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Abstract
Recovering a high-level representation of geo-
metric data is a fundamental goal in geometric
modeling and computer graphics. In this paper,
we introduce a data-driven approach to comput-
ing the spectrum of the Laplace-Beltrami opera-
tor of triangle meshes using graph convolutional
networks. Specifically, we train graph convolu-
tional networks on a large-scale dataset of synthet-
ically generated triangle meshes, encoded with
geometric data consisting of Voronoi areas, nor-
malized edge lengths, and the Gauss map, to infer
eigenvalues of 3D shapes. We attempt to address
the ability of graph neural networks to capture
global shape descriptors–including spectral infor-
mation–that were previously inaccessible using
existing methods from computer vision, and our
paper exhibits promising signals suggesting that
Laplace-Beltrami eigenvalues on discrete surfaces
can be learned. Additionally, we perform ablation
studies showing the addition of geometric data
leads to improved accuracy.

1. Introduction
Identifying the shape of an object by geometric invariants
is a critical task in a range of shape-analysis tasks such as
segmentation, retrieval, parametrization, correspondence,
and deformation. It also provides a basic model for under-
standing the properties of physical systems, including the
heat equation that models how temperature diffuses over
time. The spectrum (i.e., sequence of eigenvalues) of the
Laplace–Beltrami operator of a surface in Euclidean space
is isometry invariant, in the sense that it is not affected by
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Figure 1. The overview of our approach: Our input is preprocessed
synthetically generated datasets whose geometric data (Voronoi
areas, normalized edge lengths, and Gauss map) are computed and
encoded. We then use a graph neural network to predict spectral
information from the triangle mesh and its geometric data.

rigid motions (translations and rotations), reflections, and
changes in parametrization. Hence, it characterizes surfaces
and solids, providing a global shape descriptor which ef-
ficiently encodes the information of geometric objects for
retrieval and reconstruction purposes (Lévy, 2006).

Eigenvalue problems appear in several mathematical and
geometric settings: the eigenvalues of the Laplace-Beltrami
operator are connected to Ricci curvature and the heat ker-
nel (Schoen & Yau, 1994), and furthermore, studying the
connection between eigenvalues and geometric quantities
such as the genus and the Cheeger constants is a fundamen-
tal problem in geometry (Yau, 2000). Furthermore, it is
shown in (Reuter et al., 2006) that it is computationally fea-
sible to extract certain geometric data, such as the volume,
boundary length, and Euler characteristic, from the Laplace-
Beltrami operator’s spectrum. As the analytic solutions to
eigenvalue problems are only known in certain special cases
and typical require difficult analysis of systems of partial
differential equations, numerical algorithms have become
the dominant tool in discovering or verifying mathematical
results involving eigenvalue problems. The computation
of the eigenvalues of the Laplacian has a long history, go-
ing back to MacNeal (1949). The classical approach for
computing the surface Laplacian involves computing the
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cotangent formula of a triangle mesh and then deriving the
eigenvalues of the matrix representing the cotangent for-
mula, which involves a computationally intensive iterative
numerical solver.

An additional difficulty is that the eigenvalues of the
Laplace–Beltrami operator of a surface typically exhibit a
large dynamic range and the magnitude of the spectrum may
vary significantly from surface to surface, even when the
triangle mesh is normalized to fit into a unit sphere. Further-
more, quantifying the accuracy of estimates of eigenvalues
is also challenging since a good metric should be scaling-
invariant, as rescaling a shape by a factor of s results in
its eigenvalues being rescaled by a factor of 1/s2 (Reuter
et al., 2009). Finally, surface reconstruction is carried out
using the top K eigenvalues (Lévy, 2006), which are the
smallest eigenvalues. This suggests a metric should be more
sensitive to inaccuracies in smaller eigenvalues, thus further
discouraging the use of metrics based on absolute measures
of accuracy. For these reasons, the classical ℓp norms are
not very effective, suggesting the need for an alternative
approach.

In this article, we explore the learnability of spectral in-
formation from pre-existing and synthetically generated
triangle mesh datasets using a graph neural network. Our
approach is illustrated in Figure 1: we first generate a syn-
thetic dataset, then perform geometric encoding before fi-
nally predicting spectral information through the use of a
Graph Convolutional Network (GCN).

Preliminary studies suggest that the graph convolutional
network is more efficient than classical algorithms when
tested on an NVIDIA A100 GPU with 256GB memory and
an AMD EPYC 9654 CPU with 1.5TB of memory. We
start with 14,726 synthetic meshes and split them up into
batches of 200 meshes each (there will be 1 batch that has
< 200 meshes). The GCN receives all of the meshes in
each batch simultaneously as input and predicts the first 10
eigenvalues for every mesh in parallel. This approach takes
on average 0.1 seconds (σ = 0.013) to predict a batch of
200 meshes in parallel on GPU and 1.0 seconds (σ = 0.081)
to predict each batch of 200 meshes in parallel on CPU. In
comparison, the iterative method (Lanczos algorithm) on
the same set of 14,726 meshes (without batch split) takes
on average 2.5 seconds (σ = 0.35) on each mesh on CPU.

The main contribution of this paper is the introduction of en-
coded geometric data, specifically the encoding of Voronoi
areas, normalized edge lengths, and the Gauss map, specifi-
cally, the weighted average of the face normals. Using the
Peak-Signal-to-Noise Ratio (PSNR), which measures the ra-
tio between the maximum possible power of a signal and the
power of noise, we consider a prediction with PSNR > 20
as accurate (see Appendix B for an illustration of the PSNR
metric). Encoding geometric data gives an improvement to

Figure 2. The average time taken to predict the first 10 eigenvalues
of a batch of 200 meshes via the GCN is 0.11 seconds (σ = 0.013)
on an NVIDIA A100 with 256GB memory (NVIDIA A100), and
1.0 seconds (σ = 0.081) on an AMD EPYC 9654 CPU with
1.5TB memory (AMD EPYC), while the average time taken to
compute the first 10 eigenvalues for one mesh via LaPy is 2.5
seconds (σ = 0.35) on an AMD EPYC.

