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Abstract
Inferring the most probable evolutionary tree
given leaf nodes is an important problem in com-
putational biology that reveals the evolutionary
relationships between species. Due to the expo-
nential growth of possible tree topologies, finding
the best tree in polynomial time becomes com-
putationally infeasible. In this work, we propose
a novel differentiable approach as an alternative
to traditional heuristic-based combinatorial tree
search methods in phylogeny. The optimization
objective of interest in this work is to find the
most parsimonious tree (i.e., to minimize the to-
tal number of evolutionary changes in the tree).
We empirically evaluate our method using ran-
domly generated trees of up to 128 leaves, with
each node represented by a 256-length protein
sequence. Our method exhibits promising con-
vergence (< 1% error for trees up to 32 leaves,
< 8% error up to 128 leaves, given only leaf node
information), illustrating its potential in much
broader phylogenetic inference problems and pos-
sible integration with end-to-end differentiable
models. The code to reproduce the experiments in
this paper can be found at https://github.
ramith.io/diff-evol-tree-search.

1. Introduction
Evolutionary trees (or phylogenetic trees) provide biologists
with a structured, hierarchical representation of how current
species are related through hypothetical ancestors that are
probably extinct at present. Beyond theoretical constructs,
they have practical applications in various fields of biology
and medicine. For instance, phylogenetic techniques are
crucial in the decision-making process when responding to
emerging viruses (Attwood et al., 2022).
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Figure 1. Search for evolutionary tree (N = 32, l = 256) left :
sequences (leaves and ancestors), right : tree topology. A) random
initialization, B) converged solution. optimal solution cost = 2913.

Parsimony methods are one of many methods (such as dis-
tance methods, maximum likelihood, maximum compati-
bility) for constructing evolutionary trees. The parsimony
principle states that the most acceptable explanation of an
occurrence is the one that requires the minimum number of
assumptions or explanations (Sober, 1981). Thus, inferring
the most parsimonious tree given leaf nodes requires finding
the tree that explains the data with minimum number of
evolutionary steps. This combinatorial problem was shown
to be NP-Complete (Foulds & Graham, 1982; Steel, 1992).

Due to the complexity of the problem, existing methods
consider heuristic search techniques by limiting the search
space. Although this does not guarantee that the algorithm
will find the optimal solution, they do facilitate exploration
of a vast number of tree topologies, starting from an initial
guess and iteratively refining it. These methods can be
broadly categorized into 1) tree rearrangement methods 2)
branch and bound methods 3) neighbor joining methods
(Saitou & Nei, 1987; Giribet, 2007; Felsenstein, 2004).

With the success of deep learning methods, there have been
several new directions in constructing evolutionary trees.
(Zhu & Cai, 2021) et al. propose an alignment-free method
in which an attention model (Vaswani et al., 2017) is trained
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Figure 2. Visual depiction of the constructed adjacency matrix and the node representation using learnable parameters θT and ϕseq .

through reinforcement learning to reconstruct evolutionary
trees. However, it requires algorithmic post-processing to
produce the final tree, preventing it from being end-to-end
differentiable. (Azouri et al., 2023) demonstrate a deep-Q-
learning agent on empirical data consisting up to 20 leaves.

With the success of using hyperbolic geometry for hierarchi-
cal data, there has been work on obtaining continuous em-
beddings for trees (Monath et al., 2019; Chami et al., 2020).
Subsequently, optimization in the hyperbolic space for phy-
logeny (Wilson, 2021), developing new metrics (Matsumoto
et al., 2021) and addressing the phylogenetic placement
problem (Jiang et al., 2022) have been explored. Given
the challenge of scalability in traditional Bayesian phy-
logenetics, methods based on variational inference have
been proposed (Zhang & Matsen, 2019; Dang & Kishino,
2019). Recently, (Zhang, 2023) proposed a topological fea-
ture learning framework for phylogenetic inference using
graph neural networks.

In contrast to these work, our approach circumvents the
discreteness of the raw tree and sequence representations in
the first place and model their relationship in a differentiable
manner. By doing so, we obtain a soft-parsimony score that
can be optimized in an end-to-end differentiable manner,
without the need for any prior training data.

We perform experiments for tree topologies up to 128 leaves
and analyze our method for 3 tasks. 1) Learn the tree given
all sequences, 2) learn the ancestors given the tree topology
and leaves (small parsimony), and 3) learn the tree and the
ancestors given leaves (maximum parsimony). For the small
parsimony problem we achieve the ≈ 0% mean error for all
tree complexities, meaning that our approach can find the
optimal ancestral sequences if the tree topology is known.
For the maximum parsimony problem, we achieve < 1%
error for trees up to 32 leaves, < 8% error up to 128 leaves.

