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Abstract

In this paper, we address the problem of adapt-
ing models from a source domain to a target
domain, a task that has become increasingly
important due to the brittle generalization of
deep neural networks. While several test-time
adaptation techniques have emerged, they typi-
cally rely on synthetic toolbox data augmenta-
tions in cases of limited target data availability.
We consider the challenging setting of single-
shot adaptation and explore the design of aug-
mentation strategies. We argue that augmen-
tations utilized by existing methods are insuf-
ficient to handle large distribution shifts, and
hence propose a new approach SiSTA (Single-
Shot Target Augmentations), which first fine-
tunes a generative model from the source do-
main using a single-shot target, and then em-
ploys novel sampling strategies for curating syn-
thetic target data. Using experiments on a va-
riety of benchmarks, distribution shifts and im-
age corruptions, we find that SiSTA produces
significantly improved generalization over ex-
isting baselines in face attribute detection and
multi-class object recognition. Furthermore,
SiSTA performs competitively to models ob-
tained by training on larger target datasets. Our
codes can be accessed at https://github.
com/Rakshith-2905/SiSTA.

1. Introduction
Deep models tend to suffer a significant drop in their per-
formance when there is a shift between train and test dis-
tributions (Torralba & Efros, 2011). A natural solution
to improve generalization under such domain shifts is to
adapt models using data from the target domain of interest.
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However, it is infeasible to obtain data from every possi-
ble target during source model training itself. Test-time
adaptation has emerged as an alternate solution, where a
source-trained model is adapted solely using target data
without accessing the source data. However, the success
of these source-free adaptation (SFDA) methods hinges on
sufficient target data availability (Liang et al.; Yang et al.,
2021). While there exist online adaptation methods such as
TENT (Wang et al., 2021) and MEMO (Zhang et al., 2021),
they are are found to be ineffective under complex distribu-
tion shifts and when target data is limited, often producing
on par or only marginally better results than non-adaptation
performance (Thopalli et al., 2022).

In this work, we investigate a practical, yet challenging,
scenario where the goal is to adapt models under unknown
distribution shifts with minimal target data. Specifically,
we focus on the extreme case where only single-shot exam-
ple is available. In such data scarce settings, it is common
to leverage synthetic augmentations; examples range from
image manipulations to adversarial corruptions (Gokhale
et al., 2023). Despite their wide-spread adoption, the best
augmentation strategy can vary for different shifts, and more
importantly, their utility diminishes in the single-shot case.
Another popular approach is to use generative augmenta-
tions (Yue et al., 2022), where data variants are synthesized
through generative models. Despite being more expres-
sive than generic augmentations, they require comparatively
larger datasets for effective training.

We propose SiSTA, a new target-aware generative aug-
mentation technique for SFDA with single-shot target data
(see Figure 1). At its core, SiSTA relaxes the assumption
of requiring source data, and instead assumes access to a
source-trained generative model. We motivate and justify
this assumption using a practical vendor-client implemen-
tation in Section 3. In this study, we consider StyelGAN
as the choice for generative modeling, motivated by their
flexibility in disentangling content and style. Our proposed
algorithm has two steps, namely SiSTA-G and SiSTA-S,
to fine-tune a source-trained StyleGAN with the target data,
and to synthesize diverse augmentations respectively.

Our contributions can be summarized as follows:

1. We propose a new target-aware, generative augmentation
technique for single-shot adaptation;
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Figure 1. SiSTA: Assuming access to both the classifier and a StyleGAN from the source domain, we first adapt the generator to the
target domain using a single-shot example. Next, we employ the proposed activation pruning strategies to construct the synthetic target
dataset D̄t. Finally, this dataset is used with any SFDA technique for model adaptation.

2. We introduce two novel sampling strategies based on
activation pruning, prune-zero and prune-rewind, to support
domain-invariant feature learning;

3. Using a popular SFDA approach, NRC (Yang et al.,
2021), on augmentations from SiSTA, we show significant
gains in generalization over SoTA online adaptation;

4. By benchmarking on multiple datasets (CelebA, AFHQ,
CIFAR-10, DomainNet) and a wide variety of domain shifts
(style variations, natural image corruptions), we establish
SiSTA as a SoTA method for 1−shot adaptation;

5. We show the efficacy of SiSTA in multi-class classifica-
tion using both class-conditional GANs as well as multiple
class-specific GANs.

2. Background
Source free domain Adaptation: In the standard setting
of SFDA we only have access to the pre-trained source
classifier Fs : x → y but not to the source dataset Ds =
{(xis, yis)}. Here, xis ∈ Xs and yis ∈ Y denote the ith image
and its corresponding label from the source domain Xs.
Subsequently, the model needs to be adapted to a target
domain Xt using unlabeled examples Dt = {(xjt}, where
xjt ∈ Xt. Note, the set of classes Y is pre-specified and
remains the same across all domains.

A number of approaches to SFDA have been proposed in
the literature and can be categorized into two groups: meth-
ods which perform adaptation by fine-tuning the source
classifier alone, and those that update the feature extrac-
tor as well for promoting domain invariance. In the for-
mer category, adaptation is typically achieved through
unsupervised/self-supervised learning objectives; examples
include rotation prediction (Sun et al., 2020), self-supervised
knowledge distillation (Liu & Yuan, 2022), contrastive learn-
ing (Huang et al., 2021) and batch normalization statis-
tics matching (Wang et al., 2021; Ishii & Sugiyama, 2021).

The second category includes state-of-the-art approaches
such as SHOT (Liang et al.), NRC (Yang et al., 2021) and
N2DCX (Tang et al., 2021), which utilize pseudo-labeling
based optimization, and often require sufficient amount of
data to update the entire feature extractor meaningfully.

