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Abstract

The success of Large Language Models001
(LLMs) in other domains has raised the ques-002
tion of whether LLMs can reliably assess and003
manipulate the readability of text. We approach004
this question empirically. First, using a pub-005
lished corpus of 4,724 English text excerpts, we006
find that readability estimates produced “zero-007
shot” from GPT-4 Turbo exhibit relatively high008
correlation with human judgments (r = 0.76),009
out-performing estimates derived from tradi-010
tional readability formulas. Then, in a pre-011
registered human experiment (N = 59), we012
ask whether Turbo can reliably make text eas-013
ier or harder to read. We find evidence to sup-014
port this hypothesis, though considerable vari-015
ance in human judgments remains unexplained.016
We conclude by discussing the limitations of017
this approach, including concerns about data018
contamination, as well as the validity of the019
“readability” construct and its dependence on020
context, audience, and goal.021

1 Introduction022

The ease with which a text can be read or under-023

stood is called readability. Measuring and mod-024

ifying readability has been a topic of interest for025

decades (Lively and Pressey, 1923; Flesch, 1948;026

Crossley et al., 2023b), with potential applications027

ranging from selecting and curating educational028

materials (Solnyshkina et al., 2017; Creutz, 2024;029

Liu and Lee, 2023) to making legal, medical, or030

other technical documents more accessible (Ghosh031

et al., 2022; Rosati, 2023; Chen et al., 2023). Meth-032

ods for assessing readability, in turn, include: tests033

of reading comprehension, formulas incorporat-034

ing basic text features (Lively and Pressey, 1923;035

Flesch, 1948) or psycholinguistic variables (Kyle036

and Crossley, 2015), and approaches using super-037

vised learning to estimate readability from labeled038

text data (Schwarm and Ostendorf, 2005; Martinc039

et al., 2021).040

Recent advances in Large Language Models 041

(LLMs) (Brown et al., 2020) has led to interest in 042

exploring the capacities and applications of these 043

systems—including measuring and modifying the 044

readability of text (Ribeiro et al., 2023; Li et al., 045

2023; Crossley et al., 2023a; Patel et al., 2023; 046

Farajidizaji et al., 2023). In the current work, we 047

approach this question empirically. 048

In Section 2, we describe in more detail past 049

work on measuring and modifying readability of 050

text automatically. We then empirically assess the 051

ability of a state-of-the-art LLM (GPT-4 Turbo) 052

to measure (Section 3) and modify (Section 4) 053

the readability of text. Finally, we conclude by 054

discussing the implications of the current work 055

(Section 5), as well as its limitations (Section 6)— 056

including the construct of “readability” itself. 057

2 Related work 058

As described in Section 1, efforts to quantify the 059

readability of text date back at least a century 060

(Lively and Pressey, 1923). For many decades, 061

approaches relied on hand-crafted features thought 062

to correlate with (or be causally implicated in) text 063

readability, such as the average length of words 064

or sentences (Flesch, 1948). As Vajjala (2022) de- 065

scribe, dominant approaches have gradually shifted 066

towards treating readability assessment as a super- 067

vised machine learning problem, i.e., training a 068

system to produce representations that facilitate the 069

prediction of “gold standard ”human readability 070

judgments—though researchers continue to test the 071

viability of hand-crafted features as an alternative 072

or complementary approach (Deutsch et al., 2020; 073

Wilkens et al., 2024). Pre-trained language mod- 074

els seem potentially well-suited to this task, and 075

indeed, past work (Crossley et al., 2023b) suggests 076

that fine-tuning these models can produce estimates 077

that align closely with human judgments of read- 078

ability. 079
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Modifying readability has also been a topic of080

