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Abstract

We introduce the Overcooked Generalisation Challenge (OGC) – a new benchmark for eval-
uating reinforcement learning (RL) agents on their ability to cooperate with unknown part-
ners in unfamiliar environments. Existing work typically evaluated cooperative RL only in
their training environment or with their training partners, thus seriously limiting our ability
to understand agents’ generalisation capacity – an essential requirement for future collabo-
ration with humans. The OGC extends Overcooked-AI to support dual curriculum design
(DCD). It is fully GPU-accelerated, open-source, and integrated into the minimax DCD
benchmark suite. Compared to prior DCD benchmarks, where designers manipulate only
minimal elements of the environment, OGC introduces a significantly richer design space:
full kitchen layouts with multiple objects that require the designer to account for interaction
dynamics between agents. We evaluate state-of-the-art DCD algorithms alongside scalable
neural architectures and find that current methods fail to produce agents that generalise ef-
fectively to novel layouts and unfamiliar partners. Our results indicate that both agents and
curriculum designers struggle with the joint challenge of partner and environment generali-
sation. These findings establish OGC as a demanding testbed for cooperative generalisation
and highlight key directions for future research.

1 Introduction

Developing computational agents capable of collaborating with each other has emerged as a key challenge
in artificial intelligence (AI) research (Dafoe et al., 2020). Recent years have seen considerable advances in
developing cooperative reinforcement learning (RL) agents (Stone et al., 2010; Hu et al., 2020; Choudhury
et al., 2020; Ding et al., 2024) and several benchmarks were proposed to evaluate their generalisation
abilities (Samvelyan et al., 2019; Bard et al., 2020). However, these benchmarks typically treat generalisation
to novel environments (Cobbe et al., 2019) and novel partners (Hu et al., 2020; Carroll et al., 2019) as
distinct challenges. Yet, future human-AI collaboration will require agents to generalise along both axes
simultaneously. For instance, an autonomous robot assisting in a disaster response team must coordinate
with ever-changing human partners in unfamiliar, dynamic environments.

Overcooked-AI (Carroll et al., 2019) has emerged as one of the most popular benchmarks for evaluating
zero-shot coordination. Nonetheless, agents are typically trained and evaluated on a few fixed layouts
(Strouse et al., 2021; Yang et al., 2022; Zhao et al., 2023; Yu et al., 2023; Wang et al., 2024). This common
practice limits the benchmark’s ability to assess generalisation in two key ways: First, agents may overfit to
specific spatial configurations, interaction bottlenecks, or object placements seen during training, without
acquiring coordination strategies transferable to novel environments. Second, agents may implicitly adapt
to their training partners’ behaviour patterns on known layouts, but this does not test their ability to infer
intent or adapt dynamically to the behaviour of unknown partners.

To address these limitations, we introduce the Overcooked Generalisation Challenge (OGC) – a novel
cooperation benchmark based on Overcooked-AI to evaluate RL agents’ ability to collaborate with unknown
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Figure 1: In the Overcooked Generalisation Challenge (OGC), during training, agents can access a generator
that outputs new training environments. During evaluation, agents are presented with a novel environment
and an unknown partner to cooperate with.

partners and in novel environments (see Figure 1). In contrast to prior work that augments a fixed set of
test environments for training Jha et al. (2025), we introduce an unsupervised environment design (UED)
approach (Dennis et al., 2020) to procedurally generate a large set of diverse training layouts. This enables
us to evaluate generalisation in a more challenging and realistic way, where agents encounter entirely novel
environments without prior exposure. As such, the OGC is the first benchmark to combine UED with
multi-agent zero-shot cooperation, thus bridging two previously separate lines of research.

We evaluate trained agents on a suite of human-authored test layouts across three coordination settings:
self-play, cross-play, and ad-hoc teamwork. We show that OGC presents a significant challenge for current
UED algorithms and scalable neural architectures. Among the evaluated methods, only PAIRED (Dennis
et al., 2020) combined with a Soft Mixture-of-Experts (SoftMoE) policy (Obando-Ceron et al., 2024) achieves
partial generalisation. Our results reveal a key limitation: current dual curriculum design (DCD) methods
with hand-crafted or weak procedural designers fail to generate sufficiently diverse and structured training
levels, and thus struggle in complex design spaces like Overcooked. By contrast, methods with learned
environment generators, such as PAIRED, show better adaptability. These findings highlight the need for
joint-curriculum methods that combine effective partner generalisation with adaptive curriculum generation.
Our contributions are as follows:

1. We introduce the Overcooked Generalisation Challenge (OGC), the first open benchmark that jointly
evaluates agents on environment and partner generalisation in cooperative multi-agent settings.

2. We release OvercookedUED – a JAX-accelerated, open-source extension of Overcooked-AI that supports
unsupervised environment design (UED) via integration with state-of-the-art dual curriculum design
(DCD) algorithms in minimax (Jiang et al., 2023) and JaxMARL (Rutherford et al., 2024b).

3. Through extensive experiments, we demonstrate that current DCD algorithms and scalable neural archi-
tectures – including recent state-of-the-art models – fail to generalise effectively across environments and
partners, thus establishing OGC as a challenging new testbed for multi-agent cooperation.

2 Related Work

2.1 Partner Generalisation

Generalisation to novel partners has been studied under the ad-hoc teamwork (Stone et al., 2010) and
zero-shot coordination (Hu et al., 2020) paradigms, both motivated by improving human-AI cooperation.
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A prominent benchmark in this space is Overcooked-AI (Carroll et al., 2019), where agents must jointly
prepare and serve dishes. Many recent works use this environment to evaluate ad-hoc coordination
capabilities (Strouse et al., 2021; Li et al., 2023b; Yan et al., 2023a; Liu et al., 2024; Tan et al., 2024).

In this setting, self-play often fails to produce agents that generalise to novel partners (Carroll et al., 2019).
Consequently, researchers have turned to population-based methods that train diverse partner policies
and learn best-response strategies in fixed environments (Zhao et al., 2023; Yu et al., 2023; Wang et al.,
2024). However, these methods scale poorly, as training cost increases linearly with population size per
environment Yan et al. (2023b).

In contrast, our setting trains agents across a large distribution of procedurally generated environments.
Cooperation is evaluated on human-authored levels not seen during training – making population-based ap-
proaches infeasible and calling for learning strategies that operate effectively across novel partners and tasks.

2.2 Environment Generalisation

RL agents fail to generalise to new environments out-of-the-box (Zhang et al., 2018a) and instead require
sufficiently diverse training levels to generalise well (Zhang et al., 2018b; Cobbe et al., 2019; 2020). One es-
tablished approach to generate diverse training data is domain randomisation (DR; Jakobi, 1997). However,
DR may produce uninformative samples (Khirodkar et al., 2018), which hinder learning (Dennis et al., 2020).

