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ABSTRACT

Out-of-distribution (OOD) detection is an important aspect of safely deploying
machine learning models in real-world applications. Previous approaches either
design better scoring functions or utilize the knowledge of outliers to equip the
well-trained models with the ability of OOD detection. However, few of them
explore to excavate the intrinsic OOD detection capability of a given model. In
this work, we discover the existence of an intermediate stage of a model trained
on in-distribution data having higher OOD detection performance than that of its
final stage across different settings and further identify the critical attribution to be
learning with atypical samples. Based on such empirical insights, we propose a new
method, Unleashing Mask (UM), that restores the OOD discriminative capabilities
of the model. To be specific, we utilize the mask to figure out the memorized
atypical samples and fine-tune the model to forget them. Extensive experiments
have been conducted to characterize and verify the effectiveness of our method.

1 INTRODUCTION

Out-of-distribution (OOD) detection has drawn increasing attention when deploying machine learning
models into the open-world scenarios (Nguyen et al., 2015; Lee et al., 2018a). Since the test samples
can naturally arise from a label-different distribution, identifying OOD inputs is important, especially
for those safety-critical applications like autonomous driving and medical intelligence. Previous
studies focus on designing a series of scoring functions (Hendrycks & Gimpel, 2017b; Liang et al.,
2018; Lee et al., 2018a; Liu et al., 2020; Sun et al., 2021; 2022) for OOD uncertainty estimation or
finetuning with auxiliary outlier data to better distinguish the OOD inputs (Hendrycks et al., 2019c;
Tack et al., 2020; Mohseni et al., 2020; Sehwag et al., 2021; Wei et al., 2022; Ming et al., 2022).

Despite the promising results achieved by previous methods (Hendrycks & Gimpel, 2017a; Hendrycks
et al., 2019c; Liu et al., 2020; Ming et al., 2022), little attention is paid to considering whether the
well-trained given model is the most appropriate for OOD detection. In general, models deployed for
various applications have different targets (e.g., multi-class classification) (Goodfellow et al., 2016)
instead of OOD detection (Nguyen et al., 2015; Lee et al., 2018a). However, most representative
score functions, e.g., MSP (Hendrycks et al., 2019c), ODIN(Liang et al., 2018), and Energy (Liu
et al., 2020), uniformly leverage the given models for OOD detection. Considering the target-oriented
discrepancy, it arises a critical question: does the well-trained given model have the optimal OOD
detection capability? If not, how can we find a more appropriate model for OOD detection?

In this work, we start by revealing an important observation (as illustrated in Figure 1), i.e., there
exists a historical training stage where the model has a higher OOD detection performance than
the final well-trained one. This is generally true across different OOD/ID datasets (Netzer et al.,
2011; Van Horn et al., 2018; Cimpoi et al., 2014), learning rate schedules (Loshchilov & Hutter,
2017), and model structures (Huang et al., 2017; Zagoruyko & Komodakis, 2016). The empirical
results of Figure 1 reflect the inconsistency between gaining better OOD detection capability (Nguyen
et al., 2015) and pursuing better performance on ID data. We delve into the differences between
the intermediate model and the final model by visualizing the misclassified examples. As shown in
Figure 2, one possible attribution for covering the detection capability should be memorizing the
atypical samples (at the semantic level) that are hard to learn for the model. Seeking zero error on
those samples makes the model more confident on OOD data (see Figures 1(b) and 1(c)).
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(b) At Epoch 60
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(c) At Epoch 100

Figure 1: (a) the curves of FPR95 (false positive rate of OOD examples when the true positive rate
of in-distribution examples is at 95%) based on the Energy score (Liu et al., 2020) across three
different OOD datasets during the training on the CIFAR-10 dataset. (b) comparison between ID
and OOD distribution at Epoch 60. (c) comparison between ID and OOD distribution at Epoch 100.
All the experiments testing for OOD detection performance have been conducted multiple times. By
backtracking the training phase, we can observe the existence of the model stage with better OOD
detection capability using the Energy score to distinguish the OOD inputs. When zooming in the ID
and OOD distributions at Epoch 60 and Epoch 100 respectively, it can be seen that, along with the
training at the later stage, the overlap between them grows. Figure 2 contains further exploration.

The above analysis inspires us to propose a new strategy, namely, Unleashing Mask (UM), to excavate
the once-covered detection capability of a well-trained given model by alleviating the memorization
of those atypical samples (as illustrated in Figure 3) of ID data. In general, we aim to backtrack its
previous stage with a better OOD detection capability. To achieve this target, there are two essential
issues: (1) the model that is well-trained on ID data has already memorized some atypical samples;
(2) how to forget those memorized atypical samples considering the given model? Accordingly, our
proposed UM contains two parts utilizing different insights to address the above problems. First, as
atypical samples are more sensitive to the change of model parameters, we initialize a mask with
the specific cutting rate to mine these samples with constructed discrepancy. Then, with the loss
reference estimated by the mask, we conduct the constrained gradient ascent (i.e., Eq. 3) for model
forgetting. It will encourage the model to finally stabilize around the optimal stage. To avoid the
severe sacrifice of the original task performance on ID data, we further propose UM Adopts Pruning
(UMAP) which performs the tuning on the introduced mask with the newly designed objective.

For our proposed methods, we conduct extensive experiments to characterize and understand the
working mechanism (in Section 4 and Appendix F). The comprehensive results accordingly demon-
strate their effectiveness. We have verified the effectiveness of UM with a series of OOD detection
benchmarks considering the two different ID datasets, i.e., CIFAR-10 and CIFAR-100. Under the
various evaluation metrics, our UM, as well as UMAP, can indeed excavate the better OOD detection
capability of given models and the averaged FPR95 can be reduced by a significant margin. Finally, a
range of ablation studies and further discussions related to our proposed strategy are provided. We
summarize our main contributions as follows,

• Conceptually, we explore the OOD detection performance via a new perspective, i.e., back-
tracking the model training phase without regularizing by any auxiliary outliers, different
from most previous works that start with the well-trained model on ID data.

• Empirically, we reveal the potential detection capability of the well-trained model. We
observe the general existence of an intermediate stage where the model has more appropriate
discriminative features that can be utilized for OOD detection.

• Technically, we introduce a new strategy, i.e., Unleashing Mask, to excavate the once-covered
OOD detection capability of a given model. By introducing the mask, we estimate the loss
constraint for forgetting the atypical samples and empower the detection performance.

• Experimentally, we conduct extensive explorations to verify the general effectiveness on
improving the OOD detection performance of our methods. Using various ID and OOD
benchmarks, we provide comprehensive results across different setups and further discussion.
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2 BACKGROUND

In this section, we briefly introduce the preliminaries and related work about OOD detection.