considerable interest, with most research focusing081

on making text easier to read, e.g., for journal ab-082

stracts (Li et al., 2023) or math assessments (Patel083

et al., 2023). Cardon and Bibal (2023) provide084

a useful overview of the distinct operations used085

in Automatic Text Simplification (ATS), includ-086

ing splitting up long sentences (Nomoto, 2023)087

and deleting or inserting individual words. As088

with work on measuring readability, this research089

has gradually shifted from explicit, rule-based ap-090

proaches to systems that “learn” appropriate trans-091

formations using an annotated corpus (Cardon and092

Bibal, 2023), sometimes tailored with psycholin-093

guistic features (Qiao et al., 2022).094

Most relevantly, recent research has used prompt095

engineering approaches to ask whether Large Lan-096

guage Models (LLMs) can modify (Farajidizaji097

et al., 2023; Ribeiro et al., 2023; Liu et al., 2023;098

Creutz, 2024), with some studies even asking099

whether text cacn be modified to some target read-100

ability level, e.g., a target Flesch score (Flesch,101

1948). Even with “zero-shot” prompting (i.e., no102

examples provided), LLMs appear to be surpris-103

ingly successful at modifying text readability in104

the desired direction—though not necessarily to105

the desired text level (Liu et al., 2023). In some106

cases, a residual correlation is found between the107

readability of the original text and the modified text108

(Farajidizaji et al., 2023).109

3 Study 1: Measuring Readability110

In Study 1, we asked whether a state-of-the-art111

LLM could be used to estimate the readability of112

text excerpts. We adopted an empirical approach to113

this question: given a corpus of human readability114

estimates (Crossley et al., 2023b), how well can an115

LLM equipped solely with instructions and a defi-116

nition of readability produce outputs that correlate117

reliably with human judgments? We focus on the118

quality of LLM outputs generated “zero-shot” (i.e.,119

without any labeled examples in the prompt). This120

study this mirrors other recent work (Dillion et al.,121

2023; Trott, 2024a; Aher et al., 2023; Gilardi et al.,122

2023) using LLMs for zero-shot annotation of text123

data.124

3.1 Methods125

3.1.1 CLEAR Dataset126

We used the CommonLit Ease of Readability127

(CLEAR) Corpus (Crossley et al., 2023b), which128

contains human estimates of readability for 4,724 129

text excerpts. The CLEAR Corpus was produced 130

by sampling text excerpts (between 140-200 words) 131

from various databases (e.g., Project Gutenberg). It 132

includes fiction and non-fiction, and spans a range 133

from 1875 to 2020. Excerpts were normed by ask- 134

ing a sample of teachers to rate pairs of items for 135

their relative readability. These pairwise judgments 136

were then aggregated to create a readability index 137

for each individual passage. 138

3.1.2 Model 139

Our primary goal was assessing the reliability of 140

using a state-of-the-art LLM in estimating read- 141

ability. To this end, we used GPT-4 Turbo, a pro- 142

prietary LLM produced by OpenAI. We accessed 143

Turbo using the OpenAI Python API (model name 144

= gpt-4-1106-preview). Because Turbo is a closed- 145

source model, it is unclear how many parameters 146

the model has or how much data it was trained on. 147

3.1.3 Procedure 148

Turbo was provided with a system prompt (“You 149

are an experienced teacher, skilled at identifying 150

the readability of different texts.”). Then, each 151

text excerpt was presented to Turbo in a separate 152

prompt (i.e., rather than in succession), along with 153

instructions explaining that the goal was to rate the 154

excerpt for how easy it was to read and understand, 155

on a scale from 1 (very challenging to understand) 156

to 100 (very easy to understand); the exact instruc- 157

tions provided to Turbo can be found in Appendix 158

A.1. Turbo’s responses were produced using a tem- 159

perature of 0, with a maximum number of tokens of 160

3. Response strings were then converted to numeric 161

values in Python. 162

3.2 Results 163

We first asked how well Turbo’s ratings predicted 164

human readability scores from the CLEAR dataset 165

(Crossley et al., 2023b). A linear regression model 166

predicting Human Readability from GPT-4 Turbo 167

Ratings exhibited good fit (R2 = 0.58). Turbo’s 168

ratings were positively correlated with Human 169

Readability (r = 0.76) see also Figure 1. For com- 170

parison, the correlation between two random splits 171

within the CLEAR corpus was only r = 0.63. 172

We then compared the predictive success of 173

Turbo’s ratings to several psycholinguistic vari- 174

ables that past work (Kyle et al., 2018) has found 175

to be correlated with judgments about readability: 176

log word frequency (Brysbaert and New, 2009), 177
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Figure 1: Relationship between ratings elicited by
GPT-4 Turbo and average human readability judgments
(R2 = 0.58).