To improve sample quality, unsupervised environment design (UED) (Dennis et al., 2020) adaptively
generates levels that match an agent’s current capabilities. Prominent UED algorithms include PAIRED
(Dennis et al., 2020), Prioritized Level Replay (PLR) (Jiang et al., 2021b), and ACCEL (Parker-Holder
et al., 2022). These methods fall under the broader Dual Curriculum Design (DCD) framework (Jiang et al.,
2021a), in which a generator and curator co-evolve to construct an adaptive training curriculum. While
the development of DCD methods has been steady, they have mostly been explored in simple single-agent
environments, e.g. in mazes (Dennis et al., 2020; Jiang et al., 2021a; Parker-Holder et al., 2022; Jiang et al.,
2023; Li et al., 2023a; Beukman et al., 2024), bipedal walker (Wang et al., 2019; 2020; Parker-Holder et al.,
2022) or car racing environments (Jiang et al., 2021a).

Multi-agent UED, in contrast, remains largely underexplored. Existing works are either closed source
(Team et al., 2021; Bauer et al., 2023), do not address a (fully-)cooperative setting (Suarez et al., 2021;
2023; Samvelyan et al., 2023) or only feature multi-agent path-finding with no agent interaction (Rutherford
et al., 2024a). Moreover, the underlying design spaces are shallow – often involving only walls, agents,
sparse control points or pregenerated levels without design control (Dennis et al., 2020; Parker-Holder et al.,
2022; Samvelyan et al., 2023; Nikulin et al., 2023).

In contrast, OGC introduces a fully cooperative multi-agent UED environment with rich object interactions
(e.g., pots, onions, plates) and complex spatial dependencies (see Figure 3). The difficulty of each task
critically depends on object placement, making level design substantially more challenging. The OGC thus
contributes the first open-source cooperative multi-agent UED environment in which agents are exposed to
novel partners during evaluation.

2.3 Combining Partner and Environment Generalisation

While many benchmarks focus on either environment or partner generalisation (Lowe et al., 2017; Foerster
et al., 2018; Hu et al., 2020), few evaluate both simultaneously. A recent Overcooked study explored
cross-environment cooperation (Jha et al., 2025), but their approach relied on training agents across
augmented variations of known test levels, therefore implicitly assuming access to the test distribution and
significantly constraining the scope of generalisation.

In contrast, the OGC poses a strictly harder challenge: agents must learn to cooperate in entirely novel
environments and with unseen partners, with no prior exposure to evaluation layouts or their
structure. Training is conducted solely via procedurally generated levels using UED, without handcrafted
augmentations or test-level tuning. The setting of (Jha et al., 2025) can be seen as addressing a reduced
version of OGC where one assumes access to the testing layouts.
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Figure 2: Overview of the OGC and how it is typically used in a DCD algorithm. The OGC supports teacher-
based UED methods like PAIRED (Dennis et al., 2020) and edit-based methods like ACCEL (Parker-Holder
et al., 2022) via mutator functions of existing layouts.

This decoupled setting reveals that current DCD algorithms struggle in high-complexity cooperative do-
mains, and motivates a new class of approaches – UED-ZSC methods – that jointly tackle unsupervised
environment design and zero-shot coordination. We propose OGC as both a benchmark and a testbed
to support this emerging line of research, encouraging future methods that generalise across partners and
environments in realistic, open-ended tasks.

3 Preliminaries

We formalise our cooperative multi-agent UED setting as a decentralised under-specified partially ob-
servable Markov decision process (Dec-UPOMDP) with shared rewards. A Dec-UPOMDP is defined as
M = ⟨N , A, Ω, Θ, SM, T M, OM, RM, γ⟩ in which N is the set of agents with cardinality n, Ω is a set of
observations, and SM is the set of true states in the environment. Partial observations oi ∈ Ω are obtained
by agent i ∈ N using the observation function O : S × N → Ω. Following Jiang et al. (2021a), a level
Mθ is defined as a fully-specified environment given some parameters θ ∈ Θ. In it, agents each pick an
action ai ∈ A simultaneously to produce a joint action aaa = (a1, . . . , an) and observe a shared immediate
reward R(s,aaa). Then, the environment transitions to the next state according to a transition function
T : S × A1 × ... × An × Θ → ∆(S) where ∆(S) refers to the space of distributions over S. γ ∈ [0, 1)
specifies the discount factor. Agents learn a policy π. The joint policy πππ together with the discounted
return Rt =

∑∞
i=0 γirt+1 induce a joint action value function Qπππ = Est+1:∞,aaat+1:∞ [Rt|st, aaat]. Our formulation

extends the Dec-POMDP framework (Oliehoek & Amato, 2016; Wu et al., 2021) by introducing Θ as a set of
free environment parameters – making the model suitable for unsupervised environment design. This follows
previous work (Dennis et al., 2020; Jiang et al., 2021a; Samvelyan et al., 2023), but differs from Samvelyan
et al. (2023) in assuming shared rewards and a cooperative, rather than general-sum, structure. Within our
Dec-UPOMDP, we perform UED to train a policy over a distribution of fully specified environments that
enable optimal learning. This is facilitated by obtaining an environment policy Λ (Dennis et al., 2020) that
specifies a sequence of environment parameters ΘT for the given policy that is to be trained. How Λ is
obtained depends on the DCD method. In OvercookedUED, Θ represents the possible positions of walls,
pots, serving spots, agent starting locations, and onion and bowl piles adjusted by Λ throughout training.

4 The Overcooked Generalisation Challenge

The Overcooked Generalisation Challenge is a new benchmark that allows us to evaluate agents on their
ability to cooperate with unknown partners in previously unseen environments. Unlike existing benchmarks,
the OGC combines unsupervised environment design with multi-agent coordination, introducing the first
open-source UED testbed for cooperative RL covering both environment and partner generalisation. Built
on Overcooked-AI, OGC integrates with DCD algorithms to support procedural training, layout mutation,
and zero-shot evaluation across complex coordination tasks.
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Figure 3: The OGC features a large design space in which many different elements have to be placed in
relation to each other, creating challenging environments for both environment designers and agent training.

Figure 2 shows how OGC interfaces with various DCD methods. It supports both teacher-based approaches
(e.g., PAIRED (Dennis et al., 2020)) and edit-based methods (e.g., ACCEL (Parker-Holder et al., 2022))
using mutator functions that transform existing layouts. Figure 3 illustrates the complexity of layout design
in Overcooked, where task difficulty depends critically on the spatial configuration of multiple interdependent
objects and agents.

4.1 Environment and Layout Generation

OGC extends the JaxMARL implementation of Overcooked-AI (Rutherford et al., 2024b), which defines
a discrete action space left, right, up, down, interact, stay and an observation space consisting of 26
binary masks of size h × w, encoding the positions of agents, objects, and obstacles. To support large-scale
training, we enable parallel rollouts across multiple layouts, requiring all layouts to be padded to a fixed
maximum height h and width w. This enables fast training and execution speeds across hundreds or
thousands of environments using JAX.

4.2 Curriculum Learning in OGC

OGC exposes two core interfaces for DCD methods: OvercookedUED and the Overcooked Mutator.