86.84% of meshes with PSNR > 20 compared to 46% of
meshes with no geometric data encoded. More details can
be found in Table 2.

We introduce a new evaluation metric, Inverse Laplacian,
designed specifically for spectral tasks, in addition to intro-
ducing novel loss functions PolarLoss and RPDLoss that are
more stable than ℓ1 loss for spectral problems. Additionally,
we show empirically that RPDLoss is more effective than ℓ1
loss for learning spectral information. Finally, we provide
the large-scale refined triangle mesh synthetic dataset synth-
Net used for our experiments, for further research in geomet-
ric processing at https://github.com/eigenGCN/
synthnet.

2. Related Work
2.1. Deep Learning Methods in Geometric

Characterization

Convolutional Neural Networks (CNNs) have achieved
strong performance when it comes to feature representa-
tion, including local and global features in 2D images for
low-level and high-level image tasks (Krizhevsky et al.,
2017). Unlike 2D images, extracting features by directly
applying CNNs on 2D surfaces in R3 is inconvenient due to
its non-Euclidean geometry and memory consumption. 2D
surfaces are typically processed as triangle meshes or point
clouds. Mesh-based implementations represent geometric
and topological properties by vertices, edges, and surfaces,
which can be more robust to non-rigid deformation.
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Mesh-based networks aim to build convolutional and pool-
ing layers directly on meshes (Hanocka et al., 2019; Sharp
et al., 2022) or geodesic polar coordinates (Masci et al.,
2015). Boscaini introduced a CNN architecture based on
anisotropic diffusion kernels, which does not rely on trian-
gle meshes only (2016). GCNs (Milano et al., 2020) treat
meshes as graph-structured data and design variants of GCN
directly on the graphs.

Most deep learning methods described above are designed
for specific high- or low-level vision tasks (e.g., shape clas-
sification, semantic segmentation, shape retrieval) or for ex-
tracting local shape descriptors in a task-driven mode (Leng
et al., 2015; Guo et al., 2020). Intrinsic global geometric
shape descriptors such as the spectrum of the Laplacian-
Beltrami operator and curvatures (Larios-Cárdenas & Gi-
bou, 2021) are rarely discovered by deep learning methods,
despite their importance for shape analysis. Learning in-
trinsic shape features is challenging since they are hard
to implement as an end-to-end model using existing deep
learning architectures. Additionally, the intrinsic geomet-
ric shape features are non-trivial to evaluate quantitatively.
Learning-based methods (Litman & Bronstein, 2013) have
been employed to generate shape descriptors mostly using
synthetic and simple scanned shapes. Learning global geo-
metric shape descriptors from real-world complex shapes
is more challenging. Marin et al. (2021) compute a shape
descriptor by focusing on the smoothness and orthogonality
properties of the Laplace-Beltrami eigenvectors, and per-
form experiments on higher-dimensional embeddings with
loss functions that optimize one or more of: orthogonal-
ity, sparsity, and the Dirichlet energy, which is a condition
equivalent to smoothness in this context.

2.2. Computing the Laplacian

Computing the surface Laplacian can be traced back to
MacNeal (1949). Notable later works include Reuter et
al. (2006) on the spectrum of the Laplace-Beltrami operator
as a numerical signature of a 2D or 3D manifold; Hamidian
et al. (2016) presented a novel surface registration technique
by mapping eigenvalues and eigenvectors of the Laplace-
Beltrami of the shapes through optimizing an energy func-
tion; Wu et al. (2022) computed the eigenvalues of the
Laplacian of a surface represented by a point cloud, and
computed the eigenvalues of the Laplacian on a surface by
computing the graph Laplacian of the ϵ-neighborhood of
the surface in a lattice. Also working with point clouds,
Marin et al. (2020) use an autoencoder-based method to
learn the relationship between point clouds and the spec-
trum of the Laplace-Beltrami operator, allowing them to
predict the eigenvalues of point clouds. A thorough review
of computational methods for the analysis of the Laplacian
is found in Solomon et al. (2014) and Crane et al. (2013).

The main drawback of the widely used cotangent formula-
based approaches involves the time-consuming process of
solving for eigenvalues of the constructed matrix. While
constructing the sparse cotangent matrix for a mesh with n
vertices and m edges can be done in O(n+m), the issue lies
in solving for the eigenvalues of this matrix. In particular,
the process of computing the eigenvalues of said cotangent
matrix reduces to matrix multiplication if viewed as a gen-
eral diagonalization problem (Banks et al., 2022). Thus,
the complexity of the cotangent formula-based classical
approach is around O(nω), where ω is the matrix multipli-
cation constant, which at the time of writing is ω < 2.373
(Le Gall, 2014).

The spectrum of the Laplace-Beltrami operator typically
includes a very wide range of numerical values, as well as
among the spectrum of different shapes. This variability
makes the training of a learning-based algorithm more dif-
ficult. In this paper, we address these challenges using a
graph-based neural network by encoding geometric data,
alongside novel loss functions and evaluation metrics.