While SHOT is known to be effective under challenging
shifts, it relies on global clustering to obtain pseudo-labels
for the target data, and in practice, can fail in some cases
due to the prediction diversity among samples within a clus-
ter. The more recent NRC (Yang et al., 2021) alleviates
this by exploiting the neighborhood structure through the
introduction of affinity values that reflect the degree of con-
nectedness between each data point and its neighbors. This
inherently encourages prediction consistency between each
samples and its most relevant neighbors. Formally, the opti-
mization of NRC involves the following objective:

LNRC = Lneigh + Lself + Lexp + Ldiv (1)

where Lneigh enforces prediction consistency of a sample
with respect to its neighbors, while Lself attempts to reduce
the effect of noisy neighbors and Lexp considers expanded
neigbhorhood structure. Finally, Ldiv is the widely adopted
diversity maximization term implemented as the KL diver-
gence between the distribution of predictions in a batch to
a uniform distribution. While SiSTA can admit any SFDA
technique, we find NRC to be an appropriate choice, since it
updates the feature extractor and utilizes the local semantic
context to improve performance. This is particularly im-
portant in the context of our rich synthetic augmentations,
which exhibit a high degree of diversity.

Generative Augmentations: It is well known that the per-
formance of SFDA methods suffers when the target dataset
is sparse. To mitigate this, synthetic augmentations are of-
ten leveraged. While it has been found that data augmenta-
tion can improve both in-distribution and out-of-distribution
(OOD) accuracies (Steiner et al., 2021; Hendrycks et al.,
2021), their use in SFDA is more recent. Existing aug-
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mentations can be broadly viewed in two categories - (i)
pixel/geometric corruptions, and (ii) generative augmen-
tations. The former category includes strategies such as
CutMix (Yun et al., 2019), Cutout (DeVries & Taylor,
2017), Augmix (Hendrycks et al., 2020), RandConv (Xu
et al., 2021), mixup (Zhang et al., 2018) and AutoAug-
ment (Cubuk et al., 2019). These domain-agnostic methods
are known to be insufficient to achieve OOD generalization,
especially under complex domain shifts. To circumvent
this, generative augmentations based on GANs or Varia-
tional Autoencoders (VAEs) have emerged. These methods
involve training a generative model to synthesize new sam-
ples (Yue et al., 2022). These augmentations have been used
in various tasks such as image-to-image translation and im-
proving generalization under shifts. For example, methods
such as MBDG (Robey et al., 2021), CyCADA (Hoffman
et al., 2018), 3C-GAN (Rahman et al., 2021) and GenToAd-
apt (Sankaranarayanan et al., 2018) have leveraged gen-
erative augmentations to better adapt to unlabeled target
domains. However, by design, these methods require large
amounts of data from both source and target domains. In
contrast, SiSTA focuses on obtaining target-aware genera-
tive augmentations by fine-tuning source-trained generative
models using only a single-shot target sample.

StyleGAN-v2 Architecture: While significant progress has
been made in generative AI, including StyleGANs and de-
noising diffusion models (Saharia et al., 2022), we utilize
StyleGAN-V2 as the base generative model in our work.
This choice is motivated by the flexibility that StyleGANs
offer in producing images of different styles, which can
be attributed to the inherent disentanglement of style and
semantic content in their latent space. Existing approaches
works (Wu et al., 2021a;b) have studied this disentanglement
property and uncovered the StyleGAN’s ability to manip-
ulate the style of an image projected onto the latent space
by replacing the latent codes corresponding to only style.
Another recent study (Chong & Forsyth, 2021) reported that
by leveraging such manipulations, one can perform style
transfer with a limited number of paired examples. Inter-
estingly, it has also been recently found (Wu et al., 2021b)
that, even after transferring a GAN to a different data dis-
tribution (faces to cartoons), the latent space of the adapted
GAN is point-wise aligned with the source StyleGAN. We
take inspiration from these works to develop our single-shot
GAN fine-tuning protocol as well as our novel sampling
strategies to enable domain-invariant feature learning.

3. Proposed Approach
In this section, we introduce SiSTA, a new target-aware,
generative augmentation strategy with the goal of improving
domain adaptation of pre-trained classifiers using single-
shot target data. While SFDA methods are known to be

Figure 2. A high-level illustration of our adaptation approach
SiSTA, which is carried out on the vendor side that stores the
source classifier and a generative model. Designed to support
single-shot adaptation, SiSTA returns target-aware synthetic aug-
mentations. Finally, the vendor executes any SFDA technique to
update the source classifier using the synthesized augmentations.

effective under a variety of distribution shifts, their perfor-
mance hinges on the availability of a sufficient amount of
target data. In this work, we propose to relax SFDA’s as-
sumption on source data access by requiring a source-trained
generative model (StyleGANs in our study) to synthesize
augmentations in the target domain, in order to enable ef-
fective adaptation even under limited data. In particular,
we consider the extreme, yet practical setting where only
1−shot target data is available.

Figure 2 illustrates an implementation of such a setup where
the source dataset, classifier, and the pre-trained generator
are available only on the vendor side. A client that wants to
adapt the classifier to a novel domain submits the one-shot
target data and receives both the source classifier as well as
the synthetic generative augmentations. Finally, the client
executes any SFDA approach to update the classifier using
only the unlabeled synthetic data. This implementation
eliminates the need for the vendor to share their generative
model, while also minimizing the amount of client data that
gets shared.

As described earlier, SiSTA is comprised of two key steps
that are carried out on the vendor side: (i) SiSTA-G: Fine-
tune a pre-trained StyleGAN generator Gs using single-shot
target data {xt} under unknown distribution shifts.; and (ii)
SiSTA-S: Synthesize diverse samples Dt = {x̄jt} using
the fine-tuned generator Gt to support effective classifier
adaptation to the target domain. Finally, we leverage the
recently proposed NRC method to perform client-side adap-
tation. Now, we describe these steps in detail.

3.1. SiSTA-G: Single-Shot StyleGAN Fine-Tuning

Our goal in this step is to fine-tune Gs using only the single-
shot example xt from the target domain to produce an up-
dated generator Gt. To this end, the proposed approach first
inverts xt onto the style-space of Gs. In practice, this can be
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Algorithm 1 SiSTA-G
1: Input: Target sample xt, No. of training iterations M ,

Source generator Gs, Inversion module E
Set of style layers Lst.