OvercookedUED implements a teacher environment where a generator policy sequentially places objects
onto a layout grid. At each step t, the teacher selects a grid cell and places one object from a fixed sequence
(walls, agents, goals, ingredient piles, pots, bowls). If the target cell is already occupied, the object is placed
randomly in a free cell of the same type. Placing two elements of the same type in the same location results
in the second being ignored, enabling variable object counts per type – consistent with prior UED designs
(Dennis et al., 2020). For UED methods that lack a teacher component (e.g., PLR), OvercookedUED also
provides a random environment generator that follows the same structure as the teacher but samples object
positions uniformly.

The Overcooked Mutator enables layout evolution for edit-based methods. It supports five operations: (1)
toggling walls and free spaces, (2–5) moving goal, pot, plate, and onion pile positions. Agent start positions
remain fixed. The number of mutations applied can be configured to control curriculum granularity.

All versions leave layout solvability unchecked, following the convention in prior UED work (Dennis et al.,
2020; Jiang et al., 2023), and place responsibility for level quality on the DCD method.

4.3 Evaluation Protocol

We study three evaluation modes: Self-play, zero-shot and ad-hoc coordination.

We propose to test agents in self-play to evaluate how well they generalise to novel levels. Figure 4 illustrates
our evaluation suite. We use the five original Overcooked-AI layouts (Carroll et al., 2019), 32 layouts created
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Figure 4: First, we propose to evaluate agents in self-play on the five original layouts and several layouts
that are created from several symmetry classes to evaluate their ability to generalise. We combine a range of
transformations shown in the bottom row to generate 28 additional layouts. Second, we evaluate coordination
with novel partners in the original five.
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Figure 5: The SoftMoE-LSTM agents architecture used in this work. We employed the PerConv tokenisation
technique introduced in Obando-Ceron et al. (2024).

via geometric transformations from a simple square base layout and randomly generated layouts to assess
generalisation. The five original layouts enable comparisons to earlier work, and the transformed layouts
expose whether the agent’s behaviour is robust (or ideally invariant) to layout transformations that do not
require a different strategy. We secondly propose to evaluate in an ad-hoc teamwork setting (Stone et al.,
2010), we train populations for 24 agents for the original five layouts via: Fictitious Co-Play (FCP) (Strouse
et al., 2021) and Maximum Entropy Population Training (MEP) (Zhao et al., 2023). Each population
includes low-, mid-, and high-skill checkpoints (10%, 50%, and 100% of achieved return) for diversity. MEP
uses an entropy coefficient α = 0.01. This setting evaluates the adaptability of trained agents to diverse,
possibly brittle partners. Finally, we also evaluate in a zero-shot coordination setting (Hu et al., 2020) in
which we test an agent’s capability to adapt to partners that themselves were trained for the zero-shot
coordination setting. Both ad-hoc teamwork and zero-shot coordination are evaluated on the original five.

We report two metrics. First, the mean episode reward and second, the solved rate: the proportion of
episodes where at least two soups are delivered, distinguishing goal-directed behaviour from random actions.
Finally, we also conduct a qualitative error analysis to examine failure modes across different levels.

5 Experiments

We conducted a series of experiments to establish performance baselines for partner and environment gener-
alisation using state-of-the-art DCD methods and policy architectures. We first compare several policy archi-
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Figure 6: Sample levels generated by the different methods after 15, 000 (Middle) and 30, 000 (End) epochs.
Even after considerable training, none of the methods can guarantee the generation of solvable layouts
(middle row, leftmost and rightmost).

tectures – CNN-LSTM, SoftMoE-LSTM, and S5-based models – on a fixed set of evaluation layouts to identify
a strong baseline. We then assess whether agents trained with different DCD methods can generalise to novel
environments without prior exposure to the test distribution. This is followed by experiments to establish
coordination capabilities with unseen partners by testing agents in ad-hoc team play against diverse policy
populations (FCP, MEP), as well as in zero-shot coordination with agents trained under the same method but
different random seeds. Finally, we analyse failure modes through a detailed error analysis, identifying struc-
tural layout characteristics that correlate with poor performance, such as object spacing and path complexity.

All agents were trained using MAPPO (Yu et al., 2022), a strong cooperative multi-agent baseline. For
DCD, we tested diverse algorithms with distinct generation principles (Dennis et al., 2020; Jiang et al.,
2023): domain randomisation (DR), priority-based replay (robust parallel PLR⊥,∥), edit-based curriculum
(parallel ACCEL∥), and learned environment design (Pop. PAIRED). We excluded POET (Wang et al.,
2019) in this analysis as it outputs specialists rather than generalists, which we require (Parker-Holder
et al., 2022). Additionally, we excluded MAESTRO as it is based on prioritised fictitious self-play (Heinrich
et al., 2015; Vinyals et al., 2019) that is not readily adaptable to the cooperative setting (Strouse et al.,
2021). We chose these methods as they offer better theoretical guarantees (PLR⊥ vs PLR), better runtime
performance (ACCEL∥ and PLR∥), or because we found them to perform better empirically (Pop. PAIRED
vs PAIRED). To ensure a fair comparison, we standardised the environment design space: each method
placed between one and 15 walls (either randomly or through a learned teacher policy), along with one
or two items per object category (pots, onions, serving points, etc.). Layouts were procedurally generated
using either teacher actions (PAIRED) or stochastic editing (ACCEL, PLR), with training conducted across
3 seeds, 32 parallel environments for 30,000 training iterations ( ∼ 400M steps). All architectural and
training hyperparameters were selected via grid search and are detailed in Appendix A.4.

5.1 Experiment 1: Policies and Baselines

Before evaluating generalisation on OGC, we identified a strong agent architecture that can serve as a
policy backbone across all experiments. Comparing network architectures allows us to: (1) understand how
architecture affects generalisation, and (2) establish upper-bound oracle performance on evaluation layouts,
which will serve as reference points throughout the paper. We explored the following three architectures
(see Appendix A.5 for details): CNN-LSTM is a standard convolutional encoder followed by an LSTM
that demonstrated strong performance in previous work (Yu et al., 2023). SoftMoE-LSTM is an enhanced
architecture using a Soft Mixture-of-Experts (SoftMoE) module (Obando-Ceron et al., 2024) and PerConv
tokenisation, replacing the final layer of the CNN-LSTM. We explore SoftMoE agents because of their strong
parameter scaling properties (Obando-Ceron et al., 2024). CNN-S5 is a CNN encoder paired with S5 layers
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Figure 7: Return of policies in all evaluation layouts. Left: Results of policies trained across all five
evaluation layouts to be used as an oracle. SoftMoE-LSTM shows the best performance. Right: Shows
SoftMoE-LSTM agents trained only on one layout, which overfit.

Table 1: Mean episode reward for the different methods averaged over the respective testing layouts. The
best result is shown in bold. We report aggregate statistics over three random seeds. We include oracles
trained on the five testing layouts to establish an empirical upper bound.