word concreteness (Brysbaert et al., 2014), and178

word age of acquisition (Kuperman et al., 2012).179

For each variable, we calculated the average across180

all words in a given passage that occurred in the181

relevant dataset. A linear model including all182

three psycholinguistic predictors explained approx-183

imately 36% of the variance in human readability184

judgments (R2 = 0.36). Each variable was sig-185

nificantly related: frequency [β = 0.82, SE =186

0.13, p < .001], concreteness [β = 1.76, SE =187

0.11, p < .001], and age of acquisition [β =188

−0.56, SE = 0.06, p < .001]. Thus, psycholin-189

guistic properties of words in a passage are relevant190

for predicting readability judgments, but under-191

perform ratings elicited from GPT-4 Turbo.1192

We also considered several other potential cor-193

relates of readability included in the CLEAR cor-194

pus for each excerpt (see Figures 2 and 4 for a195

summary). Across all measures, Turbo’s ratings196

were the most correlated with human judgments197

(r = 0.76, p < .001). We also compared the rela-198

tive predictive power of each measure by entering199

them all as predictors in a random forest regres-200

sion and visualizing the feature importance scores201

assigned to each predictor.2 All measures were202

z-scored before fitting the model. As depicted in203

Figure 2, Turbo’s ratings were assigned the highest204

feature importance (see A.2 for an analogous result205

using LASSO regression).206

4 Study 2: Modifying Readability207

In Study 2, we asked whether a state-of-the-art208

LLM could successfully modify (as opposed to209

1Of course, taking the average of these variables across
an entire passage is a relatively coarse measure and likely
represents a lower-bound on their predictive efficacy.

2No maximum depth was used, and the random state was
set to 0.

Figure 2: Feature importance scores for each predictor,
as determined using a random forest regression.

simply measure) the readability of texts. We ap- 210

proached this question in the following way: given 211

instructions to make a text excerpt easier or harder, 212

does an LLM produce a modified version that an 213

independent pool of human judges rate as easier or 214

harder than the original? We also asked whether au- 215

tomated measures of readability (including ratings 216

elicited from Turbo) co-varied with the experimen- 217

tal manipulation. This study was pre-registered on 218

the Open Science Framework (OSF).3 219

4.1 Methods 220

4.1.1 Materials 221

To make this question empirically tractable, we se- 222

lected a random sample of 100 excerpts from the 223

original CLEAR corpus. Each excerpt was then 224

presented to GPT-4 Turbo twice, with two differ- 225

ent sets of instructions asking Turbo to make the 226

excerpt easier or harder to read (exact prompting 227

and instructions found in Appendix A.1). As in 228

Study 1, Turbo was first provided with a system 229

prompt (“You are an experienced writer, skilled 230

at rewriting texts.”); a temperature of 0 was used, 231

and the maximum number of tokens was set to the 232

number of tokens in the original excerpt, plus a 233

“buffer” of 5 tokens. Additionally, we specified that 234

the modified version should be of approximately 235

the same length as the original. 236

This resulted in 300 items altogether. For the 237

human study, these items were assigned to 6 lists 238

using a Latin Square design, where each list had 239

approximately 50 items. Note that in some cases, 240

the modified version produced by Turbo cut-off in 241

mid-sentence; we further modified these excerpts 242

by removing the final sentence fragment. The ex- 243

periment was designed on the Gorilla experimental 244

3A link to the pre-registration, as well as all code and data
required to reproduce the analyses, will be provided after the
anonymity period is over.
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design platform (Anwyl-Irvine et al., 2018).245