2: Output: Fine-tuned generator Gt.
3: Invert the target sample to obtain w+

t = E(xt)
4: for m in 1 to M do
5: Generate random style latent r+

6: Perform style-mixing, i.e., replace style layers Lst of
w+

t with r+

7: Generate image x̂t = Gs(ŵ
+
t )

8: Update parameters Θt using (2)
9: end for

10: return: Gt with parameters Θt.

done using one of the following strategies: (i) a pre-trained
encoder such as Pixel2Style2Pixel (Richardson et al., 2021)
or E4E (Tov et al., 2021), which maps a given image into the
style code w+

t ∈ RL×512. This latent code corresponds to
L intermediate layers of a StyleGAN model (e.g., L = 18 in
StyleGAN-v2); (ii) any standard GAN inversion technique
to infer an approximate solution in the style space (Xia et al.,
2022); (iii) text-guided inversion such as StyleClip (Patash-
nik et al., 2021) if the label is available for the single-shot
target image. Though conventional GAN inversion is known
to be expensive, it will not be a significant bottleneck with
only a single image.

Without loss of generality, the target domain is expected
to contain distribution shifts w.r.t. the source domain, and
hence the inverted solution in the style-space is more likely
to resemble the source domain. For example, inverting a
cartoon into the style-space of a GAN trained on real face
images will produce a semantically similar image from the
face manifold. Recent evidence (Subramanyam et al., 2022)
suggests that one can accurately recover an OOD image
using an additional vicinal regularization to the inversion
process. However, in our case, we do not want an accurate
reconstruction, but rather refine the generator Gs to emulate
the characteristics of a target domain.

To this end, we utilize the following loss function defined on
the activations from the source-domain discriminator Hs:

Θt = argmin
Θ̄

∑
ℓ

∥Hℓ
s(Gs(w

+
t ; Θ̄))−Hℓ

s(xt)∥1, (2)

where w+
t is the style-space latent code obtained via GAN

inversion, Θt refers to the parameters of the updated gener-
ator Gt and Hℓ

s denotes the activations from layer ℓ of the
discriminator Hs. Intuitively, this objective minimizes the
discrepancy between the target image and the reconstruction
from the updated generator. Note that, the parameters of
the discriminator are not updated during this optimization.
While any pre-trained feature extractor can be used for this

optimization, the source discriminator provides meaningful
gradients by comparing both the content and style aspects
of the target image. Upon training, we expect the generator
Gt to produce images resembling the target domain for any
random latent code in the style-space.

An inherent issue with our objective is that, this optimization
can be highly unstable when using a single xt. To circum-
vent this, we leverage multiple, style-manipulated versions
of xt through a style-mixing protocol. More specifically, we
first generate a random code r+ in the style-space (using the
mapping network in StyleGAN). Next, we perform mixing
by replacing the latent codes from a pre-specified subset of
layers Lst in w+

t using the corresponding codes from r+.
In effect, this produces a modified image that contains the
content from w+

t and the style from r+. We denote this
style-manipulated latent using the notation ŵ+

t . In each
iteration of our optimization, a different style-mixed latent
code ŵ+

t is generated to compute the loss in (2). Algorithm
1 summarizes the steps of SiSTA-G.

Choosing layers for style-mixing. We choose Lst by ex-
ploiting the inherent style and content disentanglement in
StyleGANs. Priors works (Wu et al., 2021a; Kafri et al.,
2021; Karras et al., 2020) have established that the initial
layers typically encode the semantic content, while the later
layers capture the style characteristics. Since the exact
subset of layers that correspond to style vary as the image
resolution changes, following standard practice, we used
Lst = 8− 18 when Gs produces images of size 1024×1024
and Lst = 3− 8 for images of size 32× 32 (CIFAR-10).

3.2. SiSTA-S: Target-aware Augmentation Synthesis

Once we obtain the target domain-adapted StyleGAN gen-
erator Gt, we next synthesize augmentations by sampling
in its latent space. Despite the efficacy of such an approach,
the inherent discrepancy between the true target distribu-
tion Pt(x) and the approximate Qt(x) (synthetic data) can
limit generalization. Existing works (Kundu et al., 2020)
have found that constructing generic representations (using
standard augmentations) is useful for test-time adaptation
any domain. However, in contrast, our goal is to produce
augmentations specific only to a given target domain, thus
enabling effective generalization even with single-shot data.

To this end, we propose two novel strategies that perturb the
latent representations from different layers of Gt to realize
a more diverse set of style variations. Both our sampling
strategies are based on activation pruning, i.e., identifying
the activations in each style layer that are lower than the pth

percentile value of that layer, and replacing them with (i)
zero (referred to as prune-zero); or (ii) activations from the
corresponding layer of the source GAN Gs (prune-rewind).
The former strategy aims at creating a generic representa-
tion by systematically eliminating style information in the
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Algorithm 2 SiSTA-S
1: Input: Target GAN Gt(.; Θt), Source GAN Gs(.; Θs),

Pruning strategy Γ, Pruning ratio p,
Set of style layers Lst;

2: Output: Sampled image x̄t
3: Draw a random latent code w+ from Gt(.; Θt)
4: for ℓ in Lst do
5: β ∼ RandInt(0, 1)
6: if β == 1 then
7: Obtain layer ℓ activations hℓt from Gt(w

+)
8: /* Iterate over activation channels V ℓ*/
9: for v in 1 to V ℓ do

10: τp = p-th percentile of hℓt[:, :, v]
11: if Γ == prune-zero then
12: hℓt[i, j, v] = 0 if hℓt[i, j, v] < τp,∀ i, j
13: else
14: Obtain activations hℓs from Gs(w

+)
15: hℓt[i, j, v] = hℓs[i, j, v] if hℓt[i, j, v] < τp,∀ i, j

16: end if
17: end for
18: end if
19: end for
20: return: Image x̄t = Gt(w

+; Γ)

image. On the other hand, the latter attempts to create a
smooth interpolation between the source and target domains
by mixing the activations from the two generators. Note,
we perform pruning only in the style layers, so that the se-
mantic content of a sample is not changed. Note, we use the
same set of style layers selected for performing SiSTA-G.
Algorithm 2 lists the activation pruning step.