2.1 PRELIMINARIES

We consider multi-class classification as the training task, where X ⊂ Rd denotes the input space and
Y = {1, . . . , C} denotes the label space. Given the model deployed in the real world, the reliable
classifier is expected to figure out the OOD input, which can be formulated as a binary classification
problem. Given P , the distribution over X ×Y , we consider Din as the marginal distribution of P for
X , namely, the distribution of ID data. At test time, the environment can present a distribution Dout
over X of OOD data. In general, the OOD distribution Dout is defined as an irrelevant distribution of
which the label set has no intersection with Y Yang et al. (2021) and therefore should not be predicted
by the model. The decision can be made with the threshold λ:

Dλ(x; f) =

{
ID S(x) ≥ λ

OOD S(x) < λ
, (1)

Building upon the model f ∈ H : X → Rc trained on ID data with the logit outputs, the goal of
decision is to utilize the scoring function S : X → R to distinguish the inputs of Din from that of
Dout by S(x). Typically, if the score value is larger than the threshold λ, the associated input x is
classified as ID and vice versa. We consider several representative scoring functions designed for
OOD detection, e.g., MSP (Hendrycks & Gimpel, 2017b), ODIN (Liang et al., 2018), and Energy (Liu
et al., 2020). More detailed definitions and implementation can refer to Appendix A.

To mitigate the issue of over-confident predictions for (Hendrycks & Gimpel, 2017b; Liu et al.,
2020) some OOD data, recent works (Hendrycks et al., 2019c; Tack et al., 2020) utilize the auxiliary
unlabeled dataset to regularize the model behavior. Among them, one representative baseline is
outlier exposure (OE) (Hendrycks et al., 2019c). OE can further improve the detection performance
by making the model f(·) finetuned from a surrogate OOD distribution Ds

out, and its corresponding
learning objective is defined as follows,

Lf = EDin [ℓCE(f(x), y)] + λEDs
out
[ℓOE(f(x))] , (2)

where λ is the balancing parameter, ℓCE(·) is the Cross-Entropy (CE) loss, and ℓOE(·) is the
Kullback-Leibler divergence to the uniform distribution, which can be written as ℓOE(h(x)) =
−
∑

k softmaxk f(x)/C, where softmaxk(·) denotes the k-th element of a softmax output. The
OE loss ℓOE(·) is designed for model regularization, making the model learn from surrogate OOD
inputs to return low-confident predictions. The general formulation of Eq 2 is also adopted in other
related works for designing better tuning objectives that use different auxiliary outlier data.

Although previous works show promising results via designing scoring functions or regularizing
models based on the model f trained on ID data, few of them investigated the original detection
capability of the well-trained given model. In this work, we introduce the layer-wise mask m (Han
et al., 2016; Ramanujan et al., 2020) to mine the atypical samples that memorized by the model.
Accordingly, the decision can be written as D(x;m⊙f), and the output of masked model is m⊙f(x).

2.2 RELATED WORK

Out-of-distribution Detection without auxiliary data. (Hendrycks & Gimpel, 2017a) formally
shed light on out-of-distribution detection, proposing to use softmax prediction probability as a
baseline which is demonstrated to be unsuitable for OOD detection. Subsequent works keep focusing
on designing post-hoc metrics to distinguish ID samples from OOD samples, among which ODIN
(Liang et al., 2018) introduces small perturbations into input images to facilitate the separation of
softmax score, Mahalanobis distance-based confidence score (Lee et al., 2018b) exploits the feature
space by obtaining conditional Gaussian distributions, energy-based score (Liu et al., 2020) aligns
better with the probability density. Besides designing score functions, many other works pay attention
to various aspects to enhance the OOD detection such that LogitNorm (Wei et al., 2022) produces
confidence scores by training with a constant vector norm on the logits, and DICE (Sun & Li, 2022)
reduces the variance of the output distribution by leveraging the sparsification of the model.
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Figure 2: We train on CIFAR-10 for the original multi-class classification and check the details
as follows: (a) training/testing loss on ID data; (b) training/testing accuracy on ID data; (c) curves
of FPR95 based on ODIN score; (d) curves of FPR95 based on Energy score; (e) visualization of
correct classified samples at Epoch 60; (f) visualization of misclassified samples at Epoch 60. We
investigate the once-covered OOD detection capability by checking the model behavior during its
training phase. We take a closer look at the corresponding training and testing performance with
the OOD detection capability indicated by two different scores. Through comparison, we find that
achieving a reasonably small loss value (at round Epoch 60) on ID data is enough for OOD detection.
However, continually optimizing on those atypical samples can impair the detection performance.

Out-of-distribution Detection with auxiliary data. Another promising direction towards OOD
detection involves the auxiliary outliers for model regularization. On one hand, some works generate
virtual outliers such that Lee et al. (2018a) uses generative adversarial networks to generate boundary
samples, VOS (Du et al., 2022a) regularizes the decision boundary by adaptively sampling virtual
outliers from the low-likelihood region. On the other hand, other works tend to exploit information
from natural outliers, such that outlier exposure (OE) is introduced by Hendrycks et al. (2019b), given
that diverse data are available in enormous quantities. (Yu & Aizawa, 2019) train an additional "head"
and maximizes the discrepancy of decision boundaries of the two heads to detect OOD samples.
Energy-bounded learning (Liu et al., 2020) fine-tunes the neural network to widen the energy gap by
adding an energy loss term to the objective. Some other works also highlight the sampling strategy,
such that ATOM (Chen et al., 2021) greedily utilizes informative auxiliary data to tighten the decision
boundary for OOD detection, and POEM (Ming et al., 2022) adopts Thompson sampling to contour
the decision boundary precisely. The performance of training with outliers is usually superior to that
without outliers, shown in many recent works (Mohseni et al., 2020; Liu et al., 2020; Fort et al., 2021;
Sun et al., 2021; Sehwag et al., 2021; Yang et al., 2021; Chen et al., 2021; Salehi et al., 2021).

3 PROPOSED METHOD: UNLEASHING MASK

In this section, we introduce our new method, i.e., Unleashing Mask (UM), to reveal the potential
OOD detection capability of the well-trained model. First, we present and discuss the important
observation that inspires our methods (Section 3.1). Second, we provide the insights behind the two
critical parts of our UM (Section 3.2). Lastly, we describe the framework and the learning objective
of UM that incorporates the previous component, as well as its variant, i.e., UMAP (Section 3.3).

3.1 ONCE-COVERED OOD DETECTION CAPABILITY

First, we present the phenomenon of the inconsistent trend between a better OOD detection capability
and smaller training error during training. Empirically, as shown in Figure 1, we plot the OOD
detection performance during the model training after multiple runs of the experiments. Across three
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different OOD testing datasets, we can observe the existence of a better detection capability using the
index of FPR95 metric based on the Energy (Liu et al., 2020) or ODIN (Liang et al., 2018) score.
The generality has also been verified using different learning schedules and model structures in our
experimental sections. We further show the comparison of the ID/OOD distributions in Figures 1(b)
and 1(c). To be specific, the statics of the two distributions indicate that the gap between the ID and
OOD data gets narrow as their overlap grows along with the training. After Epoch 60, although the
model becomes more confident on ID data which satisfies a part of the calibration target (Hendrycks
et al., 2019a), its predictions on the OOD data also become more confident which is unexpected.
Without seeing any auxiliary outliers, it motivates us to explore how the model achieves that.

We take a closer look at the model behaviors in Figure 2, where we check its corresponding train-
ing/testing loss and accuracy. We find that the training loss has reached a reasonably small value at
Epoch 60 where its detection performance also achieves a satisfactory level. However, if we further
minimize the training loss, the trend of the FPR95 curve shows almost opposite directions with both
training and testing loss or accuracy (see Figures 1(a), 2(b), and 2(c)). Accordingly, we extract
those samples that were learned by the model at this period. As shown in Figures 2(e) and 2(f),
the misclassified samples learned after Epoch 60 present much atypical semantic features. As deep
neural networks tend to first learn the data with typical features (Arpit et al., 2017), we attribute the
inconsistent trend to memorizing those atypical data at the later stage. In Appendix C, we provide a
detailed discussion between it with the concept of conventional overfitting (Goodfellow et al., 2016).

