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Abstract

Given the abundance of unlabeled
Satellite Image Time Series (SITS) and
the scarcity of labeled data, contrastive
self-supervised pretraining emerges as
a natural tool to leverage this vast
quantity of unlabeled data. However,
designing effective data augmentations
for contrastive learning remains chal-
lenging for time series. We introduce
a novel resampling-based augmentation
strategy that generates positive pairs by
temporally upsampling time series and
extracting disjoint subsequences while
preserving temporal coverage. We val-
idate our approach on multiple agri-
cultural classification benchmarks using
Sentinel-2 imagery, showing that it out-
performs common alternatives such as
jittering, resizing, and masking. Fur-
ther, we achieve state-of-the-art perfor-
mance on the S2-Agri100 dataset with-
out employing spatial information or
temporal encodings, surpassing more
complex mask-based SSL frameworks.
Our method offers a simple, yet effec-
tive, contrastive learning augmentation
for remote sensing time series.

Keywords: contrastive learning, time
series, remote sensing, data augmen-
tation, cropland classification, self-
supervised learning

1. Introduction

Every five days, the Sentinel-2 satellite
constellation (Drusch et al., 2012; Gascon
et al., 2017) captures multispectral images of
Earth’s entire surface at 10-meter resolution,
generating an unprecedented amount of data
of our planet’s changing landscapes. How-
ever, a major challenge lies in the scarcity
of labeled data. While large volumes of
raw Satellite Image Time Series (SITS)
data are available, labeling them is costly,
time-consuming, expert-dependent, and of-
ten domain-specific. Consequently, only a
fraction of this data is leveraged in super-
vised frameworks, leaving the rest unused.

Self-Supervised Learning (SSL) methods
offer a promising solution to exploit these
large, unlabeled SITS datasets. By learning
meaningful representations from unlabeled
data, SSL can achieve higher accuracy on
downstream tasks with fewer labeled sam-
ples (Henaff, 2020). Generally, SSL meth-
ods can be divided into two main categories:
contrastive methods, which rely on bringing
closer together pairs of similar samples (gen-
erally created through data augmentation)
in representation space, and generative or
mask-based methods, which focus on recon-
structing missing (artificially masked) infor-
mation in the data.
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Masking strategies have been extensively
studied for time series data. Although the
performance achieved is interesting, these
methods can be difficult to implement for
spatio-temporal data. They have a high com-
putational cost, and the definition of tokens
for transformer-based models is highly de-
pendent on the dataset used. In addition,
masking strategies have better performance
when combined with contrastive methods
(Cheng et al., 2023). Hence, further study
of contrastive methods is needed. However,
contrastive learning methods for SITS re-
main under-explored due to the difficulty of
designing robust augmentations for time se-
ries data. Indeed, a key component of con-
trastive methods is the formation of positive
sample pairs: two views of the same under-
lying instance that should be mapped close
together in the representation space. In com-
puter vision, standard data augmentations
such as cropping, rotation, and color jittering
have been well studied (Chen et al., 2020a,b).
Yet for time series data, including SITS, de-
signing similarly effective augmentations is
less straightforward and remains an active
research topic (Liu et al., 2024; Yuan et al.,
2025). In this paper, we make three main
contributions:

First, we introduce a novel, resampling-
based, augmentation technique for time se-
ries contrastive learning. This straightfor-
ward approach generates two views of a time
series by temporally upsampling the original
sequence, then extracting two disjoint subse-
quences from it while maintaining temporal
coverage across the full temporal range.

Second, we experimentally show that our
resampling augmentation outperforms tra-
ditional time series augmentations (namely
jittering, resizing, and masking) for con-
trastive learning on satellite image time se-
ries data. Furthermore, despite its simplicity
and without relying on spatial information
or temporal positional encodings, our ap-

proach achieves state-of-the-art performance
on the S2-Agri100 dataset (Garnot et al.,
2020; Yuan et al., 2022) for satellite image
time series classification of agricultural fields.

Third, we investigate the impact of pre-
training data distribution in SITS. We
show that pretraining on unlabeled data
from the target domain (S2-Agri100 dataset)
rather than a different domain (SITS-Former
dataset) enables a simple logistic regres-
sion to outperform state-of-the-art models
trained on the SITS-Former dataset. Also,
we observe a minimal performance difference
between full finetuning and linear evalua-
tion, suggesting that feature quality plays a
greater role than classifier complexity, and
that collecting large quantities of unlabeled
data from the target domain can be as valu-
able as obtaining small quantities of labels.

The remainder of this paper is organized
as follows: Section 2 reviews related work
in contrastive learning, self-supervised learn-
ing for remote sensing, and time series aug-
mentations. Section 3 details our resampling
augmentation technique. Section 4 describes
the experimental setup, including datasets,
model architectures, and training protocols.
Section 5 presents results: (1) comparison of
contrastive frameworks, (2) label efficiency
across datasets, (3) benchmarking on S2-
Agri100, and (4) the effect of pretraining
data distribution. Finally, Section 6 dis-
cusses limitations and future directions.

Code for models, training, evaluation, and
datasets preprocessing is available at1,2.