3.3. SiSTA-mcG: Extending to class-conditional GANs

When dealing with multi-class problems, it is typical to
construct class-conditional GANs, Gs(.; c), to effectively
model the different marginal distributions. In such set-
tings, images from different classes get mapped to dis-
parate sub-manifolds in the StyleGAN latent space. As-
suming there are K different classes in Y , we can directly
apply SiSTA-G using 1-shot examples from each of the
classes. The only difference occurs in the GAN inversion
step, wherein we need to identify the conditioning variable
c along with the latent code w+

t . Note, if the labels are
available, one can estimate only w+

t . Finally, the algorithm
1 is repeated with K target images. We refer to this protocol
as SiSTA-mcG (multi-class generation).

However, when we perform SiSTA-mcG using only a sub-
set of the classes (say only one out K), there is a risk of not
incorporating target-domain characteristics into the images
synthesized for all realizations from the latent space. How-
ever, as we will show in the results (Figure 5a), even using
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Figure 3. Synthetic data generated using our proposed ap-
proach. In each case, we show the source domain image and
the corresponding reconstructions from the target StyleGAN sam-
pling (base), prune-zero and prune-rewind strategies.

an example from a single class still leads to significantly im-
proved generalization. We hypothesize that this behavior is
due to the fact that the synthesized augmentations (random
samples from Gt) arise from both Xs and Xt, thus emulating
an implicit mixing between the two data manifolds.

4. Experiments
We perform an extensive evaluation of SiSTA using a suite
of classification tasks with multiple benchmark datasets,
different StyleGAN architectures and more importantly, a
variety of challenging distribution shifts. In all our exper-
iments, we use single-shot target data and utilize publicly
available, pre-trained StyleGAN weights.

4.1. Experimental Setup

Datasets: For our empirical study, we consider the follow-
ing four datasets: (i) CelebA-HQ (Karras et al., 2017) is
a high-quality (1024x1024 resolution) large-scale face at-
tribute dataset with 30K images. We split this into a source
dataset of 18K images and the remaining was used to design
the target domains. We perform attribute detection exper-
iments on a subset of 19 attributes, i.e., each attribute is
posed as its own binary classification task; (ii) AFHQ (Choi
et al., 2020) is a dataset of animal faces consisting of 15,000
images at 512×512 resolutions with three classes, namely
cat, dog and wildlife, each containing 5000 images. For each
class, 500 images were used to create the target domains,
and the remaining was used as the source data; (iii) CIFAR-
10 (Krizhevsky et al., 2009) is also a multiclass classification
dataset with 60000 images at 32x32 resolution from 10 dif-
ferent object classes. We use the standard train-test splits for
constructing the source and target domain datasets. While
we used the StyleGAN-v2 trained on FFHQ faces for our
experiments on the CelebA-HQ dataset1, for AFHQ and

1
https://github.com/rosinality/stylegan2-pytorch
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Figure 4. SiSTA significantly improves generalization of face attribute detectors. We report the 1−shot SFDA performance (Accuracy
%) averaged across different face attribute detection tasks for different distribution shifts (Domains A, B & C) and a suite of image
corruptions (Domain D). SiSTA consistently improves upon the baseline(source-only) and SoTA baseline MEMO in all cases.

CIFAR-10 we obtained the pre-trained StyleGAN2-ADA
models2 from their respective sources; and (iv) Domain-
Net (Peng et al., 2019), a large-scale benchmark comprising
6 domains namely Clipart, Painting, Quickdraw, Sketch,
Infograph and Real with each domain consisting of im-
ages from 340 categories. For this experiment, we used the
state-of-the-art StyleGAN-XL model (Sauer et al., 2022)
trained on ImageNet (Russakovsky et al., 2015). Note, we
used only the subset of categories from DomainNet that
directly overlapped with ImageNet classes. To the best of
our knowledge, this is the first work to report adaptation per-
formance with a single target image on DomainNet, and to
use ImageNet-scale StyleGAN-XL for data augmentation.

Target Domain Design: To emulate a wide-variety of real-
world shifts, we employed standard image manipulation
techniques (we will release this new benchmark dataset
along with our codes) to construct the following target do-
mains: (i) Domain A: We used the Stylization technique in
OpenCV with σs = 40 and σr = 0.2; (ii) Domain B: For
this shift, we used the PencilSketch technique in OpenCV
with σs = 40 and σr = 0.04; (iii) Domain C: This chal-
lenging domain shift was created by converting each color
image to grayscale, and then performing pixel-wise division
with a smoothed, inverted grayscale image; and (iv) Domain
D: This shift was created using a different natural image cor-
ruptions from ImageNet-C (Hendrycks & Dietterich, 2019)

2
https://github.com/NVlabs/stylegan2-ada-pytorch

typically used for evaluating model robustness. In particular,
we used the imagecorruptions3 package for realizing 6 dif-
ferent shifts, namely contrast, defocus blur, motion blur, fog,
frost and snow. We report our performance across all the do-
main shifts for the different attribute detection tasks. Given
the inherently challenging nature of Domain C, we used
that exclusively to evaluate the multi-class classifiers trained
on AFHQ and CIFAR-10 datasets. Finally, for DomainNet
evaluations we considered Real photos as the source domain
and used each of the five remaining domains as the target.

Evaluation methodology: (a) Source model training: To
obtain the source model Fs we fine-tune an ImageNet pre-
trained ResNet-50 (He et al., 2016) with labeled source
data. We use a learning rate of 1e − 4, Adam optimizer
and train for 30 epochs; (b) StyleGAN fine-tuning: We fine-
tune Gs for 300 iterations (M in Algorithm 1) using one-
target image with learning rate set to 2e − 3 and Adam
optimizer with β = 0.99. These parameters were identified
using the CelebA benchmark and we used the same settings
for all experiments; (c) Synthetic data curation: The size
of the synthetic target dataset D̄t, T , was set to 1000 im-
ages in all experiments. Note, in section 4.3, we study
the impact of this choice. Another important hyperpa-
rameter is the choice of GAN layers for style manipula-
tion: (i) layers 8 − 18 in StyleGAN-2; (ii) layers 3 − 8
in CIFAR-10 GAN; (iii) layers 10− 27 in StyleGAN-XL.

3
https://github.com/bethgelab/imagecorruptions
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(a) CIFAR-10. (b) AFHQ.