Our work opens up new realms for integration with mod-
els with more complex cost functions that go beyond site-
independence assumption. For example, the cost function
can integrate pseudo-likelihood between nodes using protein
language models or those conditioned on protein structure.

2. Notation and background
2.1. Maximum parsimony problem (learn tree and

ancestors)

A rooted phylogenetic tree is a directed acyclic graph
(DAG) G = (V,E). Given a set of N leaves, the maxi-
mum parsimony problem intends to find the phylogenetic
tree (T ) and ancestor nodes that describe the given data
with minimum number of evolutionary steps (Carmel et al.,
2014; Kannan & Wheeler, 2012). For a fixed alphabet
A = {1, ..., c}, each node in this DAG can be repre-
sented by an l dimensional vector s = (s1, ..., sl) such
that s ∈ Al. We consider the Hamming distance d on
the node representation d((s1, ..., sl), (s

′

1, ..., s
′

l)) that de-
scribes the number of indices i such that s

′

i ̸= si. Let
δ(T ) =

∑
(u,v) ∈ E(T ) d(u,v) represent the total number

of evolutionary changes in the tree T . The maximum parsi-
mony problem is then to find the tree that minimizes δ(T ).

2.2. Complexity

The maximum parsimony problem has been comprehensivey
studied in the literature as a special case of the Steiner
tree problem (Hwang & Richards, 1992). Further (Foulds
& Graham, 1982) showed that even when |A| = 2, the
problem of finding the tree with the minimum number of
evolutionary steps is NP-Complete. Given N leaves, the
number of rooted bifurcating tree topologies that exists can
be calculated as (2N − 3)!! (Cavalli-Sforza & Edwards,
1967). Thus, even for a tree with only 12 leaves, there are
more than 13 billion tree topologies in total.

2.3. Small parsimony problem (learn ancestors)

The small parsimony problem (Carmel et al., 2014) is a
much simplified version of the problem in which the phylo-
genetic tree topology T is already given. Therefore, the task
is to find the best possible ancestors. There are a number of
dynamic programming (DP) algorithms proposed to solve
this problem in polynomial such as the Fitch’s algorithm
(Fitch, 1971) and the Sankoff’s algorithm (Sankoff, 1975).
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3. Methodology
In the following subsections, we consider how the discrete
aspects of the problem are relaxed and how gradient-based
optimization can be performed.

3.1. Relaxations
There are two aspects to this problem that make it inherently
non-differentiable. First, each element of the sequence is
combinatorial. Second, considering the adjacency matrix,
the space of valid and meaningful tree topologies is sparse.

Sequence representation In both the small and maximum
parsimony problems, the ancestor sequences are unknown.
We denote learnable parameters ϕseq ∈ R(2N−1)×l×c to
represent the ancestors to be optimized. To obtain a con-
tinuous relaxation of the categorical nature of amino acid
types, we transform the real tensor into a tensor ϕ̂seq , where
each element represents a probability distribution over the
character space for each position of the sequence. This trans-
formation is done using the softmax function (Jang et al.,
2017), with the sharpness of the distribution controlled by
the temperature parameter τ2.

ϕ̂seqijk =
eϕseqijk

/τ2∑c
m=1 e

ϕseqijm/τ2

(1)

This probability tensor ϕ̂seqijk representing ancestors, com-
bined with the one-hot encoding of known leaves results in
the node representation tensor S.

Tree representation Since the adjacency matrix of any
DAG can be permuted to be a strictly upper triangular matrix
(Nicholson, 1975; Li et al., 2022; Charpentier et al., 2022),
we ensure the acyclicity of the graphs represented by the
adjacency matrix (A) by enforcing it to be strictly upper
triangular. Furthermore, since leaves cannot be connected
to each other, we ensure that the first N columns of A are
zero. The remaining positions are parameterized as θT .

Due to the irregular structure of the adjacency matrix rep-
resentation and to speed up the implementation, we first
set the non-parameterized region of the adjacency matrix
to − inf , and then apply the softmax function for each row.
This ensures that the parameterized positions of the adja-
cency matrix will be represented by the correct probability.
Thus, the ith row of A represents the probabilities of node i
being a child of all other nodes, respectively.

Aij =
eθTij

/τ1∑N−1
k=1 eθTik

/τ1
(2)

3.2. Tree enforcing loss function

With the relaxation of the adjacency matrix, optimizing
parameters to reduce Lcost does not explicitly guide the
optimization towards a bifurcating tree. Therefore, we en-
force the following regularization constraint to maintain the

bifurcating property. This regularization forces tree nodes
to have exactly two child node connections.