3.2 UNLEASHING THE INTRINSIC DETECTION POWER

In general, the models that are developed for the original classification tasks are always seeking
better performance (i.e., higher testing accuracy and lower training loss) in practice. However,
the inconsistent trend revealed before indicates that the intrinsic OOD detection capability maybe
once-covered during the training. It gives us a chance to unleash the potential detection power only
considering the ID data in training. To this end, we have two important issues that need to address:
(1) the model that is well-trained on ID data may have already memorized some atypical samples
which can not be figured out; (2) how to forget those atypical samples considering the given model?

Mining the atypical samples with constructed discrepancy. According to Figures 2(a) and 2(b),
both training accuracy and loss provide limited information that can differentiate the typical and
atypical data. Inspired by the learning dynamics (Goodfellow et al., 2016; Arpit et al., 2017) of deep
neural networks and the pathway conjecture (Barham et al., 2022) for inference, we try to manually
construct the parameter discrepancy to mine the atypical samples from a well-trained model. To be
specific, we introduce a novel layer-wise mask to achieve the goal. The masks are applied to all layers,
which is consistent with the mask generation in the conventional pruning pipeline (Han et al., 2016).
In Figure 3(c), we provide empirical evidence to show that we can figure out the atypical samples via
enlarging the mask rate. Utilizing the masked output for loss computation, the atypical samples can
be better differentiated. We also provide more discussion about the intuition in Appendix B.

Forgetting the atypical samples with gradient ascent. As the training loss achieves zero at the
final stage of the given model, we need extra optimization signals to forget those memorized atypical
samples. Considering the previous consistent trend before the potential optimal stage (e.g., before
Epoch 60 in Figure 1(a)), the optimization signal also needs to control the model update not to be too
greedy to drop the discriminative features for OOD detection. Starting with the given model, we can
employ the gradient ascent (Sorg et al., 2010; Ishida et al., 2020) to forget the targeted samples, while
the tuning phase should also prevent further updates if the model can achieve the expected stage.

3.3 METHOD REALIZATION

Based on previous insights, we present our overall framework as well as the learning objective of the
proposed Unleashing Mask for OOD detection. Lastly, we discuss its compatibility with either the
fundamental scoring functions or the outlier exposure approaches utilizing auxiliary outlier data.

Framework. As illustrated in Figure 3(a), our framework consists of two critical components for
uncovering the intrinsic OOD detection capability: (1) the initialized mask with a specific pruning
rate for constructing the output discrepancy with the original model; (2) the fine-tuning procedure for
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Figure 3: (a) a brief illustration of the proposed Unleashing Mask (UM); (b) the mask rate w.r.t. loss
value using the masked outputs; (c) examples of misclassified samples after masking the original
well-trained model. As for our framework, given a well-trained model, we initialize an extra mask
for mining the atypical samples that are sensitive to the changes in model parameters. Then we
fine-tune the original model or adopt pruning with the estimated forgetting threshold, i.e., the loss
value estimated by the UM. The final model can serve as the base of various score functions to utilize
the discriminative features and also as the new initialization of fine-tuning with the auxiliary outliers.

alleviating the memorization of atypical samples. The overall workflow starts with obtaining the loss
value of misclassifying those atypical samples and then conducts tuning with the model to forget.

Objective for forgetting. Based on our framework, we introduce the forgetting objective as,

minLUM = min
mδ∈[0,1]n

|ℓCE(f)− ℓ̂CE(mδ ⊙ f∗)|+ ℓ̂CE(mδ ⊙ f∗), (3)

where mδ is our proposed layer-wise mask with the pruning rate δ, ℓCE is the CE loss, ℓ̂CE is the
averaged CE loss over the ID training data, | · | indicates the computation for absolute value and
mδ ⊙ f∗ denotes the masked output of the fixed pretrained model that is used to estimate the loss
constraint for the learning objective of forgetting, which would be a constant value during the
whole finetuning process. Concretely, the well-trained model will start to optimize itself again if it
memorized the atypical samples and achieved almost zero loss value. We provide a positive gradient
signal when the current loss value is lower than the estimated one and vice versa. The model is
expected to finally stabilize around the stage that can forget those atypical samples.

Unleashing Mask Adopts Pruning (UMAP). Considering the potential negative effect on the
original task performance when conducting tuning for forgetting, we further propose a variant of UM
Adopts Pruning, i.e., UMAP, to conduct tuning based on the masked output (e.g., replace ℓCE(f) to
ℓCE(m̂p ⊙ f∗) in Eq 3) using the different mask m̂p with its pruning rate p as follows,

minLUMAP = min
m̂p∈[0,1]n,mδ∈[0,1]n

|ℓCE(m̂p ⊙ f∗)− ℓ̂CE(mδ ⊙ f∗)|+ ℓ̂CE(mδ ⊙ f∗), (4)

Different from the objective of UM (i.e., Eq 3) that minimizes the loss value over the model parameter,
the objective of UMAP minimizes the loss over the mask to achieve the target of forgetting those
atypical samples. UMAP provides an extra mask to restore the detection capacity but doesn’t affect
the model parameter for the inference on original tasks, indicating that UMAP is a more practical
choice in real-world applications (as empirically verified in our experiments like Table 1). We
summarize the algorithms of UM (in Algorithm 1) and UMAP (in Algorithm 2) in Appendix D.

Compatible to other methods. As we explore the original OOD detection capability of the well-
trained model, it is orthogonal and compatible with those promising methods that equip the given
model with better detection ability. To be specific, through our proposed methods, we reveal the once-
covered OOD detection capability via tuning the original model towards its intermediate training stage.
The discriminative feature learned at that stage can be utilized by different scoring functions (Huang
et al., 2021; Sun & Li, 2022; Wei et al., 2022), like ODIN (Liang et al., 2018) adopted in Figure 2(c).
For those methods (Hendrycks et al., 2019a; Liu et al., 2020; Ming et al., 2022) utilizing the auxiliary
outliers to regularize the model, our fine-tuned model obtained by UM and UMAP can also serve as
their starting point or adjustment. As our strategy does not require any auxiliary outlier data to be
involved in training, adjusting the model using ID data during its developing phase is practical.
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4 EXPERIMENTS

In this section, we present the performance comparison of the proposed method in the OOD detection
scenario. Specifically, we verify the effectiveness of our UM and UMAP with two mainstreams of
OOD detection approaches: (i) fundamental scoring function methods; (ii) outlier exposure methods
involving auxiliary samples. To better understand and characterize our proposed method, we further
conduct extensive explorations on the ablation study and provide the corresponding discussion on each
sub-aspect considered in our work. More details and additional results can also refer to Appendix F.

4.1 EXPERIMENTAL SETUPS

Datasets. Following the common benchmarks used in previous work (Liu et al., 2020; Ming et al.,
2022), we adopt CIFAR-10, CIFAR-100 (Krizhevsky, 2009) as our ID datasets. We use a series of
different image datasets as the OOD datasets, namely Textures (Cimpoi et al., 2014), Places365
(Zhou et al., 2017), SUN (Xiao et al., 2010), LSUN (Yu et al., 2015), and iNaturalist (Van Horn
et al., 2018). We also use the other ID dataset as OOD dataset when training on a specific ID dataset,
given that none of them shares any same classes (Yang et al., 2021). e.g. we treat CIFAR-100 as
the OOD dataset when training on CIFAR-10 in our experiments for comparison.

