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ABSTRACT

Reinforcement learning from human feedback (RLHF) and direct preference opti-
mization (DPO) are emerging and important techniques to align large language mod-
els (LLM) with human preference. However, the quality of RLHF and DPO training
is seriously compromised by Corrupted preference, reward Overoptimization, and
bias towards Verbosity. To our knowledge, most existing works tackle only one
of these important issues, and the few other works require much computation to
estimate multiple reward models and lack theoretical guarantee of generalization
ability. In this work, we propose RLHF-COV and DPO-COV algorithms that can
simultaneously mitigate these three issues, in both offline and online settings. This
ability is theoretically demonstrated by obtaining length-regularized generalization
error rates for our DPO-COV algorithms trained on corrupted data, which match
the best-known rates for simpler cases with clean data and without length regular-
ization. Moreover, our DPO-COV algorithm is simple to implement without reward
estimation, and is proved to be equivalent to our RLHF-COV algorithm, which
directly implies the equivalence between the vanilla RLHF and DPO algorithms.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) has been widely used in robotics (Christiano
et al., 2017; Bukharin et al., 2024), autonomous driving (Wang et al., 2024; Cao et al., 2024), large
language models (LLM) (Ouyang et al., 2022; Bai et al., 2022b; Rafailov et al., 2023), image and
video generation (Wallace et al., 2023; Liang et al., 2024; Liu et al., 2024b), etc. This work will focus
on the application of RLHF to LLM alignment which makes LLM more helpful, honest, and harmless
(Ouyang et al., 2022; Bai et al., 2022b). LLM alignment has two critical steps. The first step is reward
modeling, which estimates the reward model that measures the quality of LLM responses, based on
human preference data. The second step is reinforcement learning (RL), which fine-tunes the LLM
policy to generate responses with an improved expected value of the learned reward (Ouyang et al.,
2022). Direct preference optimization (DPO) (Rafailov et al., 2023) further simplifies the standard
RLHF process by directly fine-tuning the optimal policy without reward estimation.

However, the LLM aligned by RLHF and DPO sometimes generates undesirable responses, due to
the corruption, overoptimization, and verbosity issues, as introduced below.

Corruption. The quality of preference data is essential in RLHF and DPO. However, preference
labels given by human may be corrupted due to inexperience, inattention, personal bias, unclear
context, and even malicious falsification (Bukharin et al., 2024). For instance, when fine-tuning
LLM for automated content moderation on social media, malicious annotators may mislabel harmful
contents like misinformation and hate speech as preferable, which misleads the LLM to generate
such harmful contents. Therefore, robustness of RLHF and DPO to such corruption is critical, but is
tackled by only a few recent works to our knowledge. For example, Cheng et al. (2024); Mandal et al.
(2024); Gao et al. (2024) use confidence-based data filtering. Ethayarajh et al. (2024) maximizes
the utility function defined based on the prospect theory of human decision making (Tversky and
Kahneman, 1992) to filter out noisy data. Coste et al. (2024); Rame et al. (2024) estimate an ensemble
of rewards. The recently proposed robust RLHF and robust DPO approaches in (Bukharin et al.,
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2024) use noise modeling to automatically select the outliers and the estimated reward provably
converges to the true reward.

Overoptimization. RLHF and DPO may overoptimize the reward model, yielding LLM responses
of high estimated reward but low actual quality (Gao et al., 2023; Casper et al., 2023). Various
methods have been proposed to tackle such overoptimization issue (a.k.a. reward hacking). For
example, Gao et al. (2023) uses larger reward model which significantly increases the computational
cost of pretraining. Moskovitz et al. (2024) applies constraints to RLHF. The ΦPo method (Azar
et al., 2024) optimizes a general preference function. Eisenstein et al. (2024); Coste et al. (2024);
Rame et al. (2024); Fisch et al. (2024); Zhai et al. (2023) use an ensemble of estimated rewards.

An emerging and popular strategy with provable generalization ability to solve overoptimization is
to adopt a pessimistic (resp. an optimistic) approach for RLHF and DPO with offline (resp. online)
data. Specifically, in the offline setting where only precollected offline preference data is available for
training, there are many out-of-distribution samples about which we cannot obtain any information.
Therefore, Zhu et al. (2023; 2024); Liu et al. (2024c); Cen et al. (2024); Ji et al. (2024); Yang et al.
(2024); Huang et al. (2024); Xiong et al. (2024); Ye et al. (2024); Fisch et al. (2024) apply pessimistic
principle to RLHF or DPO which penalizes LLM from generating such unknown out-of-distribution
responses and thus to mitigate overoptimization. Such pessimism principle has also been used in
conventional offline RL (Xie et al., 2021; Jin et al., 2021; Rashidinejad et al., 2021; Bai et al., 2022a;
Cheng et al., 2022). In contrast, in the online setting where online data can be collected from the
up-to-date policy during the training process, optimistic approaches have been used to encourage the
collection of unexplored samples to enrich data diversity in RLHF and DPO (Cen et al., 2024; Xie
et al., 2024; Zhang et al., 2024; Ye et al., 2024; Xiong et al., 2024) as well as conventional RL (Wei
et al., 2017; Zhong and Zhang, 2023; Liu et al., 2023a;b).

Verbosity. LLM aligned by vanilla RLHF and DPO is likely to prefer verbose but possibly low-quality
responses (Singhal et al., 2023; Chen et al., 2024; Liu et al., 2024a; Dong et al., 2024; Fisch et al.,
2024). Multiple methods have been used to tackle verbosity. For example, Shen et al. (2023); Chen
et al. (2024) disentangle length-related reward component. Guo et al. (2024) instructs the LLM
to prefer concise response. Eisenstein et al. (2024); Fisch et al. (2024); Chakraborty et al. (2024)
estimate an ensemble of reward models. Singhal et al. (2023); Liu et al. (2024a); Dong et al. (2024);
Park et al. (2024) use length penalty and similarly Meng et al. (2024) uses length normalization.

Our Motivation. However, to our knowledge, most existing works primarily tackle only one of
these three issues (corruption, overoptimization and verbosity). The only method to our knowledge
that has been used to tackle all these issues is to estimate an ensemble of reward models (Coste et al.,
2024; Fisch et al., 2024; Eisenstein et al., 2024; Rame et al., 2024), which, however, requires much
computation and lacks theoretical guarantee of generalization ability. Therefore, we are motivated to
ask the following research question.

Q: Can we design RLHF and DPO algorithms that can solve corruption, overoptimiza-
tion and verbosity simultaneously with simple implementation and theoretical guarantee of
generalization ability?

1.1 OUR CONTRIBUTIONS

We answer the above question affirmatively, by proposing RLHF-COV and DPO-COV algorithms
that simultaneously mitigate Corruption, Overoptimization and Verbosity issues, in both offline
and online settings. Specifically, we tackle Corruption by noise modeling, tackle Overoptimization
by pessimistic and optimistic regularizers in the offline and online settings respectively, and tackle
Verbosity by length regularizer. Our DPO-COV algorithms are almost as simple to implement as
the vanilla DPO algorithm without reward model estimation. We prove that our RLHF-COV and
DPO-COV are equivalent in the reward-induced policy space in both the offline and online settings.
Since our RLHF-COV and DPO-COV algorithms generalize the vanilla RLHF and DPO algorithms
respectively, our equivalence result implies that the vanilla RLHF and DPO algorithms are also
equivalent. Moreover, we obtain the length-regularized generalization error rates of our DPO-COV
algorithms on both offline and online datasets obtained from corrupted preference, and the rates match
the existing results in the simple special case with clean dataset and without verbosity regularization.
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This theoretically demonstrates that our algorithms can simultaneously mitigate the Corruption,
Overoptimization and Verbosity issues.

In particular, the effect of noise modeling on the generalization error of learned policy for corrupted
data has not been studied to our knowledge, which requires novel proof techniques. The true and
estimated noise terms have very different effects on the generalization error, and thus have to be
analyzed at different stages. To elaborate, the estimated noise has to be bounded before applying
concentration inequality, such that this unbounded estimated noise term can be canceled out by the
noise regularizer. In contrast, the true noise has to be bounded after applying the concentration
inequality, since the concentration inequality bounds the distance between the true data distribution
(with the true noise term) and the estimated data distribution.

2 PRELIMINARIES

Reinforcement learning from human feedback (RLHF). A large language model (LLM) provides
a random language response a ∈ X to any given language prompt x ∈ X (for example, instruction
or question) following the LLM’s policy π(·|x). Fine-tuning LLM by reinforcement learning from
human feedback (RLHF) consists of two critical steps: training reward model and reinforcement
learning (RL) (Ouyang et al., 2022). The reward model is denoted by a function r(x, a) ∈ R which
measures the quality of the response a given the prompt x. To train the reward model, preference
data D = {xi, awi , aℓi}Ni=1 of size N is collected where a pair of responses awi , a

ℓ
i are generated given

each i-th prompt xi, and the response awi is more preferable than aℓi (i.e. awi ≻ aℓi ). Such a pairwise
preference is widely assumed to follow the Bradley-Terry model (Bradley and Terry, 1952), that is,
given prompt x, the generated response a′ is more desirable than a with the following probability.

P(a′ ≻ a|x) = σ[r∗(x, a′)− r∗(x, a)] (1)

where σ(x) def
= 1/(1 + e−x) and r∗ is the unknown true reward model. r∗ can be estimated by

maximum likelihood estimation (MLE), that is, to minimize the following negative log-likelihood
function over a certain reward model family R.

min
r∈R

− 1

N

N∑
i=1

log σ[r(xi, a
w
i )− r(xi, a

ℓ
i)]. (2)

Finally, given the estimated reward model r ∈ R, the optimal policy is obtained by the following op-
timization problem over the whole policy space Π

def
={π|π(·|x) is a distribution over A for any x}.

max
π∈Π

Ex∼ρ,a∼π(·|x)[r(x, a)]− βEx∼ρKL
[
π(·|x)

∥∥πref(·|x)], (3)

where ρ is the prompt distribution, πref is the reference policy obtained by supervised fine-tuning,
and KL(p∥q) =

∑
a∈A p(a) log

p(a)
q(a) denotes the KL divergence between any pair of response

distributions p, q and β > 0 is the regularizer coefficient which controls the trade-off between
generating responses with high expected reward and bounded distance from the reference policy πref .

Direct preference optimization (DPO). As introduced above, classical RLHF requires two large-
scale optimization problems to learn the reward model r and the optimal policy π respectively. DPO
(Rafailov et al., 2023) is introduced to remove the reward learning step and thus reducing computation.
To elaborate, note that the optimization problem (3) has the following analytical solution.

π(a|x) = πref(a|x)
Z(x)

exp
[r(x, a)

β

]
, (4)

where Z(x) :=
∑

a′∈A πref(a
′|x) exp[r(x, a′)/β] is the normalization factor. Conversely, given the

optimal policy π, r(x, a) = β log π(a|x)
πref (a|x) is a solution to Eq. (1). Substituting this reward model

into the MLE objective (3), Rafailov et al. (2023) develops the following simple DPO objective which
only requires policy training.

min
π∈Π

LN (r)
def
= − 1

N

N∑
i=1

log σ
[
β log

π(awi |xi)
πref(awi |xi)

− β log
π(aℓi |xi)
πref(aℓi |xi)

]
. (5)
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However, this DPO objective and the aforementioned vanilla RLHF process are prone to suffer from
corrupted preference, reward overoptimization, and bias towards verbose response. We will propose
our novel variants of RLHF and DPO to solve the three issues simultaneously, for both offline and
online settings, in Sections 3 and 4 respectively.

3 OUR OFFLINE DPO-COV ALGORITHM

In this section, we will derive our proposed offline RLHF-COV objective and offline DPO-COV
algorithm (Algorithm 1) which simultaneously solve the Corruption, Overoptimization and Verbosity
issues, and then obtain the generalization error rates of our offline DPO-COV algorithm.

3.1 OUR OFFLINE RLHF-COV OBJECTIVE

Offline Data from Corrupted Preference.

Assumption 1. The offline data D def
= {xi, a(1)i , a

(−1)
i , yi}Ni=1 = {xi, awi , aℓi , yi}Ni=1 is generated

from the following model with corrupted preference.

xi ∼ρ, a
(−1)
i , a

(1)
i ∼ πb(·|xi), (6)

P(a(1)i ≻ a
(−1)
i ) = σ[r∗(xi, a

(1)
i )− r∗(xi, a

(−1)
i ) + ξ∗i ], (7)

where πb denotes the behavior policy and ξ∗i ∈ R denotes the true preference noise for the i-th sample.
If a(1)i ≻ a

(−1)
i , assign the label yi = 1 and denote awi = a

(1)
i as the more preferable response and

aℓi = a
(−1)
i as the less preferable response; Otherwise, let yi = −1, awi = a

(−1)
i , aℓi = a

(1)
i .

The above assumption is very similar to that of offline vanilla RLHF and DPO, except that we add
noise ξ∗i to the Bradley-Terry model (1) for each possibly corrupted sample i (Bukharin et al., 2024).

Based on Assumption 1, P(yi|a(1)i , a
(−1)
i ) = σ[r∗(xi, a

w
i ) − r∗(xi, a

ℓ
i) + yiξ

∗
i ], yi ∈ {−1, 1}1.

Hence, we define a penalized negative log-likelihood function of the labels {yi}Ni=1 as follows.