2. Related Works

2.1. Contrastive Learning Frameworks

The core idea of contrastive self-supervised
learning is to bring the representations of

1. https://github.com/antoinesaget/ts_ssl
2. https://github.com/antoinesaget/sits_dl_

preprocess
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similar samples (positive pairs) closer to-
gether in the embedding space. These pos-
itive pairs are typically created by apply-
ing different data augmentations to the same
input sample. However, focusing solely on
making positive pairs similar can lead to rep-
resentation collapse, where the model maps
all inputs to the same representation. Dif-
ferent frameworks address this challenge in
distinct ways.

SimCLR (Chen et al., 2020a) uses in-batch
negatives, treating other samples within the
batch as negative examples and pushing
them apart in representation space. MoCo
(He et al., 2019) extends this approach with
a memory bank to include more negative ex-
amples and using a momentum-updated en-
coder to generate consistent representations.

However, these methods can suffer from
false negatives when samples from the same
class are mistakenly pushed apart. BYOL
(Grill et al., 2020) avoids negative examples
entirely and prevents collapse using a mo-
mentum encoder and asymmetric branches
(prediction head in one branch, none in
the other). SimSiam (Chen and He, 2021)
simplifies BYOL by showing that the mo-
mentum encoder is not necessary. VICReg
(Bardes et al., 2021) directly prevents col-
lapse through variance and covariance reg-
ularization terms in the loss. Other ap-
proaches include SwAV (Caron et al., 2020),
which uses online clustering, and Barlow
Twins (Zbontar et al., 2021), which maxi-
mizes the independence of features.

2.2. Self-Supervised Learning in
Remote Sensing

Recent advances in Self-Supervised Learning
(SSL) for remote sensing have largely focused
on developing Remote Sensing Foundation
Models (RSFMs). These models all con-
tribute towards the ideal of universal repre-
sentations applicable across any satellite sen-

sors, spatial scales, geographical locations,
temporal resolutions, and downstream tasks.
Two main approaches have emerged: masked
modeling and contrastive learning.

Masked modeling approaches, inspired by
the success of masked autoencoders (MAE)
(He et al., 2022) in computer vision, have
been widely adopted. SatMAE (Cong et al.,
2022) and Prithvi (Jakubik et al., 2023) use
temporal and spectral encodings alongside
traditional spatial encodings to handle the
multi-modal nature of satellite data. Scale-
MAE (Reed et al., 2022) contributes towards
scale invariance by separately reconstruct-
ing low and high-frequency components of
masked regions.

These spatio-temporal MAE approaches
face an inherent computational challenge:
the cubic growth in the number of tokens
(width × height × time) added to the
quadratic growth of self-attention in trans-
former models with respect to the number
of tokens. This requires a trade-off, and
most models prioritize spatial coverage at
the expense of temporal depth (e.g., SatMAE
(Cong et al., 2022) is limited to 3 timesteps).
Presto (Tseng et al., 2023) takes the opposite
approach by focusing exclusively on the tem-
poral dimension without spatial context, en-
abling it to process much longer time series.
Trained on a large-scale worldwide dataset of
20M time series combining Sentinel-1 SAR,
Sentinel-2 multispectral, ERA meteorologi-
cal data, and more, it treats each pixel in-
dependently and applies temporal and spec-
tral masking on sequences of 12 timesteps
covering 12 months, demonstrating competi-
tive performance even against methods that
leverage spatial information.

Contrastive learning offers an alternative
approach. Seasonal Contrast (SeCo) (Manas
et al., 2021) trains on large-scale Sentinel-
2 imagery using three simultaneous objec-
tives with separate projection heads from a
shared embedding space: one head learns in-
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variance to standard image augmentations
(random cropping, color jittering, flipping),
another learns invariance to seasonal changes
by bringing closer images of the same loca-
tion at different times, and a third combines
both types of invariance. While this results
in time-aware representations, the model
cannot directly process time series as input.
SSL4EO-S12 (Wang et al., 2022) extends
this work to multi-modal data (Sentinel-1
and Sentinel-2) while evaluating various con-
trastive frameworks (MoCo, DINO, MAE).

Recent work has focused on improving the
universality of these models. DOFA (Wang
et al., 2023) generates dynamic weights to
adapt to unseen sensors, trained on a di-
verse dataset spanning Sentinel-2 multispec-
tral, Sentinel-1 SAR, EnMAP hyperspectral,
and high-resolution aerial imagery. Sky-
Sense (Guo et al., 2024) employs multi-
granularity contrastive learning to create em-
beddings effective at pixel, object, and im-
age scales. Its training data combines high-
resolution WorldView-3/4 imagery with tem-
poral sequences from Sentinel-1/2. Despite
being one of the largest RSFM to date
(25,000 NVIDIA A100 GPU hours) with the
longest time series support, SkySense no-
tably does not incorporate temporal aug-
mentations during contrastive learning.

2.3. Time Series Augmentations

While masked modeling approaches do
not require data augmentations, contrastive
methods traditionally rely on spatial aug-
mentations like cropping, rotation, and color
jittering that are not directly applicable to
time series data. The diversity of time series
data —from satellite observations to electro-
cardiograms and stock prices— makes de-
signing universal augmentations particularly
challenging due to their varying characteris-
tics, sampling frequencies, and lengths.

