problem, i.e., training a
system to produce representations that facilitate the
prediction of “gold standard “human readability
judgments—though researchers continue to test the
viability of hand-crafted features as an alternative
or complementary approach (Deutsch et al., 2020;
Wilkens et al., 2024). Pre-trained language mod-
els seem potentially well-suited to this task, and
indeed, past work (Crossley et al., 2023b) suggests
that fine-tuning these models can produce estimates
that align closely with human judgments of read-
ability.



Modifying readability has also been a topic of
considerable interest, with most research focusing
on making text easier to read, e.g., for journal ab-
stracts (Li et al., 2023) or math assessments (Patel
et al., 2023). Cardon and Bibal (2023) provide
a useful overview of the distinct operations used
in Automatic Text Simplification (ATS), includ-
ing splitting up long sentences (Nomoto, 2023)
and deleting or inserting individual words. As
with work on measuring readability, this research
has gradually shifted from explicit, rule-based ap-
proaches to systems that “learn” appropriate trans-
formations using an annotated corpus (Cardon and
Bibal, 2023), sometimes tailored with psycholin-
guistic features (Qiao et al., 2022).

Most relevantly, recent research has used prompt
engineering approaches to ask whether Large Lan-
guage Models (LLMs) can modify (Farajidizaji
et al., 2023; Ribeiro et al., 2023; Liu et al., 2023;
Creutz, 2024), with some studies even asking
whether text cacn be modified to some target read-
ability level, e.g., a target Flesch score (Flesch,
1948). Even with “zero-shot” prompting (i.e., no
examples provided), LLMs appear to be surpris-
ingly successful at modifying text readability in
the desired direction—though not necessarily to
the desired text level (Liu et al., 2023). In some
cases, a residual correlation is found between the
readability of the original text and the modified text
(Farajidizaji et al., 2023).

3 Study 1: Measuring Readability

In Study 1, we asked whether a state-of-the-art
LLM could be used to estimate the readability of
text excerpts. We adopted an empirical approach to
this question: given a corpus of human readability
estimates (Crossley et al., 2023b), how well can an
LLM equipped solely with instructions and a defi-
nition of readability produce outputs that correlate
reliably with human judgments? We focus on the
quality of LLM outputs generated “zero-shot” (i.e.,
without any labeled examples in the prompt). This
study this mirrors other recent work (Dillion et al.,
2023; Trott, 2024a; Aher et al., 2023; Gilardi et al.,
2023) using LL.Ms for zero-shot annotation of text
data.

3.1 Methods

3.1.1 CLEAR Dataset

We used the CommonLit Ease of Readability
(CLEAR) Corpus (Crossley et al., 2023b), which

contains human estimates of readability for 4,724
text excerpts. The CLEAR Corpus was produced
by sampling text excerpts (between 140-200 words)
from various databases (e.g., Project Gutenberg). It
includes fiction and non-fiction, and spans a range
from 1875 to 2020. Excerpts were normed by ask-
ing a sample of teachers to rate pairs of items for
their relative readability. These pairwise judgments
were then aggregated to create a readability index
for each individual passage.

3.1.2 Model

Our primary goal was assessing the reliability of
using a state-of-the-art LLM in estimating read-
ability. To this end, we used GPT-4 Turbo, a pro-
prietary LLM produced by OpenAl. We accessed
Turbo using the OpenAl Python API (model name
= gpt-4-1106-preview). Because Turbo is a closed-
source model, it is unclear how many parameters
the model has or how much data it was trained on.

3.1.3 Procedure

Turbo was provided with a system prompt (“You
are an experienced teacher, skilled at identifying
the readability of different texts.”). Then, each
text excerpt was presented to Turbo in a separate
prompt (i.e., rather than in succession), along with
instructions explaining that the goal was to rate the
excerpt for how easy it was to read and understand,
on a scale from 1 (very challenging to understand)
to 100 (very easy to understand); the exact instruc-
tions provided to Turbo can be found in Appendix
A.1. Turbo’s responses were produced using a tem-
perature of 0, with a maximum number of tokens of
3. Response strings were then converted to numeric
values in Python.

3.2 Results

We first asked how well Turbo’s ratings predicted
human readability scores from the CLEAR dataset
(Crossley et al., 2023b). A linear regression model
predicting Human Readability from GPT-4 Turbo
Ratings exhibited good fit (R? = 0.58). Turbo’s
ratings were positively correlated with Human
Readability (r = 0.76) see also Figure 1. For com-
parison, the correlation between two random splits
within the CLEAR corpus was only 7 = 0.63.