Method CNN-LSTM SoftMoE-LSTM CNN-S5
DR 0.46 ± 0.16 5.22 ± 7.19 0.00 ± 0.00
PLR 0.17 ± 0.06 0.91 ± 0.71 0.12 ± 0.15
PAIRED 0.64 ± 0.38 9.52 ± 1.02 0.00 ± 0.00
ACCEL 0.40 ± 0.35 0.72 ± 0.59 0.09 ± 0.12
Oracle 189.49 ± 12.96 217.02 ± 39.18 155.01 ± 12.82

(Smith et al., 2023) instead of LSTMs, inspired by structured state-space models (Gu et al., 2022) that
showed strong performance in meta-RL (Lu et al., 2023). Each agent was trained on the five human-designed
evaluation layouts (Cramped Room, Asymmetric Advantages, etc.) to assess whether the architecture could
fit the joint task. In all experiments that follow, we refer to these as oracles – they have access to test
environments during training and thus represent an empirical upper bound without generalisation.

As shown in Figure 7 (left), all architectures are capable of fitting the evaluation layouts in self-play.
SoftMoE-LSTM achieves the highest returns across the board (Table 1), with lower variance and
better stability. CNN-S5 significantly underperforms, suggesting S5 layers may not suit cooperative RL
in this setting. To confirm these models did not simply memorise layout-specific strategies, we trained a
SoftMoE-LSTM agent on a single layout and evaluated it on all five. The steep performance drop suggests
overfitting, underscoring the importance of multi-layout training.

Key takeaway: We find that SoftMoE-LSTM generalises best among tested architectures, and adopt
it for all subsequent experiments. This result also suggests that mixture-of-expert routing may support
generalisation in multi-object, sparse-reward environments like Overcooked.

5.2 Experiment 2: Generalisation to Novel Environments

We then tested whether agents trained with unsupervised environment design can generalise to unseen
environments. Unlike recent work that trained on augmented variants of test levels (Jha et al., 2025), agents
in the OGC are faced with entirely new test environments without prior exposure.

As can be seen in Table 1, despite using tuned implementations and scalable architectures, most methods fail
to generalise, achieving near-zero returns on the evaluation layouts. Only Population PAIRED has limited
success, significantly outperforming other methods (p < 0.05), with a mean solved rate of 14.6% ± 7.7.
All other methods barely go above 0% solved levels, suggesting that training on randomly generated or
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Figure 8: Returns over training for both training and evaluation layouts for our SoftMoE-LSTM-PAIRED
policy. The policy has had some success in generalising, but its generalisation gap remains substantial.

Table 2: Performance on mirrored, rotated and squeezed levels as illustrated in Figure 4. The transformations
are grouped such that for each category, the optimal strategy remains the same modulo mirroring and
rotation. Large, medium and small are defined in terms of the available movement space. Squeezed and
squeezed small define increasingly narrow spaces. The high variance suggests that agents do not learn general
strategies for Overcooked. We analyse SoftMoE-LSTM agents.

Method Large Medium Small Squeezed Squeezed Small Avg.
DR 12.7 ± 6.1 9.9 ± 6.0 7.9 ± 5.4 7.2 ± 4.7 8.5 ± 5.4 9.6 ± 6.1
PLR 0.1 ± 0.2 0.4 ± 0.8 0.8 ± 1.7 0.0 ± 0.0 0.1 ± 0.1 0.3 ± 1.0
PAIRED 12.2 ± 16.3 20.2 ± 17.3 16.1 ± 12.0 2.9 ± 2.9 5.3 ± 3.8 13.1 ± 14.7
ACCEL 1.1 ± 2.8 1.4 ± 2.0 1.2 ± 1.8 0.0 ± 0.1 0.0 ± 0.1 0.9 ± 2.2

edited layouts is insufficient to prepare agents for the coordination structure of evaluation tasks. The
SoftMoE-LSTM-PAIRED policy only shows mediocre performance on Asymmetric Advantages and Cramped
Room and completely fails to coordinate effectively in more complex layouts, such as Counter Circuit or
Forced Coordination. The training curve in Figure 8 confirms this: While the SoftMoE agent converges on
training layouts, its generalisation gap on evaluation levels remains substantial and persistent.

To probe this further, we evaluate agents on systematically transformed versions of base layouts – including
mirrored, rotated, and squeezed variants – that preserve the underlying coordination task but alter spatial
structure. Ideally, a general policy should perform consistently across such transformations. However,
performance fluctuates widely (see Table 2), revealing that agents fail to learn spatially invariant coordi-
nation strategies. This suggests that current methods often overfit to superficial spatial patterns rather
than acquiring abstract cooperation skills. However, even PAIRED exhibits high variance across layouts,
highlighting its limited robustness.

Key takeaway: Even state-of-the-art DCD methods fail to generalise to unseen, complex multi-agent
coordination tasks. This suggests that the OGC introduces a richer and more challenging design space than
prior UED environments and reveals limitations in current level generation strategies – highlighting the
need for stronger curriculum learning and generalisation-aware training algorithms.

5.3 Experiment 3: Generalisation to Unknown Partners

To evaluate whether agents trained with DCD methods can coordinate with unknown partners in previously
unseen environments, we investigated two settings: Ad-hoc teamplay and zero-shot coordination. We
evaluated agents against diverse populations of pre-trained partners using two protocols: FCP (Strouse
et al., 2021) and MEP (Zhao et al., 2023). Each population consisted of 24 agents with diverse skill levels
and learning histories (see Appendix A.6.4).
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Figure 9: Ad-hoc team-play performance of SoftMoE-LSTM-PAIRED and other baselines with both an MEP
and an FCP expert population. We measure the returns of multiple seeds across the five original layouts.
We display the standard deviation in the error bars. While SoftMoE-LSTM-PAIRED outperforms simple
baselines, it fails to reach oracle performance.

Figure 10: Zero-shot cooperation returns of the oracle and the SoftMoE-LSTM-PAIRED agents (trained with
different seeds). Each square shows the performance of the row and column seeds. Self-play performance is
thus displayed on the diagonal.

Figure 9 shows the performance of the SoftMoE-LSTM-PAIRED agent compared to three baselines: a
stationary partner (stay), a randomly acting agent (random), and an oracle trained on the evaluation layouts
(see above). As can be seen from the figure, the SoftMoE agent consistently outperforms the baselines but
fails to reach oracle performance. Notably, it often performs only slightly better than random coordination –
a sign of poor robustness to novel partners. We hypothesise that this gap stems from the divergence between
the training layouts (often open and simplified) and the evaluation layouts that have different cooperation
demands. As shown in Figure 6, current DCD methods tend to converge toward minimal-complexity levels
that facilitate early success but fail to expose agents to realistic partner dependencies.

We also assessed ZSC by evaluating whether the agent can coordinate with an independently trained copy
of itself with a different random seed. This setting removes population diversity and isolates the agent’s gen-
eralisation to novel weights and latent partner strategies. As shown in Figure 10, SoftMoE-LSTM-PAIRED
performs poorly across the more complex evaluation layouts (Coordination Ring, Forced Coordination,
Counter Circuit), and even underperforms its oracle counterpart. Interestingly, in the simpler layouts, the
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Figure 11: Sample levels in which our models perform best and worst. The number of visits to each grid cell
is shown as a heatmap overlay, while the mean return is below. The worst layouts tend to feature narrow
corridors or large distances between items.

agent occasionally achieves higher returns in cross-play than in self-play – suggesting that some diversity
across seeds may help mitigate overfitting.