3. Methodology
3.1. Problem Formulation

Suppose (M, g) is a compact smooth Riemannian surface
embedded in R3, possibly with boundary, and LM is the
Laplace-Beltrami operator on M. We consider the eigen-
value problem of finding (λ, f) ∈ R× C2(M) such that

LMf = −λf

where f satisfies the Neumann boundary condition if M
has boundary. Computing eigenvalues of surfaces is closely
related to the construction of discrete Laplacians. Given
a piecewise Euclidean triangle mesh (V,E, F ), a Laplace-
Beltrami operator L is often represented as

(Lf)i =
1

Ai

∑
j:eij∈E

wij(fj − fi)

with edge weights

wij =
cotαij + cotβij

2
,

where αij and βij are the two inner angles in T that face
the edge eij and Ai is the Voronoi area normalization. In
this study, we focus on using a graph neural network to
infer the eigenvalues of the Laplace-Beltrami operator L
on a compact smooth Riemannian surface embedded in R3

represented by a triangle mesh. We adopt the graph structure
of triangle meshes and encode the coordinates in R3 of each
vertex as 3 channels.
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3.2. Geometric encoding

In this section, we propose geometric encoding schemes
based on Riemannian geometry to augment the extracted
surface information. In particular, we propose encoding
the (mixed) Voronoi areas, normalized edge lengths, and a
discrete analogue of the Gauss map.

Edge length encoding. Given a piecewise Euclidean trian-
gle mesh (V,E, F ), if eij ∈ E is an edge with endpoints
vi, vj ∈ V , we define the length of eij to be ∥vi − vj∥2,
where

∥(x1, x2, x3)∥2 =
√

x2
1 + x2

2 + x2
3

is the standard Euclidean norm. We can then assign eij its
normalized length as the edge weight, i.e.,

∥vi − vj∥2
maxeij∈E ∥vi − vj∥2

.

Voronoi area. We compute the mixed Voronoi cell area
via the libigl library (Jacobson et al., 2018). Let v be a
vertex, and F a triangular face incident to v whose other
two vertices are x and y. If F is not an obtuse triangle, we
define the Voronoi area of v in F to be

1

8

(
∥x− v∥22 cotα+ ∥y − v∥22 cotβ

)
where α and β are the angles of F at x and y. If F is an
obtuse triangle, we define the Voronoi area of v in F to
be area(F )

2 if the obtuse angle is at vertex v and area(F )
4

otherwise where area(F ) denotes the area of the triangle F .
Finally, the Voronoi area for v is given by the sum of the
Voronoi areas of v in F for all F incident to v (Meyer et al.,
2002).

Gauss Map. The Gauss map is a crucial tool in differential
geometry that endows desirable properties. The Gaussian
curvature K at a point on a surface is defined by the deter-
minant of the differential of the Gauss map at that point:

K = det(dGp)

This relationship allows the Gaussian curvature to be in-
terpreted as the area distortion factor by which the Gauss
map stretches or compresses infinitesimal areas around a
point when mapped onto the unit sphere. The degree of the
Gauss map is related to the total curvature of the surface
through the Gauss-Bonnet theorem (Gauss, 1827; Bonnet,
1853; Chern, 1944):∫

S

K dA = 2πχ(S)

where K is the Gaussian curvature and dA is the area el-
ement on the surface. The differential of the Gauss map,

Figure 3. Area-weighted Gauss map for triangle meshes. For a
given vertex v, we take the weighted average of the normal vectors
of the faces incident to v.

dGp, is closely connected to the shape operator S of the
surface at point p:

Sp = −dGp.

All these factors provide a strong motivation for encoding
the Gauss map in surface characterization, and our experi-
mental results support our argument (see 4.3.3).

Formally, the Gauss map is defined as the following: Let
S ⊂ R3 be a smooth, orientable surface. The Gauss map,
denoted as G, is a function defined as follows:

G : S → S2

p 7→ N(p)

where:
• p is a point on the surface S,
• N(p) is the unit normal vector at p,
• S2 represents the unit sphere in R3.

We propose the area-weighted Gauss map for triangle
meshes as follows: if v ∈ V is incident to faces
F1, . . . , Fk ∈ F with areas area(F1), . . . , area(Fk) and
normal vectors N1, . . . , NK oriented outwards, then we
assign v the normal vector

Nv =

∑k
i=1 area(Fi)Ni∑k
i=1 area(Fi)

encoded as a vector in R3, at each vertex. This is illustrated
by Figure 3.

3.3. Models

Spatial surfaces can be represented as triangle meshes, on
which we can train graph neural networks. Since GCNs
process directly on the spectral domain, they are a natural
choice for computing the spectrum of the Laplace-Beltrami
operator. These networks preserve topological and geomet-
ric properties. An illustration of our models is displayed in
Figure 4.
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3.3.1. GRAPH CONVOLUTION NETWORK FOR MESH

Graphs can represent an object in low dimensions while
preserving geometric and topological properties. For sur-
faces represented by triangle meshes, we can construct an
undirected graph G = (V,E,A), where V and E are the
sets of vertices and edges with |V | = N and A ∈ RN×N is
the weighted adjacency matrix denoting the weights of the
edges. The essential operator in GCNs is the graph Lapla-
cian (Chung, 1997), which is defined in the normalized form
as L = In −D− 1

2AD− 1
2 , where D ∈ Rn×n is a diagonal

degree matrix with Dii =
∑

j Aij . Since the eigenvalues of
L represent the graph’s frequencies and contain essential in-
formation, the convolution of the graph is generally applied
to the spectral rather than on the vertex domain. We apply a
GCN as follows:

Graph convolutional layer: The convolutional kernel of a
signal X ∈ RN×C in GCN (Kipf & Welling, 2016) is

X ′ = σ(D̃− 1
2 ÃD̃− 1

2XW ),

where W ∈ RC×m is a matrix of convolutional kernel
parameters, X ′ ∈ RN×m is the convolved signals, and σ
is the activation function. Since convolutional layers of the
graph will smooth out the signals (Nt & Maehara, 2019;
Li et al., 2018; Xu et al., 2018), the depth of GCN models
is limited. Thus, for the spectral problem of the Laplace-
Beltrami Operator, the architecture of the network is given
by three graph blocks with 64, 128, and 256 hidden channels,
respectively. Each graph block is composed of a GraphConv
layer, followed by a LeakyReLU, and then a Linear layer,
in that order.