Training details. We conduct all major experiments on DenseNet-101 (Huang et al., 2017) with
training epochs fixed to 100. We also include experiment results on other types of models in the
Appendix F. The models are trained using stochastic gradient descent (Kiefer & Wolfowitz, 1952)
with Nesterov momentum (Duchi et al., 2011). We adopt Cosine Annealing (Loshchilov & Hutter,
2017) to schedule the learning rate which begins at 0.1. We set the momentum and weight decay to
be 0.9 and 10−4 respectively throughout all experiments. The size of the mini-batch is 64 for both
ID samples (when training and testing) and OOD samples (when testing). More details and further
discussion about choosing the mask ratio in experiments can be referred to at the end of Appendix F.

Evaluation metrics. We employ the following three common metrics to evaluate the performance
of OOD detection: (i) Area Under the Receiver Operating Characteristic curve (AUROC) (Davis
& Goadrich, 2006) can be interpreted as the probability for a positive sample to have a higher
discriminating score than a negative sample (Fawcett, 2006); (ii) Area Under the Precision-Recall
curve (AUPR) (Manning & Schütze, 1999) is an ideal metric to adjust the extreme difference between
positive and negative base rates; (iii) False Positive Rate (FPR) at 95% True Positive Rate (TPR)
(Liang et al., 2018) indicates the probability for a negative sample to be misclassified as positive
when the true positive rate is at 95%. We also include in-distribution testing accuracy (ID-ACC) to
reflect the preservation level of the performance for the original classification task on ID data.

OOD detection baselines. We compare the proposed method with several competitive baselines
in the two directions. Specifically, we adopt Maximum Softmax Probability (MSP) (Hendrycks &
Gimpel, 2017a), ODIN (Liang et al., 2018), Mahalanobis score (Lee et al., 2018b), and Energy score
(Liu et al., 2020) as scoring function baselines; We adopt OE (Hendrycks et al., 2019b), Energy-
bounded learning (Liu et al., 2020), and POEM (Ming et al., 2022) as baselines with outliers. For
all scoring function methods, we assume the accessibility of well-trained models. For all methods
involving outliers, we constrain all major experiments to a fine-tuning scenario, which is more
practical in real cases. Different from training a dual-task model at the very beginning, equipping
deployed models with OOD Detection ability is a much more common circumstance, considering the
millions of existing and running deep learning systems. We leave more details in Appendix A.

4.2 PERFORMANCE COMPARISON

In this part, we present the performance comparison with some representative baseline methods to
demonstrate the effectiveness of our UM and UMAP. Our proposed UM is designed for excavating the
potential OOD detection capability of the given model. Here we consider several scoring functions to
compare the detection performance, and also some outlier exposure methods to further regularize
the given model and boost the OOD detection ability. In each category, we choose one with the best
detection performance to adopt UM/UMAP and check the detection results with the ID-ACC.
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Table 1: Main Results (%). Comparison with competitive OOD detection baselines.

Din Method AUROC↑ AUPR↑ FPR95↓ ID-ACC↑ w./w.o Daux

CIFAR-10

MSP(Hendrycks & Gimpel, 2017a) 89.90± 0.30 91.48± 0.43 60.08± 0.76 94.01 ± 0.08
ODIN(Liang et al., 2018) 91.46± 0.56 91.67± 0.58 42.31± 1.38 94.01 ± 0.08
Mahalanobis(Lee et al., 2018b) 75.10± 1.04 72.32± 1.92 61.35± 1.25 94.01 ± 0.08
Energy(Liu et al., 2020) 92.07± 0.22 92.72± 0.39 42.69± 1.31 94.01 ± 0.08
Energy+UM (ours) 93.73± 0.36 94.27± 0.60 33.29± 1.70 92.80± 0.47
Energy+UMAP (ours) 93.97 ± 0.11 94.38 ± 0.06 30.71 ± 1.94 94.01 ± 0.08

OE(Hendrycks et al., 2019b) 97.07± 0.01 97.31± 0.05 13.80± 0.28 92.59± 0.32 ✓
Energy (w. Daux)(Liu et al., 2020) 94.58± 0.64 94.69± 0.65 18.79± 2.31 80.91± 3.13 ✓
POEM(Ming et al., 2022) 94.37± 0.07 94.51± 0.06 18.50± 0.33 77.24± 2.22 ✓
OE+UM (ours) 97.60 ± 0.03 97.87 ± 0.02 11.22 ± 0.16 93.66± 0.12 ✓
OE+UMAP (ours) 97.48± 0.01 97.74± 0.00 12.21± 0.09 94.01 ± 0.08 ✓

CIFAR-100

MSP(Hendrycks & Gimpel, 2017a) 74.06± 0.69 75.37± 0.73 83.14± 0.87 74.86 ± 0.21
ODIN(Liang et al., 2018) 76.18± 0.14 76.49± 0.20 78.93± 0.31 74.86 ± 0.21
Mahalanobis(Lee et al., 2018b) 63.90± 1.91 64.31± 0.91 78.79± 0.50 74.86 ± 0.21
Energy(Liu et al., 2020) 76.29 ± 0.24 77.06 ± 0.55 78.46± 0.06 74.86 ± 0.21
Energy+UM (ours) 76.22± 0.42 76.39± 1.03 74.05± 0.55 64.55± 0.24
Energy+UMAP (ours) 75.57± 0.59 75.66± 0.07 72.21 ± 1.46 74.86 ± 0.21

OE(Hendrycks et al., 2019b) 90.55± 0.87 90.34± 0.94 34.73± 3.85 73.59± 0.30 ✓
Energy (w. Daux)(Liu et al., 2020) 88.92± 0.57 89.13± 0.56 37.90± 2.59 57.85± 2.65 ✓
POEM(Ming et al., 2022) 88.95± 0.54 88.94± 0.31 38.10± 1.30 56.18± 1.92 ✓
OE+UM (ours) 91.04±0.11 91.13 ± 0.24 34.71± 0.81 75.15 ± 0.18 ✓
OE+UMAP (ours) 91.10 ± 0.16 90.99± 0.23 33.62 ± 0.26 74.76± 0.11 ✓

Table 2: Fine-grained Results (%). Comparison on different OOD benchmark datasets.