Key takeaway: DCD-trained agents – despite some progress in environment generalisation – struggle to
generalise to novel partners in unknown environments.

5.4 Experiment 4: Qualitative Failure Analysis

We perform a final experiment to investigate the agents’ poor performance. To better understand which
structures impede performance, we show cell visit patterns for the best and worst-performing layouts in Fig-
ure 11. While on many layouts, our PAIRED SoftMoE-LSTM agent reached good self-play performance (up
to a maximum mean reward of 84.4; top row), it delivers few to no soups in others. Poorly performing layouts
often feature narrow corridors or large object distances, suggesting that agents fail in environments requiring
fine-grained coordination and collision avoidance. We previously identified a key failure mode: (1) agents
fail to learn spatially invariant coordination strategies. This experiment reveals a second: (2) performance
degrades significantly in more complex spatial layouts, particularly those that demand structured movement
and proximity-based interaction. These insights underline the difficulty of OGC and the need for curriculum
strategies that better expose agents to high-complexity, high-coordination scenarios during training.

6 Discussion

Our results suggest that generalising to both novel partners and novel environments remains a fundamental
challenge in cooperative reinforcement learning. While e.g. Jha et al. (2025) explored cross-environment
play, a preliminary analysis showed that their agents also do not generalise to entirely novel layouts/partners.
To show this, we retrained their agents and tested them on the 32 evaluation layouts discussed in Experiment
2. When evaluated on the 32 transformed layouts from Experiment 2, their method only achieved an
average return of 0.46 ± 2.6, performing worse than the proposed UED-based approaches (e.g., PAIRED
with SoftMoE-LSTM). These agents appear to learn brittle strategies tied to the five original Overcooked
layouts, and are unable to adapt to structural variations or unfamiliar partners.

Our findings also have direct implications for future research on UED and DCD: While previous studies,
such as Jiang et al. (2021a), found that PLR⊥ outperformed other DCD methods in navigation-based tasks,
we show that this result does not generalise to more complex, multi-agent cooperative environments. In
our experiments, PAIRED consistently outperformed PLR and ACCEL. We attribute this to the increased
design space complexity offered by the OGC: The environment contains multiple object types, coordination
bottlenecks, and sparse rewards, all of which demand deliberate environment construction. In simpler
domains like mazes or locomotion tasks, randomly generated or lightly curated curricula may suffice. In
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OvercookedAI, however, this approach fails to expose agents to the kinds of structured coordination tasks
they must solve at test time.

This leads to three key conclusions: First, DCD methods must scale with environment complexity.
Benchmarks that rely on narrow design spaces (e.g., only walls in a maze) are insufficient for evaluating
the capabilities of curriculum-learning algorithms. The OGC reveals that without principled curriculum
generation, agents may never encounter useful learning signals. Second, Current DCD methods do not
scale natively to realistic cooperative tasks. Even with tuned architectures and training regimes, we observed
poor generalisation across environments and partners. This highlights the importance of new methods
that integrate environmental and partner generalisation. Third, the OGC provides a critical testbed for
advancing this next generation of methods. By supporting both axes of generalisation, the OGC offers
a foundation for future research into UED-ZSC methods capable of producing robust, general-purpose
cooperative agents that perform well in open-ended multi-agent settings.

7 Limitations & Future Work

Despite its advantages, we also identified two limitations of the OGC: First, to support parallel training
and JAX-based acceleration, we constrain all layouts to a fixed maximum height and width. While we
included a partial observation that can theoretically be computed independently of size, similar to the
vector-based observation used for behaviour cloning agents in (Carroll et al., 2019), batching across layouts
in OvercookedUED still requires the layouts to be scaled to the same height and width. Future work could
explore layout representations that scale more naturally, such as graph-structured inputs or object-centric
embeddings, to remove these spatial limitations.

Second, while OGC evaluates coordination under environmental and partner variation, it does not explicitly
test agents’ ability to reason about their partners’ beliefs, intentions, or mental models. Such capabilities
– often studied under theory-of-mind or agent modelling frameworks (Rabinowitz et al., 2018; Bard et al.,
2020; Gandhi et al., 2021; Bara et al., 2023; Bortoletto et al., 2024b;a) – are likely to be important for
achieving robust zero-shot human-AI collaboration. Future work could explore reasoning about other agents
in previously unexplored environments.

8 Conclusion

We introduced the Overcooked Generalisation Challenge (OGC), the first open-source benchmark for
evaluating cooperative multi-agent reinforcement learning (MARL) agents on both environment and partner
generalisation. Built on Overcooked-AI and integrated with dual curriculum design (DCD) methods, OGC
enables procedural training and rigorous testing in complex, multi-object environments. Compared to prior
UED benchmarks, OGC presents a significantly larger and more structured design space, exposing key
limitations in existing environment generation and coordination strategies. Through extensive experiments,
we demonstrated that even state-of-the-art DCD algorithms struggle to train agents that generalise across
layouts and partners. These findings position OGC as a diagnostic tool for probing the frontiers of gen-
eralisable cooperation. Beyond DCD research, OGC also provides infrastructure for evaluating human-AI
interaction through ad-hoc teamwork and zero-shot coordination. We hope that OGC will catalyse the
development of new learning methods – what we denote UED-ZSC algorithms – that jointly address the
challenges of task and partner diversity in open-ended multi-agent settings.

Broader Impact Statement

This work introduces a benchmark for studying generalisation in cooperative multi-agent learning. While
fundamental, it may inform future systems that support human-AI collaboration in domains such as assis-
tive robotics or simulation-based training. Poor generalisation in such settings could lead to coordination
breakdowns if deployed without safeguards.
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Table 3: Overview of benchmarks for unsupervised environment design and procedurally generated envi-
ronments. Closed-source benchmarks are marked in gray – these cannot be evaluated on by the research
community.

Name Multi-
agent

Zero-
shot
coop.

GPU
accel-
erated

Open
Source

Partial
obs.

Img.
obs.