Multi-Layer Perception (MLP): After 3 graph convolution
layers, we use a 5-layer MLP, which can aggregate features
extracted by previous graph convolution layers. Since our
task is to predict the smallest K eigenvalues, the number
of output channels of the MLP layer is K as the expected
number of eigenvalues.

3.4. Novel Loss Functions

One major challenge in learning the spectrum of Laplace-
Beltrami operators is the selection of the loss function. ℓ1
loss and MSE loss perform poorly for the eigenvalue prob-
lem since, for each object, the eigenvalues can take on a wide
range of magnitudes. For instance, in the Thingi10K dataset
(Zhou & Jacobson, 2016), the maximum value of the 10th

eigenvalue can be as large as 2915.95, and the minimum
can be as small as −2.89× 10−16. Furthermore, loss func-
tions like the ℓ1 and MSE loss can achieve a local minimum
by focusing on accurately predicting the larger eigenvalues,
while neglecting the smaller ones. However, the smaller
eigenvalues are the ones that contribute more to the global
shape appearance (Cosmo et al., 2019), which suggests they
are unsuitable loss functions. Previous work (Cosmo et al.,

LeakyReLU

Li
n

ea
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Graph Conv

 mean 

pooling

MLP

x 64

 Graph Convolutional Network

eigenvalue

 prediction

Voronoi area

Edge Length

Gauss Map

Figure 4. A schematic depiction of our GCN architecture for spec-
tral inference with geometric encoding. The GCN takes as input a
triangle mesh and geometric encoding, including the Voronoi area,
normalized edge lengths, and Gauss map. The GCN then passes
the mesh and geometric encoding through 3 graph convolutional
layers, each consisting of a GraphConv, LeakyReLU, and a Linear
layer, followed by a mean pooling layer and an MLP layer.

2019; Rampini et al., 2019) overcame this deficiency by
using weighted ℓ2 norms, reweighing the ith difference by
either 1

i , or 1
µi

, where µi is the ith eigenvalue of the Hamil-
tonian operator.

To address this challenge, we propose to use the Relative
Percent Difference Loss (RPDL) and introduce a novel loss
function PolarLoss (PL).

PolarLoss is motivated by the both cosine similarity
(Nguyen & Bai, 2011) and normalized error. Like polar
coordinates in 2D, where every point is specified by a dis-
tance from the origin (norm) and angle, PolarLoss measures
the difference in both the angle and norm between two vec-
tors.

PL(p⃗, g⃗) = 1−⟨p̂, ĝ⟩+ ∥p⃗− g⃗∥2
∥p⃗∥2 + ∥g⃗∥2

, p̂ =
p⃗

∥p⃗∥2
, ĝ =

g⃗

∥g⃗∥2
.

Let p⃗ = {p1, . . . , p10} and g⃗ = {g1, . . . , g10} be vectors
corresponding to the first 10 predictions and labels, respec-
tively. The first term 1 − ⟨p̂, ĝ⟩ can be interpreted as the
cosine similarity between the two vectors. Since we know
the vector of an object’s first 10 eigenvalues will be in as-
cending order, the predicted eigenvalues should also have
the same trend. The cosine similarity term is sensitive to ev-
ery eigenvalue regardless of its magnitude. Hence, the large
eigenvalues will not dominate the loss. However, solely
capturing the trend is inadequate as it fails to account for po-
tential discrepancies among large eigenvalues, despite their
similar trends. To address this limitation, the addition of the
second term accounts for the normalized difference between
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Figure 5. Comparison of PolarLoss (PL), Relative Percent Differ-
ence Loss (RPDL), and ℓ1 loss functions. The graphs show that
PolarLoss and RPDLoss are more stable than ℓ1 loss.

eigenvalues. This term effectively corrects for any discrep-
ancies introduced by the large eigenvalues. The first term
will be in [0, 2], and the second term will be in [0, 1]. Hence,
for every object, the loss will be of the same magnitude.

Relative Percent Difference Loss is another choice of loss
function for the situation where the magnitude of different
eigenvalues of an object has small variation. As in the
synthetic data, there is rarely a jump between consecutive
eigenvalues. Define

RPDL =

10∑
i

|pi − gi|
|pi|+ |gi|+ ε

.

where p1, . . . , pN are the predictions, g1, . . . , gN the ground
truth, and ε is a small non-zero constant to prevent division
by 0. Relative loss measures the ratio of the difference
between predicted and real value. Here, for the first K
eigenvalue prediction, we calculate the relative losses of
each eigenvalue and calculate the ℓ1 norm of the relative
error of the predicted spectrum, which is commonly used in
numerical analysis. Then we compare our proposed Polar
Loss and RPDL loss with ℓ1 loss in Figure 5. The figure
shows that PolarLoss and RPDL loss are significantly more
stable than ℓ1 loss since they are not sensitive to the magni-
tude when the size of the eigenvalues has a large variation
and they handle all eigenvalues equally.