LN,λ(r, ξ)
def
= − 1

N

N∑
i=1

log σ[r(xi, a
w
i )− r(xi, a

ℓ
i) + yiξi] +

λ

N
∥ξ∥1, (8)

which, compared with the standard non-corrupted negative log-likelihood function (2), adds the
estimated preference noise ξ = [ξ1, . . . , ξN ] ∈ RN and the noise regularizer ∥ξ∥1 =

∑N
i=1 |ξi| with

coefficient λ > 0 to encourage the sparsity of the noise.

Reward Estimation via Pessimistic MLE to Solve Overoptimization. After collecting offline
data, the next step is to learn the reward model r. One may consider corrupted MLE objective
minr∈R,ξ∈RN LN,λ(r, ξ) (Bukharin et al., 2024) which generalizes the non-corrupted MLE objective
(2). However, this corrupted MLE objective tend to overfit limited offline data (Gao et al., 2023;
Zhu et al., 2024; Liu et al., 2024c; Cen et al., 2024; Xiong et al., 2024), producing an inaccurately
estimated reward that leads to overoptimization. Therefore, we consider the following pessimistic
MLE inspired by (Liu et al., 2024c; Cen et al., 2024; Ji et al., 2024; Yang et al., 2024).

min
r∈R,ξ∈RN

{
LN,λ(r, ξ) + ηmax

π∈Π
Vβ(π, r)

}
, (9)

where the pessimistic hyperparameter η ≥ 0 and

Vβ(π, r)
def
=Ex∼ρ,a∼π(·|x),a′∼πbase(·|x)

[
r(x, a)− r(x, a′)

]
− βEx∼ρKL

[
π(·|x)

∥∥πref(·|x)] (10)

denotes the relative value of the policy π to a certain baseline policy πbase given the reward r. The
regularizer maxπ∈Π Vβ(π, r) in Eq. (9) can be seen as the relative value of the optimal policy, and
will help reduce the reward value r(x, a) of any sample x, a with small πbase(a|x), so that the optimal
policy π(a|x) given by Eq. (4) will also be reduced. In other words, such samples x, a are considered

1We corrected the mistake in (Bukharin et al., 2024) which uses P(yi|a(1)
i , a

(−1)
i ) = σ[r∗(xi, a

w
i ) −

r∗(xi, a
ℓ
i) + ξ∗i ], yi ∈ {−1, 1} that yields

∑
yi∈{−1,1} P(yi|a

(1)
i , a

(−1)
i ) ̸= 1.
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pessimistic and are thus discouraged from being generated by the learned policy π. Hence, the
regularizer maxπ∈Π Vβ(π, r) is called the pessimistic regularizer. Furthermore, if we select πbase
to represent the offline data distribution (see the end of Section 3.2 for the choice of πbase), then
these samples x, a with small πbase(a|x) can be seen as out-of-distribution, so that such pessimism
on the out-of-distribution samples mitigates the overoptimization issue which often results from
overestimation of the reward on low-quality out-of-distribution samples (Liu et al., 2024c).

Policy Training with Penalized Verbosity. The vanilla RLHF usually yields reward model r(x, a)
that has bias towards long and detailed responses. To suppress verbose responses in the policy
optimization step maxπ∈Π Vβ(π, r), we can replace the reward model r(x, a) with the proxy reward
model rω(x, a) = r(x, a)−ω|a| where |a| is the length (i.e., number of tokens) of the response a and
the hyperparameter ω ≥ 0 controls the length penalty strength (Singhal et al., 2023; Liu et al., 2024a;
Dong et al., 2024; Park et al., 2024). In this way, the policy training objective Vβ(π, r) (defined by
Eq. (10)) is generalized to the following length-regularized relative value function.

Vβ,ω(π, r)
def
=Ex∼ρ,a∼π(·|x),a′∼πbase(·|x)

[
r(x, a)− ω|a| − r(x, a′) + ω|a′|

]
− βEx∼ρKL

[
π(·|x)

∥∥πref(·|x)]. (11)

Replacing Vβ(π, r) with Vβ,ω(π, r) in the pessimistic MLE objective (9), we propose offline RLHF-
COV objective below.

(Offline RLHF-COV):

min
r∈R,ξ∈RN

max
π∈Π

{
LN,λ(r, ξ) + ηVβ,ω(π, r)

(8),(11)
= −βηEx∼ρKL

[
π(·|x)

∥∥πref(·|x)]
+ ηEx∼ρ,a∼π(·|x),a′∼πbase(·|x)

[
r(x, a)− ω|a| − r(x, a′) + ω|a′|

]
+

1

N

N∑
i=1

{
λ|ξi| − log σ[r(xi, a

w
i )− r(xi, a

ℓ
i) + yiξi]

}}
. (12)

Remark: Our offline RLHF-COV objective above simultaneously tackles the Corruption,
Overoptimization and Verbosity issues, via noise modeling, pessimism and length penalty with
controllable hyperparameters λ, η, ω respectively. Specifically, the length penalty is only added to
Vβ,ω not LN,λ, because in the pessimistic MLE we still want to obtain a reward r possibly with length
bias, and then verbosity is only suppressed in the policy optimization part maxπ∈Π Vβ,ω(π, r). When
λ ≥ 1 and η = ω = 0, our offline RLHF-COV objective above reduces to the reward estimation (2)
and policy optimization (3) in the vanilla RLHF.

3.2 OUR OFFLINE DPO-COV ALGORITHM

The offline RLHF-COV objective (12) involves minimax optimization over three high-dimensional
variables r, ξ, π. As the first step to simplify this objective, we obtain the following proposition.
Proposition 1. (π, r, ξ) is the solution to the offline RLHF-COV objective (12) if and only if

π = πr
def
= argmaxπ′∈ΠVβ,ω(π

′, r), ξ = ξr
def
= argminξ∈RNLN,λ(r, ξ) and r is the solution to the

following optimization problem.

min
r∈R

[LN,λ(r, ξr) + ηVβ,ω(πr, r)]. (13)

In addition, πr and ξr,i (the i-th entry of ξr) have the following analytical solutions.

πr(a|x) =
πref(a|x)
Zr(x)

exp
[r(x, a)− ω|a|

β

]
, ∀x ∈ X , a ∈ A, (14)

ξr,i =

{
yi max

[
log

(
1
λ − 1

)
− r(xi, a

w
i ) + r(xi, a

ℓ
i), 0

]
, λ ∈ (0, 1)

0, λ ≥ 1
. (15)

where Zr(x)
def
=

∑
a′∈A πref(a

′|x) exp
[ r(x,a′)−ω|a′|

β

]
is the normalization factor.

The above proposition simplifies the offline RLHF-COV objective (12) into the reward estimation
problem (13). Next, we will transform it into our DPO-COV objective of the policy π. In Eq. (14),

5
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given π = πr, a solution to the reward model r is

rπ(x, a)
def
= ω|a|+ β log

[ π(a|x)
πref(a|x)

]
. (16)

With the above reward rπ, the corresponding noise can also be parameterized by π as ξπ def
= ξrπ ,

whose i-th entry has the following analytical solution based on Eqs. (15) and (16).

ξπi
def
= ξrπ,i=

{
yimax

[
log

(
1
λ−1

)
−ω(|awi |−|aℓi |)−βlog

(π(aw
i |xi)πref (a

ℓ
i |xi)

π(aℓ
i |xi)πref (aw

i |xi)

)
, 0
]
, λ∈(0, 1)

0, λ≥1
, (17)

Substituting the above rπ and ξπi into Eq. (13), we propose our DPO-COV objective as follows.

(Offline DPO-COV):

min
π∈ΠR

{
LN,λ(r

π, ξπ) + ηVβ,ω(πrπ , r
π) = −βηEx∼ρ,a∼πbase(·|x)

[
log π(a|x)

]
+

1

N

N∑
i=1

[
λ|ξπi |−log σ

(
ω(|awi |−|aℓi |)+β log

π(awi |xi)πref(aℓi |xi)
π(aℓi |xi)πref(awi |xi)

)
+yiξ

π
i

]
+Coff

}
, (18)

where Coff
def
= βηEx∼ρ,a∼πbase(·|x)

[
log πref(a|x)

]
is a constant independent of π, and we use the

reward-induced policy space ΠR
def
= {πr : r ∈ R} since the optimal policy is πr for some reward r

based on Proposition 1. Note that such ΠR is sufficiently general to admit any parameterized policy
πθ since by defining R = {rπθ : θ ∈ Θ}, we have ΠR = {πθ : θ ∈ Θ} based on Lemma 3.

Remark: Our proposed offline DPO-COV objective (18) simultaneously tackles Corruption,
Overoptimization and Verbosity issues. Corruption is modeled by the noise term ξπ = [ξπ1 , . . . , ξ

π
N ]

which becomes sparser as the hyperparameter λ ≥ 0 increases, and ξπ = 0 when λ ≥ 1.
Overoptimization is tackled by the pessimistic regularizer −βηEx∼ρ,a∼πbase(·|x)

[
log π(a|x)

]
which

helps to increase π(a|x) for in-distribution samples (x, a) well covered by πbase. Verbosity is pe-
nalized by the length regularizers ω|awi |, ω|aℓi |. When λ ≥ 1 and η = ω = 0, our above offline
DPO-COV objective (18) reduces to the vanilla DPO objective (5).

We formally establish the equivalence between our offline RLHF-COV objective (12) and offline
DPO-COV objective (18) in the following Proposition 2, which implies the equivalence between the
vanilla RLHF and DPO algorithms as a special case when λ ≥ 1 and η = ω = 0.

Proposition 2. A policy π ∈ Π is optimal for the offline DPO-COV objective (18) if and only if there
exist r ∈ R, ξ ∈ RN such that (π, r, ξ) is optimal for the offline RLHF-COV objective (12). In this
case, ξ = ξπ , and for any x ∈ X , there exists Uπ(x) ∈ R such that r(x, ·) = rπ(x, ·) + Uπ(x).

As suggested by (Liu et al., 2024c; Yang et al., 2024) and discussed in Section 3.3, in the
DPO-COV objective (18), we can take πbase(·|x) as the distribution of the preferable responses
awi given xi = x under Assumption 1, and then adopt the simple stochastic approximation
Ex∼ρ,a∼πbase(·|x)

[
log π(a|x)

]
≈ 1

N

∑N
i=1 log π(a

w
i |xi). This yields our fully stochastic offline

DPO-COV algorithm as Algorithm 1, which only requires to solve the policy optimization problem
that is almost as simple as the vanilla DPO objective (5).

3.3 GENERALIZATION ANALYSIS OF OFFLINE DPO-COV

While the policy π is trained from the offline data D, the ultimate goal is to make π generalize well
to all possible prompts x ∼ ρ. Specifically, we define the following length-regularized value function
which characterizes the generalization ability of the policy π as a trade-off among the true reward
value r∗ (response quality), the length of the generated response a, and the policy’s distance to πref .

Jβ,ω(π) := Ex∼ρ,a∼π(·|x)

[
r∗(x, a)− ω|a| − βKL

[
π(·|x)

∥∥πref(·|x)]]. (20)

To analyze the generalization error of the policy π̂ obtained from Algorithm 1, we make the standard
assumptions below.
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Algorithm 1 Offline DPO-COV Algorithm

1: Inputs: Hyperparameters β, η, ω, λ ≥ 0, offline data {xi, awi , aℓi}Ni=1, reference policy πref .
2: Output: Obtain policy π̂ via the following practical offline DPO-COV objective.

(Offline DPO-COV, stochastic): min
π∈ΠR

ψN (π)
def
=

1

N

N∑
i=1

{
λ|ξπi | − βη log π(awi |x)

− log σ
[
ω(|awi | − |aℓi |) + β log

(π(awi |xi)πref(aℓi |xi)
π(aℓi |xi)πref(awi |xi)

)
+ yiξ

π
i

]}
, (19)

where ξπi is defined by Eq. (17).

Assumption 2 (Realizable and Bounded Reward (Zhu et al., 2023; Zhan et al., 2024; Cen et al., 2024;
Ji et al., 2024; Liu et al., 2024c)). The reward model set R includes the true reward model r∗, that is,
r∗ ∈ R. Also, there exists a constant R ∈ (0,+∞) such that for any x ∈ X , a ∈ A and r ∈ R, we
have r(x, a) ∈ [0, R].

Assumption 3 (Offline Data Coverage (Zhan et al., 2024; Ji et al., 2024; Liu et al., 2024c)). There
exists a constant GD ∈ (0,+∞) called offline coverage coefficient, such that the choice of the
baseline policy πbase satisfies the following coverage property for all r ∈ R.

Ex∼ρ,a∼πr∗ (·|x),a′∼πbase(·|x)
[
r∗(x, a)− r∗(x, a′)− r(x, a) + r(x, a′)

]
≤ GDEr, (21)

where Er
def
=

√
ED

∣∣r∗(x1, aw1 )−r∗(x1, aℓ1)−r(x1, aw1 )+r(x1, aℓ1)∣∣2 with the offline data sample
x1, a

w
1 , a

ℓ
1 generated via Assumption 1.

The offline coverage coefficient GD above describes how well the offline data D covers the responses
from πbase and the true optimal policy πr∗ ∈ argmaxπ∈ΠJβ,ω(π). Algorithm 1 takes πbase(·|x) as
the distribution of the preferable responses awi given xi = x, which is well covered by D.