Lb =

N−1∑
j=1

abs((

2N−2∑
i=1

Aij)− 2)2 (3)

3.3. Differentiable soft parsimony score calculation

To calculate the number of evolutionary steps that have
occurred in the DAG, we formulate the evolutionary cost
calculation as follows. The transposed node representation
tensor Sp = S⊺

(2,0,1) ∈ Rc×(2N−1)×l is constructed by rep-
resenting the characters of the alphabet as its first dimension.

Lcost(θT , ϕseq, τ1, τ2) =
1

2

2N−1∑
i=1

l∑
j=1

|Ac|∑
k=1

|Spk
−A×Spk

|ij

(4)
In this equation, the adjacency matrix A describes the con-
nection of each node to its parent in the tree structure. The
matrix Spk, considers kth character of the alphabet at a time.
Thus, in the matrix Spk, (Spk)ij = 1 iff ith sequence has
jth position equal to the kth character in the alphabet A.
The matrix multiplication A×Spk

serves as a lookup of the
sequence table (Spk

) and returns the parent corresponding
to each node in the tree. Thus, the difference between the
matrices |Spk

−A× Spk| represents the distance between
each child and its parent in the kth character space. By
summing these differences over all dimensions, the cost
function captures the overall evolutionary cost. For a visual
depiction of this calculation, refer to the Appendix Figure 6.

3.4. Bi-level optimization

In the maximum parsimony problem, we need to traverse
both the tree and sequence spaces, and there is a dependency
between these two. Note that for each tree topology, there
is a best set of sequences that define how good each topol-
ogy is. And once the topology changes, these sequences
are no longer valid. Thus, for this task, we formulate the
optimization procedure as a bi-level optimization problem.
Experimentally, we obtain better results with this formula-
tion than optimizing both of the parameters independently
(see the appendix A.2 for the ablation study).

θ∗T = argmin
θT

Lcost
(
ϕ∗
seq(θT ), θT

)
+ λLb (5)

s.t. ϕ∗
seq(θT ) = argmin

ϕseq

Lcost (ϕseq, θT ) + λLb (6)

During implementation, we perform k gradient descent it-
erations for the inner objective (Eq. 6). Gradient descent
is performed for both objectives using the Adam optimizer
(Kingma & Ba, 2015). Furthermore, we use the JAXopt
library to optimize multiple initialization seeds as a batch
and obtain the best result (Blondel et al., 2021).
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Table 1. Evaluation on the Maximum Parsimony and Small Parsimony Problems

Tree Complexity Maximum Parsimony (learn both tree & seqs) Small Parsimony (learn seqs given tree)

N
Mean optimal

solution
Mean

solution
Mean
error

Mean error as a %
w.r.t optimal solution

Mean
solution

Mean
error

Mean error as a %
w.r.t optimal solution

4 277.2 277.2 0.0 ± 0.0 0.000% 277.2 0.0 ± 0.0 0.000%
8 653.1 653.1 0.0 ± 0.0 0.000% 653.1 0.0 ± 0.0 0.000%
16 1407.6 1407.7 0.1 ± 0.3 0.007% 1407.6 0.0 ± 0.0 0.000%
32 2915.4 2936.3 20.9 ± 7.4 0.717% 2915.4 0.0 ± 0.0 0.000%
64 5929.3 6188.6 259.3 ± 27.4 4.373% 5929.3 0.0 ± 0.0 0.000%
128 11971.1 12885.5 914.4 ± 99.6 7.638% 11971.3 0.2 ± 0.4 0.001%

3.5. Evaluation

In order to evaluate our method, we first generate known
evolutionary trees (each consisting of 4− 128 leaves, 256
sequence length, alphabet size c = 20). Therefore, we gen-
erate complete binary trees starting with a random sequence
as the root, make two copies of the sequence at each node,
and generate two random sets of indices each with m = 50
elements which are mutated to a different character. For
each tree complexity, we perform 10 random initializations
for the leaf sequences to generate examples. Further details
on ground truth generation are included in Appendix A.

4. Results
We first analyze a simpler task in which all nodes S (leaves
and ancestors) are known, yet the tree topology is unknown.
For all tree complexities, the adjacency matrix converges to
the groundtruth tree. This task is similar to a hierarchical
clustering task, where all the nodes are known, and we need
to establish a hierarchical dependency between them.

4.1. Small Parsimony (learn ancestors given tree)

The ground-truth ancestor solutions for the known tree topol-
ogy is obtained by the Sankoff algorithm. Table 1 shows the
results for varying number of tree sizes. For all cases, the
error between ours and the optimal parsimony score is ≈ 0.