Figure 5. Multi-class classification: (a)-left illustrates SiSTA-mcG with class-conditoned GANs, (a)-right shows the performance
of SiSTA, while the bottom plot studies the performance ofSiSTA with exposure to only a subset of classes from the target domain. (b)
visualizes our approach for AFHQ dataset where individual class-specific generators are finetuned and bottom plot analyses SiSTA along
with baselines for this challenging dataset.

This selection was motivated by findings from recent stud-
ies on style/content disentanglement in StyleGAN latent
spaces (Wu et al., 2021a; Kafri et al., 2021; Karras et al.,
2019). (d) Choice of pruning ratio: For all experiments, we
set p = 20% for prune-rewind and p = 50% for prune-zero
strategies. Note, in section 4.3, we study the impact of this
choice; (e) SFDA training: For the NRC algorithm, we set
both neighborhood and expanded neighborhood sizes at 5
respectively. Finally, we adapt Fs using SGD with momen-
tum 0.9 and learning rate 1e− 3. All results that we report
are computed as an average of 3 independent trials; (f) For
evaluation, we report the target accuracy (%) on a held-out
test set in each of the target domains.

Baselines: In addition to the vanilla source-only baseline
(no adaptation), while there exists a number of test-time
adaptation approaches, we perform comparisons to the state-
of-the-art online adaptation method, MEMO (Zhang et al.,
2021), that enforces prediction consistency between an im-
age and its augmented variants. In particular, we imple-
ment MEMO with two popular augmentation strategies
namely Augmix and RandConv (Xu et al., 2021). We choose
MEMO as the key baseline, since it is already well estab-
lished that it is superior to other protocols like TENT and
TTT. Finally, for comparison, we report the Full Target DA
performance as an upper bound, i.e., when the entire target
dataset (unlabeled) is used for adaptation.

4.2. Findings

Figure 3 illustrates the synthetic data generated for a target
domain (pencil sketch) using vanilla sampling (or base),

prune-zero and (prune-rewind) strategies. More examples
can be found in the supplement (Figure 8).

SiSTA consistently produces superior performance
across different distribution shifts.

In Tables 2-10, the performance of SiSTA across different
domain shifts (A, B, C, D) on the CelebA-HQ dataset is
compared to the baselines for all the 19 attributes. Further-
more, Figure 4 summarizes the average performance (across
attributes and multiple trials) for the CelebA-HQ dataset.
We see that when compared to the source-only baseline and
the state-of-the-art MEMO, SiSTA yields average improve-
ments of 4.41%, 7.5%, 17.73% and 5.1% respectively for
the four target domains. This improvement can be directly
attributed to the efficacy of our proposed augmentations,
which enable the SFDA method to learn domain-invariant
features when adapting the source classifier.

Additionally, utilizing the proposed activation pruning strate-
gies reveal significant gains under severe shifts over the
naı̈ve sampling (base). For example, we see an average im-
provement of 18% across different attributes in Domain C,
when compared to the state-of-the-art MEMO. In particular,
we notice that for challenging attributes such as bangs, blond
hair, and gender, we obtain striking 26.1%, 29.6%, 33.9%
improvements over the source-only performance. This illus-
trates how our pruning strategy can create generic represen-
tations that aid in an effective adaptation.

Failure cases: While SiSTA is generally very effective,
there are a few cases where it does not perform as ex-
pected. For example, with the Domain B results in Ta-
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Table 1. Performance of SiSTA on the five different domains of
the DomainNet Dataset. SiSTA consistently improves over the
Source Only and MEMO baselines even under such complex do-
main shifts.

QuickDraw Painting ClipArt InfoGraph Sketch

Source only 9.23 62.25 58.55 28.45 43.86

MEMO (Augmix) 8.73 62.20 60.15 28.61 43.86

MEMO (RandConv) 8.04 61.91 59.23 28.02 43.52

SiSTA ( base) 11.78 63.53 60.98 31.61 47.54

SiSTA (prune-zero) 13.12 63.69 60.98 31.65 48.12

SiSTA (prune-rewind) 11.86 64.05 61.02 31.8 46.78

Full Target DA 16.27 68.99 69.55 31.77 55.09

ble 3, we notice that for certain attributes (5’o clock shadow,
bald), we fail to improve over the source-only perfor-
mance (near-random performance), since it becomes chal-
lenging to resolve those attributes under that distribution
shift. Additionally, in Domain C, we find that the perfor-
mance of SiSTA (base) is sometimes greater than that of
SiSTA (prune zero), likely due to the excessive elimination
of style information during pruning. While this can be po-
tentially fixed by adjusting the prune ratio or increasing the
number of augmented samples (see 4.3), this reveals some
of the failure scenarios for SiSTA.

SiSTA can handle natural image corruption. Natural
image corruptions mimic domain shifts that are prevalent in
real-world settings. Surprisingly, we find that our proposed
SiSTA-S protocol is able to fine-tune the GAN even under
such image corruptions and lead to apparent gains in the
generalization performance. More specifically, we want the
emphasize the two challenging corruptions, namely contrast
and fog, where the class discriminative features appear to be
muted. Even under these corruptions, as showed in Figure
4, SiSTA achieve average performance improvements of
10.14% and 6.52%, respectively.

SiSTA is effective even with class-conditional GANs.
In this experiment, we study how SiSTA performs on
CIFAR-10 adaptation, when we are provided with a
class-conditional StyleGAN. In this case, we use the
SiSTA-mcG procedure to perform GAN fine-tuning, which
requires the GAN inversion step to identify both the latent
code as well as the conditioning variable. As illustrated
in Figure 5a, we use 1−shot examples from each of the
10 classes and synthesize T = 1000 augmentations from
SiSTA. Note, during sampling, we draw from the differ-
ent classes randomly. We find that, for the challenging
Domain C target, SiSTA not only outperforms the base-
lines by a large margin, but also matches the Full Target
DA performance, while using only a single-shot example.
Furthermore, as argued in Section 3.3, using single-shot
examples from even a subset of classes can be beneficial.
To demonstrate this, we varied the number of classes from

(a) Varying prune ratio

(b) Varying T

Figure 6. Analysis of varying prune ratio p and the amount of
synthetic target domain data T used by SiSTA.

which target examples are drawn (1 to 10). We find that,
even with a single class example, SiSTA provides a large
gain of 12.69% over the source-only baseline. As expected,
the generalization performance consistently improves as we
expose the model to examples from additional classes.