ID dataset Method
OOD dataset

CIFAR-100 Textures Places365
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-10

MSP 66.43± 1.25 87.73± 0.02 65.20± 1.33 88.06± 0.61 61.34± 0.60 89.63± 0.15
ODIN 55.31± 0.85 87.75± 0.37 53.11± 4.84 87.13± 2.04 43.77± 0.20 91.70± 0.30
Mahalanobis 81.61± 0.96 64.52± 0..73 20.04 ± 1.43 94.38 ± 0.78 86.21± 1.36 64.00± 1.21
Energy 54.65± 1.24 89.01 ± 1.18 57.09± 3.52 87.51± 1.43 38.62± 1.64 93.03± 0.20
Energy+UM (ours) 54.62 ± 1.16 88.30± 0.30 41.61± 3.67 91.31± 0.01 30.85 ± 0.58 94.27 ± 0.16

Method SUN LSUN iNaturalist
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 60.27± 0.66 90.00± 0.24 36.43± 1.94 95.17± 0.32 67.53± 1.64 88.01± 0.82
ODIN 41.14± 1.29 92.34± 0.62 5.16± 0.76 98.96± 0.09 54.41± 0.91 90.17± 0.19
Mahalanobis 84.56± 1.51 66.41± 4.57 69.18± 3.52 66.41± 4.57 80.76± 2.48 71.77± 1.12
Energy 36.73± 1.72 93.63± 0.34 6.25± 0.43 98.77± 0.07 59.11± 1.18 89.71± 0.06
Energy+UM (ours) 27.88 ± 0.73 94.83 ± 0.11 2.91 ± 0.53 99.22 ± 0.11 46.27 ± 2.74 92.75 ± 0.80

In Table 1, we summarize the results of different OOD test sets using different methods. Note that,
here the evaluation results are obtained by averaging several OOD test datasets across multiple
independent trials. For the scoring-based methods, our UM can further improve the overall detection
performance by alleviating the memorization of atypical ID data, when the ID-ACC keeps comparable
with the baseline. For the complex CIFAR-100 dataset, our UMAP can be adopted as a practical way
to empower the detection performance and simultaneously avoid affecting the original performance
on ID data. As for those methods of the second category (i.e., involving auxiliary outlier Daux

sampling from ImageNet), since we consider a practical workflow, i.e., fine-tuning, on the given
model, OE achieves the best performance on the task. Due to the special optimization characteristic,
Energy (w.Daux) and POEM focus more on the energy loss on differentiating OOD data while
performing not well on the preservation of ID-ACC. Without sacrificing much performance on ID
data, OE with our UM can still achieve better detection performance. In Table 3, the fine-grained
detection performance on each OOD testing set demonstrates the general effectiveness of UM. We
have comprehensively verified the significant improvement (up to 18% reduced on averaged FPR95)
in OOD detection of our methods across different setups in Appendix F, the complete results can refer
to Tables 8 to 20. More fine-grained results of the experiments on CIFAR-100 is provided in Table 16
and 19. In addition, we also provide similar results using another model structure in Table 18.

4.3 ABLATION AND FURTHER DISCUSSION

In this part, we conduct various explorations to provide a thorough understanding of our presented
Unleashing Mask from different perspectives. To be specific, we first present the general existence of
the once-covered intrinsic OOD detection capability across different settings. Second, we present
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Figure 4: Ablation studies. (a)-(b) exploring the existence of potential OOD detection capability with
different learning rate schedules; (c) comparison of loss value using original output with masked
output (the x-axis represents the index of samples within a mini-batch); (d) effects of using different
masking ratios in UM; (e) comparison of using original pruning with our proposed UMAP.

the exploration about the mask, which helps us to characterize its effect on figuring out the atypical
samples. Third, we provide further exploration on excavating the detection power via pruning.

General existence of once-covered OOD detection capability. In Figure 4(a) and Figure 4(b), we
explore 4 learning rate schedules to demonstrate the general existence of once-covered OOD detection
capability. To be specific, the OOD performance (indicated by FPR95) is evaluated along with the
training in every 5 epoch, in which the model takes CIFAR-10 as ID data and SVHN as OOD data.
As shown by the curves, a middle stage exists with better OOD performance than that of the final
stage across different schedules. We empirically verify the existence of this phenomenon without
schedule specificity. More explorations on the other ID dataset and model structure reveal similar
results in Figures 5, 6, and 7. The detailed information and discussion can refer to Appendix F.

Effects of the mask on mining atypical samples. Following our previous illustration of Figure 3(c),
we scrutinize the change of training loss on a random batch of the training set in Figure 4(c). The
results further explain why the loss value estimated by the UM can be used to force the model to
forget atypical samples. It can be seen from Figure 4(c) that the loss is proportionally increased by
randomly knocking out 2.5% weights. In this case, the estimated loss is more influenced by those
who have a higher initial loss and are what we termed as atypical samples. By controlling the training
loss to the estimated value, the model is encouraged to backtrack to a middle training stage where
samples with high loss value have little influence on the forgetting process of the gradient ascent.

Exploration on revealing detection capability with model pruning. Although the large constrain
on training loss can help reveal the model’s OOD performance, the ID-ACC is undermined under
such circumstances. Generally speaking, the proposed UM forces the model to forget the atypical
samples and may result in lower test performance. To mitigate this issue, we further adopt pruning as
a countermeasure to learn a mask instead of tuning the model parameters directly. In Figure 4(e), we
experiment with various prune rates p and demonstrate that we can achieve the same or better OOD
performance also by pruning. Specifically, our UMAP can achieve a lower FPR95 than pure pruning
with the original objective. The prune rate can be selected from a wide range (e.g. p ∈ [0.3, 0.9]) to
guarantee a fast convergence and effectiveness. Since pruning doesn’t change the well-trained model
parameters, it can preserve the performance of the original task. We also provide additional empirical
results and corresponding discussion about the effectiveness of our UMAP in Appendix F.

5 CONCLUSION

In this work, we explore the intrinsic OOD detection capability of a well-trained model. Without
involving any auxiliary outliers in training, we reveal the inconsistent trend between minimizing
original training loss and gaining OOD detection capability. We further attribute it to the memorization
behavior of atypical samples. To excavate the once-covered capability, we propose a new method,
namely, Unleashing Mask (UM). Through UM, we construct model-level discrepancy that figures out
the memorized atypical samples and utilizes the constrained gradient ascent to encourage forgetting.
It better utilizes the given model for OOD detection via backtracking or sub-structure pruning. We
hope our work could provide new insights for revisiting the model development in OOD detection.

9



Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

For the experimental setups, we have provided the details in Section 4.1 and Appendixes A and E.
We will also provide the anonymous repository about our source codes in the discussion phase for
reviewing purposes to ensure the reproducibility of our experimental results.
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APPENDIX

REPRODUCIBILITY STATEMENT

We will provide the anonymous repository about our source codes in the discussion phase for
reviewing purposes to ensure the reproducibility of our experimental results. Below we summarize
some critical aspects to facilitate the reproducible results:

• Datasets. The datasets we used are all publicly accessible, which is introduced in Section 4.1.
For methods involving auxiliary outliers, we strictly follow previous works (Sun et al., 2021;
Du et al., 2022b) to avoid overlap between the auxiliary dataset (ImageNet-1k) (Deng et al.,
2009) and any other OOD datasets.

• Assumption. We set our experiments to a post-hoc scenario where a well-trained model is
available, and some parts of training samples are also available for subsequent fine-tuning.

• Open source. The code repository will be available in an anonymous repository for
reviewing purposes. We provide a backbone of our experiments as well as several auxiliary
components, such as score estimation.

• Environment. All experiments are conducted multiple runs on NVIDIA Tesla V100-SXM2-
32GB GPUs with Python 3.6 and PyTorch 1.8.

A DETAILED INFORMATION ABOUT THE USED BASELINES AND METRICS

In this section, we provide the details about the baselines for the scoring functions and finetuning
with auxiliary outliers, and the corresponding hyper-parameters that are considered in our work.