Theorem 1. Suppose Assumptions 1-3 hold and R is a convex set. For any δ ∈ (0, 1), select

hyperparameters λ ∈ [σ(R), 1], η =
2
√

∥ξ∗∥1+5 log[|N1/N (R)|/δ]
√
N(3+eR)

. Then, the policy π̃ from the offline
DPO-COV objective (18) has the following generalization error rate with probability at least 1− δ.

max
π∈Π

Jβ,ω(π)− Jβ,ω(π̃) ≤
(G2

D + 1)(3 + eR)√
N

√
∥ξ∗∥1 + 5 log[|N1/N (R)|/δ], (22)

where N1/N (R) is a (1/N)-cover of R, that is, for any r ∈ R, there exists r† ∈ N1/N (R) satisfying
∥r† − r∥∞ ≤ 1/N .

Comparison with Existing Works. Note that |N1/N (R)| ≤ O[(RN)|X ||A|] since R ⊂ [0, R]|X ||A|

by Assumption 2. Hence, as long as ∥ξ∗∥1 ≤ O[log(N)] (much weaker than Assumption 4.2 of
(Bukharin et al., 2024) that there exist constants c0, c∞ > 0 such that ξ∗ has at most c0 nonzero entries
and they range in [−c∞, c∞]), the generalization error rate (22) has the order of O[log(N)/

√
N ].

This rate matches the existing error rates of the offline pessimistic DPO-type algorithms (Liu et al.,
2024c; Cen et al., 2024; Ji et al., 2024) up to logarithm, in the simple case with clean data (λ ≥ 1) and
without length regularization (ω = 0). This implies that our offline DPO-COV algorithm provably
mitigates Overoptimization. In addition, Theorem 1 also for the first time extends to the corrupted
data and the length-regularized generalization error, which shows that our Algorithm 1 also mitigates
Corruption and Verbosity. In particular, to mitigate Corruption, we use novel techniques below to
bound the noise terms in the generalization error of the learned policy, whereas Bukharin et al. (2024)
only analyzes the estimation error of the reward and noise, but not that of the policy.

Technical Novelty. It turns out that the true noise ξ∗ and estimated noise ξπ have very different
effects on the generalization error, and thus have to be analyzed at different stages. To elaborate, the
estimated noise is analyzed by Lemma 4, such that the error bound σ(R)|ξr,i| can later be canceled
out by the regularizer −λ|ξr,i| when bounding the MLE error in Lemma 8. Next, we bound the
distance between the true data distribution under (r∗, ξ∗) and the noiseless data distribution under the

7
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estimated r and ξ = 0 (see (c) of Eq. (43)) by concentration inequality. Then we bound ξ∗ by Lemma
5 which has a different form from Lemma 4 used for bounding σ(R)|ξr,i|. This proof sequence cannot
be rearranged because the unbounded |ξr,i| can only be canceled out before using the concentration
inequality2, while the true data distribution under (r∗, ξ∗) is required by the concentration inequality.

4 OUR ONLINE DPO-COV ALGORITHM

Compared with offline RLHF and DPO-type algorithms which use precollected offline data, the
online algorithms improve the data coverage and the quality of the trained policy (Cen et al., 2024;
Dong et al., 2024; Xu et al., 2024; Ye et al., 2024; Guo et al., 2024) at the computation cost of
collecting the online preference data in the training process (Zhan et al., 2024; Ji et al., 2024; Huang
et al., 2024; Mandal et al., 2024). Therefore, online and offline algorithms have different advantages,
so both are important. In this section, we will derive our online RLHF-COV objective and online
DPO-COV algorithm, and provide the generalization analysis result of our DPO-COV algorithm.

At each t-th iteration of our online algorithm, we use the current policy πt to obtain the t-th sample
by xt ∼ ρ, a(−1)

t ∼ πref(·|xt), a(1)t ∼ πt(·|xt), and the label yt is obtained from a stochastic oracle
(such as GPT-4) assumed to follow the corrupted preference model (7). We propose the following
online RLHF-COV objective to train the next policy πt+1 on the online data {xi, a(−1)

i , a
(1)
i , yi}ti=1.

(Online RLHF-COV):

πt+1 ∈ argminπ∈Π min
r∈R,ξ(t)∈Rt

{
Lt,λ(r, ξ

(t))− ηVβ,ω(π, r)
(8),(11)
= βηEx∼ρKL

[
π(·|x)

∥∥πref(·|x)]
− ηEx∼ρ,a∼π(·|x),a′∼πbase(·|x)

[
r(x, a) + ω|a| − r(x, a′)− ω|a′|

]
+

1

t

t∑
i=1

{
λ|ξi| − log σ[r(xi, a

w
i )− r(xi, a

ℓ
i) + yiξi]

}}
, (23)

where ξ(t) = [ξ1, . . . , ξt] denotes the noise. The above online RLHF-COV objective is similar to
the offline RLHF-COV objective (12) with the major difference that they tackle overoptimization in
seemingly opposite ways. The offline RLHF-COV objective (12) (i.e., minr∈R,ξ∈RN [LN,λ(r, ξ) +
ηmaxπ∈Π Vβ,ω(π, r)]) uses the pessimistic term +ηmaxπ∈Π Vβ,ω(π, r) to discourage LLM from
generating out-of-distribution samples. In contrast, inspired by (Cen et al., 2024), our above online
RLHF-COV objective (i.e., minr∈R,ξ∈RN [Lt,λ(r, ξ)− ηmaxπ∈Π Vβ,ω(π, r)]) uses the sign-flipped
optimistic term −ηmaxπ∈Π Vβ,ω(π, r) to encourage LLM to collect out-of-distribution samples to
enrich the diversity of the online data to improve policy optimization.

Similar to the offline DPO-COV objective (18), we obtain our online DPO-COV objective as follows.
(Online DPO-COV):

πt+1 ∈ argminπ∈ΠR

{
Lt,λ(r

π, ξπ,(t))− ηVβ,ω(πrπ , r
π) = βηEx∼ρ,a∼πbase(·|x)

[
log π(a|x)

]
+
1

t

t∑
i=1

[
λ|ξπi |−log σ

(
ω(|awi |−|aℓi |)+β log

π(awi |xi)πref(aℓi |xi)
π(aℓi |xi)πref(awi |xi)

)
+yiξ

π
i

]
+Con

}
, (24)

where ξπ,(t) def
= [ξπ1 , . . . , ξ

π
t ] is given by Eq. (17) and Con = −βηEx∼ρ,a∼πbase(·|x)[log πref(a|x)]

is a constant independent of π. Similar to Proposition 2, we can show that the online RLHF-COV
objective (23) and the online DPO-COV objective (24) are equivalent as follows.
Proposition 3. A policy π ∈ Π is optimal for the online DPO-COV objective (24) if and only if there
exist r ∈ R, ξ ∈ RN such that (π, r, ξ) is optimal for the offline RLHF-COV objective (23). In this
case, ξ = ξπ and for any x ∈ X , there exists Uπ(x) ∈ R such that r(x, ·) = rπ(x, ·) + Uπ(x).

Inspired by (Xie et al., 2024), we select πbase =πref and use its generated samples {a(−1)
i }ti=1 to

approximate the expectation in the above online DPO-COV objective. This yields our fully stochastic
online DPO-COV algorithm (Algorithm 2), which is also almost as simple to implement as the online
vanilla DPO algorithm (Guo et al., 2024) (also Algorithm 2 with η = ω = 0 and λ = 1).

2Otherwise, after applying concentration inequality, the coefficient of |ξr,i| will be at least 1 which can only
be canceled out when λ ≥ 1. This by Eq. (15) yields undesirable ξr ≡ 0 that cannot tackle the corruption.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 2 Online DPO-COV Algorithm

1: Inputs: β, η, ω, λ > 0, reference policy πref , inital policy π0.
2: for Iterations t = 1, . . . , T do
3: Generate the t-th sample by xt ∼ ρ, a(−1)

t ∼ πref(·|xt), a(1)t ∼ πt(·|xt), and label yt from a
certain stochastic oracle assumed to follow the corrupted preference model (7).

4: Obtain πt+1 by solving the following stochastic online DPO-COV objective (25).

(Online DPO-COV, stochastic): min
π∈ΠR

ϕt(π) =
1

t

t∑
i=1

{
λ|ξπi |+ βη log π(a

(−1)
i |xi)

− log σ
[
ω(|awi | − |aℓi |) + β log

(π(awi |xi)πref(aℓi |xi)
π(aℓi |xi)πref(awi |xi)

)
+ yiξ

π
i

]}
, (25)

5: end for
6: Output: πT̂ where T̂ ∼ Uniform({2, 3, . . . , T, T + 1}).

To analyze the generalization error of Algorithm 2, define the following coverability coefficient (Xie
et al., 2024), which ensures that there exists at least one policy ν ∈ ΠR with good coverage over the
responses generated by any policy π ∈ ΠR.

Gon
def
= inf

ν∈ΠR
sup

x∈X ,a∈A,π∈ΠR

π(a|x)
ν(a|x)

. (26)

Theorem 2. Under Assumption 2 and for any δ ∈ (0, 1), select hyperparameters λ ∈ [σ(R), 1],

η =

√
log[4TN1/T (R)/δ]+∥ξ∗∥1

(3+eR)
√
TGon

where ξ∗ = [ξ∗1 , . . . , ξ
∗
T ]. Then the output policy πT̂ of Algorithm 2

satisfies the following generalization error rate with probability at least 1− δ.

max
π∈Π

Jβ,ω(π)−E
[
Jβ,ω(πT̂ )

]
≤ 37(3 + eR)(log T )

√
Gon

T

[
log

(4T |N1/T (R)|
δ

)
+∥ξ∗∥1

]
. (27)

Remark: Theorem 2 above demonstrates that our online DPO-COV algorithm can simultaneously
mitigate the Corruption, Overoptimization and Verbosity issues. When ∥ξ∗∥1 ≤ O(log T ), the above
generalization error rate is Õ(1/

√
T ), which also matches the existing results of the online optimistic

DPO-type algorithms (Xie et al., 2024; Cen et al., 2024) up to logarithm.

Technical Novelty. Similar to the proof of Theorem 1, the estimated and true noise terms are also
analyzed respectively before and after applying the concentration inequality, via different techniques.

5 EXPERIMENTS

5.1 EXPERIMENT ON OFFLINE DATA

We will compare the following offline DPO-type algorithms:

1. Our offline DPO-COV algorithm with all the three components activated (Corruption,
Overoptimization and Verbosity): This is Algorithm 1 with η, ω > 0 and λ ∈ (0, 1).

Table 1: Hyperparameter Values and LC-win Rates of Offline DPO-type Algorithms

Algorithms λ η ω LC-win rates
Our DPO-COV (all 3 components activated) 0.7 0.0005 0.0005 7.61%
Robust DPO (Corruption only) 0.1 0 0 7.04%
Pessimistic DPO (Overoptimization only) 1 0.005 0 5.50%
Length-regularized DPO (Verbosity only) 1 0 0.0005 7.30%
Vanilla DPO 1 0 0 6.29%
Reference model πref - - - 4.92%

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Hyperparameter Values and LC-win Rates of Online DPO-type Algorithms

Algorithms λ η ω LC-win rates
Our DPO-COV (all 3 components activated) 0.7 0.0005 0.0005 7.87%
Robust DPO (Corruption only) 0.1 0 0 7.03%
Optimistic DPO (Overoptimization only) 1 0.005 0 6.23%
Length-regularized DPO (Verbosity only) 1 0 0.0005 6.19%
Vanilla DPO 1 0 0 6.58%
Reference model πref - - - 4.92%

2. Offline robust DPO algorithm (Bukharin et al., 2024): This is a special case of Algorithm 1
with η = ω = 0 and λ ∈ (0, 1), which only tackles Corruption.

3. Offline pessimistic DPO algorithm (Liu et al., 2024c): This is a special case of Algorithm 1
with η > 0, ω = 0 and λ = 1, which only tackles Overoptimization.

4. Offline length regularized DPO algorithm (Park et al., 2024): This is a special case of
Algorithm 1 with η = 0, ω > 0 and λ = 1, which only tackles Verbosity.

5. Offline vanilla DPO (Rafailov et al., 2023): Algorithm 1 with η = ω = 0 and λ = 1.

We select the preference dataset D to be Argilla-DPO-Mix-7K (Argill, 2024), and πref to be zephyr-
7b-gemma-sft-v0.1 (HuggingFaceH4, 2024), which is a fine-tuned version of gemma-7b on the Deita
dataset (Wang et al., 2023). Then we apply LoRA (Hu et al., 2021) and two epochs of the AdamW
optimizer (Loshchilov and Hutter, 2017) with learning rate 5× 10−7 to the objective (19). For each
algorithm, we fix β = 0.05 and perform grid search on the other hyperparameters over a holdout
validation set of the preference dataset. We compare the Length-Control win rates (a.k.a. LC-win
rates, defined in AlpacaEval 2.0 (Dubois et al., 2024)) of πref and that of the models obtained by
the above algorithms against the model GPT-4 Preview (11/06) (OpenAI, 2024). We summarize the
LC-win rates and the hyperparameter values in Table 1, which indicates that our offline DPO-COV
algorithm with all three components activated achieves the highest LC win rates. Therefore, it is
important to tackle the Corruption, Overoptimization and Verbosity issues simultaneously.