SiSTA can also be used with multiple class-specific
GANs. In this study, we examined the performance of
SiSTA in a multi-class classification problem with AFHQ,
where we assume access to individual generative models for
each class. Given the inherent diversity within classes (dif-
ferent breeds of cats or dogs), it is sometimes challenging
to train a single StyleGAN for the entire data distribution.
In such cases, a separate generative model can be trained
on source images from each of the classes. However, the
classifier is trained for a 3−way classification setting. In
this case, we perform SiSTA for each GAN independently
using its corresponding example. As shown in Figure 5b,
we find that, even our base variant achieves 94.53%, out-
performing the source-only and baselines by large margins
(14%). Our best performance is achieved by prune-zero in
this setting and it matches Full Target DA.

Even on large scale benchmarks such as DomainNet,
SiSTA provides consistent benefits. To study its perfor-
mance on large-scale benchmarks, we tested SiSTA on
DomainNet that comprises a large number of object types
and complex distribution shifts (photo, quickdraw, painting,
etc.). Given the diversity of objects in this benchmark, we
utilized the state-of-the-art StyleGAN-XL model trained on
ImageNet to perform SiSTA and studied the single-shot

8
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Figure 7. Effect of Toolbox augmentations on SiSTA. We present the performance of SiSTA on Domains A, B, and C of the CelebaHQ
dataset when images generated by SiSTA are further enhanced with Augmix (Hendrycks et al., 2020). We observe that toolbox
augmentations can further improve the performance of SiSTA, and in a few cases, SiSTA even surpasses the Full Target DA baseline.

adaptation performance for different target domains (real is
the source domain). From Table 1, we find that even on this
benchmark, SiSTA (prune-zero) convincingly improves
upon source only baselines. For example, SiSTA provides
about 4% improvements for Quickdraw and Sketch domains.
As with the other benchmarks, SiSTA is indeed competitive
to the Full Target DA baseline.

4.3. Analysis of parameter choices

The choice of prune ratio p. We investigate the effect
of the choice for p in prune-zero and prune-rewind using
three face attribute detectors (Figure 6a). This parameter
influences the degree of generalizability of the synthetic
target representations. For prune-zero, higher pruning ratios
(severe style attenuation), i.e., p between 80− 90, are found
to significantly enhance performance when compared to
lower ones. In the case of prune-rewind, on the other hand,
p regulates the amount of source mix-up with the target
domain. In this scenario, we see that a smaller p performs
better, and we recommend to set p between 5− 20.

The choice of synthetic data size T . We study the influence
of the number of augmentations T by varying it between
100−5000 and studying the performance of prune-zero and
prune-rewind on three attributes, as illustrated in Figure 6b.
While prune-zero performs consistently for different values
of T , it only makes limited gains on average as the number
of samples increases. On the contrary, we see a significant
boost in performance in prune-rewind in some of attributes.
We remark that prune-rewind is a sensitive technique due to
the mix-up with the source domain; increasing the number
of the synthetic augmentations (along with low p) stabi-
lizes the performance and, in a few cases, even matches the
performance of prune-zero. Finally, we note that the per-
formance variation across the independent trials is around
< 0.5%, thus indicating that the performance is consistent
and not sensitive to the sampling process.

Toolbox augmentations can further bolster SiSTA. In
this study, we investigated the benefits of using sophisti-
cated toolbox augmentations such as Augmix for SiSTA as
well as for the source only baseline. From Figure 7, we
observe a consistent boost in performance for all the three
variants of SiSTAwith average improvements of 6%, 4.2%
and almost 13.3% respectively. These results highlight the
effective complementary nature of SiSTA to toolbox aug-
mentations. Furthermore, it is worth noting that applying
Augmix to the source-only methods does not lead to the
same level of improvements. This observation is consistent
with the findings from (Thopalli et al., 2022), which noted
that toolbox augmentations alone are insufficient to enhance
adaptation performance under real-world distribution shifts.

5. Conclusion
In this paper, we explored the use of generative augmenta-
tions for test-time adaptation, when only a single-shot target
is available. Through a combination of StyleGAN fine-
tuning and novel sampling strategies, we were able to curate
synthetic target datasets that effectively reflect the charac-
teristics of any target domain. We showed that the proposed
approach is effective in multi-class classification using both
class-conditioned as well as multiple class-specific GANs.
Our future work includes theoretically understanding the
behavior of different pruning techniques and extending our
approach beyond classifier adaptation.
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A. Examples of augmentations from SiSTA

In Figure 8, we show the augmentations synthesized by
SiSTA for different domain shifts and StyleGAN models.

Figure 8. SiSTA generated augmentations on random samples
drawn from the style space of StyleGAN; The rows 1 to 9 cor-
respond to different domain shifts in CelebA-HQ and row 10
corresponds to AFHQ.

B. Detailed results for our CelebA experiments
We provide comprehensive tables for the results discussed in
Section 4. Tables 2-10 illustrate the performance of source-
only, MEMO, and all the three variants of SiSTA along
with Full target performance.
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Source only 53.7 69.9 63.4 83.2 55.3 89.5 80.7 80.4 93.2 88.2 58.1 82 60.2 89.5 53.4 68.3 70.9 88.5 64.8

MEMO (Augmix) 53.6 69.9 64.5 81.1 53.8 89.1 79.7 78.6 93.8 87.6 57.9 80.8 59.6 89.4 52.5 70.5 68.6 88.1 65.1

MEMO (Randconv) 53.7 69.6 64.5 81 53.7 89.1 79.5 78.4 93.9 87.6 57.9 80.8 59.5 89.3 52.5 70.2 68.6 88 65

SiSTA (base) 52.8 74.6 77 80 85.2 69.8 87.2 72.8 95.1 91.2 55.2 69.8 58.3 84.4 57 79.1 71.3 90.1 69.1

SiSTA (prune-zero) 55.2 78.2 76.3 87.1 87.6 81.5 88.1 81.2 95.5 91.7 60.4 70.8 61.1 89.2 59.3 79.5 76.2 89.6 68.6