XLand (Team et al., 2021; Bauer et al., 2023) ✓ ✓ - ✓ ? ✓
LaserTag (Samvelyan et al., 2023) ✓ - - - ✓ ✓
MultiCarRacing (Samvelyan et al., 2023) ✓ - - - ✓ ✓

CoinRun (Cobbe et al., 2019) - - - ✓ ✓ ✓
ProcGen (Cobbe et al., 2020) - - - ✓ ✓ ✓
2D Mazes (Cobbe et al., 2019; Dennis et al., 2020) - - - ✓ ✓ ✓
CarRacing (Jiang et al., 2021a) - - - ✓ ✓ ✓
Bipedal Walker (Wang et al., 2019) - - - ✓ ✓ -
AMaze (Jiang et al., 2023) - - ✓ ✓ ✓ ✓
XLand-MiniGrid (Nikulin et al., 2023) - - ✓ ✓ ✓ ✓
Craftax (Matthews et al., 2024) - ✓ ✓ ✓ - ✓
JaxNav (Rutherford et al., 2024a) ✓ - ✓ ✓ ✓ -
OvercookedUED (ours) ✓ ✓ ✓ ✓ ✓ ✓

A Appendix

A.1 Accessibility of the benchmark

We make our challenge available under the Apache License 2.0 via a code repository: https://anonymised.
edu. Our environment is built on top of the existing minimax project (accessible under Apache License 2.0 via
https://github.com/facebookresearch/minimax) and is thus accessible to researchers who are already
familiar with the project. minimax is extensively documented, fast, and supports multi-device training.
For all details, including a full description of the advantages of minimax, we kindly refer the reader to
the accompanying publication (Jiang et al., 2023). Our Overcooked adaption is extended from the one in
JaxMARL also accessible under Apache License 2.0 via https://github.com/FLAIROx/JaxMARL. Our code
includes extensive documentation and examples of how it may be used. Additionally, our code is written in
a modular fashion and other multi-agent environments can be integrated with the runners.

A.2 Infrastructure & tools

We ran our experiments on a server running Ubuntu 22.04, equipped with NVIDIA Tesla V100-SXM2 GPUs
with 32GB of memory and Intel Xeon Platinum 8260 CPUs. All training runs are executed on a single GPU
only. We trained our models using Jax (Bradbury et al., 2018) and Flax (Heek et al., 2023) with 1, 2 and
3 as random seed for training DCD methods and 1 to 8 as random seeds for the populations. Training the
DCD methods usually finishes in under 24 hours, only SoftMoE and PAIRED-based methods take longer.
SoftMoE-based policies often take an extra 50% wall-clock time to train. Noticeable is also that our S5
implementation is the fastest, usually needing roughly 30% less time. Both are compared to the default
architectures’ training time. In the longest case, the combination of a SoftMoE-LSTM policy trained with
PAIRED takes about 80 hours to complete training. Our benchmark should be runnable on any system that
features a single CUDA-compatible GPU. Although in our experience our experiments will require 32GB
VRAM to run.

A.3 Extended Related Work

We present an overview over how our environment compares to other UED environments in Table 3.
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Table 4: Hyperparamters of the learning process.

Description Value
Optimizer Adam (Kingma & Ba, 2015)
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1 · 10−5

Learning Rate η 3 · 10−4

Learning Rate Annealing -
Max Grad Norm 0.5
Discount Rate γ 0.999
GAE λ 0.98
Entropy Coefficient 0.01
Value Loss Coefficient 0.5
# PPO Epochs 8
# PPO Minibatches 4
# PPO Steps 400
PPO Value Loss Clipped
PPO Value Loss Clip Value 0.2
Reward Shaping Yes (linearly decreased over training)

Table 5: Values used for a grid search over hyperparameters governing the learning process. Finally used
values appear in bold.

Description Value
Learning Rate η [1 · 10−4, 3 · 10−4, 5 · 10−4, 1 · 10−3]
Entropy Coefficient [0.01 0.1]
# PPO Steps [256, 400]
# Hidden Layers [2, 3, 4]
Reward Shaping Annealing Steps [0, 2500000, 5000000, until end]

A.4 Hyperparameters

We overview all hyperparameters for training in Table 4 and provide details on the hyperparameter search
used in Table 5. This search was conducted on smaller single layout runs to determine reasonable values as
complete runs would have been computationally infeasible. Furthermore we show the hyperparameters for
each DCD method separately: DR hyperparameters in Table 6, PLR hyperparameters in Table 7, ACCEL
hyperparameters in Table 8, and PAIRED hyperparameters in Table 9. DR hyperparameters govern how
Overcooked levels are generated randomly and apply to all other processes in which a random level is sampled,
for instance, in PLR, in which case the same hyperparameters apply.

In the experiment displayed in Figure 7 we show how policies behave when trained on all versus on only
one layout and then decide on the SoftMoE architecture for our agents. Since these are considerably easier
problems we train these models on fewer environment steps in total. We train the overfitting baseline for
roughly 1/30 (12, 800, 00 steps in the environment) of the experience of all UED methods and only use 1, 000
outer loops. For the Oracle baseline, we use 1/2 of the experience (200, 000, 000 steps in the environment)
and only 5, 000 outer loops. Both are trained until convergence and to speed up training we deploy 100
environment simulators. Recall that the UED methods use 30, 000 training loops and 400, 000, 000 steps
in the environment. Notably, in the case of population PAIRED these steps apply per student and do not
include any additional steps taken in the teacher environment.
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Table 6: DR hyperparameters.

Description Value
n walls to place Sampled between 0 – 15
n onion piles to place Sampled uniformly between 1 – 2
n plate piles to place Sampled uniformly between 1 – 2
n pots to place Sampled uniformly between 1 – 2
n goals to place Sampled uniformly between 1 – 2

Table 7: PLR specific hyperparameters in addition to the DR hyperparameters.

Description Value
UED Score MaxMC (Jiang et al., 2021a)
PLR replay probability ρ 0.5
PLR buffer size 4, 000
PLR staleness coefficient 0.3
PLR temperature 0.1
PLR score ranks Yes
PLR minimum fill ratio 0.5
PLR⊥ Yes
PLR∥ Yes
PLR force unique level Yes

A.5 Neural network architectures

This work employs an actor-critic architecture using a separate actor and critic in which the critic is cen-
tralised for training via MAPPO (Yu et al., 2022). For the actor, the observations are of shape h × w × 26,
while for the centralised critic, we concatenate the observations along the last axis to form a centralised
observation, i.e. the centralised observation has shape h × w × 52 following prior work (Yu et al., 2023).

All our networks feature a convolutional encoder fc. This encoder always features three 2D convolutions of
32, 64 and 32 channels with kernel size 3 × 3 each and pads the input with zeros. Our default activation
function is ReLU (Fukushima, 1975; Nair & Hinton, 2010) which we apply after every convolutional block.
We feed the output of fc to a feed-forward neural network fe with three layers with 64 neurons, ReLU
and LayerNorm (Ba et al., 2016) applied each. fe takes the flattened representation produced by fc and
produces an embedding e ∈ Rb×t×64 that we feed into a recurrent neural network (either LSTM (Hochreiter
& Schmidhuber, 1997) or S5 (Smith et al., 2023)) to aggregate information along the temporal axis. We
use this resulting embedding et ∈ Rb×64 to produce action logits l ∈ Rb×6 to parameterise a categorical
distribution in the actor-network or directly produce a value v ∈ Rb×1 in the critic network using a final
projection layer. This architecture is inspired by previous work on Overcooked-AI, specifically (Yu et al.,
2023), see Figure 12 for an overview. We also test the use of a S5 layer (Smith et al., 2023) in which case
we use 2 S5 blocks, 2 S5 layers, use LayerNorm before the SSM block and the activation function described
in the original work, i.e. a(x) = GELU(x) ⊙ σ(W ∗ GELU(x)). In the case of the SoftMoE architecture,
we follow the same approach as in (Obando-Ceron et al., 2024) and replace the penultimate layer with a
SoftMoE layer. As in their work we use the PerConv tokenisation technique, i.e. given input x ∈ Nh×w×26

we take the output y ∈ Rh×w×32 of fc and construct h × w tokens with dimension d = 32 that we then feed
into the SoftMoE layer. We always use 32 slots and 4 experts for this layer, see (Obando-Ceron et al., 2024)
for details on this layer. The resulting embedding is then passed into the two remaining linear layers before
being also passed to RNN and used to produce an action or value, equivalent to the description above, also
compare Figure 5.