5.2 EXPERIMENT ON ONLINE DATA

Similar to the offline setting above, we compare important special cases of Algorithm 2, including our
online DPO-COV with all 3 components activated, the online variant of the robust DPO algorithm
(Bukharin et al., 2024), online optimistic DPO algorithm (named XPO in (Xie et al., 2024)), online
length regularized DPO algorithm (Liu et al., 2024a) and online vanilla DPO algorithm (using DPO
objective in (Guo et al., 2024)). We use zephyr-7b-gemma-sft-v0.1 (HuggingFaceH4, 2024) as
the reference model πref and the initial model π0. Each algorithm is trained with β = 0.05 and
T = 3 iterations. In each iteration, we generate the online labels yt from pair-preference-model-
LLaMA3-8B (RLHFlow, 2024), and combine the online data with 50% of the preference dataset
of Argilla-DPO-Mix-7K (Argill, 2024). Then we apply LoRA (Hu et al., 2021) and two epochs
of the AdamW optimizer (Loshchilov and Hutter, 2017) with stepsize 5 × 10−7 to the objective
(25). On AlpacaEval 2.0 (Dubois et al., 2024), we compare the LC-win rates of πref and that of
the models obtained by the above algorithms against the model GPT-4 Preview (11/06) (OpenAI,
2024). Again, the results in Table 2 indicate that our online DPO-COV algorithm with all three
components activated achieves the highest length-control win rates. Therefore, it is important to
tackle the Corruption, Overoptimization and Verbosity issues simultaneously.

6 CONCLUSION

We proposed RLHF-COV and DPO-COV algorithms that can simultaneously mitigate the Corruption,
Overoptimization and Verbosity issues, in both offline and online settings. This ability is theoretically
proved by length-regularized generalization analysis with corrupted data. In addition, we also proved
the equivalence of our proposed RLHF-COV and DPO-COV algorithms. In the future, this work
could be extended to account for various preferences among diverse human groups (Ramesh et al.,
2024; Chakraborty et al., 2024).
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REPRODUCIBILITY STATEMENT

For our theoretical results, we clearly stated their assumptions in the main text and wrote the complete
proofs in the appendix. To ensure reproducibility of our experiments, we described important details
including the choice of the datasets, reference policy πref , hyperparameter values, optimization
methods, etc.
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A SUPPORTING LEMMAS

Lemma 1. For any A ∈ (0,∞) and z1, z2 ∈ [−R,R], the following inequality holds.

|z1 − z2|
3 + eR

≤ |σ(z1)− σ(z2)| ≤
1

4
|z1 − z2|. (28)

Remark: Our bound (28) is strictly tighter than |z1−z2|
(1+eR)2

≤ |σ(z1)− σ(z2)| ≤ |z1 − z2| obtained in
Lemma A.2 of (Liu et al., 2024c).

Proof. Denote zmin = min(z1, z2) and zmax = max(z1, z2). Then we have

|z1 − z2| = zmax − zmin,

|σ(z1)− σ(z2)| = σ(zmax)− σ(zmin) =

∫ zmax

zmin

σ′(z)dz.

Hence, it suffices to prove that σ′(v) ∈
[

1
3+eR

, 14
]

for any v ∈ [zmin, zmax] ⊂ [−R,R]. Note that for
any v ∈ [zmin, zmax] ⊂ [−R,R], σ(v) ∈ [σ(−R), σ(R)] = [1− σ(R), σ(R)]. Hence, we conclude
the proof by the following two bounds.

σ′(v) = σ(v)[1− σ(v)] =
1

4
−

[
σ(v)− 1

2

]2
≤ 1

4
.

σ′(v) =
1

4
−

[
σ(v)− 1

2

]2
≥1

4
−

[
σ(R)− 1

2

]2
=σ(R)[1− σ(R)]

=
1

1 + eR
eR

1 + eR

=
1

(1 + eR)(1 + e−R)

=
1

2 + eR + e−R
≥ 1

3 + eR
.
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Lemma 2. For any x ∈ X , a0, a1 ∈ A and r ∈ R, the following equality holds

rπr (x, a1)− rπr (x, a0) = r(x, a1)− r(x, a0), (29)

where πr and rπ are defined by Eqs. (14) and (16) respectively. Furthermore, under Assumption 2,
both sides of the above Eq. (29) range in [−R,R].

Proof.

rπr (x, a1)− rπr (x, a0)

(a)
=ω(|a1| − |a0|) + β log

(πr(a1|x)πref(a0|x)
πr(a0|x)πref(a1|x)

)
(b)
=r(x, a1)− r(x, a0),

where (a) uses Eq. (16) and (b) uses Eq. (14).

Furthermore, under Assumption 2, r(x, a0), r(x, a1) ∈ [0, R], so

rπr (x, a1)− rπr (x, a0) = r(x, a1)− r(x, a0) ∈ [−R,R].

Lemma 3. Any policy π ∈ Π satisfies π = πrπ where πr and rπ are defined by Eqs. (14) and
(16) respectively. Furthermore, under Assumption 2, any π ∈ ΠR

def
= {πr : r ∈ R} satisfies

|rπ(x, a1)− rπ(x, a0)| ≤ R for any x ∈ X , a0, a1 ∈ A.

Proof. Eq. (16) implies that for any x ∈ X and a ∈ A, we have

πref(a|x) exp
[rπ(x, a)− ω|a|

β

]
= π(a|x). (30)

Hence,

Zrπ (x) =
∑
a∈A

πref(a|x) exp
[rπ(x, a)− ω|a|

β

]
=

∑
a∈A

π(a|x) = 1. (31)

Therefore, π = πrπ can be proved as follows.

πrπ (a|x)
(a)
=

πref(a|x)
Zrπ (x)

exp
[rπ(x, a)− ω|a|

β

]
(b)
= π(a|x),

where (a) uses Eq. (14) and (b) uses Eqs. (30) and (31).

When π ∈ ΠR
def
= {πr : r ∈ R}, there exists r ∈ R such that π = πr. Hence,

|rπ(x, a1)− rπ(x, a0)|
(a)
= |rπr (x, a1)− rπr (x, a0)|

(b)
= |r(x, a1)− r(x, a0)|

(c)

≤ R,

where (a) uses π = πr, (b) uses Eq. (29) and (c) uses Assumption 2.

Lemma 4. Under Assumption 2, for any r ∈ R and ξr,i defined by Eq. (15), the following inequality
holds.

log σ[r(xi, a
w
i )− r(xi, a

ℓ
i) + yiξr,i] ≤ log σ[r(xi, a

w
i )− r(xi, a

ℓ
i)] + σ(R)|ξr,i|. (32)

For any π ∈ ΠR
def
= {πr : r ∈ R} and ξπi defined by Eq. (17), the following inequality holds.

log σ[rπ(xi, a
w
i )− rπ(xi, a

ℓ
i) + yiξ

π
i ] ≤ log σ[rπ(xi, a

w
i )− rπ(xi, a

ℓ
i)] + σ(R)|ξπi |. (33)

Proof. yiξr,i ≥ 0 by Eq. (15) since yi ∈ {−1, 1}. Then Eq. (32) follows from d
dv [log σ(v)] =

σ(−v) ≤ σ(R) for any v ∈ [r(xi, a
w
i ) − r(xi, a

ℓ
i), r(xi, a

w
i ) − r(xi, a

ℓ
i) + yiξr,i] ⊆ [−R,+∞)

where ⊂ is implied by Assumption 2.

Similarly, yiξπi ≥ 0 by Eq. (17) since yi ∈ {−1, 1}. Then Eq. (33) follows from d
dv [log σ(v)] =

σ(−v) ≤ σ(R) for any v ∈ [rπ(xi, a
w
i )− rπ(xi, a

ℓ
i), r

π(xi, a
w
i )− rπ(xi, a

ℓ
i)+ yiξ

π
i ] ⊆ [−R,+∞)

where ⊂ is implied by Lemma 3.
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Lemma 5. For any ξi ∈ R and reward models r, r′ : X ×A → R, we have{
σ[r′(xi, a

w
i )− r′(xi, a

ℓ
i) + yiξi]− σ[r(xi, a

w
i )− r(xi, a

ℓ
i)]

}2

≥
{
σ[r′(xi, a

w
i )− r′(xi, a

ℓ
i)]− σ[r(xi, a

w
i )− r(xi, a

ℓ
i)]

}2 − 1

2
|ξ∗i |. (34)

Proof. Denote A′
i = r′(xi, a

w
i )− r′(xi, a

ℓ
i) and Ai = r(xi, a

w
i )− r(xi, a

ℓ
i). Define the following

function.

f(u) =
[
σ(A′

i + u)− σ(Ai)
]2
. (35)

Note that the range of the sigmoid function σ is (0, 1). Hence, for any u ∈ R,

d

du
f(u) = 2σ(A′

i + u)
[
1− σ(A′

i + u)
][
σ(A′

i + u)− σ(Ai)
]
∈
(
− 1

2
,
1

2

)
. (36)

Therefore,

f(0)− f(yiξi) ≤ |f(yiξi)− f(0)| ≤ 1

2
|yiξi| =

1

2
|ξi|,

which implies Eq. (34).

Lemma 6. For any x ∈ X , a ∈ A and r, r′ ∈ R, the policies πr, πr′ defined by the analytical
solution (14) satisfy ∣∣∣ log πr′(a|x)

πr(a|x)

∣∣∣ ≤ 2∥r′ − r∥∞
β

, (37)

where ∥r′ − r∥∞ = supx∈X ,a∈A |r′(x, a)− r(x, a)|.

Proof. Note that for any x ∈ X , a′ ∈ A and r, r′ ∈ R, we have

πref(a
′|x) exp

[ r′(x,a′)−ω|a′|
β

]
πref(a′|x) exp

[ r(x,a′)−ω|a′|
β

] =exp
[r′(x, a′)− r(x, a′)

β

]
∈
[
exp(−∥r′ − r∥∞/β), exp(∥r′ − r∥∞/β)

]
.

Therefore,

Zr′(x)

Zr(x)
=

∑
a′∈A πref(a

′|x) exp
[ r′(x,a′)−ω|a′|

β

]∑
a′∈A πref(a

′|x) exp
[ r(x,a′)−ω|a′|

β

]
∈
[
exp(−∥r′ − r∥∞/β), exp(∥r′ − r∥∞/β)

]
.

As a result,

πr′(a|x)
πr(a|x)

=
(Zr′(x)

Zr(x)

)−1πref(a
′|x) exp

[ r′(x,a′)−ω|a′|
β

]
πref(a′|x) exp

[ r(x,a′)−ω|a′|
β

]
∈
[
exp(−2∥r′ − r∥∞/β), exp(2∥r′ − r∥∞/β)

]
(38)

which directly implies Eq. (37).

We slightly adjust Theorem 13.2 of (Zhang, 2023) as follows, by using filtration Ft = ∅ (so the
conditional expectation becomes the total expectation), replacing −ξi with Zi, and negating the small
probability event.
Lemma 7. Consider random variables {Zi}Ni=0. For any δ ∈ (0, 1) and λ′ > 0, the following
inequality holds simultaneously for all n = 1, 2, . . . , N with probability at least 1− δ.

n∑
i=1

Zi ≤
log(1/δ)

λ′
+

1

λ′

n∑
i=1

logE[exp(λ′Zi)].
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Lemma 8. Fix ϵ > 0, λ ∈ [σ(R), 1] and δ ∈ (0, 1). Under Assumption 1, the following bound holds
for any r ∈ R and ξr = [ξr,1, . . . , ξr,N ] ∈ RN (given by Eq. (15)) simultaneously with probability
at least 1− δ.

LN,λ(r
∗, ξ∗)− LN,λ(r, ξr) ≤

2

N

[
∥ξ∗∥1 + log

( |Nϵ(R)|
δ

)]
− E2

r

2(3 + eR)2
+ 7ϵ, (39)

where Er :=

√
ED

∣∣r∗(x1, aw1 )− r∗(x1, aℓ1)− r(x1, aw1 ) + r(x1, aℓ1)
∣∣2 and Nϵ(R) is a finite ϵ-

cover of R, that is, for any r ∈ R, there exists r† ∈ Nϵ(R) satisfying ∥r† − r∥∞ ≤ ϵ.

Proof. Based on Assumption 1, given (xi, a
(1)
i , a

(−1)
i ), the target label y ∈ {−1, 1} as well as the

underlying reward r and noise ξi, the event yi = y occurs with the following probability.

pr,ξi(y|xi, a
(1)
i , a

(−1)
i ) =

{
σ[r(xi, a

(1)
i )− r(xi, a

(−1)
i ) + ξi], y = 1

σ[r(xi, a
(−1)
i )− r(xi, a

(1)
i )− ξi], y = −1.

(40)

By merging the two cases above, we have

pr,ξi(yi|xi, a
(1)
i , a

(−1)
i ) = σ[r(xi, a

w
i )− r(xi, a

ℓ
i) + yiξi]. (41)

Define the following random variables for r ∈ R and i = 1, . . . , N .

Zi(r) =
1

2
log

σ[r(xi, a
w
i )− r(xi, a

ℓ
i)]

σ[r∗(xi, awi )− r∗(xi, aℓi) + yiξ∗i ]
=

1

2
log

pr,0(yi|xi, a(1)i , a
(−1)
i )

pr∗,ξ∗i (yi|xi, a
(1)
i , a

(−1)
i )

. (42)

Then the following inequality holds for finitely many r ∈ Nϵ(R) simultaneously with probability at
least 1− δ.