Liu et al. (2024) provide a comprehensive
analysis of time series augmentations for con-
trastive learning, evaluating eight common
transformations: jittering (adding random
noise), scaling (multiplying by a random fac-
tor), flipping (reversing values), permutation
(shuffling segments), resizing (temporal in-
terpolation), time masking (zeroing random
timesteps), frequency masking (filtering fre-
quency components), and time neighboring
(selecting adjacent windows). They identify
which augmentations are most effective for
different types of time series based on prop-
erties such as seasonality, trend, and noise
levels. More recently Yuan et al. (2025) ex-
tensively study data augmentations for pix-
elwise satellite image time series, including
a different yet similar resampling-based aug-
mentation. However, their study does not
cover contrastive learning.

3. Resampling augmentation

Given an input time series S =
{s1, . . . , sT } ∈ RT×C , where T is the number
of timesteps with index X = {1, ..., T} and
C is the number of channels, we perform the
temporal resampling augmentation in three
steps.

First (Figure 1(a)), we upsample the orig-
inal time series to Tup timesteps (typically
Tup = 2× T ) using linear interpolation:

Sup = flinear(S) ∈ RTup×C

Second (Figure 1(b)), we sample two sub-
sequences S1

sub (resp. S2
sub) with indices X 1

sub

(resp. X 2
sub) containing T 1

int (resp. T 2
int)

timesteps from Sup (typically T i
int = T/2).

With Tup = 2 × T and Tint = T/2, this
means that each subsequence samples a quar-
ter of the timesteps from the upsampled se-
ries. This empirically resulted in sufficiently
different views to provide a meaningful learn-
ing signal, while remaining similar enough to
preserve semantic meaning.
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Figure 1: Example visualization of the re-
sampling augmentation process.

The sampling strategy follows two con-
straints:

• The subsequences use distinct
timesteps: X 1

sub ∩ X 2
sub = ∅

• Each subsequence samples uniformly at
least bT i

int/4c timesteps within each
quarter of Sup. With j ∈ {1, .., 4}:

|X i
sub ∩ {(j − 1)

Tup

4
, ..., j

Tup

4
}| ≥ bT

i
int

4
c

This structured sampling constraint ensures
that both sequences maintain complete tem-

poral coverage of the original signal and pre-
vent large temporal gaps.

Third (see Figure 1(c)), we resample both
sequences to match the original temporal res-
olution:

Si = fresample(S
i
sub) ∈ RT×C

The function fresample transforms a subse-
quence Si

sub with timestamps X i
sub into a

time series aligned with the original times-
tamps X through two steps:

1. First, we linearly rescale the timestamps
X i
sub to span the full range [1, T ], pre-

serving their relative spacing. This
maps the subsequence onto the same
temporal range as the original series.

2. Then, since the rescaled timestamps
generally don’t align with the original
timestamps X , we use linear interpola-
tion to compute values at exactly the
timestamps X , ensuring the resulting
time series has both the same tempo-
ral resolution and temporal alignment as
the input.

This third step is optional, as unaligned time
series of different length can actually provide
a stronger learning signal, however all exper-
iments carried in this paper include this step.

This augmentation results in two distinct
but similar time series that preserve the over-
all temporal structure, length, and align-
ment while introducing controlled variations,
making them suitable as positive pairs for
contrastive learning. This view genera-
tion process bears resemblance to the one
proposed in ALISE (Dumeur et al., 2024),
where views are generated by taking non-
overlapping temporal blocks from the orig-
inal time series.
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Table 1: Datasets characteristics for self-supervised pretraining and/or supervised down-
stream task evaluation. G is the number of time series per sample, T is the number of
timesteps per time series, C is the number of channels per timestep.

Sample shape Pretraining Downstream task evaluation
Dataset G T C Nb samples Nb Classes Nb samples/class
FranceCrops 100 60 12 ∼5.8M 20 5–100
FranceCrops CVdL 100 60 12 – 20 5–100
PASTIS 100 60 10 ∼85k 18 5–100
SITS-Former 25 24 10 ∼1.6M –
S2-Agri100 25 24 10 ∼120k 15 100

4. Experimental Setup

4.1. Datasets

Unlike recent works aiming to build general-
purpose remote sensing foundation models
(Tseng et al., 2023; Jakubik et al., 2023;
Reed et al., 2022; Cong et al., 2022; Guo
et al., 2024; Wang et al., 2023, 2022; Manas
et al., 2021), we focus on task-specific pre-
training. While our resampling augmenta-
tion could be used in a more flexible setting
with varying data shapes and temporal res-
olutions, in this paper we focus on demon-
strating its effectiveness in a more limited
setting. We pretrain each model on unla-
beled data that matches the characteristics
(i.e. data shape, source, location) of its tar-
get downstream task. Table 1 details the
pretraining and downstream datasets used in
our experiments.

FranceCrops (Saget et al., 2024) is a large-
scale Sentinel-2 time series dataset for agri-
cultural parcel classification in metropoli-
tan France. Each sample consists of 100
pixel time series sampled within a crop
field’s geometric bounds, with 60 tempo-
rally aligned timesteps spanning February-
November 2022 across all 12 Sentinel-2 L2A
bands. It is split into an unlabeled con-
trastive learning set (≈4M samples) and
labeled sets (train/val/test) containing 20
selected common crop types. A separate

dataset for the Centre-Val de Loire region
follows the same structure with a different
subset of 20 classes, enabling evaluation of
geographical generalization.