4.1.2 Participants246

Our target N was 60 participants (10 per list). We247

anticipated a non-zero exclusion rate, so we in-248

tended to recruit 70 participants via Prolific; due249

to an error in the recruiting platform, we recruited250

only 69. As per our pre-registration, we excluded251

participants whose readability ratings for the orig-252

inal text excerpts exhibited a correlation with the253

gold standard was r < .1; this resulted in the re-254

moval of 10 participants. Participants were paid255

$6.00 and the median completion time was 34 min-256

utes and 21 seconds (an average rate of $10.48 per257

hour). In the final pool of participants, 34 partici-258

pants identified as female (22 male, 2 non-binary,259

and 1 preferred not to answer); the average self-260

reported age was 40.77 (SD = 14).261

4.1.3 Procedure262

Each participant rated the readability of a series of263

50 text excerpts on a scale from 1 (very challenging264

to understand) to 5 (very easy to understand). Par-265

ticipants were instructed to consider factors such266

as “sentence structure, vocabulary complexity, and267

overall clarity”; they were also reminded to try to268

focus on the readability of the passage itself, as269

opposed to the complexity of the topic.270

4.2 Results271

We carried out three pre-registered analyses in R us-272

ing the lme4 package (Bates, 2011); see Appendix273

A.3 for more details. Human readability judgments274

were predicted by the contrast between Easy and275

Hard [χ2(1) = 97.58, p < .001], between Easy276

and Original [χ2(1) = 32.4, p < .001], and be-277

tween Hard and Original [χ2(1) = 74.75, p <278

.001]. As depicted in Figure 3, excerpts in the279

Easier condition were rated as the most readable280

(M = 4.48, SD = 0.8), excerpts in the Harder281

condition were rated as the least readable (M =282

2.5, SD = 1.25), with excerpts in the Original con-283

dition between the two (M = 3.97, SD = 1.13).284

5 Discussion285

Our primary question was whether state-of-the-art286

LLMs could be used to measure and modify the287

readability of a text excerpt. The first question was288

operationalized by assessing the ability of GPT-4289

Turbo to produce readability ratings that correlated290

with a gold standard corpus (Crossley et al., 2023b).291

Turbo’s ratings exhibited a strong correlation with292

Figure 3: Distribution of human readability judgments
for each text condition.

the gold standard (r = 0.76); consistent with other 293

recent work using LLMs for text annotation (Trott, 294

2024b), this correlation was higher than the correla- 295

tion between random splits of human ratings (Cross 296

et al., 2023). Further, Turbo’s ratings were the best 297

predictor of human readability judgments of all the 298

variables tested (see Study 3). The second question 299

was operationalized by asking Turbo to produce 300

easier or harder versions of 100 sample excerpts 301

from the same corpus (Crossley et al., 2023b). In 302

a pre-registered human study, participants consis- 303

tently rated the easier versions as easier to read, 304

and the harder versions as harder to read. 305

As with other recent work (Farajidizaji et al., 306

2023; Liu et al., 2023; Ribeiro et al., 2023), these 307

results provide a proof-of-concept that LLMs may 308

be useful for measuring and modifying text read- 309

ability, at least as operationalized here. Unlike past 310

work (Ribeiro et al., 2023; Farajidizaji et al., 2023), 311

we do not investigate the question of modification 312

to target readability levels, though we do collect 313

novel human judgments to validate the success of 314

GPT-4 Turbo’s modifications (Study 4). Of course, 315

considerable open questions about the viability of 316

this approach remain. These include: uncertainty 317

about the quality of the modified texts (Liu et al., 318

2023), which we did not assess here; the efficacy 319

of further prompt engineering; and the construct 320

validity of readability as a target measure. These 321

questions are all explored in more detail in the Lim- 322

itations section below. 323

6 Limitations 324

One limitation, particularly of Study 2, is scope: 325

because we planned to collect human annotations 326

for each excerpt, we considered only 100 text ex- 327

cerpts, and compared the performance of only one 328

model (GPT-4 Turbo). The results of this study 329

can be seen as a proof-of-concept, which future 330
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work can build on with larger samples and more331

sophisticated prompt engineering techniques.332

A further limitation of Study 2 is that we did333

not assess the quality of the modified excerpts. In334

principle, then, some of the modified versions may335

not adequately summarize the target text. Evalu-336

ating the quality of summaries is notoriously diffi-337

cult (Wang et al., 2019), though recent work (Liu338

et al., 2023) has made use of automated metrics339

like BERTScore (Zhang et al., 2020). Future work340

would benefit from another human study that asks341

directly about the quality of the modified texts.342

A final limitation is the question of what the343

construct of readability means in the first place,344

and how best to measure it. Construct validity—345

whether a test measures what it was designed to346

measure—is by no means a new challenge for work347

in NLP generally (Raji et al., 2021) or readability348

specifically (Crossley et al., 2008). “Readability”349

may not be a unitary construct; different stakehold-350

ers likely construe readability in different ways351

depending on their goal (e.g., making a product352

manual accessible vs. curating educational ma-353

terials) and audience (e.g., school-aged children354

vs. professionals). Further, different formulas or355

automated metrics emphasize different properties356

of a text, making implicit or explicit assumptions357

about the underlying construct. The current work358

relied on human judgments of readability as a “gold359

standard”, using both existing corpora (Crossley360

et al., 2023b) and novel data (Study 2). By these361

metrics, using Turbo to measure and modify read-362

ability was modestly successful. Yet the ambiguity363

of the construct itself makes it challenging to deter-364

mine whether these results generalize to other texts,365

contexts, goals, or audiences. Thus, future work366

could benefit from additional research on “bench-367

marking” readability itself and whether different368

benchmarks are needed for different construals of369

readability.370

7 Ethical Considerations371

All data collected from human participants has372

been fully anonymized before analysis or publi-373

cation.374

One potential risk with research on automatic375

text simplification is that tools will be deployed376

in various applied settings (e.g., education) before377

they are ready. As we discussed in the Limitations378

section (Section 6), we believe there are a number379

of open questions remaining with this kind of re-380

search and do not intend for these results to signal 381

that LLMs could and should be used for measuring 382

and modifying readability in an applied domain at 383

this time. 384
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A Example Appendix 603