LN,λ(r
∗, ξ∗)− LN,λ(r, ξr)

=
1

N

N∑
i=1

{
logσ[r(xi, a

w
i )−r(xi, aℓi)+yiξr,i]−logσ[r∗(xi, a

w
i )−r∗(xi, aℓi)+yiξ∗i ]+λ(|ξ∗i |−|ξr,i|)

}
(a)

≤ 1

N

N∑
i=1

{
log σ[r(xi, a

w
i )− r(xi, a

ℓ
i)] + σ(R)|ξr,i| − log σ[r∗(xi, a

w
i )− r∗(xi, a

ℓ
i) + yiξ

∗
i ]

+ λ(|ξ∗i | − |ξr,i|)
}

(b)

≤ 1

N

N∑
i=1

[
|ξ∗i |+ 2Zi(r)

]
(c)

≤ 1

N

N∑
i=1

{
|ξ∗i |+ 2 logED

[
exp[Zi(r)]

]}
+

2

N
log

( |Nϵ(R)|
δ

)
(d)
=

2

N

N∑
i=1

logED

{
E
yi∼pr∗,ξ∗

i
(·|xi,a

(1)
i ,a

(−1)
i )

[√√√√ pr,0(yi|xi, a(1)i , a
(−1)
i )

pr∗,ξ∗i (yi|xi, a
(1)
i , a

(−1)
i )

∣∣∣∣∣xi, a(1)i , a
(−1)
i

]}

+
1

N

[
∥ξ∗∥1 + 2 log

( |Nϵ(R)|
δ

)]
(e)

≤ 2

N

N∑
i=1

ED

[ ∑
y∈{−1,1}

√
pr,0(y|xi, a(1)i , a

(−1)
i )pr∗,ξ∗i (y|xi, a

(1)
i , a

(−1)
i )− 1

]

+
1

N

[
∥ξ∗∥1 + 2 log

( |Nϵ(R)|
δ

)]
=− 1

N

N∑
i=1

ED

[ ∑
y∈{−1,1}

∣∣∣√pr,0(y|xi, a(1)i , a
(−1)
i )−

√
pr∗,ξ∗i (y|xi, a

(1)
i , a

(−1)
i )

∣∣∣2]

+
1

N

[
∥ξ∗∥1 + 2 log

( |Nϵ(R)|
δ

)]
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(f)

≤ − 1

4N

N∑
i=1

ED

[ ∑
y∈{−1,1}

∣∣pr,0(y|xi, a(1)i , a
(−1)
i )− pr∗,ξ∗i (y|xi, a

(1)
i , a

(−1)
i )

∣∣2]

+
1

N

[
∥ξ∗∥1 + 2 log

( |Nϵ(R)|
δ

)]
(g)
= − 1

2N

N∑
i=1

ED
{
σ[r∗(xi, a

w
i )− r∗(xi, a

ℓ
i) + yiξ

∗
i ]− σ[r(xi, a

w
i )− r(xi, a

ℓ
i)]

}2

+
1

N

[
∥ξ∗∥1 + 2 log

( |Nϵ(R)|
δ

)]
(h)

≤ − 1

2N

N∑
i=1

{
ED

{
σ[r∗(xi, a

w
i )− r∗(xi, a

ℓ
i)]− σ[r(xi, a

w
i )− r(xi, a

ℓ
i)]

}2 − 1

2
|ξ∗i |

}
+

1

N

[
∥ξ∗∥1 + 2 log

( |Nϵ(R)|
δ

)]
(i)

≤ − 1

2(3 + eR)2
ED

∣∣r∗(x1, aw1 )− r∗(x1, a
ℓ
1)− r(x1, a

w
1 ) + r(x1, a

ℓ
1)
∣∣2

+
2

N

[
∥ξ∗∥1 + log

( |Nϵ(R)|
δ

)]
(j)
=

2

N

[
∥ξ∗∥1 + log

( |Nϵ(R)|
δ

)]
− E2

r

2(3 + eR)2
, (43)

where (a) uses Eq. (32) from Lemma 4, (b) uses Eq. (42) and σ(R) ≤ λ ≤ 1, (c) denotes ED as
the expectation under Assumption 1 and (c) holds for finitely many r ∈ Nϵ(R) simultaneously with
probability at least 1− δ (by Lemma 7 with λ′ = 1), (d) uses Eq. (42) and Assumption 1, (e) uses
log v ≤ v − 1 for any v > 0, (f) uses Lemma 12.2 of (Harsha, 2011), (g) uses Eq. (41), (h) uses
Lemma 5, (i) uses Lemma 1 as well as the fact that the N samples {xi, awi , aℓi}Ni=1 are i.i.d., (j)

denotes Er :=

√
ED

∣∣r∗(x1, aw1 )− r∗(x1, aℓ1)− r(x1, aw1 ) + r(x1, aℓ1)
∣∣2.

We have proved that with probability at least 1− δ, the event E := {Eq. (43) holds for all r ∈ Nϵ(R)
simultaneously} occurs. We will extend the range to any r ∈ R. By the definition of the ϵ cover
Nϵ(R), there exists at least one r† ∈ Nϵ(R) such that ∥r† − r∥∞ ≤ ϵ. Therefore,∣∣LN,λ(r, ξr)− LN,λ(r

†, ξr†)
∣∣

(a)
=
∣∣∣ 1
N

N∑
i=1

{
log σ[r†(xi, a

w
i )− r†(xi, a

ℓ
i) + ξr†,i]− log σ[r(xi, a

w
i )− r(xi, a

ℓ
i) + ξr,i]

}
+
λ

N
(∥ξr∥1 − ∥ξr†∥1)

∣∣∣
(b)

≤ 1

N

N∑
i=1

[∣∣[r†(xi, awi )− r†(xi, a
ℓ
i) + ξr†,i]− [r(xi, a

w
i )− r(xi, a

ℓ
i) + ξr,i]

∣∣+ λ(|ξr,i| − |ξr†,i|)
]

≤ 1

N

N∑
i=1

[∣∣r†(xi, awi )− r(xi, a
w
i )

∣∣+ ∣∣r(xi, aℓi)− r†(xi, a
ℓ
i)
∣∣+ ∣∣ξr†,i − ξr,i

∣∣+ λ(|ξr,i − ξr†,i|)
]

(c)

≤ 1

N

N∑
i=1

[∣∣r†(xi, awi )− r(xi, a
w
i )

∣∣+ ∣∣r(xi, aℓi)− r†(xi, a
ℓ
i)
∣∣

+ (λ+ 1)
∣∣r(xi, aℓi)− r(xi, a

w
i )− [r†(xi, a

ℓ
i)− r†(xi, a

w
i )]

∣∣] (d)

≤ 6ϵ, (44)

where (a) uses the definition of LN,λ given by Eq. (8), (b) uses triangle inequality and d
dv [log σ(v)] =

σ(−v) ∈ [0, 1] for any v ∈ R, (c) uses the property that ξr,i defined by Eq. (15) is a 1-Lipschitz
continuous function of r(xi, aℓi) − r(xi, a

w
i ) (since max(·, 0) is 1-Lipschitz continuous), (d) uses

∥r† − r∥∞ ≤ ϵ and λ ≤ 1. Under the event E , Eq. (43) holds with r replaced by r+, which along
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with Eq. (44) implies the following inequality.

LN,λ(r
∗, ξ∗)− LN,λ(r, ξr)

≤[LN,λ(r
†, ξr†)− LN,λ(r, ξr)] + [LN,λ(r

∗, ξ∗)− LN,λ(r
†, ξr†)]

≤6ϵ+
2

N

[
∥ξ∗∥1 + log

( |Nϵ(R)|
δ

)]
−

E2
r†

2(3 + eR)2

=6ϵ+
2

N

[
∥ξ∗∥1 + log

( |Nϵ(R)|
δ

)]
−

E2
r† − E2

r

2(3 + eR)2
− E2

r

2(3 + eR)2

(a)

≤6ϵ+
2

N

[
∥ξ∗∥1 + log

( |Nϵ(R)|
δ

)]
+

4Rϵ

(3 + eR)2
− E2

r

2(3 + eR)2

(b)

≤7ϵ+
2

N

[
∥ξ∗∥1 + log

( |Nϵ(R)|
δ

)]
− E2

r

2(3 + eR)2
, (45)

which proves Eq. (39). Here, (a) uses the following inequality and (b) uses (3+eR)2 > 6eR+e2R >
6R+ 2R = 8R.

|E2
r† − E2

r |

=
∣∣∣ED

{[
r∗(x1, a

w
1 )− r∗(x1, a

ℓ
1)− r†(x1, a

w
1 ) + r†(x1, a

ℓ
1)
]2}

− ED
{[
r∗(x1, a

w
1 )− r∗(x1, a

ℓ
1)− r(x1, a

w
1 ) + r(x1, a

ℓ
1)
]2}∣∣∣

=
∣∣∣ED

{[
r(x1, a

w
1 )− r(x1, a

ℓ
1)− r†(x1, a

w
1 ) + r†(x1, a

ℓ
1)
]

[
2r∗(x1, a

w
1 )− 2r∗(x1, a

ℓ
1)− r†(x1, a

w
1 ) + r†(x1, a

ℓ
1)− r(x1, a

w
1 ) + r(x1, a

ℓ
1)
]}∣∣∣

(a)

≤ (2ϵ)(4R) = 8Rϵ,

where (a) uses Assumption 2 and ∥r† − r∥∞ ≤ ϵ.

Lemma 9. Fixing any ϵ > 0, δ ∈ (0, 1), the online dataset {xi, awi , aℓi , yi}Ti=1 generated from

Algorithm 2 satisfies the following bound for all t = 1, . . . , T and π ∈ ΠR
def
= {πr : r ∈ R}

simultaneously with probability at least 1− δ.

t∑
i=1

log
σ
[
rπ(xi, a

w
i )− rπ(xi, a

ℓ
i) + yiξ

π
i

]
σ
[
r∗(xi, awi )− r∗(xi, aℓi) + yiξ∗i

]
≤2 log

(T |Nϵ(R)|
δ

)
+ 4tϵ+

t∑
i=1

{1

4
|ξ∗i |+ σ(R)|ξπi |

− 1

2(3 + eR)2
Ex∼ρ,a(1)∼πi(·|x),a(−1)∼πref (·|x)

[
f2π(x, a

(1), a(−1))
]}
,

where the function fπ is defined below and Nϵ(R) is a finite ϵ-cover of R, that is, for any r ∈ R,
there exists r† ∈ Nϵ(R) satisfying ∥r† − r∥∞ ≤ ϵ.

fπ(x, a
(1), a(−1))

def
= r∗(x, a(1))− r∗(x, a(−1))− rπ(x, a(1)) + rπ(x, a(−1)), (46)

Proof. Define the following function.

qπ,ξi(yi|xi, a
(1)
i , a

(−1)
i )

def
=


σ
(
β log

π(a
(1)
i |xi)

πref (a
(1)
i |xi)

− β log
π(a

(−1)
i |xi)

πref (a
(−1)
i |xi)

+ ω(|a(1)i | − |a(−1)
i |) + ξi

)
, yi = 1

σ
(
β log

π(a
(−1)
i |xi)

πref (a
(−1)
i |xi)

− β log
π(a

(1)
i |xi)

πref (a
(1)
i |xi)

+ ω(|a(−1)
i | − |a(1)i |)− ξi

)
, yi = −1.

=σ
[
rπ(xi, a

w
i )− rπ(xi, a

ℓ
i) + yiξi

]
, (47)
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where the second = uses Eq. (16) and merges the above two cases. The above qπ,ξi(yi|xi, a
(1)
i , a

(−1)
i )

can be seen as a conditional probability of yi ∈ {−1, 1} since qπ,ξi(1|xi, a
(1)
i , a

(−1)
i ) +

qπ,ξi(−1|xi, a(1)i , a
(−1)
i ) = 1.

Then define the following random variables for i = 1, . . . , T .

Wi(π) =
1

2
log

σ
[
rπ(xi, a

w
i )− rπ(xi, a

ℓ
i)
]

σ
[
r∗(xi, awi )− r∗(xi, aℓi) + yiξ∗i

] =
1

2
log

qπ,0(yi|xi, a(1)i , a
(−1)
i )

pr∗,ξ∗i (yi|xi, a
(1)
i , a

(−1)
i )

, (48)

where pr,ξi(yi|xi, a
(1)
i , a

(−1)
i ) is defined by Eq. (41).