PASTIS (Garnot and Landrieu, 2021) is
a similar agricultural parcel classification
dataset but at a smaller scale with 85k sam-
ples and 18 crop types. Unlike FranceCrops,
raw PASTIS samples contain varying num-
bers of unaligned time series per parcel. We
preprocess the dataset following the same
procedure as FranceCrops to obtain aligned
time series of equal length resulting in 100,
60 timesteps time series per sample. While
PASTIS also offers versions with full imagery
for spatio-temporal models and Sentinel-1
data, we only use the Sentinel-2 pixel-set ver-
sion in this study.

SITS-Former (Yuan et al., 2022) consists
of ≈1.66M unlabeled Sentinel-2 time series
of 24 timesteps across 10 channels sampled
from California’s Central Valley during 2018-
2019. Each sample is a 5×5 pixel patch
extracted at regular intervals from cloud-
filtered (<10%) Level-2A images. We pro-
cess each 5×5 patch as a set of independent
pixel time series, disregarding spatial rela-
tionships between pixels.

S2-Agri100 (Yuan et al., 2022) is a variant
of the S2-Agri dataset (Garnot et al., 2020)
for crop type classification, sharing similar
characteristics with the SITS-Former dataset
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(5×5 pixel patches, 24 timesteps, 10 chan-
nels, cloud-filtered Sentinel-2 bands) but lo-
cated in southern France spanning January-
October 2017. The dataset contains ≈175k
test samples from a 12,100km2 area, with 100
samples per class in both training and vali-
dation sets. Except for the final experiment
in Section 5.4, this dataset is only used for
downstream evaluation.

4.2. Architectures

Figure 2 describes our architecture. Follow-
ing a standard contrastive learning architec-
ture (Chen and He, 2021), our model consists
of an encoder network followed by a projec-
tion head. The encoder maps the input time
series to a representation space we use for
downstream tasks, while the projection head
further transforms these representations for
optimization of the contrastive loss. In Sec-
tion 5.1 we compare performance on Sim-
CLR (Chen et al., 2020a), MoCo (He et al.,
2019), BYOL (Grill et al., 2020) and VICReg
(Bardes et al., 2021) frameworks. We re-
fer readers to SimSiam (Chen and He, 2021)
for diagrams comparing different contrastive
learning architectures.

We use a ResNet encoder adapted for time
series (Wang et al., 2016), configured with
256 filters in the first convolutional layer.
The encoder outputs 512-dimensional em-
beddings. In all considered datasets, each
sample consists of a set of multiple time se-
ries. Therefore, we reuse the approach from
Saget et al. (2024) to aggregate multiple time
series embeddings from the same sample into
one. This process begins by randomly select-
ing G (for group) pixel time series from each
sample during the forward pass. Each of the
G series is then processed independently by
the shared ResNet blocks and global pool-
ing, yielding G embeddings of dimension 512
per sample. An extra adaptive average pool-
ing layer (appended after the ResNet encoder

output) aggregates them into a single 512-
dimensional vector per sample. This aggre-
gation layer fuses multiple time series em-
beddings into one by averaging along the
group dimension. Empirically, setting G = 4
captures intra-sample time series variability
without over-smoothing discriminative fea-
tures (see Saget et al. (2024)). Note that
for datasets without multiple time series per
sample (when G = 1), the aggregation layer
is equivalent to the identity operation and
can be discarded.

We use a 2-layer Multi-Layer Perceptron
(MLP) projection head with a hidden dimen-
sion of 512 and an output dimension of 128.

Preliminary experiments with other en-
coders (transformer encoder, other CNN ar-
chitectures, Garnot et al. (2020)) did not
show significantly different results. Our hy-
pothesis is that the performance bottleneck
is currently in the contrastive learning objec-
tive or the views generation process, not in
the encoder design. However, this remains
to be investigated further.

4.3. Training and evaluation protocol

Pretraining: Models are trained using
Stochastic Gradient Descent (SGD) with
5e-4 weight decay and 0.9 momentum.
For frameworks using momentum encoders
(MoCo and BYOL), the target model
weights are updated with a momentum of
0.996. We employ a one-cycle learning rate
policy starting at 2e-3, increasing to 5e-2
for the first 20% of training, then decreasing
to 5e-5. Training runs for 50k steps with a
batch size of 1024. The best checkpoint is
selected based on performance on a small
validation dataset, evaluated every 1k steps.

Downstream Evaluation: We evalu-
ate the pretrained encoder in two ways:
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Resampling View Generation SimCLR Framework
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Figure 2: Self-Supervised Contrastive pretraining framework. For each sample xorig in a
batch, 4 time series are randomly sampled from it into xsub. The resampling augmentation
is then applied to create two views: x1 and x2. Each of the 4 time series per view per sample
is individually fed to a ResNet encoder, producing 4 embeddings per view per sample into
a representation space h that will be used for downstream tasks. For each view, these 4
embeddings are then aggregated by averaging into a single representation (H1 and H2) and
further projected (Z1 and Z2) by an MLP on which the contrastive loss is computed. The
diagram illustrates the SimCLR framework but any contrastive learning framework that
relies on positive pairs can be used.