Maximum Softmax Probability (MSP). (Hendrycks & Gimpel, 2017a) proposes to use maximum
softmax probability to discriminate ID and OOD samples. The score is defined as follows,

SMSP(x; f) = max
c

P (y = c|x; f) = max softmax(f(x)) (5)

where f represents the given well-trained model and c is one of the classes Y = {1, . . . , C}. The
larger softmax score indicates the larger probability for a sample to be ID data, reflecting the model’s
confidence on the sample.

ODIN. (Liang et al., 2018) designed the ODIN score, leveraging the temperature scaling and tiny
perturbations to widen the gap between the distributions of ID and OOD samples. The ODIN score is
defined as follows,

SODIN(x; f) = max
c

P (y = c|x̃; f) = max softmax(
f(x̃)

T
) (6)

where x̃ represents the perturbed samples (controled by ϵ), T represents the temperature. For
fair comparison, we adopt the suggested hyperparameters (Liang et al., 2018): ϵ = 1.4 × 10−3,
T = 1.0× 104.

Mahalanobis. (Lee et al., 2018b) introduces a Mahalanobis distance-based confidence score,
exploiting the feature space of the neural networks by inspecting the class conditional Gaussian
distributions. The Mahalanobis distance score is defined as follows,

SMahalanobis(x; f) = max
c

−(f(x)− µ̂c)
T Σ̂−1(f(x)− µ̂c) (7)

where µ̂c represents the estimated mean of multivariate Gaussian distribution of class c, Σ̂ represents
the estimated tied covariance of the C class-conditional Gaussian distributions.

Energy. (Liu et al., 2020) proposes to use the Energy of the predicted logits to distinguish the ID
and OOD samples. The Energy score is defined as follows,

SEnergy(x; f) = −T log

C∑
c=1

ef(x)c/T (8)
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where T represents the temperature parameter. As theoretically illustrated in Liu et al. (2020), a lower
Energy score indicates a higher probability for a sample to be ID. Following (Liu et al., 2020), we fix
the T to 1.0 throughout all experiments.

Outlier Exposure (OE). (Hendrycks et al., 2019b) initiates a promising approach towards OOD
detections by involving outliers to force apart the distributions of ID and OOD samples. In the
experiments, we use the cross-entropy from f(xout)to the uniform distribution as the LOE (Lee et al.,
2018a),

Lf = EDin [ℓCE(f(x), y)] + λEDs
out

[
log

C∑
c=1

ef(x)c − EDs
out
(f(x))

]
(9)

Energy (w. Daux). In addition to using the Energy as a post-hoc score to distinguish ID and
OOD samples, (Liu et al., 2020) proposes an Energy-bounded objective to further separate the two
distributions. The OE objective is as follows,

LOE = EDs
in
(max(0, SEnergy(x, f)−min))

2 + EDs
out
(max(0,mout − SEnergy(x, f)))

2 (10)

We keep the thresholds same to (Liu et al., 2020): min = −25.0, mout = −7.0.

POEM. (Ming et al., 2022) explores the Thompson sampling strategy (Thompson, 1933) to make
the most use of outliers to learn a tight decision boundary. Though given the POEM’s nature to be
orthogonal to other OE methods, we use the Energy(w. Daux) as the backbone, which is the same as
Eq.( 10) in Liu et al. (2020). The details of Thompson sampling can refer to Ming et al. (2022).

Detailed formulations of FPR and TPR. Suppose we have a binary classification task (to predict
an image to be an ID or OOD sample in this paper). There are two possible outputs: a positive result
(the model predicts an image to be an ID sample); a negative result (the model predicts an image to
be an OOD sample). Since we have two possible labels and two possible outputs, we can form a
confusion matrix with all possible outputs as follows.

Table 3: Confusion Matrix.

Truth: ID Truth: OOD

Predict: ID True Positive (TP) False Positive (FP)

Predict: OOD False Negative (FN) True Negative (TN)

Therefore, the false positive rate (FPR) is calculated as :

FPR =
FP

FP + TN
(11)

The true positive rate (TPR) is calculated as:

TPR =
TP

TP + FN
(12)

B ADDITIONAL EXPLANATION TOWARDS MINING THE ATYPICAL SAMPLES

First, for identifying those atypical samples using a layer-wise mask with the well-pre-trained model,
the core intuition behind is constructing the parameter-level discrepancy to mine the atypical samples.
It is inspired by and based on the evidence drawn from previous literature about learning behaviors
(Arpit et al., 2017; Goodfellow et al., 2016) of deep neural networks (DNNs) and sparse representation
(Frankle & Carbin, 2019; Goodfellow et al., 2013; Barham et al., 2022). To be specific, the atypical
samples tend to be learned by the DNNs later than those typical samples (Arpit et al., 2017), and are
relatively more sensitive to the changes of the model parameter as the model does not generalize well
on that. By the layer-wise mask, the constructed discrepancy can make the model misclassify the
atypical samples and estimate loss constraint for the forgetting objective, as visualized in Figure 3(c).
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Second, introducing the layer-wise mask has several advantages for achieving the staged target of
mining atypical samples in our proposed method, while we would also admit that the layer-wise mask
is not an irreplaceable option or maybe not optimal. On the one hand, considering that the model has
been trained to approach the zero error on training data, utilizing the layer-wise mask is an integrated
strategy to 1) figure out the atypical samples and 2) obtain the loss value computed by the masked
output that misclassifies them. The loss constraint is later used in the forgetting objective to fine-tune
the model. On the other hand, the layer-wise mask is also compatible with the proposed UMAP to
generate a flexible mask for restoring the detection capability of the original model.

Third, we also adopt the unit/weight mask and visualize the misclassified samples in Figure 12. We
think they can also be used to mine the atypical samples and can be extended or improved to be a
more flexible choice. Further investigating the specific effect of different methods that construct the
parameter-level discrepancy would be an interesting sub-topic in future work. For the value of CE
loss, although the atypical samples tend to have high CE loss value, they are already memorized
and correctly classified as indicated by the zero training error. Only using the high CE error can not
provide the loss estimation when the model does not correctly classify those samples.

C CONCEPTUAL AND EMPIRICAL COMPARISON WITH OVERFITTING

First of all, we would refer to the concept of the conventional overfitting (Goodfellow et al., 2016;
Belkin et al., 2019), i.e., the model "overfit" the training data but fail to generalize and perform well
on the test data that is unseen during training. The common empirical reflection of overfitting is that
the training error is decreasing while the test error is increasing at the same time, which enlarges the
generalization gap of the model. It has been empirically confirmed not the case in our observation
as observed in Figure 2(a) and 2(b). To be specific, for the original classification task, there is no
conventional overfitting observed as the test performance is still improved at the later training stage,
which is a general pursuit of the model development phase on the original tasks.

Then, when we consider the OOD detection performance of the well-pretrained model, our unique
observation is about the inconsistency between gaining better OOD detection capability and pursuing
better performance on the original classification task for the in-distribution (ID) data. It is worth noting
that here the training task is not the binary classification of OOD detection, but the classification task
on ID data. It is out of the rigorous concept of the conventional overfitting and has received limited
focus and discussion in the previous literature about OOD detection to the best of our knowledge.
Considering the practical scenario that exists target-level discrepancy, our revealed observation may
encourage us to revisit the detection capability of the well-trained model.