3.5. Inverse Laplacian: A Novel Evaluation Metric

When computing the ℓ2 norm between the predicted eigen-
values p⃗ and the ground truth eigenvalues g⃗, small eigen-
values have little influence on the difference, while large
eigenvalues have great influence. Nevertheless, the effect of
each eigenvalue should contribute equally regardless of its
magnitude (Cosmo et al., 2019). As such, we propose the

new evaluation metric Inverse Laplacian:

InvLap =

√√√√ 10∑
i

(
1
pi

− 1
gi

1
gi

)2

=

√√√√ 10∑
i

(
gi
pi

− 1

)2

This metric measures the difference between the predicted
value and the ground truth with the effect caused by the
magnitude of the eigenvalue canceling out each other on
the magnitude. Each summand is the relative error of recip-
rocals. If gi ̸= 0 and gi

pi
− 1 = ε, then pi−gi

gi
= ε

1+ε (see
Appendix A). This implies that each term of the summation
behaves like a negative reciprocal of relative error shifted
by 1 on the denominator, i.e., the Inverse Laplacian appears
to be bigger than relative error, but penalizes more heavily
the prediction of small eigenvalues. The behaviour of the In-
verse Laplacian converges to relative error as the prediction
p approaches the ground truth g.

4. Experiments
4.1. Dataset

For the synthetic dataset, we generated 16,550 triangle
meshes. We computed the eigenvalues of these trian-
gle meshes using the LaPy solver (Reuter et al., 2006;
Wachinger et al., 2015) to construct the LBO matrix and
compute its first 10 eigenvalues. The LaPy solver calls
the eigsh method of scipy (Virtanen et al., 2020), which
invokes an implementation of the Implicitly Restarted Lanc-
zos Method (Lehoucq et al., 1998). We then filtered out any
meshes whose eigenvalues have numerical abnormalities,
yielding 16,361 meshes. The breakdown of the original
16,550 meshes is as follows. For further details, see Ap-
pendix C.

Standard shapes. We generate triangle meshes for 2,000
rectangular prisms, 1,000 cones, 1,000 cylinders, 50 spheres,
and 2,000 tori using Open3D’s built-in methods (Zhou et al.,
2018) in addition to manually generating 2,000 tetrahedra
and 1,000 conical frustums.

Split shapes and inverted cones. To ensure our proposed
model are learning the underlying geometry of triangle
meshes, as opposed to graph connectivity information, we
generate 2,500 split spheres and 1,000 split cones, in addi-
tion to 4,000 inverted cones.

Data augmentation. To improve training, we augment the
data set by performing rotations and reflections. Specif-
ically, for each triangle mesh, we generate two rotations
and two reflections of the mesh, and then 4 instances of the
mesh under both rotations and reflections, in addition to the
original mesh. The rotations and reflections are randomly
generated using the trimesh library (Dawson-Haggerty et
al.).
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4.2. Training

Datasets were divided into training, validation, and test sets
(70:20:10 split). For Table 1 and Table 4, all models are
trained for 200 epochs with the SGD optimizer (lr=10−3,
momentum=0.9, weight decay=10−5) and batch size 32.

To perform the geometric data comparison in Table 2 and
Table 3, we train for 400 epochs with the SGD optimizer
(lr=10−4, momentum=0.9, weight decay=10−5) and batch
size 16.

4.3. Results

In this section, we present our experimental results on train-
ing a graph convolutional network to predict eigenvalues on
synthetic data, including a shape-by-shape breakdown. We
also compare the effects encoding geometric data has on the
accuracy of predictions. We define accuracy using PSNR
(Hore & Ziou, 2010). PSNR is computed by the formula

PSNR(I, J) = 10 log10

(
MAX2

I

MSE

)
where I, J ∈ Rn, I = (I1, . . . , In) and J = (J1, . . . , Jn)
corresponding to the ground truth and predictions, respec-
tively. For each ground truth vector I , we define

MAXI = max
i=1,...,n

Ii − min
j=1,...,n

Ij

as the range of the vector I , and MSE = 1
n

∑n
i=1(Ii − Ji)

2

is the mean squared error. We find empirically that if PSNR
> 20, the prediction is reasonably accurate and closely
matches the ground truth. Hence, we consider such predic-
tions to be correct. We include a selection of representative
examples along with their respective evaluation metrics in
Appendix B.

4.3.1. RPDL LOSS FUNCTION

We conducted experiments on the augmented synthetic data
using our GCN trained with PolarLoss, RPDL, and ℓ1 loss
without geometric encoding. Experimental results on the
synthetic data are displayed in Table 1, where we find the
model trained by RPDLoss outperforms the models trained
by PolarLoss and ℓ1 loss under the Inverse Laplacian met-
ric: RPDLoss achieves 0.2816, smaller than ℓ1’s 0.3716
and PolarLoss’s 0.9458. Similarly for the PSNR > 20 met-
ric, RPDLoss achieves 84.5%, better than ℓ1’s 77.2% and
PolarLoss’s 54.3%.

Our experiments show that the GCN is capable of predict-
ing the eigenvalues of the Laplace-Beltrami operator on the
augmented synthetic dataset, and that the RPDLoss function
achives the best performance with under the Inverse Lapla-
cian, PolarLoss, RPD, and PSNR metrics. Furthermore, as
can be seen in Table 4, the model trained with RPDLoss

outperforms the models trained with PolarLoss and ℓ1 re-
spectively on 8/10 types of shapes, only outperformed by
the model trained with ℓ1 loss on the truncated cone and
tetrahedron. As such, we use the RPDLoss function as a
baseline when comparing the effects of geometric encoding
on accuracy.

4.3.2. LEARNING UNDERLYING GEOMETRIES

Table 4 gives a breakdown of the accuracy of the model on
each class of shape. Of particular interest is that the GCN
trained with RPDLoss is capable of recognizing shapes with
similar geometries.