SiSTA (prune-rewind) 53.1 76.6 70.1 85.6 83 78.2 87.1 76 95.2 91.6 57.8 67.5 58.5 87.3 59.2 78.6 74.2 89.3 60.6

Full target DA 87 81.9 92.3 93.5 90.1 97.3 89.3 87.1 97.4 92.7 72.5 91.5 93 92.6 74.5 80.6 82.5 92.3 75.2

Table 2. Performance of SiSTA on Domain A of the CelebA dataset.
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Source only 50 51 50.5 67.2 50 74.2 54.2 54.6 80.2 78.6 52.1 63.9 54 76.9 50.1 65 50.4 63.3 55.5

MEMO (Augmix) 50 51.2 50.5 64.5 50 74.1 52.1 52.4 81.1 79 51.2 63 50.8 73.2 50 65.5 50.2 58.6 55.6

MEMO (Randconv) 50 51.2 50.5 64.5 50 73.9 52.1 52.3 81.2 79 51.2 62.9 50.8 73.1 50 65.6 50.2 58.5 55.7

SiSTA (base) 50 73 50.2 83.3 50.5 67.8 77.6 56.3 86.5 82.5 56.7 56.1 50.1 77 51.7 72.6 56.3 80 58.1

SiSTA (prune-zero) 50.1 73.9 51.1 86.7 51.4 75.8 79.9 67.2 88.7 84.4 58.3 58.1 50.2 85.4 53.8 74 54.8 79.8 60.5

SiSTA (prune-rewind) 50 73.4 50 84.7 50.2 75.2 75.5 57.1 85.9 82.9 54 54.5 50.1 78 52.7 72.8 56.3 73 56.3

Full target DA 71.6 71.7 72.6 89.9 58.4 94.2 81.9 78.5 92.2 88 63.9 84.3 83 88.4 68.6 71 68.6 86.7 71.2

Table 3. Performance of SiSTA on Domain B of the CelebA dataset.
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Source only 50 52.8 50.1 58.2 50.5 63.8 56.5 50.2 58.3 58.9 50 51.3 50.5 64 52 59.9 51.8 71.6 52.7

MEMO (Augmix) 50 53.6 50.2 61.6 50.5 66.6 55.5 50.1 56.1 60.4 50 50.8 50.4 65.8 52 59.2 51.7 72.3 52

MEMO (Randconv) 50 53.6 50.2 61.6 50.5 66.6 55.4 50.1 56 60.4 50 50.7 50.4 65.5 52 59.1 51.7 72.4 52

SiSTA (base) 53.2 65.3 64.7 80 77.9 69.4 54.5 71.2 91.8 71.4 59.1 66.6 53.2 79.2 54.7 77.3 57.8 78.8 63.7

SiSTA (prune-zero) 58 74.7 64.1 82.6 77.1 82.7 80.7 77.2 88.3 78.2 56.3 68.2 55.3 86.7 68.5 74.3 62.8 86.5 67.6

SiSTA (prune-rewind) 53.1 69.7 63.5 84.3 80.1 79.9 62.1 69.7 92.2 78.2 54.4 65 53.7 84.4 57.3 78.5 58.2 86.5 74.5

Full target DA 83.1 80.5 92 93 84.2 96.7 83.8 80.8 95.7 87.6 66.9 90 93.2 89.2 69.9 77.5 76.6 89.5 77.5

Table 4. Performance of SiSTA on Domain C of the CelebA dataset.
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Source only 64.5 79 82.5 90 87.4 91 90.4 87.8 97.2 92 64.5 79.7 63.4 93 68.8 79.9 65.7 92.6 74.9

MEMO (Augmix) 63.2 78.1 87.5 88 87.1 91.3 90.6 89.8 97.8 90.8 65.3 77.4 62 92.9 70.6 80.8 63.9 91 75.5

MEMO (Randconv) 63.2 78.1 87.5 87.5 87.1 91.3 90.6 89.8 97.8 90.8 65.3 77.4 62 92.9 70.6 81 63.7 91 75.3

SiSTA (base) 85.6 80 88.9 88.9 91.2 76.9 89.8 79 95.3 91.5 65.6 91.4 89.3 87.5 65.2 82.4 68.2 91.9 81.9

SiSTA (prune-zero) 85.1 79.5 85.1 90.3 92.8 83.3 90.7 82.4 96.4 90.7 63.8 89.7 76.7 89.9 73.7 81.5 69.3 92.2 73.3

SiSTA (prune-rewind) 78.2 81.5 85.3 92.3 92.5 83.4 90.5 81.7 97.2 92.7 64.2 87.7 77.3 90.7 71.1 82.1 71.1 92.2 75.5

Full target DA 89.4 83 96.1 94 92.9 97.1 90.7 88 97.8 93.7 74.4 93.3 94.1 93.3 76.9 82.4 84.5 92.6 83.1

Table 5. Performance of SiSTA on Domain D (Defocus blur) of the CelebA dataset.
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Source only 71.4 79.7 79.5 88.3 88.9 91.5 89.7 87.1 97.6 91.6 69.6 80.5 65.7 92.9 72.5 73.9 62.2 92.2 74.8

MEMO (Augmix) 73 78.6 73.7 88.3 88.8 91.8 91.9 88.5 97.5 92 70.7 80.8 63 93.1 73.5 75 62.2 92.6 75.5

MEMO (Randconv) 73 78.6 73.7 88.3 88.8 91.8 92 88.5 97.5 92.1 70.7 80.8 63 93.1 73.5 75 62.2 92.7 75.5

SiSTA (base) 79.8 74.7 89.8 89.3 93.6 78.2 89.6 79.5 94.4 92.2 67.4 87.8 73.1 87.9 69.7 81.5 71 92 82

SiSTA (prune-zero) 74 75.4 87.1 92.1 93.6 86.9 90.6 83.7 96.5 91.4 66.3 78.6 63 90.8 72.9 81.2 70.9 92.4 76.3

SiSTA (prune-rewind) 70.7 76.1 85.9 92.5 93.6 85.5 90 81.2 96.2 92.8 65.9 79.7 64.9 89.9 72.5 80.4 68.9 92.2 73.9

Full target DA 90.1 82.8 96.7 93.8 93.2 98.1 90.8 88.2 97.9 93.7 72 94.9 94.6 93.2 75.7 82.6 85.4 92.9 84.2