A.1 Instructions for Study 1 and Study 2 604

In this section, we report the exact prompts used 605

to elicit readability judgments from GPT-4 Turbo. 606

Note that symbols like “EXCERPT” indicate that 607

the text of the excerpt was inserted in this section 608

of the prompt. 609

Study 1 Instructions: 610

Read the text below. Then, indicate the 611

readability of the text, on a scale from 1 612

(extremely challenging to understand) to 613

100 (very easy to read and understand). 614

In your assessment, consider factors such 615

as sentence structure, vocabulary com- 616

plexity, and overall clarity. 617

<Text>:EXCERPT</Text> 618

On a scale from 1 (extremely challeng- 619

ing to understand) to 100 (very easy to 620

read and understand), how readable is 621

this text?. Please answer with a single 622

number. 623

Study 2 Instructions: 624

Read the passage below. Then, rewrite 625

the passage so that it is easier/harder to 626

read. 627

When making the passage more/less 628

readable, consider factors such as sen- 629

tence structure, vocabulary complexity, 630

and overall clarity. However, make sure 631

that the passage conveys the same con- 632

tent. 633

Finally, try to make the new version ap- 634

proximately the same length as the origi- 635

nal version. 636

<Text>:EXCERPT</Text> 637

As described in the instructions, please 638

make this passage easier/harder to read, 639

while keeping the length the same. 640

A.2 Additional Statistical Analyses for Study 641

1 642

In this section, we report on the results of addi- 643

tional statistical analyses conducted on the Study 644

1 dataset. First, we include a correlation matrix 645

(Figure 4) representing the relationship between 646

the predictors considered; note that ratings elicited 647
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Figure 4: Correlation matrix between all the variables
considered in Study 1. Correlation coefficients have all
been transformed to absolute values for easier compari-
son.

Figure 5: Regularized coefficients using Lasso regres-
sion.

from Turbo were the most correlated with human648

judgments.649

Additionally, to expand on the random for-650

est regression analysis conducted in the primary651

manuscript, we fit a Lasso regression model using652

the z-scored predictors. We first identified the opti-653

mal α parameter using cross-validation, then refit654

the model on the entire dataset.4 The regression655

coefficients are depicted in Figure 5; as with the656

results of the random forest regression, Turbo’s657

ratings have the largest absolute magnitude.658

A.3 Additional Analysis Details for Study 2659

In the case of fitting mixed effects models, we be-660

gan with maximal random effects structure and661

reduced as needed for model convergence (Barr662

et al., 2013). Nested model comparisons were con-663

ducted by comparing a full model to a reduced664

4Because our primary interest was in comparing the rela-
tive magnitude of coefficients, rather than analyzing model fit,
we did not use cross-validation to analyze overall model fit.

Figure 6: Coefficients in a mixed model predicting hu-
man readability judgments. Both text condition and
Turbo’s ratings exhibit independent effects.

Figure 7: Comparison of automated readability scores
for the modified text excerpts.

model omitting only the variable of interest, using 665

a log-likelihood ratio test (LRT). 666

In an exploratory analysis, we asked whether rat- 667

ings elicited by GPT-4 Turbo were also predictive 668

of human judgments. A mixed model predicting 669

human readability from both Condition and Turbo 670

rating (along with control variables for other read- 671

ability metrics) revealed significant effects of each 672

variable, suggesting they explained independent 673

variance. The coefficients for this exploratory anal- 674

ysis are depicted in Figure 6). 675

We also calculated the readability of the mod- 676

ified texts using automated readability formulas, 677

e.g., the Flesch Reading Score (Flesch, 1948). We 678

then asked whether the modified versions varied in 679

the expected direction along each metric in ques- 680

tion, according to whether Turbo was instructed to 681

make the text easier or harder to read. We found 682

that the modified versions varied in the expected di- 683

rection according to automated readability metrics 684

as well (see Figure 7). 685

Finally, consistent with (Farajidizaji et al., 2023), 686

we found a consistent correlation between the read- 687

ability of an original text excerpt and the modified 688

version. That is, Turbo successfully modified texts 689

to be easier or harder to read, depending on the 690
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Figure 8: Comparison of Flesch readability for the orig-
inal version and modified version, according to Turbo’s
instructions.

instructions, but the readability of the modified ex-691

hibited a residual correlation with the original text’s692

readability (see Figure 8).693
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