The dataset includes two types of triangle meshes, named
split spheres and spheres, both of which correspond to
spheres. Thus, if the model is learning geometric, as op-
posed to connectivity information, it should have compara-
ble performance on the two types of meshes. Table 4 shows
that the model trained with RPDLoss achieves Inverse Lapla-
cian 0.0319 on spheres and 0.0309 on split spheres. These
are comparable, suggesting the model doesn’t have partic-
ular difficulty learning one over the other. Similarly, split
cones and cones also encode the same underlying surface,
and there too the model trained with RPDLoss has compa-
rable performance on both, with Inverse Laplacian 0.1735
on the former and 0.2204 on the latter. This suggests that
the model is using more than just the connectivity of the
underlying mesh to determine how to compute the eigenval-
ues, and as such is learning the geometry of the underlying
mesh.

4.3.3. COMPARISONS WITH GEOMETRIC ENCODING

We perform comparisons among GCN models trained with
RPDLoss, comparing the effect of encoding the Voronoi
area, edge lengths, Gauss map, and adding a virtual node,
which is a special vertex that is connected to all other ver-
tices in the graph, as introduced by Gilmer et al. (2017).
Incorporating a virtual node allows for the convolution oper-
ators to propagate information between vertices that would
otherwise be apart in the graph.

From Table 2, we observe that encoding geometric data
(area, Gauss map, distances) improves the performance of
the 3-layer model: the number of meshes with PSNR > 20
increases from 46% with no geometric data to 72.98% when
area is encoded to 86.84% when area, Gauss map, and the
normalized edge lengths are encoded.

Additionally, taking the 3-layer model as our baseline, we
find that encoding more geometric information (area, nor-
malized edge lengths, Gauss map) improves the accuracy
more than increasing the number of layers to 4 or 5. This can
be seen by Table 3: the 3-layer model without virtual node
that encodes area, distances, and the Gauss map has 80.9%
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Table 1. Experiment results on synthetic data with different evaluation metrics. The table shows the model trained with RPDLoss as the
loss function outperforms the models trained with PolarLoss and ℓ1 loss in all metrics other than ℓ1 and ℓ2.

Model Inverse
Laplacian PolarLoss RPD PSNR > 20 ℓ1 Norm ℓ2 Norm

GCNPL 0.9458 0.0985 0.985 54.3% 83.40 33.91
GCNRPDL 0.2816 0.0370 0.3378 84.5% 36.59 16.66
GCNℓ1 0.3716 0.0463 0.4515 77.2% 31.01 14.20

GCNPL: PolarLoss as loss function, GCNRPDL: RPDLoss as loss function, GCNℓ1 : ℓ1 loss.

Table 2. Comparison of models with different amounts of geometric information encoded. The table shows that encoding the area, edge
lengths, and Gauss map outperforms the model that has access to no encoded geometric data, and the model where only the Voronoi area
is encoded in all metrics, with or without the presence of a virtual node (a special vertex added to the graph to connect all vertices).

Geometric
Encoding

Virtual
Node PSNR > 20 PolarLoss RPD Inverse

Laplacian ℓ1 Norm ℓ2 Norm

None Yes 46.00% 1.98× 100 1.87× 100 3.64× 100 1.25× 102 4.75× 101

A No 73.79% 6.00× 10−2 4.98× 10−1 4.98× 10−1 5.81× 101 2.57× 101

A Yes 72.98% 6.29× 10−2 5.29× 10−1 5.14× 10−1 5.96× 101 2.62× 101

ALG No 80.90% 3.92× 10−2 4.00× 10−1 2.77× 10−1 4.04× 101 1.62× 101

ALG Yes 86.84% 3.70× 10−2 3.88× 10−1 2.46× 10−1 5.35× 101 2.06× 101

A: area, L: edge length, G: Gauss map.

Table 3. Comparison of the effectiveness of adding more layers. The table shows that the highest accuracy is achieved by the 3 layer
model with more geometric encoding, rather than by increasing the number of layers to 4 or 5.

Virtual
Node Layers Geometric

Encoding PSNR > 20 PolarLoss RPD Inverse
Laplacian ℓ1 Norm ℓ2 Norm

No

3 ALG 80.90% 3.92× 10−2 4.00× 10−1 2.77× 10−1 4.04× 101 1.62× 101

3 A 73.79% 5.29×10−1 5.29×10−1 4.98×10−1 5.81× 101 2.57× 101

4 A 79.90% 5.19× 10−2 4.38× 10−1 4.33×10−1 5.39× 101 2.41× 101

5 A 78.31% 5.11×10−2 4.38× 10−1 4.08× 10−1 4.92× 101 2.23× 101

Yes

3 ALG 86.84% 3.70× 10−2 3.88× 10−1 2.46× 10−1 5.35× 101 2.06× 101

3 A 72.98% 6.29×10−2 5.29×10−1 5.14×10−1 5.96× 101 2.62× 101

4 A 78.93% 5.15× 10−2 4.42× 10−1 4.20× 10−1 5.24× 101 2.35× 101

5 A 67.14% 8.32×10−2 6.74×10−1 6.44×10−1 6.76× 101 2.89× 101

A: area, L: edge length, G: Gauss map.

Table 4. Experiment results on different geometric objects using Inverse Laplacian. The table shows that RPDLoss gives the most accurate
predictions for all shapes other than truncated cones and tetrahedra, where it only performs slightly worse than ℓ1 loss.