We then compared the predictive success of
Turbo’s ratings to several psycholinguistic vari-
ables that past work (Kyle et al., 2018) has found
to be correlated with judgments about readability:
log word frequency (Brysbaert and New, 2009),
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Figure 1: Relationship between ratings elicited by
GPT-4 Turbo and average human readability judgments
(R? = 0.58).

word concreteness (Brysbaert et al., 2014), and
word age of acquisition (Kuperman et al., 2012).
For each variable, we calculated the average across
all words in a given passage that occurred in the
relevant dataset. A linear model including all
three psycholinguistic predictors explained approx-
imately 36% of the variance in human readability
judgments (R? = 0.36). Each variable was sig-
nificantly related: frequency [ = 0.82,SE =
0.13,p < .001], concreteness [ = 1.76, SE =
0.11,p < .001], and age of acquisition [ =
—0.56, SE = 0.06,p < .001]. Thus, psycholin-
guistic properties of words in a passage are relevant
for predicting readability judgments, but under-
perform ratings elicited from GPT-4 Turbo.!

We also considered several other potential cor-
relates of readability included in the CLEAR cor-
pus for each excerpt (see Figures 2 and 4 for a
summary). Across all measures, Turbo’s ratings
were the most correlated with human judgments
(r =0.76,p < .001). We also compared the rela-
tive predictive power of each measure by entering
them all as predictors in a random forest regres-
sion and visualizing the feature importance scores
assigned to each predictor.”> All measures were
z-scored before fitting the model. As depicted in
Figure 2, Turbo’s ratings were assigned the highest
feature importance (see A.2 for an analogous result
using LASSO regression).

4 Study 2: Modifying Readability

In Study 2, we asked whether a state-of-the-art
LLM could successfully modify (as opposed to

'Of course, taking the average of these variables across
an entire passage is a relatively coarse measure and likely
represents a lower-bound on their predictive efficacy.

2No maximum depth was used, and the random state was
set to 0.
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Figure 2: Feature importance scores for each predictor,
as determined using a random forest regression.

simply measure) the readability of texts. We ap-
proached this question in the following way: given
instructions to make a text excerpt easier or harder,
does an LLM produce a modified version that an
independent pool of human judges rate as easier or
harder than the original? We also asked whether au-
tomated measures of readability (including ratings
elicited from Turbo) co-varied with the experimen-
tal manipulation. This study was pre-registered on
the Open Science Framework (OSF).?

4.1 Methods
4.1.1 Materials

To make this question empirically tractable, we se-
lected a random sample of 100 excerpts from the
original CLEAR corpus. Each excerpt was then
presented to GPT-4 Turbo twice, with two differ-
ent sets of instructions asking Turbo to make the
excerpt easier or harder to read (exact prompting
and instructions found in Appendix A.1). As in
Study 1, Turbo was first provided with a system
prompt (“You are an experienced writer, skilled
at rewriting texts.”); a temperature of 0 was used,
and the maximum number of tokens was set to the
number of tokens in the original excerpt, plus a
“buffer” of 5 tokens. Additionally, we specified that
the modified version should be of approximately
the same length as the original.

This resulted in 300 items altogether. For the
human study, these items were assigned to 6 lists
using a Latin Square design, where each list had
approximately 50 items. Note that in some cases,
the modified version produced by Turbo cut-off in
mid-sentence; we further modified these excerpts
by removing the final sentence fragment. The ex-
periment was designed on the Gorilla experimental

3A link to the pre-registration, as well as all code and data

required to reproduce the analyses, will be provided after the
anonymity period is over.



design platform (Anwyl-Irvine et al., 2018).

4.1.2 Participants

Our target IV was 60 participants (10 per list). We
anticipated a non-zero exclusion rate, so we in-
tended to recruit 70 participants via Prolific; due
to an error in the recruiting platform, we recruited
only 69. As per our pre-registration, we excluded
participants whose readability ratings for the orig-
inal text excerpts exhibited a correlation with the
gold standard was r < .1; this resulted in the re-
moval of 10 participants. Participants were paid
$6.00 and the median completion time was 34 min-
utes and 21 seconds (an average rate of $10.48 per
hour). In the final pool of participants, 34 partici-
pants identified as female (22 male, 2 non-binary,
and 1 preferred not to answer); the average self-
reported age was 40.77 (SD = 14).