• Linear Evaluation: A logistic regres-
sion (max_iter: 2000, tol: 1e-5, C: 1.0)
is trained on frozen encoder features.

• Finetuning: A 2-layer MLP with a
hidden dimension of 256, ReLU acti-
vation, and 20% dropout is added to
the encoder. The MLP is trained alone
for 10 epochs (encoder frozen), then the
full model is finetuned for 100 epochs.
The MLP learning rate is 1e-3 and the
encoder learning rate is 2e-5 with 5e-4
weight decay.

We train and evaluate on a single NVIDIA
RTX 4090 GPU. Pretraining takes approxi-
mately 6 hours, finetuning takes 2-3 minutes,
and linear evaluation takes a few seconds.

As datasets include multiple time series
per sample, the final prediction of a sample
is obtained through majority voting over in-
dividual time series predictions.

5. Results

5.1. Contrastive learning framework
comparison

Table 2 shows our experimental results com-
paring the resampling augmentation with
SimCLR, MoCo, BYOL, and VICReg con-
trastive learning frameworks on the France-
Crops dataset against jittering, resizing, and
time masking. VICReg achieved the best
results with 72% accuracy when using re-
sampling augmentation. Our resampling
augmentation outperforms tested augmenta-
tions across all frameworks tested.

However, we observed important differ-
ences in training stability between frame-
works. Notably, representation collapse oc-
curs more frequently with time series data
compared to images. We hypothesize that
this is due to the lower dimensionality of
time series data, making it easier for models
to find trivial solutions that map all inputs
to the same representation. While VICReg
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achieves the highest accuracy, we found it
occasionally diverged on other datasets and
required careful hyperparameter tuning. In
contrast, SimCLR showed more stable train-
ing behavior despite achieving slightly lower
accuracy (69%). For this reason, we use
SimCLR for the remainder of our experi-
ments (except for FranceCrops where VI-
CReg is stable), prioritizing reliable training
over marginal performance gains.

5.2. Label Efficiency

To evaluate how well our approach performs
with limited labeled data, we conducted ex-
periments across three datasets with varying
numbers of labeled samples per class, from
very few (5) to relatively many (100). Re-
sults in Table 3 show that our resampling
augmentation consistently outperforms all
other approaches across all sample sizes and
datasets. The improvement is most signifi-
cant with few labels (5-20 samples), achiev-
ing up to 23 percentage points over raw fea-
tures on FranceCrops (44% to 67% with 5
samples). Importantly, this performance ad-
vantage is maintained even as more labeled
data becomes available, showing that our
method can effectively leverage additional
supervision without compromising its repre-
sentational power.

In contrast, simpler augmentations like jit-
tering show limited scalability. While bene-
ficial with few labels (5-10 samples), it per-
forms worse than raw features with more la-
bels, suggesting it oversimplifies representa-
tions, making them unable to capture the full
complexity of the data when more supervi-
sion is available.

Time masking performs second-best. Like
our resampling approach, it creates views by
removing information from the original time
series. This connection is particularly in-
teresting as it bridges the gap between con-
trastive learning and masking methods: both

rely on learning from incomplete temporal
information, but while masking methods re-
construct the missing values, our approach
learns to match representations of different
incomplete views.

Despite many similarities with France-
Crops, we observe lower performance on
PASTIS, likely due to differences in cloud fil-
tering, a more challenging set of crop types,
and a smaller pretraining dataset.

5.3. Image Time Series Task -
S2-Agri100 Results

We evaluate our model’s ability to generalize
across different geographical regions by pre-
training on SITS-Former’s California data
and testing on French agricultural parcels
from the S2-Agri100 dataset. Our approach
does not leverage any spatial information be-
yond the assumption that pixels within the
same patch share the same label (Saget et al.,
2024). Following Tseng et al. (2023), we use
100 parcels per class for training, a valida-
tion set for early stopping, and the remaining
parcels for testing.

Table 4 shows the corresponding perfor-
mance after finetuning models that were
first pretrained in a self-supervised manner
on the SITS-Former dataset. Despite our
model’s simpler architecture, which ignores
spatial information and temporal positions,
it achieves superior performance. Following
Tseng et al. (2023), we also report in Ta-
ble 5 results when training each model from
random initialization (without pretraining)
using only the S2-Agri100 training set. In
this scenario, our model performs worse than
SITS-Former. This highlights the impor-
tance of contrastive pretraining and shows
that our bare architecture (ResNet encoder
+ MLP projection head) might not be the
most appropriate for the task.
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Table 2: Mean test accuracy (%) of logistic regressions trained on features from encoders
trained with different contrastive learning frameworks. Results averaged over 20 runs with
different training sets on FranceCrops with 10 labeled samples per class. All standard
deviations are ≤ 1. A logistic regression on raw data achieves 52% accuracy.

SSL Framework
Aug. SimCLR BYOL VICReg MoCo

Jittering 49 48 53 48
Resizing 54 56 65 57

Time Masking 61 62 67 63
Resampling 69 69 72 68

5.4. Impact of Pretraining Data
Distribution

In this experiment, we investigate the im-
pact of pretraining data distribution. We
compare pretraining on data from the same
distribution as the target task versus pre-
training on data from a different distribution.
While we used the SITS-Former dataset
(California) for pretraining and S2-Agri100
(France) for evaluation in our previous ex-
periment, we both pretrain and evaluate on
S2-Agri100 in this experiment.