For any r ∈ R, there exists r† ∈ Nϵ(R) satisfying ∥r† − r∥∞ ≤ ϵ, and thus we can temporarily
denote ru = urπr† + (1− u)rπ (u ∈ [0, 1]). Then we obtain that∣∣∣ d

du
log σ

[
ru(xi, a

w
i )− ru(xi, a

ℓ
i)
]∣∣∣

=σ
[
ru(xi, a

ℓ
i)− ru(xi, a

w
i )

]∣∣rπr† (xi, a
w
i )− rπr† (xi, a

ℓ
i)− rπ(xi, a

w
i ) + rπ(xi, a

ℓ
i)
∣∣

(a)

≤
∣∣r†(xi, awi )− r†(xi, a

ℓ
i)− rπ(xi, a

w
i ) + rπ(xi, a

ℓ
i)
∣∣

≤
∣∣r†(xi, awi )− rπ(xi, a

w
i )

∣∣+ ∣∣rπ(xi, aℓi)− r†(xi, a
ℓ
i)
∣∣ ≤ 2ϵ, (49)

where (a) uses Eq. (29) and σ(x) ∈ (0, 1) for any x ∈ R. Therefore,

|Wi(πr†)−Wi(π)|
(a)
=

1

2

[
log qπ

r† ,0
(yi|xi, a(1)i , a

(−1)
i )− log qπ,0(yi|xi, a(1)i , a

(−1)
i )

]
(b)
=
1

2

∣∣∣ log σ[rπr† (xi, a
w
i )− rπr† (xi, a

ℓ
i)
]
− log σ

[
rπ(xi, a

w
i )− rπ(xi, a

ℓ
i)
]∣∣∣

(c)
=
1

2

∣∣∣ log σ[r1(xi, awi )− r1(xi, a
ℓ
i)
]
− log σ

[
r0(xi, a

w
i )− r0(xi, a

ℓ
i)
]∣∣∣ (d)

≤ ϵ, (50)

where (a) and (b) use Eq. (48), (c) uses the above notation that ru = urπr† + (1− u)rπ (u ∈ [0, 1]),
and (d) uses Eq. (49). Then based on Algorithm 2 and Assumption 1, given (xi, a

(1)
i , a

(−1)
i ), the label

yi is generated with probability distribution pr∗,ξi(yi|xi, a
(1)
i , a

(−1)
i ) defined by Eq. (41). Therefore,

given any δ ∈ (0, 1) and ϵ > 0, by Lemma 7 with λ′ = 1, the following inequality holds for
t = 1, . . . , T and finitely many π′ ∈ Nϵ(R) simultaneously with probability at least 1− δ.

t∑
i=1

Wi(π
′) ≤ log

(T |Nϵ(R)|
δ

)
+

t∑
i=1

logEµi
[eWi(π

′)].

where µi denotes the distribution of the i-th online data sample (xi, a
(−1)
i , a

(1)
i , yi) generated by

Algorithm 2. We further upper bound the above inequality as follows.
t∑

i=1

Wi(π
′)− log

(T |Nϵ(R)|
δ

)
≤

t∑
i=1

logEµi
[eWi(π

′)]

(48)
=

t∑
i=1

logEµi

{
E
yi∼pr∗,ξ∗

i
(·|xi,a

(1)
i ,a

(−1)
i )

[√√√√ qπ′,0(yi|xi, a(1)i , a
(−1)
i )

pr∗,ξ∗i (yi|xi, a
(1)
i , a

(−1)
i )

∣∣∣∣∣xi, a(1)i , a
(−1)
i

]}
(a)

≤
t∑

i=1

Eµi

[ ∑
y∈{−1,1}

√
qπ′,0(y|xi, a(1)i , a

(−1)
i )pr∗,ξ∗i (y|xi, a

(1)
i , a

(−1)
i )− 1

]

=− 1

2

t∑
i=1

Eµi

[ ∑
y∈{−1,1}

∣∣∣√qπ′,0(y|xi, a(1)i , a
(−1)
i )−

√
pr∗,ξ∗i (y|xi, a

(1)
i , a

(−1)
i )

∣∣∣2]
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(b)

≤ − 1

8

t∑
i=1

Eµi

[ ∑
y∈{−1,1}

∣∣qπ′,0(y|xi, a(1)i , a
(−1)
i )− pr∗,ξ∗i (y|xi, a

(1)
i , a

(−1)
i )

∣∣2]

(c)
= − 1

4

t∑
i=1

Eµi

{
σ[rπ

′
(xi, a

w
i )− rπ

′
(xi, a

ℓ
i)]− σ[r∗(xi, a

w
i )− r∗(xi, a

ℓ
i) + yiξ

∗
i ]
}2

(d)

≤ − 1

4

t∑
i=1

{[
Eµi

[
σ[rπr∗ (xi, a

w
i )− rπr∗ (xi, a

ℓ
i)]− σ[rπ

′
(xi, a

w
i )− rπ

′
(xi, a

ℓ
i)]

]2]− 1

2
|ξ∗i |

}
(e)

≤ 1

8

t∑
i=1

{
|ξ∗i |−

2

(3 + eR)2
Eµi

[∣∣rπr∗ (xi, a
w
i )−rπr∗ (xi, a

ℓ
i)−rπ

′
(xi, a

w
i )+r

π′
(xi, a

ℓ
i)
∣∣2]}, (51)

where (a) uses log v ≤ v − 1 for any v > 0, (b) uses Lemma 12.2 of (Harsha, 2011), (c) uses Eqs.
(41) and (47), (d) uses Eq. (29) and Lemma 5, and (e) uses Assumption 2 and Lemma 1. Combining
Eqs. (50) and (51), we obtain the following inequality which holds for all t = 1, . . . , T and π ∈ Π
simultaneously with probability at least 1− δ.

t∑
i=1

Wi(π)

≤
t∑

i=1

[Wi(π)−Wi(πr†)] +Wi(πr†)

(a)

≤ 1

8

t∑
i=1

{
|ξ∗i | −

2

(3 + eR)2
Eµi

[[
rπr∗ (xi, a

w
i )− rπr∗ (xi, a

ℓ
i)− rπr† (xi, a

w
i ) + rπr† (xi, a

ℓ
i)
]2]}

+ log
(T |Nϵ(R)|

δ

)
+ tϵ

(b)

≤ 1

8

t∑
i=1

{
|ξ∗i | −

2

(3 + eR)2
Eµi

[[
rπr∗ (xi, a

w
i )− rπr∗ (xi, a

ℓ
i)− rπ(xi, a

w
i ) + rπ(xi, a

ℓ
i)
]2]}

+ log
(T |Nϵ(R)|

δ

)
+ 2tϵ, (52)

where (a) uses Eq. (51) (with π′ replaced by πr† ) and Eq. (50), (b) uses the following inequality and
(3 + eR)2 > 6eR + e2R > 6R+ 2R = 8R.[

rπr∗ (xi, a
w
i )− rπr∗ (xi, a

ℓ
i)− rπ(xi, a

w
i ) + rπ(xi, a

ℓ
i)
]2

−
[
rπr∗ (xi, a

w
i )− rπr∗ (xi, a

ℓ
i)− rπr† (xi, a

w
i ) + rπr† (xi, a

ℓ
i)
]2

=
[
rπr† (xi, a

w
i )− rπr† (xi, a

ℓ
i)− rπ(xi, a

w
i ) + rπ(xi, a

ℓ
i)
][

2rπr∗ (xi, a
w
i )− 2rπr∗ (xi, a

ℓ
i)− rπ(xi, a

w
i ) + rπ(xi, a

ℓ
i)− rπr† (xi, a

w
i ) + rπr† (xi, a

ℓ
i)
]

(a)
=
[
r†(xi, a

w
i )− r†(xi, a

ℓ
i)− rπ(xi, a

w
i ) + rπ(xi, a

ℓ
i)
][

2rπr∗ (xi, a
w
i )− 2rπr∗ (xi, a

ℓ
i)− rπ(xi, a

w
i ) + rπ(xi, a

ℓ
i)− rπr† (xi, a

w
i ) + rπr† (xi, a

ℓ
i)
]

(b)

≤(2ϵ)(4R) = 8Rϵ,

where (a) uses Eq. (29), and (b) uses ∥r† − r∥∞ ≤ ϵ and Lemma 3.

Finally, we conclude the proof as follows.

t∑
i=1

log
σ
[
rπ(xi, a

w
i )− rπ(xi, a

ℓ
i) + yiξ

π
i

]
σ
[
r∗(xi, awi )− r∗(xi, aℓi) + yiξ∗i

]
(a)

≤
t∑

i=1

[
log

σ
[
rπ(xi, a

w
i )− rπ(xi, a

ℓ
i)
]

σ
[
r∗(xi, awi )− r∗(xi, aℓi) + yiξ∗i

] + σ(R)|ξπi |
]
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(b)
=

t∑
i=1

[
2Wi(π) + σ(R)|ξπi |

]
(c)

≤2 log
(T |Nϵ(R)|

δ

)
+ 4tϵ+

t∑
i=1

{1

4
|ξ∗i |+ σ(R)|ξπi |

− 1

2(3 + eR)2
Eµi

[[
rπr∗ (xi, a

w
i )− rπr∗ (xi, a

ℓ
i)− rπ(xi, a

w
i ) + rπ(xi, a

ℓ
i)
]2]}

(d)
=2 log

(T |Nϵ(R)|
δ

)
+ 4tϵ+

t∑
i=1

{1

4
|ξ∗i |+ σ(R)|ξπi |

− 1

2(3 + eR)2
Eµi

[[
r∗(xi, a

(1)
i )− r∗(xi, a

(−1)
i )− rπ(xi, a

(1)
i ) + rπ(xi, a

(−1)
i )

]2]}
(e)
=2 log

(T |Nϵ(R)|
δ

)
+ 4tϵ+

t∑
i=1

{1

4
|ξ∗i |+ σ(R)|ξπi |

− 1

2(3 + eR)2
Ex∼ρ,a(1)∼πi(·|x),a(−1)∼πref (·|x)

[
f2π(x, a

(1), a(−1))
]}
,

where (a) uses Eq. (33) from Lemma 4, (b) uses Wi(π) defined by Eq. (48), (c) uses Eq. (52), (d)
uses Eq. (29) and {awi , aℓi} = {a(1)i , a

(−1)
i } (based on Assumption 1), and (e) uses Eq. (46).

Lemma 10 (Azuma-Hoeffding Inequality (Xie et al., 2024)). The random variables {Xt}Tt=1 satisfy
|Xt| ≤ C almost surely. Then with probability at least 1− δ, we have∣∣∣ T∑

t=1

[Xt − E(Xt|X1, . . . , Xt−1)]
∣∣∣ ≤ C

√
8T log(2/δ). (53)

Lemma 11. Fixing any ϵ > 0, δ ∈ (0, 1), the online dataset {xi, a(1)i , a
(−1)
i , yi}Ti=1 generated from

Algorithm 2 satisfies the following inequality for all t = 1, . . . , T and π ∈ ΠR
def
= {πr : r ∈ R}

simultaneously with probability at least 1− δ.∣∣∣∣∣[
t∑

i=1

log
π(a

(−1)
i |xi)

πr∗(a
(−1)
i |xi)

]
−tEx∼ρ,a∼πref (·|x)

[
log

π(a|x)
πr∗(a|x)

]∣∣∣∣∣≤ 4R

β

√
2t log

[2TNϵ(R)

δ

]
+
4tϵ

β
.

Proof. For any r ∈ R, denote Xi(r) = log
πr(a

(−1)
i |xi)

πr∗ (a
(−1)
i |xi)

which satisfies |Xi(r)| ≤ 2R
β based on

Lemma 6 and Assumption 2.

Then by applying Lemma 10 to Xi(r) with union bound, we obtain the following inequality which
holds for all t = 0, 1, . . . , T − 1 and r′ ∈ Nϵ(R) simultaneously with probability at least 1− δ.∣∣∣∣∣

t∑
i=1

[Xi(r
′)− EµiXi(r

′)]

∣∣∣∣∣ ≤ 2R

β

√
8t log

[2TNϵ(R)

δ

]
. (54)

where µi denotes the distribution of the i-th online data sample (xi, a
(−1)
i , a

(1)
i , yi) generated by

Algorithm 2.

For any r ∈ R, there exists r† ∈ Nϵ(R) satisfying ∥r† − r∥∞ ≤ ϵ, so Lemma 6 implies that

|Xi(r
†)−Xi(r)| =

∣∣∣∣∣ log πr†(a(−1)
i |xi)

πr(a
(−1)
i |xi)

∣∣∣∣∣ ≤ 2ϵ

β
.

Therefore, if the above high probability event E := {Eq. (54) holds for all r′ ∈ Nϵ(R)} occurs,
then the following inequality holds for any r ∈ R.∣∣∣∣∣

t∑
i=1

[Xi(r)− Eµi
Xi(r)]

∣∣∣∣∣ ≤ 2R

β

√
8t log

[2TNϵ(R)

δ

]
+

4tϵ

β
. (55)
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For any π ∈ ΠR
def
= {πr : r ∈ R}, there exists r ∈ R satisfying π = πr. Then we have

Xi(r) = log
π(a

(−1)
i |xi)

πr∗(a
(−1)
i |xi)

.

and thus

Eµi
Xi(r) = E

xi∼ρ,a
(−1)
i ∼πref (·|x)

[
log

π(a
(−1)
i |xi)

πr∗(a
(−1)
i |xi)

]
= Ex∼ρ,a∼πref (·|x)

[
log

π(a|x)
πr∗(a|x)

]
.

Substituting the above two equalities into Eq. (55) concludes the proof.

Lemma 12. Suppose that the offline dataset {xi, awi , aℓi , yi}Ni=1 is generated from Assumption 1, and
select the baseline policy πbase to be the distribution of awi given xi. Then fixing any ϵ > 0, δ ∈ (0, 1),

the following inequality holds for all π ∈ ΠR
def
= {πr : r ∈ R} simultaneously with probability at

least 1− δ.∣∣∣∣∣[
N∑
i=1

log
π(awi |xi)
πr∗(awi |xi)

]
−NEx∼ρ,a∼πbase(·|x)

[
log

π(a|x)
πr∗(a|x)

]∣∣∣∣∣≤ 4R

β

√
2N log

[2Nϵ(R)

δ

]
+
4Nϵ

β
.

Proof. The proof logic is the same as that of Lemma 11. The major difference is that the inequality
here only has to hold for any π ∈ ΠR while Lemma 11 requires to hold also for t = 1, . . . , T . As a
result, when applying Lemma 10 with union bound, 2TNϵ(R)

δ in the proof of Lemma 11 is replaced
with 2Nϵ(R)

δ .