Third, through empirical observation, those strategies designed for preventing the conventional
overfitting may need to change the target to the OOD detection based on the important observation.
In our experiments, for all the baseline models including that used in Figure 1, we have adopted
those strategies (Srivastava et al., 2014; Hastie et al., 2009) (e.g., drop-out, weight decay) to reduce
overfitting. It is found to be not enough to restore the OOD detection performance. For another shared
issue, on the CIFAR-100 dataset, our UM restore the OOD detection capability of the well-trained
model with a significant sacrifice on "ID-ACC". Using those strategies for reducing overfitting in
the model development phase maybe not be acceptable to the users that it achieves such a lower
performance on the original task. In contrast, our proposed UMAP can be a more practical and
flexible way to restore detection performance.

We conduct the extra comparisons between our UM and UMAP with those methods for reducing
overfitting. The results are summarized in the following Tables 4, 5, 6 and 7. According to our extra
experiments, most conventional methods proposed to prevent conventional overfitting show limited
benefits on gaining better OOD detection performance. Based on our important observation, the
effective criterion, i.e., early stopping, also need to change its validation target to be the OOD data.
However, most of them suffer from higher sacrifice on the performance of the original task and maybe
not compatible and practical in the current general setting, i.e., starting from a well-trained model.

Given the concept discrepancy aforementioned, one conclusive message is that "memorization of
the atypical samples" are not "memorization in overfitting". Those atypical samples are empirically
beneficial in improving the performance on the original classification task as shown in Figure 2.
However, this part of knowledge is not very necessary and even harmful to the OOD detection task as
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Table 4: Comparison among overfitting methods and ODIN with DenseNet-101 (%). ↑ indicates
higher values are better, and ↓ indicates lower values are better.

Din Method AUROC↑ AUPR↑ FPR95↓ ID-ACC↑

CIFAR-10

Baseline 91.67 91.89 40.74 93.67
Early Stopping w. ACC 92.13 92.46 38.86 93.69
Early Stopping w. OOD 92.95 93.26 35.23 93.18
Weight Decay 0.1 86.64 86.67 60.07 88.53
Weight Decay 0.01 90.76 91.25 44.20 92.07
Weight Decay 0.001 88.93 88.25 48.95 94.26
Drop Rate 0.3 91.14 92.21 46.58 90.05
Drop Rate 0.4 84.95 86.62 62.52 82.55
Drop Rate 0.5 83.75 85.17 62.17 75.31
UM (ours) 92.45 93.06 37.13 92.76
UMAP (ours) 91.92 92.88 37.69 93.69

Table 5: Comparison among overfitting methods and Energy with DenseNet-101 (%). ↑ indicates
higher values are better, and ↓ indicates lower values are better.

Din Method AUROC↑ AUPR↑ FPR95↓ ID-ACC↑

CIFAR-10

Baseline 92.72 93.48 38.30 93.67
Early Stopping w. ACC 92.75 93.54 37.84 93.69
Early Stopping w. OOD 93.04 93.78 36.56 93.18
Weight Decay 0.1 86.78 88.04 65.08 88.53
Weight Decay 0.01 90.86 91.77 47.64 92.07
Weight Decay 0.001 90.68 90.90 47.38 94.26
Drop Rate 0.3 90.52 91.79 51.23 90.05
Drop Rate 0.4 84.29 86.43 68.17 82.55
Drop Rate 0.5 83.29 85.14 68.17 75.31
UM (ours) 93.58 94.14 33.66 92.76
UMAP (ours) 93.17 93.87 36.11 93.69

Table 6: Comparison among overfitting methods and ODIN with WRN-40-4 (%). ↑ indicates higher
values are better, and ↓ indicates lower values are better.

Din Method AUROC↑ AUPR↑ FPR95↓ ID-ACC↑

CIFAR-10

Baseline 86.24 85.90 60.13 93.86
Early Stopping w. ACC 83.80 83.30 65.13 93.99
Early Stopping w. OOD 89.92 90.94 49.87 91.47
Weight Decay 0.1 84.38 84.75 65.75 89.88
Weight Decay 0.01 88.08 88.45 55.16 93.16
Weight Decay 0.001 86.34 86.38 57.42 94.91
Drop Rate 0.3 87.53 87.25 56.12 94.22
Drop Rate 0.4 88.24 88.41 54.62 94.20
Drop Rate 0.5 89.13 89.99 53.07 93.91
UM (ours) 89.61 91.13 50.97 92.68
UMAP (ours) 90.43 91.73 46.96 93.86

the detection performance of the model is drop significantly. Based on the training and test curves
in our observation, the memorization in overfitting is expected to happen later than the final stage
in which the test performance would drop. Since we have already used some strategies to prevent
overfitting, it does not exist. Intuitively, the "atypical samples" identified in our work are relative to
the OOD detection task. The memorization of "atypical samples" indicates that the model may not be
able to draw the general information of the ID distribution through further learning on those atypical
samples through the original classification task Since we mainly provide the empirical observation
and understanding of the proposed algorithm in this work, further analysis from other views or
theoretically would be an interesting and a major part of future work.

16



Under review as a conference paper at ICLR 2023

Table 7: Comparison among overfitting methods and Energy with WRN-40-4 (%). ↑ indicates higher
values are better, and ↓ indicates lower values are better.

Din Method AUROC↑ AUPR↑ FPR95↓ ID-ACC↑

CIFAR-10

Baseline 87.69 88.16 58.47 93.86
Early Stopping w. ACC 88.07 88.65 67.61 93.99
Early Stopping w. OOD 90.92 91.94 46.63 91.47
Weight Decay 0.1 86.97 88.51 63.54 89.88
Weight Decay 0.01 89.77 89.82 50.23 93.16
Weight Decay 0.001 89.25 89.84 50.95 93.91
Drop Rate 0.3 89.74 90.07 52.16 93.22
Drop Rate 0.4 89.94 90.53 51.13 94.20
Drop Rate 0.5 90.09 91.04 52.76 93.91
UM (ours) 91.74 92.67 40.40 92.68
UMAP (ours) 88.84 89.31 50.23 93.86

D DETAILED REALIZATION OF THE PROPOSED ALGORITHMS

In this section, we provide the detailed realization of our proposed Unleashing Mask (UM) (i.e., in
Algorithm 1) and Unleashing Mask Adopt Pruning (UMAP) (i.e., in Algorithm 2).

To estimate the loss constrain ζ (i.e.,ℓ̂CE(mδ ⊙ f∗) in Eq 3 with the fixed given model f∗) for
forgetting, we need to randomly knock out parts of weights according to the given mask ratio δ. To
be specific, we sample a score from a Gaussian distribution for every weight. Then we initialize a
unit matrix for every layer of the model concerning the size of the layer. We formulate the mask mδ

according to the sampled scores. Find the threshold for each layer that is smaller than the score of the
given mask ratio in that layer (termed as quantile). Then set all the ones, whose corresponding scores
are more significant than the layers’ thresholds, to zeros. In our algorithms, the fine-tuning epochs k
is the epochs we fine-tune after we get the well-trained model.

We dot-multiply every layer’s weights with the formulated binary matrix as if we delete some parts
of the weights. We input a batch of training samples to the masked model and treat the mean value of
the outputs’ cross-entropy loss as the loss constraint. After all of these have been done, we begin to
fine-tune the model’s weights with the loss constraint applied to the cross-entropy loss.