The S2-Agri100 train split is too small
(1500 samples) for pretraining, so we pre-
train on 70% of the large S2-Agri100 test
split in an unsupervised manner and evaluate
on the remaining 30% (over 40,000 samples).
We still use the standard S2-Agri100 training
split for finetuning and linear evaluation.

Table 6 shows that both approaches sig-
nificantly outperform all previous methods,
including our model pretrained on SITS-
Former. This improvement should not be
attributed to our specific model architecture,
similar gains might be observed if other mod-
els like Presto were pretrained in the same
way. Rather, these results illustrate two
general principles: first, the importance of
pretraining on data from the same distri-
bution as the target task, and second, as
shown by the minimal gap between logis-
tic regression (74.30% OA) and full finetun-

ing (76.84% OA), most of the performance
comes from the quality of the learned fea-
tures rather than the complexity of the su-
pervised classifier.

These results have important implications
for practical applications. First, they high-
light that matching the distribution between
pretraining data and target task is crucial for
optimal performance. Second, they suggest
that feature learning can be effectively de-
coupled from classification: strong features
can be learned from unlabeled data, while
a simple classifier trained on these features
with limited labeled data can achieve excel-
lent performance. In other words, collecting
large quantities of unlabeled data from the
target domain can be as valuable as obtain-
ing small quantities of labels.

6. Conclusion

Our approach significantly reduces the need
for labeled data across all tested datasets and
outperforms other traditional augmentations
like jittering, masking, and resizing. With
just 5 labeled samples per class, our method
achieves performance comparable to training
the same model on raw features with 20-50
samples per class, representing a 4-10x re-
duction in required labeled data.

The effectiveness of our resampling aug-
mentation stems from its ability to create
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Table 3: Mean Test Accuracy (%) of Logis-
tic Regressions trained on features extracted
by a SimCLR encoder (VICReg for France-
Crops). Results averaged over 20 runs with
different training sets. All standard devia-
tions are ≤ 1 unless specified in parentheses.

(a) FranceCrops
Aug. Samples per Class

Strategy 5 10 20 50 100
Raw Features 44 52 61 70 76

Jittering 49 53 59 65 69
Resizing 60 65 69 74 77

T. Masking 62 67 73 78 81
Resampling 67 72 76 80 83

(b) FranceCrops Centre-val de Loire
Aug. Samples per Class

Strategy 5 10 20 50 100
Raw Features 49 56 64 74 79

Jittering 52 58 63 68 71
Resizing 59 63 68 73 76

T. Masking 62 68 72 77 80
Resampling 65 71 75 79 82

(c) Pastis
Aug. Samples per Class

Strategy 5 10 20 50 100
Raw Features 24 28 32 37 40

Jittering 23 26 29 32 33
Resizing 26 29 33 36 37

T. Masking 37 41 45 47 48
Resampling 38 42 46 49 50

meaningful positive pairs while preserving
temporal structure. Notably, it requires only
two hyperparameters (Tup and Tsub) that we
set to natural values (Tup = 2 × T and
Tsub = T/2) and did not optimize.

However, our approach has limitations. It
requires time series with a high temporal
sampling rate relative to the frequency of
meaningful events. This assumption holds
well for remote sensing data, where Sentinel-
2’s 5-day revisit time captures most agricul-
tural and land cover changes that typically

Table 4: Results on the S2-Agri100 dataset
after self-supervised pretraining on SITS-
Former and finetuning on S2-Agri100. We
report Overall Accuracy (OA), Kappa Co-
hen score (K) and macro-F1 score following
Tseng et al. (2023). Averages over three runs.

Model M Params OA K F1
SITS-Former 2.5 67 56 43

Presto 0.4 69 58 40
Ours 8.2 70 60 44

Table 5: Results on the S2-Agri100 dataset
when training from random initialization (no
pretraining).

Model M Params OA K F1
SITS-Former 2.5 65 55 42

Presto 0.4 46 35 27
Ours 8.2 62 52 40

occur over weeks or months. For datasets
with rare or high-frequency events, the sub-
sampling might lose critical information.

Our experiments on S2-Agri100 showed
that features learned from unlabeled data
can be more important for performance than
an advanced classifier. The minimal gap
between logistic regression and full finetun-
ing performance suggests that when domain-
specific unlabeled data is available, strong re-
sults can be achieved with simple linear clas-
sifiers on pretrained features.

This study suggests several directions for
future work:

• Evaluating the resampling augmenta-
tion in standard supervised learning set-
tings, beyond its current use in con-
trastive learning.

• Exploring the applicability of our aug-
mentation to sequential data from other
domains beyond remote sensing, with
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Table 6: Results when unsupervised pretraining on S2-Agri100 versus pretraining on SITS-
Former illustrate the importance of learning from data with similar distribution as the
target task. 🔥 indicates full finetuning, ❄️ indicates linear evaluation (logistic regression
on frozen features). Average over three runs.

Model Pretrain Data SFT? OA K F1
SITS-Former

SITS-Former
🔥 67 56 43

Presto 🔥 69 58 40
Ours 🔥 70 60 44
Ours S2-Agri100 🔥 77 68 49
Ours ❄️ 74 65 48

comparable and different temporal pat-
terns.