Table 6. Performance of SiSTA on Domain D (Motion blur) of the CelebA dataset.
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Source only 59.5 52.5 71.9 59.9 51.9 88.1 50 57.6 78.3 79.6 50.6 82 63 77.2 53.8 63.6 52.5 50.6 62.5

MEMO (Augmix) 62.6 52.5 60.9 61.4 52.4 83 50 57.9 78.2 78.9 50.6 81.3 64.1 77.1 52 62.3 53.1 50.5 61.1

MEMO (Randconv) 62.6 52.4 60.9 61.1 52.4 83 50 57.9 78.3 78.9 50.6 81.3 63.5 77 51.6 62.3 53.1 50.5 61.1

SiSTA (base) 57.3 56.3 71.9 77.9 57.4 80.6 60.7 68.2 75.2 84.2 57.1 84.9 63 76.8 51.8 74.8 62.3 73.5 69.6

SiSTA (prune-zero) 54.1 57.3 70.8 80.6 58.9 89 63.6 77 81.1 82.8 56.4 73.9 55.4 85.3 53.7 76.2 63.8 78.2 71.7

SiSTA (prune-rewind) 54.3 58.5 68.8 84.3 53.6 87.3 69.4 75.9 78.4 85.8 56.1 80.9 60 81.5 52.1 74.8 62.2 80.8 70.6

Full target DA 86.9 78.8 80 90.6 90 97.8 85.9 82.9 94.6 92.9 72.6 92.6 92.5 89 70.6 78.3 84.2 89.6 76

Table 7. Performance of SiSTA on Domain D (Fog) of the CelebA dataset.
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Target-Aware Generative Augmentations for Single-Shot Adaptation
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Source only 51.1 51.5 54.6 55.8 51.3 70.5 50.1 53.5 75.5 72.9 50.8 68.6 56.3 66.7 50.2 64.6 51.7 51.5 54.7

MEMO (Augmix) 50.3 51.4 55.6 55.8 51.4 72 50.2 53.9 75.9 74.3 51.1 68.3 56.4 67.2 50 64.3 51.2 51.1 53.9

MEMO (Randconv) 50.3 51.4 55.6 55.8 51.4 71 50.2 53.9 75.9 74.4 51.1 68.4 56.4 67.2 50 64 51.2 51.1 54

SiSTA (base) 51 65.2 58.7 60.4 59.8 62.2 76 58.5 82.6 79.5 57.8 69.2 51.9 74.4 54.8 66.4 62.1 77.9 58.2

SiSTA (prune-zero) 50.5 66.3 59.3 59.4 70.9 65.3 75.6 66.8 80.4 76.4 57.7 64.1 50.3 78.7 56.3 58.7 61.1 73.6 57.1

SiSTA (prune-rewind) 50.3 65.6 55.6 61.2 61 65.4 76.5 60.4 82.3 80.2 56.2 64.6 50.4 76 54.9 61.7 61.8 77 53.9

Full target DA 67.6 68.8 65.5 75.6 75.9 90.7 78.6 76.7 88 89.3 61.9 74.2 61.2 86.2 61.3 60.2 67.2 84.9 62.2

Table 8. Performance of SiSTA on Domain D (Frost) of the CelebA dataset.
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Source only 50.1 52.5 50.9 59.6 50.2 73.9 51.9 50.1 76.9 66.4 50.1 70.6 57.7 62.9 50.8 61.6 51.2 54 61.8

MEMO (Augmix) 50 52.7 50 60 50 73.5 51.5 50 77 69.6 50 70.2 58.7 64.4 50.7 61 51.3 54.3 61.7

MEMO (Randconv) 50 52.7 50 60 50 73.5 51.3 50 77 69.7 50 70 58.8 64.7 50.8 60.9 51.3 54.3 61.6

SiSTA (base) 62 64.2 60.9 67.2 79.1 82.6 79.4 65 83.4 77.4 68.7 82.1 60.3 75.4 54.7 75.6 67.1 84.3 66.6

SiSTA (prune-zero) 62.4 63.2 61.4 70.7 87.2 87.8 79.5 68.8 86.2 75.7 67.8 81.4 59.7 79.4 57.9 76.1 64.9 86.4 67.4

SiSTA (prune-rewind) 59.4 67.5 57.5 73.6 79.4 86.2 83.3 65.9 86.7 79.3 66.7 81.2 58.7 79.7 55.8 74.9 67 87.1 65.9

Full target DA 76.32 77.68 66.79 82.68 85.69 94.96 84.32 77.87 89.45 83 70.09 85.44 83.71 85.55 62.11 72.93 79.14 84.89 65.89

Table 9. Performance of SiSTA on Domain D (Snow) of the CelebA dataset.
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Source only 50 50 50.4 53 53.4 51.5 50 51.2 69.7 54.5 50 58.9 50 59.4 50.5 50.8 50 56.5 61.6

MEMO (Augmix) 50 50 52.6 51.8 51.9 52.1 50 51.1 68.9 54.5 50 58.8 50 58.3 49.9 50.6 50 55.9 57.3

MEMO (Randconv) 50 50 52.6 51.8 51.4 52.1 50 51.1 69 54.6 50 58.8 50 58.3 49.9 50.6 50 55.7 58.1

SiSTA (base) 50 60.1 54.1 70.3 66.7 50.3 72 65.5 83.5 75.3 50.8 52.5 50.6 74.4 51.7 70.6 51.2 77.3 62.5

SiSTA (prune-zero) 50 65.7 58.7 76.4 75.6 51.1 80.1 73.7 74.2 73.2 50.3 51.1 50.2 82.9 54.9 67.1 52.2 72 57.8

SiSTA (prune-rewind) 50 63.4 55 72.8 72 51 76 67 81.6 76.9 50.5 52.4 50.2 78.5 55 69.8 50.5 76.4 61.5

Full target DA 63.2 76.7 65.56 69.31 76.7 92.1 76 76.3 86.4 89.2 58.8 73.1 71.8 87.1 57.1 68.5 73.7 80.5 62.3

Table 10. Performance of SiSTA on Domain D (Contrast) of the CelebA dataset.
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