Lemma 13. Define the following quantity.

It
def
=

[
Ex∼ρ,a(1)∼πt+1(·|x),a(−1)∼πref (·|x)fπt+1

(x, a(1), a(−1))
]2

R2 +
∑t

i=1 Ex∼ρ,a(1)∼πi(·|x),a(−1)∼πref (·|x)[f
2
πt+1

(x, a(1), a(−1))]
, (56)

where the function fπ is defined by Eq. (46). Then we have

T∑
t=1

It ≤ 12Gon log(T + 2), (57)

where Gon is defined by Eq. (26).

Proof. Applying Assumption 2 and Lemma 3 to the function fπ defined by Eq. (46), we have

fπ(x, a
(1), a(−1))=r∗(x, a(1))−r∗(x, a(−1))−rπ(x, a(1))+rπ(x, a(−1))∈ [−2R, 2R]. (58)

Denote ν∗ ∈ argminν∈ΠR
supx∈X ,a∈A,π∈ΠR

π(a|x)
ν(a|x) as the policy used in the coverability coefficient

(26). Then we have

π(a(1)|x) ≤ Gonν
∗(a(1)|x), ∀x ∈ X , a(1) ∈ A, π ∈ ΠR. (59)

Then for each (x, a(1)) ∈ X ×A, define the following quantity (min ∅ = +∞ by default)

τ(x, a(1)) = min

{
t ≥ 1

∣∣∣∣∣
t∑

i=1

πi+1(a
(1)|x) ≥ Gonν

∗(a(1)|x)

}
. (60)

Hence,

T∑
t=1

πt+1(a
(1)|x)I{t ≤ τ(x, a(1))− 1} < Gonν

∗(a(1)|x), (61)

t∑
i=1

πi(a
(1)|x) ≥ Gonν

∗(a(1)|x), ∀t ≥ τ(x, a(1)) + 1. (62)
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Then we conclude the proof as follows.

T∑
t=1

It

=

T∑
t=1

[
Ex∼ρ,a(1)∼πt+1(·|x),a(−1)∼πref (·|x)fπt+1(x, a

(1), a(−1))I{t ≤ τ(x, a(1))}
]2

R2 +
∑t

i=1 Ex∼ρ,a(1)∼πi(·|x),a(−1)∼πref (·|x)[f
2
πt+1

(x, a(1), a(−1))]

+

T∑
t=1

[
Ex∼ρ,a(1)∼πt+1(·|x),a(−1)∼πref (·|x)fπt+1

(x, a(1), a(−1))I{t ≥ τ(x, a(1)) + 1}
]2

R2 +
∑t

i=1 Ex∼ρ,a(1)∼πi(·|x),a(−1)∼πref (·|x)[f
2
πt+1

(x, a(1), a(−1))]

(a)

≤ 1

R2

T∑
t=1

(2REx∼ρ,a(1)∼πt+1(·|x)I{t ≤ τ(x, a(1))})2

+

T∑
t=1

[
Ex∼ρ,a(1)∼πt(·|x),a(−1)∼πref (·|x)fπt+1

(x, a(1), a(−1)) · πt+1(a
(1)|x)

πt(a(1)|x) I{t ≥ τ(x, a(1)) + 1}
]2

tEx∼ρ,a(1)∼πt(·|x),a(−1)∼πref (·|x)[f
2
πt+1

(x, a(1), a(−1))]

(b)

≤4

T∑
t=1

Ex∼ρ,a(1)∼πt+1(·|x)I{t ≤ τ(x, a(1))}

+

T∑
t=1

1

t
Ex∼ρ,a(1)∼πt(·|x)

[πt+1(a
(1)|x)

πt(a(1)|x)

]2
I{t ≥ τ(x, a(1)) + 1}

=4
∑
x,a(1)

ρ(x)

[
T∑

t=1

[πt+1(a
(1)|x)I{t ≤ τ(x, a(1))− 1}] +

T∑
t=1

[πt+1(a
(1)|x)I{t = τ(x, a(1))}]

]

+ 2
∑
x,a(1)

ρ(x)

T∑
t=1

πt+1(a
(1)|x)

tπt(a(1)|x) + tπt(a(1)|x)
[πt+1(a

(1)|x)I{t ≥ τ(x, a(1)) + 1}]

(c)

≤4
∑
x,a(1)

ρ(x)[Gonν
∗(a(1)|x) +Gonν

∗(a(1)|x)]

+ 2
∑
x,a(1)

ρ(x)

T∑
t=1

πt+1(a
(1)|x)

tπt(a(1)|x) +Gonν∗(a(1)|x)
[πt+1(a

(1)|x)I{t ≥ τ(x, a(1)) + 1}]

(d)

≤8Gon

∑
x,a(1)

ρ(x)ν∗(a(1)|x)

+4
∑
x,a(1)

ρ(x)

T∑
t=1

log
[ (t+ 1)πt+1(a

(1)|x) +Gonν
∗(a(1)|x)

tπt(a(1)|x) +Gonν∗(a(1)|x)

]
[Gonν

∗(a(1)|x)]

=8Gon + 4Gon

∑
x,a(1)

ρ(x)ν∗(a(1)|x) log
[ (T + 1)πT+1(a

(1)|x) +Gonν
∗(a(1)|x)

π1(a(1)|x) +Gonν∗(a(1)|x)

]
(e)

≤8Gon + 4Gon

∑
x,a(1)

ρ(x)ν∗(a(1)|x) log
[ (T + 1)Gonν

∗(a(1)|x) +Gonν
∗(a(1)|x)

Gonν∗(a(1)|x)

]
≤12Gon log(T + 2),

where (a) denotes πt =
1
t

∑t
i=1 πi and uses Eq. (58) and (EX)2 ≤ E(X2) for any random variable

X ∈ R, (b) uses Cauchy-Schwartz inequality, (c) uses Eqs. (59), (61) and Eq. (62), (d) uses Eq. (59)
and the inequality that u ≤ 2 log(1 + u) for u = πt+1(a

(1)|x)
tπt(a(1)|x)+Gonν∗(a(1)|x) ∈ [0, 1] (u ∈ [0, 1] due to

Eq. (59)), (e) uses Eq. (59).
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B PROOF OF PROPOSITION 1

(π, r, ξ) is the solution to the offline RLHF-COV objective (12) means the following two conditions
hold

π ∈argmaxπ′∈ΠLN,λ(r, ξ) + ηVβ,ω(π
′, r),

(r, ξ) ∈argminr′∈R,ξ′∈RN max
π′∈Π

LN,λ(r
′, ξ′) + ηVβ,ω(π

′, r′).

Based on the notation that πr
def
= argmaxπ′∈ΠVβ,ω(π

′, r), the above two conditions are equivalent
to

π = πr, (r, ξ) ∈ argminr′∈R,ξ′∈RNLN,λ(r
′, ξ′) + ηVβ,ω(πr′ , r

′)

Furthermore, based on the notation that ξr
def
= argminξ∈RNLN,λ(r, ξ), the above two conditions are

equivalent to

π = πr, ξ = ξr, r = argminr′∈RLN,λ(r
′, ξr′) + ηVβ,ω(πr′ , r

′). (63)

This prove the first part of the theorem.

Next, we will obtain the analytical solutions of πr and ξr,i. We rewrite the function (11) as follows.

Vβ,ω(π, r)

=Ex∼ρ,a∼π(·|x),a′∼πbase(·|x)
[
r(x, a) + ω|a| − r(x, a′)− ω|a′|

]
− βEx∼ρKL

[
π(·|x)

∥∥πref(·|x)]
=Ex∼ρ,a∼π(·|x)

[
r(x, a) + ω|a| − β log

π(a|x)
πref(a|x)

]
− Ex∼ρ,a′∼πbase(·|x)

[
r(x, a′) + ω|a′|

]
=− βEx∼ρ,a∼π(·|x)

[
log

π(a|x)/Zr(x)

πref(a|x) exp
[
[r(x, a) + ω|a|]/β

]
/Zr(x)

]
− Ex∼ρ,a′∼πbase(·|x)

[
r(x, a′) + ω|a′|

]
=C − βEx∼ρKL

[
π(·|x)

∥∥∥πref(·|x) exp [[r(x, ·) + ω| · |]/β
]
/Zr(x)

]
,

where Zr(x)
def
=

∑
a′∈A πref(a

′|x) exp
[ r(x,a′)−ω|a′|

β

]
and the constant C = βEx∼ρ logZr(x) −

Ex∼ρ,a′∼πbase(·|x)
[
r(x, a′) + ω|a′|

]
is independent of π. Therefore, πr

def
= argmaxπ′∈ΠVβ,ω(π

′, r)
should minimize the above KL term, which gives the analytical solution (14).

Note that the log-likelihood function (8) can be rewritten as follows.

LN,λ(r, ξ)
def
=

1

N

N∑
i=1

fi(ξi),

where fi(v) := λ|v| − log σ[r(xi, a
w
i ) − r(xi, a

ℓ
i) + yiv]. Hence, ξr ∈ argminξLN,λ(r, ξ) is

equivalent to the following condition:

ξr,i ∈ argmin
v∈R

fi(v); i = 1, 2, . . . , N.

As fi is a convex function for λ > 0, the above optimality condition is equivalent to the following
stationary condition.

0 ∈ ∂fi(ξr,i) = λ∂|ξr,i|+ yi
{
σ[r(xi, a

w
i )− r(xi, a

ℓ
i) + yiξr,i]− 1

}
, (64)

where ∂ denotes partial differential. Noticing that yi ∈ {−1, 1}, it can be easily verified that the
above equation has unique solution ξr,i defined by Eq. (15).

C PROOF OF PROPOSITION 2

Note that

ξπr
(a)
= ξrπr

(b)
= ξr, (65)
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where (a) uses Eq. (17) and (b) substitutes Eq. (29) into Eq. (15). Therefore, by using Lemma 3, Eq.
(65), and substituting Eq. (29) into Eqs. (8) and (11), we obtain that

LN,λ(r
πr , ξπr ) + ηVβ,ω(πrπ , r

πr ) = LN,λ(r, ξr) + ηVβ,ω(π, r), (66)

Since ΠR
def
= {πr : r ∈ R}, the following two statements are equivalent.

(P1): π is optimal for the offline DPO-COV objective (18), i.e.,

π ∈ argminπ′∈ΠR
[LN,λ(r

π′
, ξπ

′
) + ηVβ,ω(πrπ′ , rπ

′
)].

(P2): There exists r ∈ argminr′∈R[LN,λ(r
πr′ , ξπr′ ) + ηVβ,ω(πrπr′ , rπr′ )] such that π = πr.

This along with Eq. (66) implies that (P2) is equivalent to the following statement.

(P3): There exists r ∈ argminr′∈R[LN,λ(r
′, ξr′) + ηVβ,ω(πr′ , r

′)] such that π = πr.

By Proposition 1, (P3) is equivalent to the following statement.

(P4): There exist r ∈ R and ξ = ξr ∈ RN such that π = πr, and (π, r, ξ) is the optimal solution to
the offline RLHF-COV objective (12).

So far, we have proved the equivalence among (P1)-(P4), so the first part of this proposition is correct
which states that (P1) and (P4) are equivalent.

It remains to prove the second part of this proposition, i.e., to figure out ξ and r given π under
the assumption that (P1)-(P4) hold. Note that based on the analytical solution (14) of πr, π = πr
required by (P2)-(P4) holds if and only if for any x ∈ X there exists Uπ(x) ∈ R such that r(x, ·) =
rπ(x, ·) + Uπ(x). In this case, we have

ξ
(a)
= ξr

(b)
= ξrπ

(c)
= ξπ,

where (a) uses (P4), (b) substitutes r(x, ·) = rπ(x, ·) + Uπ(x) into Eq. (16), (c) uses ξπ def
= ξrπ .

D PROOF OF PROPOSITION 3

The proof logic is exactly the same as that of Proposition 2, with η replaced by −η.