• Extending our method to a Remote
Sensing Foundation Model framework
supporting variable-length sequences,
non-uniform sampling, multiple modal-
ities, Earth-wide pretraining, and di-
verse downstream applications beyond
crop classification.

• Incorporating spatial context instead of
purely temporal analysis of individual
pixels or pixel-sets.

Impact Statement

This paper presents work whose goal is to
advance the field of Machine Learning by
improving data augmentation strategies for
self-supervised contrastive learning on re-
mote sensing time series. Our resampling
augmentation contributes towards founda-
tion models that can leverage vast amounts
of unlabeled satellite image time series while
significantly reducing the need for labeled
data. By enhancing label efficiency, this ap-
proach can lower the barrier to entry for
resource-constrained practitioners and pro-
mote broader use of Earth observation for
environmental monitoring, agriculture, and
natural disaster response.

Acknowledgments

We thank the French National Research
Agency (ANR) for funding through the Ar-
tIC and HERELLES projects. We also ex-
press our gratitude to the European Space
Agency (ESA) and the Copernicus program
for making Sentinel-2 data freely accessible
to the scientific community. Finally, we ac-
knowledge the use of Claude 3.7/4 Sonnet
(Anthropic), GPT-4o/o4-mini/o3 (OpenAI)
and Gemini-2.5-Pro (Google) large language
models to assist writing code, and edit this
article for grammar checking, polishing, and
formatting.

References

Adrien Bardes, Jean Ponce, and Yann
LeCun. Vicreg: Variance-invariance-
covariance regularization for self-
supervised learning. arXiv preprint
arXiv:2105.04906, 2021.

Mathilde Caron, Ishan Misra, Julien Mairal,
Priya Goyal, Piotr Bojanowski, and Ar-
mand Joulin. Unsupervised learning of
visual features by contrasting cluster as-
signments. Advances in neural information
processing systems, 33:9912–9924, 2020.

Ting Chen, Simon Kornblith, Mohammad
Norouzi, and Geoffrey Hinton. A sim-

12



Resampling Augmentation for Time Series Contrastive Learning

ple framework for contrastive learning of
visual representations. In International
conference on machine learning, pages
1597–1607. PMLR, 2020a.

Ting Chen, Simon Kornblith, Kevin Swer-
sky, Mohammad Norouzi, and Geoffrey E
Hinton. Big self-supervised models are
strong semi-supervised learners. Advances
in neural information processing systems,
33:22243–22255, 2020b.

Xinlei Chen and Kaiming He. Exploring
simple siamese representation learning. In
Proceedings of the IEEE/CVF conference
on computer vision and pattern recogni-
tion, pages 15750–15758, 2021.

Mingyue Cheng, Qi Liu, Zhiding Liu,
Hao Zhang, Rujiao Zhang, and Enhong
Chen. Timemae: Self-supervised rep-
resentations of time series with decou-
pled masked autoencoders. arXiv preprint
arXiv:2303.00320, 2023.

Yezhen Cong, Samar Khanna, Chenlin
Meng, Patrick Liu, Erik Rozi, Yutong He,
Marshall Burke, David Lobell, and Stefano
Ermon. Satmae: Pre-training transform-
ers for temporal and multi-spectral satel-
lite imagery. Advances in Neural Informa-
tion Processing Systems, 35:197–211, 2022.

Matthias Drusch, Umberto Del Bello,
Sébastien Carlier, Olivier Colin, Veron-
ica Fernandez, Ferran Gascon, Bianca
Hoersch, Claudia Isola, Paolo Laberinti,
Philippe Martimort, et al. Sentinel-2:
Esa’s optical high-resolution mission for
gmes operational services. Remote sens-
ing of Environment, 120:25–36, 2012.

Iris Dumeur, Silvia Valero, and Jordi
Inglada. Paving the way toward founda-
tion models for irregular and unaligned
satellite image time series, 2024.

Vivien Sainte Fare Garnot and Loic Lan-
drieu. Panoptic segmentation of satellite
image time series with convolutional tem-
poral attention networks. In Proceedings of
the IEEE/CVF International Conference
on Computer Vision, pages 4872–4881,
2021.

Vivien Sainte Fare Garnot, Loic Lan-
drieu, Sebastien Giordano, and Nesrine
Chehata. Satellite image time series clas-
sification with pixel-set encoders and tem-
poral self-attention. In Proceedings of
the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages
12325–12334, 2020.

Ferran Gascon, Catherine Bouzinac, Olivier
Thépaut, Mathieu Jung, Benjamin
Francesconi, Jérôme Louis, Vincent Lon-
jou, Bruno Lafrance, Stéphane Massera,
Angélique Gaudel-Vacaresse, et al. Coper-
nicus sentinel-2a calibration and products
validation status. Remote Sensing, 9(6):
584, 2017.

Jean-Bastien Grill, Florian Strub, Flo-
rent Altché, Corentin Tallec, Pierre
Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Guo,
Mohammad Gheshlaghi Azar, et al. Boot-
strap your own latent-a new approach to
self-supervised learning. Advances in neu-
ral information processing systems, 33:
21271–21284, 2020.