4.2. Maximum Parsimony (learn ancestors and tree)

In this task, only the leaf sequences are known, and we need
to optimize towards both the best tree topology and ances-
tors. As shown in Figure 3 and Table 1, the mean error in-
creases as the complexity of the tree increases. Note that for
up to N = 8 the possible tree topologies are even enumer-
able, as they result in only 135,135 combinations. Thus, our
method also converges to the optimal solutions. However,
from N = 16 to 128 leaves, tree topologies grows from
≈ 1015 to 10250 possibilities and our method converges to
local optima. We intend to explore methods to simplify
the loss landscape and gradually increase the complexity in
order to discover better solutions.
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Figure 3. Evaluation on the maximum parsimony problem
(learn both the tree and ancestors, given leaves). Error is cal-
culated w.r.t Sankoff algorithm solutions on the groundtruth tree
topology.

5. Discussion and Future Work
Our work establishes a new direction for generating evolu-
tionary trees by traversing a soft tree and sequence space.
Although here we focused on minimizing the parsimony
cost as the objective (with unit cost for any change), our
general optimization method can be coupled with various
loss functions. For instance, the parsimony cost assumes
site-independence, which means that any position wise evo-
lutionary dependence in amino acids is ignored. Thus, if
the tree is known, this independence property can be uti-
lized to develop a dynamic programming algorithm that can
derive the most optimal ancestral sequences (i.e. Sankoff
algorithm (Sankoff, 1975)). Therefore, our method can be
most beneficial when this condition is lifted (e.g. integration
of pseudo-likelihood between nodes using protein language
models or those conditioned on protein structure).

Even though the error increases with tree complexity, future
work could explore an iterative procedure to combine sub-
trees gradually (e.g. for 128 leaves, breaking down the
problem to two sets of 64 leaves or 4 sets of 32 leaves and
running gradient descent, then using these answers as a
better initialization for the original problem).
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A. Appendix
A.1. Groundtruth data generation

We generate complete binary trees starting with a random sequence as root, make two copies of the sequence at each node,
and generate two random sets of indices each with m = 50. These two sets of random indices are mutated into two copies,
so that a new random amino acid is introduced at each index. It should be noted that this process does not necessarily mean
that the generated complete binary trees are the trees with minimum number of evolutionary steps for the reached leaves (for
these leaves there could be a better tree topology and ancestors). However, since mutations are introduced only at 50/256
≈ 20% of the sequence length, the probability of the existence of better topologies is low, yet we find the best ancestors
for this topology by applying the Sankoff algorithm, and this serves us as the groundtruth. Therefore, these serve as test
samples to assess whether the optimization procedure converges to tree and its corresponding ancestors with evolutionary
steps that are sufficiently close to the generated groundtruth.

A.2. Ablation study of optimization methods

As mentioned in 3.4, we compare the bi-level optimization procedure with an independent alternative optimization scheme.
In this formulation, we treat the tree parameters and sequence parameters independently and alternatively perform gradient
descent using Adam optimizer. We find that, even though this procedure works similarly well for trees with fewer leaves
(N ≤ 16), it accumulates high error as the tree grows. The results are shown in Table 2.

θ∗T = argmin
θT

Lcost (θT ) + λLb (7)

ϕ∗
seq = argmin

ϕseq

Lcost (ϕseq) + λLb (8)

Table 2. Ablation study on two different methods for optimization on the maximum parsimony problem

Tree Complexity Bi-level optimization Alternative Optimization

N
Mean optimal

solution
Mean

solution
Mean
error

Mean error as a %
w.r.t optimal solution

Mean
solution

Mean
error

Mean error as a %
w.r.t optimal solution

4 277.2 277.2 0.0 ± 0.0 0.000% 277.2 0.0 ± 0.0 0.000%
8 653.1 653.1 0.0 ± 0.0 0.000% 653.1 0.0 ± 0.0 0.000%
16 1407.6 1407.7 0.1 ± 0.3 0.007% 1411.1 3.5 ± 5.6 0.249%
32 2915.4 2936.3 20.9 ± 7.4 0.717% 2977.9 62.5 ± 18.1 2.144%
64 5929.3 6188.6 259.3 ± 27.4 4.373% 6341.0 411.7 ± 64.3 6.943%
128 11971.1 12885.5 914.4 ± 99.6 7.638% 13597.29 1632.0 ± 129.0 13.639%
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Figure 4. Number of rooted bifurcating tree topologies for N leaves (blue) and number of possible amino acid sequences (red) for a single
256-residue protein (i.e. 20256 ≈ 1.16× 10333 )
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Figure 5. Search for evolutionary tree (N = 32, l = 256) left : sequences, right : tree topology. A) random initialization, B) converged
solution. optimal solution cost = 2913.
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Figure 6. Explanation of parsimony cost calculation. A) considering one character dimension at a time. B) The matrix multiplication
A× Spk serves as a look-up of the sequence table (Spk ). C) Difference between the child and parent sequence in the kth character space.
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