E PROOF OF THEOREM 1

Obtain π̃ ∈ argminπ∈ΠR

[
LN,λ(r

π, ξπ) + ηVβ,ω(πrπ , r
π)
]

by minimizing the offline DPO-COV
objective (18). Then based on Proposition (2), there exists r̃ ∈ R such that (π̃, r̃, ξπ̃) (ξπ̃ is defined
by Eq. (17)) is the optimal solution to the offline RLHF-COV objective (12), that is,

(r̃, ξπ̃) ∈ argminr′∈R,ξ′∈RN max
π′∈Π

[
LN,λ(r

′, ξ′) + ηVβ,ω(π
′, r′)

]
, (67)

π̃ = πr̃ ∈ argmaxπ′∈ΠVβ,ω(π
′, r̃). (68)

Then denote π̃2 ∈ argmaxπ′∈Πminr′∈R,ξ′∈RN

[
LN,λ(r

′, ξ′) + ηVβ,ω(π
′, r′)

]
and we have

LN,λ(r̃, ξ
π̃) + ηVβ,ω(π̃2, r̃)

≥ min
r′∈R,ξ′∈RN

[
LN,λ(r

′, ξ′) + ηVβ,ω(π̃2, r
′)
]

(a)
= max

π′∈Π
min

r′∈R,ξ′∈RN

[
LN,λ(r

′, ξ′) + ηVβ,ω(π
′, r′)

]
(b)
= min

r′∈R,ξ′∈RN
max
π′∈Π

[
LN,λ(r

′, ξ′) + ηVβ,ω(π
′, r′)

]
(69)

(c)
= max

π′∈Π

[
LN,λ(r̃, ξ

π̃) + ηVβ,ω(π
′, r̃)

]
, (70)

where (a) uses π̃2 ∈ argmaxπ′∈Πminr′∈R,ξ′∈RN

[
LN,λ(r

′, ξ′) + ηVβ,ω(π
′, r′)

]
, (b) applies the

minimax theorem (Theorem 1 of (Fan, 1953)) to the function LN,λ(r
′, ξ′)+ηVβ,ω(π

′, r′) (defined by
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Eqs. (8) and (11)) which is a concave function of π′ ∈ Π and a convex function of (r′, ξ′) ∈ R×Rd,
and (c) uses Eq. (67). The above inequality implies that π̃2 ∈ maxπ′∈Π Vβ,ω(π

′, r̃) and thus

π̃2 = πr̃
(68)
= π̃. This means

π̃ = π̃2 ∈ argmaxπ′∈Π min
r′∈R,ξ′∈RN

[
LN,λ(r

′, ξ′) + ηVβ,ω(π
′, r′)

]
. (71)

Note that for any π ∈ Π, Eqs. (11), (20) imply that

Jβ,ω(π)− Jβ,ω(π̃) = Vβ,ω(π)− Vβ,ω(π̃). (72)

Hence, πr∗ ∈ argmaxπ∈ΠVβ,ω(π) also satisfies

πr∗ ∈ argmaxπ∈ΠJβ,ω(π). (73)

Finally, we prove the generalization error rate (22) as follows.

max
π∈Π

Jβ,ω(π)− Jβ,ω(π̃)

(a)
=Vβ,ω(πr∗ , r

∗)− η−1 max
π∈Π

min
r∈R,ξ∈RN

[
LN,λ(r, ξ) + ηVβ,ω(π, r)

]
+ η−1 min

r∈R,ξ∈RN

[
LN,λ(r, ξ) + ηVβ,ω(π̃, r)

]
− Vβ,ω(π̃, r

∗)

(b)

≤Vβ,ω(πr∗ , r∗)− η−1 min
r∈R

[
LN,λ(r, ξr) + ηVβ,ω(πr∗ , r)

]
+ η−1

[
LN,λ(r

∗, ξ∗) + ηVβ,ω(π̃, r
∗)
]
− Vβ,ω(π̃, r

∗)

(c)
= max

r∈R

{
Ex∼ρ,a∼πr∗ (·|x),a′∼πbase(·|x)

[
r∗(x, a)− r∗(x, a′)− r(x, a) + r(x, a′)

]
+ η−1[LN,λ(r

∗, ξ∗)− LN,λ(r, ξr)]
}

(d)

≤ max
r∈R

{
GD(π)Er +

2

Nη

[
∥ξ∗∥1 + log

( |N1/N (R)|
δ

)]
− E2

r

2η(3 + eR)2
+

7

Nη

}
(e)

≤ 2

Nη

[
∥ξ∗∥1 + 5 log

( |N1/N (R)|
δ

)]
+
ηG2

D
2

(3 + eR)2

(f)

≤ (G2
D + 1)(3 + eR)√

N

√
∥ξ∗∥1 + 5 log[|N1/N (R)|/δ], (74)

where (a) uses Eqs. (71), (72) and (73), (b) uses ξr ∈ argminξ∈RNLN,λ(r, ξ) as well as r∗ ∈ R
in Assumption 2, (c) uses Eq. (11), (d) uses Assumption 3 and Lemma 8 with ϵ = 1/N and

Er :=

√
ED

∣∣r∗(x1, aw1 )− r∗(x1, aℓ1)− r(x1, aw1 ) + r(x1, aℓ1)
∣∣2, (e) uses 1 ≤ log[|N1/N (R)|/δ]

as well as bE − aE2 ≤ b2

4a for any a > 0 and b, E ∈ R, (f) uses η =
2
√

∥ξ∗∥1+5 log[|N1/N (R)|/δ]
√
N(3+eR)

.

F PROOF OF THEOREM 2

The update rule (25) implies that

0 ≤tϕt(πr∗)− tϕt(πt+1)

(a)
=

t∑
i=1

{
λ(|ξr∗,i| − |ξπt+1

i |) + βη log
πr∗(a

(−1)
i |xi)

πt+1(a
(−1)
i |xi)

+ log
σ[rπt+1(xi, a

w
i )− rπt+1(xi, a

ℓ
i) + yiξ

πt+1

i ]

σ[r∗(xi, awi )− r∗(xi, aℓi) + yiξr∗,i]

}
(b)

≤
t∑

i=1

{
λ(|ξ∗i | − |ξπt+1

i |) + βη log
πr∗(a

(−1)
i |xi)

πt+1(a
(−1)
i |xi)
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+ log
σ[rπt+1(xi, a

w
i )− rπt+1(xi, a

ℓ
i) + yiξ

πt+1

i ]

σ[r∗(xi, awi )− r∗(xi, aℓi) + yiξ∗i ]

}
, (75)

where (a) uses Eq. (16), ξπr∗
i = ξr∗,i (by Eq. (65)), and Lemma 2 (with r replaced by r∗) and

(b) uses the fact that ξr∗,i ∈ argminξi∈R
{
λ|ξi| − log σ[r∗(xi, a

w
i ) − r∗(xi, a

ℓ
i) + yiξi]

}
, the i-th

component of Lt,λ(r
∗, ξ) defined in Eq. (8).

Based on Lemmas 9 and 11 (both with δ replaced by δ/2 and π replaced by πt+1), the following two
inequalities hold for t = 1, . . . , T simultaneously with probability at least 1− δ.

t∑
i=1

log
σ[rπt+1(xi, a

w
i )− rπt+1(xi, a

ℓ
i) + yiξ

πt+1

i ]

σ[r∗(xi, awi )− r∗(xi, aℓi) + yiξ∗i ]

≤2 log
(2T |Nϵ(R)|

δ

)
+ 4tϵ+

t∑
i=1

{1

4
|ξ∗i |+ σ(R)|ξπt+1

i |

− 1

2(3 + eR)2
Ex∼ρ,a(1)∼πi(·|x),a(−1)∼πref (·|x)

[
f2πt+1

(x, a(1), a(−1))
]}
, (76)

t∑
i=1

log
πr∗(a

(−1)
i |xi)

πt+1(a
(−1)
i |xi)

≤ 4R

β

√
2t log

[2TNϵ(R)

δ

]
+
4tϵ

β
+tEx∼ρ,a∼πref (·|x)

[
log

πr∗(a|x)
πt+1(a|x)

]
. (77)

Substituting Eqs. (76) and (77) into Eq. (75), we obtain that

0 ≤4ηR

√
2t log

[4TNϵ(R)

δ

]
+ 4ηϵt+ βηtEx∼ρ,a∼πref (·|x)

[
log

πr∗(a|x)
πt+1(a|x)

]
+ λ

t∑
i=1

(|ξ∗i | − |ξπt+1

i |) + 2 log
(2T |Nϵ(R)|

δ

)
+ 4tϵ+

t∑
i=1

{1

4
|ξ∗i |+ σ(R)|ξπt+1

i |

− 1

2(3 + eR)2
Ex∼ρ,a(1)∼πi(·|x),a(−1)∼πref (·|x)

[
f2πt+1

(x, a(1), a(−1))
]}

(a)

≤4ηR

√
2t log

[4TNϵ(R)

δ

]
+ 2 log

(2T |Nϵ(R)|
δ

)
+ 4ηϵt+ 4ϵt

− βηtEx∼ρ,a∼πref (·|x)

[
log

πt+1(a|x)
πr∗(a|x)

]
+

t∑
i=1

{5

4
|ξ∗i | −

1

2(3 + eR)2
Ex∼ρ,a(1)∼πi(·|x),a(−1)∼πref (·|x)

[
f2πt+1

(x, a(1), a(−1))
]}
, (78)

where (a) uses λ ∈ [σ(R), 1]. Then, we have

Jβ,ω(πr∗)− Jβ,ω(πt+1)

(a)
=Ex∼ρ,a∼πr∗ (·|x)

[
r∗(x, a)− ω|a| − β log

πr∗(a|x)
πref(a|x)

]
− Ex∼ρ,a∼πt+1(·|x)

[
r∗(x, a)− ω|a| − β log

πt+1(a|x)
πref(a|x)

]
(b)
=Ex∼ρ,a∼πref (·|x)

[
r∗(x, a)− ω|a| − β log

πr∗(a|x)
πref(a|x)

]
− Ex∼ρ,a∼πt+1(·|x)

[
r∗(x, a)− ω|a| − β log

πt+1(a|x)
πref(a|x)

]
=βEx∼ρ,a∼πref (·|x)

[
log

πt+1(a|x)
πr∗(a|x)

]
+ Ex∼ρ,a∼πt+1(·|x)

[
ω|a|+ β log

πt+1(a|x)
πref(a|x)

− r∗(x, a)
]

− Ex∼ρ,a∼πref (·|x)

[
ω|a|+ β log

πt+1(a|x)
πref(a|x)

− r∗(x, a)
]
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(c)
=βEx∼ρ,a∼πref (·|x)

[
log

πt+1(a|x)
πr∗(a|x)

]
+ Ex∼ρ,a∼πt+1(·|x)

[
rπt+1(x, a)− r∗(x, a)

]
− Ex∼ρ,a∼πref (·|x)

[
rπt+1(x, a)− r∗(x, a)

]
(d)
=βEx∼ρ,a∼πref (·|x)

[
log

πt+1(a|x)
πr∗(a|x)

]
− Ex∼ρ,a(1)∼πt+1(·|x),a(−1)∼πref (·|x)[fπt+1(x, a

(1), a(−1))]

(e)

≤βEx∼ρ,a∼πref (·|x)

[
log

πt+1(a|x)
πr∗(a|x)

]
+
ηt

2
(3 + eR)2It

+
1

2ηt(3 + eR)2

{
R2 +

t∑
i=1

Ex∼ρ,a(1)∼πi(·|x),a(−1)∼πref (·|x)[f
2
πt+1

(x, a(1), a(−1))]
}

(f)

≤ ηt

2
(3 + eR)2It +

1

2ηt
+ 4R

√
2

t
log

[4TNϵ(R)

δ

]
+

2

ηt
log

(2T |Nϵ(R)|
δ

)
+ 4ϵ+

4ϵ

η
+

5

4ηt

t∑
i=1

|ξ∗i |,

where (a) uses Eq. (20), (b) uses Eq. (14) which implies that r∗(x, a) − ω|a| − β log πr∗ (a|x)
πref (a|x) =

β logZr∗(x) does not rely on a, (c) uses Eqs. (16), (d) uses Eq. (46), (e) applies Cauchy-Schwartz
inequality to Eq. (56), (f) uses Eq. (78) and 3 + eR > R > 0. Finally, we conclude the proof by
averaging the above inequality over t ∈ {1, 2, . . . , T} as follows.

E
[
Jβ,ω(πr∗)− Jβ,ω(πT̂ )

]
=

1

T

T∑
t=1

[
Jβ,ω(πr∗)− Jβ,ω(πt+1)

]
(a)

≤6ηGon(3 + eR)2 log(T + 2) +
3 log T

2ηT
+ 8R

√
2

T
log

[4TNϵ(R)

δ

]
+

6 log T

Tη
log

(2T |Nϵ(R)|
δ

)
+ 4ϵ+

4ϵ

η
+

15 log T

4Tη

T∑
i=1

|ξ∗i |

(b)

≤6(3 + eR) log(T + 2)

√
Gon

T

[
log

(4T |N1/T (R)|
δ

)
+ ∥ξ∗∥1

]
+

3(3 + eR)(log T )
√
Gon

2
√
T log[2TN1/T (R)/δ]

+ 8R

√
2

T
log

[4TN1/T (R)

δ

]
+ 6(3 + eR)(log T )

√
Gon

T
log

(4T |N1/T (R)|
δ

)
+

4

T
+ 4(3 + eR)

√
Gon

T log[2TN1/T (R)/δ]
+

15(3 + eR)(log T )
√
Gon

4
√
T log 42TN1/T (R)/δ] + T∥ξ∗∥1

∥ξ∗∥1

(c)

≤(6 + 1.5 + 8
√
2 + 6 + 4 + 4)(3 + eR)(log T )

√
Gon

T

[
log

(4T |N1/T (R)|
δ

)
+ ∥ξ∗∥1

]
+

15(3 + eR)(log T )
√
Gon

4
√
T log[4TN1/T (R)/δ] + T∥ξ∗∥1

{
log[4TN1/T (R)/δ] + ∥ξ∗∥1

}
≤37(3 + eR)(log T )

√
Gon

T

[
log

(4T |N1/T (R)|
δ

)
+ ∥ξ∗∥1

]
,

where (a) uses
∑T

t=1
1
t ≤ 1 + log T ≤ 3 log T ,

∑T
t=1

1√
t
≤ 2

√
T and Eq. (57), (b) uses η =

√
log[4TN1/T (R)/δ]+∥ξ∗∥1

(3+eR)
√
TGon

, ϵ = 1
T , and (c) uses Gon ≥ 1 (by Eq. (26)), R < 3 + eR, log(T + 2) ≤

2 log T and log
( 4T |N1/T (R)|

δ

)
≥ log T ≥ 1.
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