Xin Guo, Jiangwei Lao, Bo Dang, Yingy-
ing Zhang, Lei Yu, Lixiang Ru, Liheng
Zhong, Ziyuan Huang, Kang Wu, Dingx-
iang Hu, et al. Skysense: A multi-
modal remote sensing foundation model
towards universal interpretation for earth
observation imagery. In Proceedings of
the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages
27672–27683, 2024.

13



Saget Lafabregue Gançarski Cornuéjols

Kaiming He, Haoqi Fan, Yuxin Wu, Sain-
ing Xie, and Ross Girshick. Momentum
contrast for unsupervised visual represen-
tation learning. arxiv e-prints, art. arXiv
preprint arXiv:1911.05722, 2019.

Kaiming He, Xinlei Chen, Saining Xie, Yang-
hao Li, Piotr Dollár, and Ross Girshick.
Masked autoencoders are scalable vision
learners. In Proceedings of the IEEE/CVF
conference on computer vision and pattern
recognition, pages 16000–16009, 2022.

Olivier Henaff. Data-efficient image recog-
nition with contrastive predictive coding.
In International conference on machine
learning, pages 4182–4192. PMLR, 2020.

Johannes Jakubik, Sujit Roy, CE Phillips,
Paolo Fraccaro, Denys Godwin, Bianca
Zadrozny, Daniela Szwarcman, Carlos
Gomes, Gabby Nyirjesy, Blair Edwards,
et al. Foundation models for generalist
geospatial artificial intelligence. CoRR,
2023.

Ziyu Liu, Azadeh Alavi, Minyi Li, and Xi-
ang Zhang. Guidelines for augmenta-
tion selection in contrastive learning for
time series classification. arXiv preprint
arXiv:2407.09336, 2024.

Oscar Manas, Alexandre Lacoste, Xavier
Giró-i Nieto, David Vazquez, and Pau Ro-
driguez. Seasonal contrast: Unsupervised
pre-training from uncurated remote sens-
ing data. In Proceedings of the IEEE/CVF
International Conference on Computer Vi-
sion, pages 9414–9423, 2021.

C Reed, Ritwik Gupta, Shufan Li, Sarah
Brockman, Christopher Funk, Brian
Clipp, S Candido, M UyttenDAele, and
T Darrell. Scale-mae: A scale-aware
masked autoencoder for multiscale geospa-
tial representation learning. 2023 ieee. In

CVF International Conference on Com-
puter Vision (ICCV), pages 4065–4076,
2022.

Antoine Saget, Baptiste Lafabregue, An-
toine Cornuéjols, and Pierre Gançarski.
Learning from few labeled time series
with segment-based self-supervised learn-
ing: application to remote-sensing. In Pro-
ceedings of SPAICE2024: The First Joint
European Space Agency/IAA Conference
on AI in and for Space, pages 275–279,
2024.

Gabriel Tseng, Ruben Cartuyvels, Ivan
Zvonkov, Mirali Purohit, David Rol-
nick, and Hannah Kerner. Lightweight,
pre-trained transformers for remote
sensing timeseries. arXiv preprint
arXiv:2304.14065, 2023.

Y Wang, NAA Braham, Z Xiong, C Liu,
CM Albrecht, XX Zhu, et al. Ssl4eo-
s12: a large-scale multi-modal, multi-
temporal dataset for self-supervised learn-
ing in earth observation. arxiv. arXiv
preprint arXiv:2211.07044, 10, 2022.

Yi Wang, Conrad M Albrecht, Nassim
Ait Ali Braham, Chenying Liu, Zhitong
Xiong, and Xiao Xiang Zhu. Decur: decou-
pling common & unique representations
for multimodal self-supervision. arXiv
preprint arXiv:2309.05300, 2023.

Zhiguang Wang, Weizhong Yan, and Tim
Oates. Time series classification from
scratch with deep neural networks: a
strong baseline. corr abs/1611.06455
(2016). arXiv preprint arXiv:1611.06455,
2016.

Yuan Yuan, Lei Lin, Qingshan Liu, Renlong
Hang, and Zeng-Guang Zhou. Sits-former:
A pre-trained spatio-spectral-temporal
representation model for sentinel-2 time

14



Resampling Augmentation for Time Series Contrastive Learning

series classification. International Jour-
nal of Applied Earth Observation and
Geoinformation, 106:102651, 2022.

Yuan Yuan, Lei Lin, Qi Xin, Zeng-Guang
Zhou, and Qingshan Liu. An empiri-
cal study on data augmentation for pix-
elwise satellite image time-series classifi-
cation and cross-year adaptation. IEEE
Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 18:
5172–5188, 2025. doi: 10.1109/JSTARS.
2025.3527017.

Jure Zbontar, Li Jing, Ishan Misra, Yann Le-
Cun, and Stéphane Deny. Barlow twins:
Self-supervised learning via redundancy
reduction. In International conference
on machine learning, pages 12310–12320.
PMLR, 2021.

15


	Introduction
	Related Works
	Contrastive Learning Frameworks
	Self-Supervised Learning in Remote Sensing
	Time Series Augmentations

	Resampling augmentation
	Experimental Setup
	Datasets
	Architectures
	Training and evaluation protocol

	Results
	Contrastive learning framework comparison
	Label Efficiency
	Image Time Series Task - S2-Agri100 Results
	Impact of Pretraining Data Distribution

	Conclusion