Lastly, we describe our networks in terms of parameter count in Table 10.
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Table 8: ACCEL hyperparameters in addition to the DR hyperparameters.

Description Value
UED Score MaxMC (Jiang et al., 2021a)
PLR replay probability ρ 0.8
PLR buffer size 4, 000
PLR staleness coefficient 0.3
PLR temperature 0.1
PLR score ranks Yes
PLR minimum fill ratio 0.5
PLR⊥ Yes
PLR∥ Yes
PLR force unique level Yes
ACCEL Mutation Overcooked Mutator
ACCEL n mutations 20
ACCEL subsample size 4

Table 9: PAIRED hyperparameters. All PPO hyperparameters are the same between the student and the
teacher. The minimax implementation follows to original one in (Dennis et al., 2020) and we stick to it too.

Description Value
n walls to place Sampled between 0 – 15
n students 2
UED Score Relative regret (Dennis et al., 2020)
UED first wall sets budget Yes
UED noise dim 50
PAIRED Creator OvercookedUED

A.6 Additional analysis

A.6.1 Implementation Details

The OGC is implemented in Jax (Bradbury et al., 2018) and integrated into minimax (Jiang et al., 2023).
As such, it can be tested with all available DCD algorithms present in minimax. To achieve this we extend
minimax with runners, replay buffers etc. that are compatible with multiple agents. Building on an estab-
lished library eliminates sources of error and presents users of the challenge with a familiar experience. We
present the steps-per-seconds (SPS) on our setup given varying degrees of parallelism in Table 11 and com-
pare it to the GPU-accelerated maze environment minimax includes AMaze. Given sufficiently large numbers
of parallel environments, OGC can be run at hundreds of thousands of SPS. While less than AMaze, the
OGC is a more fully-featured environment in which multiple agents take steps and interact.

A.6.2 Performance across levels

To accompany the overall performance measured by reward in the main paper in Table 1 we also measure
the mean solved rate on display it in Table 12.

A.6.3 Performance on individual levels

We list the performance of every individual method on every single layout in Table 13. Most notable is that
some layouts are harder to learn than others. Our agents especially seem to struggle with layouts requiring
more complex forms of interaction, i.e. Coordination Ring, Counter Circuit and Forced Coordination. Forced
Coordination especially seems difficult to solve as no run achieves noticeable performance on it. This might
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Figure 12: Default architecture featuring a convolutional encoder and an RNN.

Table 10: Number of trainable parameters in each model.

CNN-LSTM SoftMoE-LSTM CNN-S5
Parameter Count 197,254 316,102 193,670

be due to the specific features of the layout, i.e. agents have access to several objects and need to hand them
over the counter to produce any result.

A.6.4 Population training details

Both populations were trained over 8 random seeds. As architecture, we used a simple CNN encoder without
RNN as in prior work Zhao et al. (2023); Yu et al. (2023). To give an intuition into the performance of the
members of the population, we present the training curves over all 8 seeds of training an FCP population
in Figure 13. MEP was trained with the same architecture, with the same amount of experience per agent
and achieved practically identical results. As in prior work (Zhao et al., 2023) we set the population entropy
coefficient during training to α = 0.01.

A.6.5 Detailed results with populations

We present detailed zero-shot cooperation results per layout in Table 14 and 15. As indicated through the
averaged performance discussed in the main text, we also find that PAIRED performs best on four of the
five individual layouts in terms of zero-shot cooperation.

A.7 Training curves and evaluation

In Figure 15, Figure 16 and Figure 17 we show the returns of our agent during training in seen training
levels, as well as the five unseen evaluation levels. The results for the SoftMoE architecture are displayed in
Figure 15, the results for the S5 in Figure 16 and the results for the CNN-LSTM in Figure 17. Interestingly,
while (SoftMoE) PAIRED performs the best in our evaluations it does not reach the highest training returns,
instead it achieves the highest training return, while keeping the generalisation gap small.
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Table 11: Average steps-per-second for different numbers of parallel environments measured by taking 1,000
steps with randomly sampled actions to show how our adapted Overcooked environment performs compared
to a simpler single-agent UED environment.

# Parallel Envs 1 32 256 1024 4096 16384
AMaze 264 8, 141 67, 282 264, 142 1, 058, 306 3, 321, 678
OvercookedUED 151 4, 921 40, 011 156, 696 631, 836 2, 017, 526

Table 12: Mean episode solved rate for the different methods averaged over the respective testing layouts.
The best result is shown in bold. We report aggregate statistics over three random seeds. As a baseline we
include an Oracle version for all architectures, which was trained on the five testing layouts directly.

Method CNN-LSTM SoftMoE-LSTM CNN-S5
DR 0.02 ± 0.0% 6.31 ± 10.1% 0.00 ± 0.0%
PLR⊥,∥ 0.00 ± 0.0% 0.33 ± 0.3% 0.00 ± 0.0%
Pop. PAIRED 0.13 ± 0.2% 11.46 ± 2.1% 0.00 ± 0.0%
ACCEL∥ 0.00 ± 0.0% 0.00 ± 0.0% 0.00 ± 0.0%
Oracle 95.40 ± 7.5% 99.67 ± 0.6% 97.53 ± 4.1%

Table 13: Performance on all evaluation layouts. We show the mean episode reward R and the mean episode
solved rate SR. The overall best result per layout is presented in bold excluding oracle results.