Model Box Cone Truncated Cone Cylinder Sphere

GCNPL 0.9597 0.4764 1.451 0.8435 0.3391
GCNRPDL 0.3971 0.1735 0.8993 0.4035 0.0319
GCNℓ1 0.6287 0.3151 0.7157 0.4945 0.0753

Model Tetrahedron Torus Split Cone Inverted Cone Split Sphere

GCNPL 3.092 0.8795 0.5591 0.4671 0.1669
GCNRPDL 0.5925 0.1291 0.2204 0.2282 0.0309
GCNℓ1 0.5498 0.3212 0.3642 0.3540 0.0753

GCNPL: PolarLoss as loss function, GCNRPDL: RPDLoss as loss function, GCNℓ1 : ℓ1 loss.
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of meshes with PSNR > 20, compared to 79.9% and 78.31%
for 4 and 5 layer models that encode only area, respectively.
The case with a virtual node, the 3-layer mode that encodes
area, normalize edge lengths, and Gauss map has 86.84% of
meshes with PSNR > 20, compared to 78.93% and 67.14%
for the 4- and 5-layer models that encode only area, respec-
tively.

4.3.4. COMPARISONS WITH MORE LAYERS

We also observe the effect of adding more layers. It follows
from Table 3, that in the case where there is a virtual node,
using 5 layers results worse accuracy than three and four
layers, performing worse in the PSNR, PolarLoss, RPD, and
Inverse Laplacian metrics.

We also compare the result of adding more layers in the
case when the graph is not augmented with a virtual node.
Comparing the PSNR and PolarLoss metrics suggests that
using 4 layers is competitive with using 5 layers.

5. Conclusion
In this study, we explore the learnability of the Laplace-
Beltrami operator of triangle meshes through graph neural
networks, and investigate the effectiveness of encoding geo-
metric data for a synthetic dataset. We find that even without
encoding geometric data, the network is capable of predict-
ing eigenvalues, with over 80% of meshes achieving PSNR
> 20. Furthermore, the addition of geometric data provides
significant improvements to accuracy, increasing the accu-
racy by upwards of 10%. This suggests that the encoded
geometric data is playing a non-trivial role in the prediction
of the eigenvalues. Our result also shows the effectiveness
of our novel loss function RPDLoss: When trained with
RPDLoss, 7% more meshes have PSNR > 20 compared
to training with ℓ1 loss, and it performs better than the ℓ1
trained model on the Inverse Laplacian metric on all but
two shapes (truncated cones and tetrahedra). This suggests
that RPDLoss is more effective than ℓ1 loss for spectral
problems, as it accounts for relative rather than absolute
error.

Future work will be dedicated to predicting the eigenvalues
of point clouds and generalizing the geometric encoding
to point clouds. This would allow for the loss functions,
evaluation metrics, and geometric encoded to be tested on
a related problem, while generalizing their use beyond just
point clouds. Furthermore, this would allow for a compari-
son with the autoencoder-based methodology proposed in
Marin et al (2020), where they train an autoencoder and in-
evitable module simultaneously such that the module learns
the association between the spectrum of the LBO operator
and latent vector.

Limitations. In this study, we primarily focused on learn-

ability and studying the effect encoding geometric data has
on spectral prediction. As such, our results have yet to be
improved upon, both on a discrete scale such as PSNR, and
continuous scales, such as Inverse Laplacian. Additionally,
our dataset contains only meshes of genus 0 and 1, and no
real-world meshes.
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Boscaini, D., Masci, J., Rodolà, E., and Bronstein, M. Learn-
ing shape correspondence with anisotropic convolutional
neural networks. Advances in neural information process-
ing systems, 29, 2016.

Chern, S.-S. A simple intrinsic proof of the Gauss-Bonnet
formula for closed riemannian manifolds. Annals of Math-
ematics, 45(4):747–752, 1944.

Chung, F. R. Spectral graph theory, volume 92. American
Mathematical Soc., 1997.

Cosmo, L., Panine, M., Rampini, A., Ovsjanikov, M., Bron-
stein, M. M., and Rodola, E. Isospectralization, or how to
hear shape, style, and correspondence. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 7529–7538, 2019.

Crane, K., De Goes, F., Desbrun, M., and Schröder, P. Dig-
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janikov, M. Smoothness and effective regularizations in
learned embeddings for shape matching. arXiv preprint
arXiv:2112.07289, 2021.

Masci, J., Boscaini, D., Bronstein, M., and Vandergheynst, P.
Geodesic convolutional neural networks on Riemannian
manifolds. In Proceedings of the IEEE international
conference on computer vision workshops, pp. 37–45,
2015.

Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H.
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A. Inverse Laplacian and Asymptotics
Each summand of Inverse Laplacian is similar to the shifted negative reciprocal of the relative error, and as the prediction
approaches the ground truth, each summand behaves similarly to the relative error:

Lemma A.1. Given ground truth gi and its respective prediction pi, if gi ̸= 0 and gi
pi

− 1 = ε then pi−gi
gi

= ε
1+ε .

Proof. Note that because gi ̸= 0, ε ̸= −1. Then

gi
pi

= 1 + ε =⇒ gi − pi
gi

=
ε

1 + ε
.

Note that as p → g, ε → 0 and so the 1 + ε term in the denominator is dominated by the 1. This is similar to the shifted
negative reciprocal of relative error. To see this, rewrite ε

1+ε = 1+ε−1
1+ε = 1 − 1

1+ε . This is a shifted negative reciprocal
function. We illustrate this relationship by examining the asymptotes of this function. There are two asymptotes: the limit as
ε → ±∞ is 1, and the expression is unbounded as ε → −1. Note that

∣∣∣ gp − 1
∣∣∣→ ∞ if and only if |g|

|p| → ∞, i.e. |g| ≫ |p|.

This implies |g − p| ≈ |g| so |g−p|
|g| ≈ 1, i.e. relative error converges to 1. On the other hand, if ε → −1 then |g|

|p| → 0, i.e.

|g| ≪ |p|, thus |g − p| ≈ |p| and so the relative error is given by |g−p|
|g| ≈ |p|

|g| → ∞, i.e. the relative error is unbounded.