4.1.3 Procedure

Each participant rated the readability of a series of
50 text excerpts on a scale from 1 (very challenging
to understand) to 5 (very easy to understand). Par-
ticipants were instructed to consider factors such
as “sentence structure, vocabulary complexity, and
overall clarity”’; they were also reminded to try to
focus on the readability of the passage itself, as
opposed to the complexity of the topic.

4.2 Results

We carried out three pre-registered analyses in R us-
ing the Ime4 package (Bates, 2011); see Appendix
A.3 for more details. Human readability judgments
were predicted by the contrast between Easy and
Hard [x*(1) = 97.58,p < .001], between Easy
and Original [x*(1) = 32.4,p < .001], and be-
tween Hard and Original [x*(1) = 74.75,p <
.001]. As depicted in Figure 3, excerpts in the
Easier condition were rated as the most readable
(M = 4.48,5D = 0.8), excerpts in the Harder
condition were rated as the least readable (M =
2.5, 5D = 1.25), with excerpts in the Original con-
dition between the two (M = 3.97,SD = 1.13).

5 Discussion

Our primary question was whether state-of-the-art
LLMs could be used to measure and modify the
readability of a text excerpt. The first question was
operationalized by assessing the ability of GPT-4
Turbo to produce readability ratings that correlated
with a gold standard corpus (Crossley et al., 2023b).
Turbo’s ratings exhibited a strong correlation with
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Figure 3: Distribution of human readability judgments
for each text condition.

the gold standard ( = 0.76); consistent with other
recent work using LL.Ms for text annotation (Trott,
2024b), this correlation was higher than the correla-
tion between random splits of human ratings (Cross
et al., 2023). Further, Turbo’s ratings were the best
predictor of human readability judgments of all the
variables tested (see Study 3). The second question
was operationalized by asking Turbo to produce
easier or harder versions of 100 sample excerpts
from the same corpus (Crossley et al., 2023b). In
a pre-registered human study, participants consis-
tently rated the easier versions as easier to read,
and the harder versions as harder to read.

As with other recent work (Farajidizaji et al.,
2023; Liu et al., 2023; Ribeiro et al., 2023), these
results provide a proof-of-concept that LLMs may
be useful for measuring and modifying text read-
ability, at least as operationalized here. Unlike past
work (Ribeiro et al., 2023; Farajidizaji et al., 2023),
we do not investigate the question of modification
to target readability levels, though we do collect
novel human judgments to validate the success of
GPT-4 Turbo’s modifications (Study 4). Of course,
considerable open questions about the viability of
this approach remain. These include: uncertainty
about the quality of the modified texts (Liu et al.,
2023), which we did not assess here; the efficacy
of further prompt engineering; and the construct
validity of readability as a target measure. These
questions are all explored in more detail in the Lim-
itations section below.

6 Limitations

One limitation, particularly of Study 2, is scope:
because we planned to collect human annotations
for each excerpt, we considered only 100 text ex-
cerpts, and compared the performance of only one
model (GPT-4 Turbo). The results of this study
can be seen as a proof-of-concept, which future



work can build on with larger samples and more
sophisticated prompt engineering techniques.

A further limitation of Study 2 is that we did
not assess the quality of the modified excerpts. In
principle, then, some of the modified versions may
not adequately summarize the target text. Evalu-
ating the quality of summaries is notoriously diffi-
cult (Wang et al., 2019), though recent work (Liu
et al., 2023) has made use of automated metrics
like BERTScore (Zhang et al., 2020). Future work
would benefit from another human study that asks
directly about the quality of the modified texts.

A final limitation is the question of what the
construct of readability means in the first place,
and how best to measure it. Construct validity—
whether a test measures what it was designed to
measure—is by no means a new challenge for work
in NLP generally (Raji et al., 2021) or readability
specifically (Crossley et al., 2008). “Readability”
may not be a unitary construct; different stakehold-
ers likely construe readability in different ways
depending on their goal (e.g., making a product
manual accessible vs. curating educational ma-
terials) and audience (e.g., school-aged children
vs. professionals). Further, different formulas or
automated metrics emphasize different properties
of a text, making implicit or explicit assumptions
about the underlying construct. The current work
relied on human judgments of readability as a “gold
standard”, using both existing corpora (Crossley
et al., 2023b) and novel data (Study 2). By these
metrics, using Turbo to measure and modify read-
ability was modestly successful. Yet the ambiguity
of the construct itself makes it challenging to deter-
mine whether these results generalize to other texts,
contexts, goals, or audiences. Thus, future work
could benefit from additional research on “bench-
marking” readability itself and whether different
benchmarks are needed for different construals of
readability.

7 Ethical Considerations

All data collected from human participants has
been fully anonymized before analysis or publi-
cation.