Layout Method CNN-LSTM SoftMoE-LSTM CNN-S5
R SR R SR R SR

Cramped

DR 1.70 0.0% 1.54 0.2% 0.00 0.0%
PLR⊥,∥ 1.12 0.0% 5.02 2.1% 0.14 0.0%
Pop. PAIRED 0.8 0.0% 15.33 17.0% 0.00 0.0%
ACCEL∥ 1.93 0.00% 2.53 0.0% 0.46 0.0%
Oracle 241.27 96.7% 245.54 100.0% 189.47 99.7%

Coord

DR 0.00 0.0% 0.00 0.0% 0.00 0.0%
PLR⊥,∥ 0.00 0.0% 0.00 0.0% 0.00 0.0%
Pop. PAIRED 0.00 0.0% 3.27 0.0% 0.00 0.0%
ACCEL∥ 0.00 0.0% 0.00 0.0% 0.00 0.0%
Oracle 197.8 100.0% 204.53 100.0% 119.33 99.0%

Forced

DR 0.00 0.0% 0.02 0.0% 0.00 0.0%
PLR⊥,∥ 0.00 0.0% 0.02 0.0% 0.02 0.0%
Pop. PAIRED 0.00 0.0% 0.00 0.0% 0.00 0.0%
ACCEL∥ 0.00 0.0% 0.67 0.0 % 0 0.0 %
Oracle 196.8 100.0% 204.53 100.0% 133.47 94.7%

Asymm

DR 0.58 0.1% 8.64 4.4% 0.00 0.0%
PLR⊥,∥ 0.08 0.0% 0.10 0.0% 0.08 0.0%
Pop. PAIRED 2.4 0.6% 28.67 40.4% 0.00 0.0%
ACCEL∥ 0.67 0.0% 1.00 0.0 % 0.00 0.0 %
Oracle 220.4 100.0% 277.8 98.4% 247.87 99.7%

Counter

DR 0.00 0.0% 0.00 0.0% 0.00 0.0%
PLR⊥,∥ 0.00 0.0% 0.00 0.0% 0.00 0.0%
Pop. PAIRED 0.00 0.0% 0.14 0.0% 0.00 0.0%
ACCEL∥ 0.00 0.0% 0.00 0.0 % 0.00 0.0 %
Oracle 91.2 77.3% 152.73 100.0% 84.93 94.7%
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Figure 13: Runs used for the FCP evaluation populations with random seeds 1 – 8 for the OGC with bands
reporting standard error σ/

√
n. Layouts were padded to a total size of 6 x 9 to be compatible with the

policies trained via DCD.
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Figure 14: Ad-hoc teamwork results of the SoftMoE-LSTM policy paired with an FCP and MEP population
trained on the respective layout. Error bars show standard error.

Table 14: Zero-shot results using SoftMoE-LSTM policies playing with an FCP and MEP population of
experts trained on the respective layout exclusively. We report the mean episode reward and standard
deviation. The best result per layout is put in bold.

Method Asymm Counter Cramped Forced Coord
FCP

Random 7.43 ± 12.19 8.89 ± 4.65 66.02 ± 38.28 1.95 ± 1.92 20.49 ± 7.82
Stay 5.32 ± 12.07 0.38 ± 1.11 20.67 ± 33.05 0.00 ± 0.00 0.95 ± 2.73
Oracle 126.44 ± 27.13 22.63 ± 7.82 120.9 ± 10.86 22.08 ± 12.89 59.64 ± 22.17
DR 18.18 ± 1.69 6.86 ± 5.27 65.05 ± 5.15 1.09 ± 0.21 17.88 ± 10.27
PLR⊥,∥ 7.64 ± 0.89 5.60 ± 1.29 60.35 ± 6.89 1.76 ± 0.86 21.90 ± 1.26
Pop. PAIRED 42.28 ± 19.59 10.12 ± 1.67 63.41 ± 9.13 2.57 ± 1.46 21.97 ± 2.73
ACCEL∥ 8.19 ± 1.08 9.39 ± 3.21 61.67 ± 2.79 2.04 ± 2.37 17.94 ± 2.29

MEP
Random 8.0 ± 9.12 22.46 ± 13.34 58.33 ± 34.83 2.55 ± 2.76 31.85 ± 19.69
Stay 4.86 ± 7.21 5.2 ± 10.85 31.55 ± 47.13 0.0 ± 0.0 1.53 ± 3.61
Oracle 135.07 ± 30.27 39.33 ± 13.53 138.07 ± 10.0 56.1 ± 25.41 67.86 ± 10.89
DR 19.32 ± 0.39 18.04 ± 5.75 62.77 ± 7.22 1.69 ± 0.67 30.35 ± 4.42
PLR⊥,∥ 7.53 ± 0.92 21.23 ± 1.91 57.2 ± 4.4 2.45 ± 1.23 2.45 ± 1.23
Pop. PAIRED 42.66 ± 20.31 18.34 ± 4.85 61.64 ± 7.63 3.58 ± 1.69 31.24 ± 5.52
ACCEL∥ 9.08 ± 1.11 18.43 ± 1.77 53.02 ± 5.53 2.88 ± 3.31 28.81 ± 2.01
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Table 15: Zero-shot results using SoftMoE-LSTM policies playing with an FCP and MEP population of
experts trained on the respective layout exclusively. We report the mean solved rate and standard deviation.
The best result per layout is put in bold.

Method Asymm Counter Cramped Forced Coord
FCP

Random 8.52 ± 17.52% 5.00 ± 6.70% 69.43 ± 38.45% 0.00 ± 0.00% 30.89 ± 3.83%
Stay 6.81 ± 18.04% 0.02 ± 0.14% 21.75 ± 33.71% 0.00 ± 0.00% 0.14 ± 0.74%
Oracle 69.67 ± 16.39% 27.39 ± 19.02% 31.30 ± 20.97% 92.02 ± 1.19% 96.96 ± 2.23%
DR 24.19 ± 4.60% 4.56 ± 5.32% 72.11 ± 6.29% 0.01 ± 0.01% 23.76 ± 18.85%
PLR⊥,∥ 8.84 ± 1.31% 2.04 ± 0.95% 68.14 ± 1.21% 0.11 ± 0.12% 30.89 ± 3.83%
Pop. PAIRED 56.91 ± 25.08% 6.07 ± 2.54% 72.48 ± 6.14% 0.2 ± 0.41% 30.16 ± 7.7%
ACCEL∥ 8.79 ± 1.59% 6.45 ± 5.18% 68.09 ± 2.16% 0.51 ± 0.89% 20.67 ± 5.18%

MEP
Random 9.25 ± 2.02% 36.04 ± 4.38% 67.75 ± 5.48% 0.00 ± 0.00% 54.9 ± 5.55%
Stay 4.91 ± 1.46% 5.85 ± 2.71% 29.56 ± 5.92% 0.00 ± 0.00% 1.02 ± 0.51%
Oracle 91.02 ± 1.12% 52.60 ± 11.37% 96.86 ± 2.27% 56.16 ± 21.85% 75.23 ± 0.91%
DR 26.34 ± 3.55% 27.41 ± 10.31% 70.78 ± 4.23% 0.05 ± 0.07% 50.07 ± 6.67%
PLR⊥,∥ 8.24 ± 1.28% 33.76 ± 4.89% 65.38 ± 4.55% 0.28 ± 0.41% 50.97 ± 4.01%
Pop. PAIRED 57.43 ± 26.49% 24.72 ± 10.42% 72.97 ± 7.6% 0.4 ± 0.5% 50.64 ± 7.5%
ACCEL∥ 9.16 ± 2.14% 25.91 ± 4.56% 64.31 ± 4.01% 1.38 ± 2.33% 49.23 ± 2.89%
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Figure 15: Returns in training and evaluation levels over the duration of training for our SoftMoE archi-
tecture.
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Figure 16: Returns in training and evaluation levels over the duration of training for our S5 architecture.
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Figure 17: Returns in training and evaluation levels over the duration of training for our CNN-LSTM
architecture.
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