B. Examples of Predicted Eigenvalues
PSNR > 20 is used as an evaluation metric for model predictions. To provide an intuition of what PSNR > 20 means in the
context of a vector of ten eigenvalues, we exhibit a few examples of predicted eigenvalues versus ground truth eigenvalues,
with two examples of predictions that are considered “unsuccessful,” i.e., PSNR < 20, and four examples of predictions
that are considered “successful,” i.e., PSNR > 20. We also supply the respective inverse Laplacian with each chart, to
provide a visual intuition for inverse Laplacian as well.

In general, when the PSNR is large and the Inverse Laplacian is small, it indicates that the prediction is very close to the
ground truth. We find PSNR is relatively forgiving to outliers if predictions of most other eigenvalues are accurate. This
highlights the difference between PSNR and Inverse Laplacian: the former provides a holistic view of accuracy while the
latter is concerned with the accuracy of each individual eigenvalue.

Figure 6. Some samples of the evaluation metrics on eigenvalues. In particular, when PSNR > 20, the predicted eigenvalues, in blue,
approximate the true eigenvalues well.

C. Synthetic Dataset
The synthetic dataset starts with 16,550 triangle meshes. This consists of 2,000 rectangular prisms, 1,000 cones, 1,000
cylinders, 50 spheres, 2,000 tori, 2,000 tetrahedra, 1,000 conical frustrums, 2,500 split spheres, 1,000 split cones, and
4,000 inverted cones. We compute the eigenvalues using Reuter’s LaPy solver (Reuter et al., 2006; Wachinger et al.,
2015), and then filter out any meshes whose eigenvalues have numerical abnormalities. This leaves 16,361 meshes before
augmentations.

Standard shapes The triangle meshes for the rectangular prisms, cones, cylinders, spheres, and tori are generated using
Open3D’s built-in methods (Zhou et al., 2018). For each mesh, the parameters are sampled from the distribution given in
Table 5.
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Table 5. Dataset Parameters. The radius of all applicable shapes (i.e., all but the rectangular prism and the tetrahedron) is 1. For tori, this
means that the parameter torus radius is always 1. N(µ, σ2) denotes a normal distribution with mean µ and standard deviation σ and
U(a, b) denotes a uniform distribution with range [a, b]. As the normal distribution can generate arbitrary large / small values, we clamp
all values to the range [µ− 3σ, µ+ 3σ] as there is an approximately 99.7% chance a randomly generated sample naturally falls in this
range. For split meshes, the resolution and split parameters are sampled twice two create two meshes.

Parameters Height Subdivisions Resolution Split Other

Rectangular Prism 10N(0,(2/3)2) U(3, 5) N/A N/A Width: 1, Depth: 10N(0,(2/3)2)

Cone 10N(0,(2/3)2) 1 U(20, 100) U(1, 20) N/A
Split Cone 10N(0,(2/3)2) 1 U(20, 100) U(1, 20) N/A
Conical Frustum 10N(0,(2/3)2) 0 U(20, 100) U(1, 20) Scaling factor: 10N(0,(2/3)2)

Cylinder 10N(0,(2/3)2) 0 U(20, 100) U(4, 20) N/A
Sphere N/A 0 U(20, 100) N/A N/A
Split Sphere N/A 0 U(20, 100) N/A N/A
Tetrahedron 10N(0,(2/3)2) U(3, 5) N/A N/A Width: 1, Depth: 10N(0,(2/3)2)

Torus N/A 0 N/A N/A Tube radius: 10N(1/2,(1/6)2)

Inverted Cone 10N(0,(2/3)2) 1 U(20, 100) U(10, 30) Flip: U(0.5, 1)

For tetrahedra, the parameters width, height, and depth are sampled from the distributions given in Table 5. A triangle mesh
is then constructed with vertices at (0, 0, 0), (w, 0, 0), (0, h, 0), (0, 0, d), with w being the width, h being the height, and d
being the depth. All triples of vertices are joined as faces.

Finally, conical frustums are generated by first generating a cylinder by sampling the appropriate parameters. One of the
radii is then scaled by a multiplicative scaling factor, sampled from the distribution given in Table 5, and this scaling is
linearly interpolated along the height of the cylinder.

Split shapes and inverted cones The split shapes, i.e., the split cones and split spheres, are cones and spheres, respectively,
generated by constructing two meshes of the same underlying shape of different resolutions using Open3D’s built-in methods.
In particular, the degree to which curved surfaces were approximated differed between the two meshes. The two meshes are
each cut in half by the plane x = 1, and the two halves of the meshes are joined together by converting to point clouds and
then merged using Open3D’s PointCloud.compute convex hull.

Inverted cones are generated by generating a cone and then inverting its tip. This operation preserves the intrinsic geometry
of the mesh and so the eigenvalues of the Laplacian operation are invariant under this operation (Wang & Solomon, 2019).
The inverted cone is generated by generating a cone using Open3D’s built-in method with parameters sampled from the
distributions given in Table 5. The tip of the cone is inverted by sampling some t ∈ [0.5, 1] from the distribution labelled
‘flip’ in Table 5, before rounding for mesh integrity reasons and reflecting all points with z > th over the plane z = th
where h is the height of the cone.

Additionally, to better approximate the shapes for the FEM solver, we iteratively subdivide the meshes by the midpoints
of their edges. The number of times this process is done is sampled from the distribution given in Table 5. We present
representative sample meshes for each shape in Table 6.
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Table 6. A representative mesh from each type of shape. We do not display split shapes (shapes sampled with different resolution) since
they are visually indistinguishable to their non-split counterparts given the displayed sizes.

Rectangular Prism Cone Conical Frustum Cylinder

Sphere Tetrahedron Torus Inverted Cone
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