One potential risk with research on automatic
text simplification is that tools will be deployed
in various applied settings (e.g., education) before
they are ready. As we discussed in the Limitations
section (Section 6), we believe there are a number
of open questions remaining with this kind of re-

search and do not intend for these results to signal
that LLMs could and should be used for measuring
and modifying readability in an applied domain at
this time.
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A Example Appendix

A.1 Instructions for Study 1 and Study 2

In this section, we report the exact prompts used
to elicit readability judgments from GPT-4 Turbo.
Note that symbols like “EXCERPT” indicate that
the text of the excerpt was inserted in this section
of the prompt.

Study 1 Instructions:

Read the text below. Then, indicate the
readability of the text, on a scale from 1
(extremely challenging to understand) to
100 (very easy to read and understand).
In your assessment, consider factors such
as sentence structure, vocabulary com-
plexity, and overall clarity.

<Text>:EXCERPT</Text>

On a scale from 1 (extremely challeng-
ing to understand) to 100 (very easy to
read and understand), how readable is
this text?. Please answer with a single
number.

Study 2 Instructions:

Read the passage below. Then, rewrite
the passage so that it is easier/harder to
read.

When making the passage more/less
readable, consider factors such as sen-
tence structure, vocabulary complexity,
and overall clarity. However, make sure
that the passage conveys the same con-
tent.

Finally, try to make the new version ap-
proximately the same length as the origi-
nal version.

<Text>:EXCERPT</Text>

As described in the instructions, please
make this passage easier/harder to read,
while keeping the length the same.

A.2 Additional Statistical Analyses for Study
1

In this section, we report on the results of addi-
tional statistical analyses conducted on the Study
1 dataset. First, we include a correlation matrix
(Figure 4) representing the relationship between
the predictors considered; note that ratings elicited
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Figure 4: Correlation matrix between all the variables
considered in Study 1. Correlation coefficients have all
been transformed to absolute values for easier compari-
son.
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Figure 5: Regularized coefficients using Lasso regres-
sion.

from Turbo were the most correlated with human
judgments.

Additionally, to expand on the random for-
est regression analysis conducted in the primary
manuscript, we fit a Lasso regression model using
the z-scored predictors. We first identified the opti-
mal o parameter using cross-validation, then refit
the model on the entire dataset.* The regression
coefficients are depicted in Figure 5; as with the
results of the random forest regression, Turbo’s
ratings have the largest absolute magnitude.

A.3 Additional Analysis Details for Study 2

In the case of fitting mixed effects models, we be-
gan with maximal random effects structure and
reduced as needed for model convergence (Barr
et al., 2013). Nested model comparisons were con-
ducted by comparing a full model to a reduced

“Because our primary interest was in comparing the rela-
tive magnitude of coefficients, rather than analyzing model fit,
we did not use cross-validation to analyze overall model fit.

GPT_rating_z + °
num_words_z *
SMOG_z o

ARI_z e |

Predictor

Flesch_z .
versionOriginal o

versionHarder °

05 0.0 05
Estimate

Figure 6: Coefficients in a mixed model predicting hu-
man readability judgments. Both text condition and
Turbo’s ratings exhibit independent effects.
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Figure 7: Comparison of automated readability scores
for the modified text excerpts.

model omitting only the variable of interest, using
a log-likelihood ratio test (LRT).

In an exploratory analysis, we asked whether rat-
ings elicited by GPT-4 Turbo were also predictive
of human judgments. A mixed model predicting
human readability from both Condition and Turbo
rating (along with control variables for other read-
ability metrics) revealed significant effects of each
variable, suggesting they explained independent
variance. The coefficients for this exploratory anal-
ysis are depicted in Figure 6).

We also calculated the readability of the mod-
ified texts using automated readability formulas,
e.g., the Flesch Reading Score (Flesch, 1948). We
then asked whether the modified versions varied in
the expected direction along each metric in ques-
tion, according to whether Turbo was instructed to
make the text easier or harder to read. We found
that the modified versions varied in the expected di-
rection according to automated readability metrics
as well (see Figure 7).

Finally, consistent with (Farajidizaji et al., 2023),
we found a consistent correlation between the read-
ability of an original text excerpt and the modified
version. That is, Turbo successfully modified texts
to be easier or harder to read, depending on the
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Figure 8: Comparison of Flesch readability for the orig-
inal version and modified version, according to Turbo’s
instructions.

instructions, but the readability of the modified ex-
hibited a residual correlation with the original text’s
readability (see Figure 8).
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