For UMAP, the only difference from UM is that, instead of fine-tuning the weights, we generate a
popup score for every weight, and force the gradients to pass through the scores. In every iteration,
we need to formulate a binary mask according to the given prune rate p. This is just what we do when
estimating the loss constraint. For more details, it can refer to (Ramanujan et al., 2020). In Table 8,
we summarize the overall comparison results of UM and UMAP to show their effectiveness.

E ADDITIONAL SETUPS OF THE EXPERIMENTS

In this section, we describe more details about the experimental setups for our exploration.

Model setups. For DenseNet-101, we fix the growth rate and reduce rate to 12 and 0.5 respectively
with the bottleneck block included in the backbone. We also explore the proposed UM on WideResNet
(Zagoruyko & Komodakis, 2016) with 40 depth and 4 widen factor, which is termed as WRN-40-4.
The batch size for both ID and OOD testing samples is 64, and the batch size of auxiliary samples is
2000. The λ in Eq.(9) is 0.5 to keep the OE loss comparable to the CE loss. As for the strategy of
sampling outliers, we randomly retrieve 50000 samples from ImageNet-1k (Deng et al., 2009) for OE
and Energy (w. Daux) and 50000 samples using Thompson sampling (Ming et al., 2022) for POEM.

Learning rate schedules. We use 4 different learning rate schedules to demonstrate the existence
of the once-covered OOD detection capability. For cosine annealing, we follow the common setups
in Loshchilov & Hutter (2017); for linear schedule, the learning rate remains the same in the first
one-third epochs, decreases linearly to the tenth of the initial rate in the middle one-third epochs,
and decrease linearly to 1% of the initial rate in the last one-third epochs; for the multiple decay

17



Under review as a conference paper at ICLR 2023

Algorithm 1 Unleashing Mask (UM)
Input: well-trained model : θ, mask ratio: δ ∈ [0, 1], fine-tuning epochs of UM: k, training samples:
x ∼ Ds

in ;
Output: fine-tuned model θ̂;

1: Initialize a popup score for every weight
2: for w ∈ θ do
3: sw ∼ N(µ, σ2)
4: end for
5: Generate mask by the popup scores
6: for l ∈ θlayers do
7: ml

δ = sl > quantile(sl, δ)
8: end for
9: Estimate loss constrain

10: ζ = Ex∼Ds
in
(L̂CE(x,mδ ⊙ θ))

11: Unleashing Mask: fine-tuning
12: for t ∈ (1, . . . , k) do
13: θ(t+1) = θ(t) − η ∂(|LCE(x,θ)−ζ|+ζ)

∂θ
14: end for

Algorithm 2 Unleashing Mask Adopt Pruning (UMAP)
Input: well-trained model : θ, mask ratio: δ ∈ [0, 1], fine-tuning epochs of UM: k, training samples:
x ∼ Ds

in, prune rate: p ;
Output: learnt binary mask m̂p;

1: Initialize a popup score for every weight
2: for w ∈ θ do
3: sw ∼ N(µ, σ2)
4: end for
5: Generate mask by the popup scores
6: for l ∈ θlayers do
7: ml

δ = sl > quantile(sl, δ)
8: end for
9: Estimate loss constrain

10: ζ = Ex∼Ds
in
(L̂CE(x,mδ ⊙ θ))

11: Unleashing Mask Adopt Pruning: fine-tuning
12: s(1) ∼ N(µ, σ2)
13: for t ∈ (1, . . . , k) do
14: for l ∈ θlayers do
15: m̂l

p = sl(t) > quantile(sl(t), p)
16: end for
17: s(t+1) = s(t) − η

∂(|LCE(x,m̂p⊙θ)−ζ|+ζ)
∂θ

18: end for

schedule, the learning rate decreases 10% of the initial rate (0.01) every 10% epochs (10 epochs); for
the multiple step schedule, the learning rate decreases to 10% of the current rate every 30 epochs. All
those learning rate schedules for our experiments are intuitively illustrated in Figure 4(a).

F ADDITIONAL EXPERIMENT RESULTS AND ABLATION STUDY

In this section, we provide more experiment results. We first show the fine-grained results on CIFAR-
10 and CIFAR-100, then conduct the experiments under a different model structure (i.e., WRN-40-4),
and finally apply an additional ablation study on the proposed UM and UMAP. The mean and variance
of all metrics (ID-ACC, AUROC, AUPR, FPR95) are reported based on multiple independent trials.
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Table 8: Completed Results (%). Comparison with competitive OOD detection baselines. ↑ indicates
higher values are better, and ↓ indicates lower values are better.

Din Method AUROC↑ AUPR↑ FPR95↓ ID-ACC↑ w./w.o Daux

CIFAR-10

MSP(Hendrycks & Gimpel, 2017a) 89.90± 0.30 91.48± 0.43 60.08± 0.76 94.01 ± 0.08
ODIN(Liang et al., 2018) 91.46± 0.56 91.67± 0.58 42.31± 1.38 94.01 ± 0.08
Mahalanobis(Lee et al., 2018b) 75.10± 1.04 72.32± 1.92 61.35± 1.25 94.01 ± 0.08
Energy(Liu et al., 2020) 92.07± 0.22 92.72± 0.39 42.69± 1.31 94.01 ± 0.08
Energy+UM (ours) 93.73± 0.36 94.27± 0.60 33.29± 1.70 92.80± 0.47
Energy+UMAP (ours) 93.97 ± 0.11 94.38 ± 0.06 30.71 ± 1.94 94.01 ± 0.08

OE(Hendrycks et al., 2019b) 97.07± 0.01 97.31± 0.05 13.80± 0.28 92.59± 0.32 ✓
Energy (w. Daux)(Liu et al., 2020) 94.58± 0.64 94.69± 0.65 18.79± 2.31 80.91± 3.13 ✓
POEM(Ming et al., 2022) 94.37± 0.07 94.51± 0.06 18.50± 0.33 77.24± 2.22 ✓
OE+UM (ours) 97.60 ± 0.03 97.87 ± 0.02 11.22 ± 0.16 93.66 ± 0.12 ✓
Energy+UM (ours) 93.02±0.42 92.36± 0.38 24.41± 1.65 71.97± 0.92 ✓
POEM+UM (ours) 93.04± 0.02 92.99± 0.02 23.52± 0.16 67.41± 0.27 ✓
OE+UMAP (ours) 97.48± 0.01 97.74± 0.00 12.21± 0.09 93.44± 0.21 ✓
Energy+UMAP (ours) 95.63± 1.15 95.92± 1.17 17.51± 2.59 88.12± 4.22 ✓
POEM+UMAP (ours) 94.18± 2.98 94.15± 3.46 20.55± 8.70 76.62± 17.95 ✓

CIFAR-100

MSP(Hendrycks & Gimpel, 2017a) 74.06± 0.69 75.37± 0.73 83.14± 0.87 74.86 ± 0.21
ODIN(Liang et al., 2018) 76.18± 0.14 76.49± 0.20 78.93± 0.31 74.86 ± 0.21
Mahalanobis(Lee et al., 2018b) 63.90± 1.91 64.31± 0.91 78.79± 0.50 74.86 ± 0.21
Energy(Liu et al., 2020) 76.29 ± 0.24 77.06 ± 0.55 78.46± 0.06 74.86 ± 0.21
Energy+UM (ours) 76.22± 0.42 76.39± 1.03 74.05± 0.55 64.55± 0.24
Energy+UMAP (ours) 75.57± 0.59 75.66± 0.07 72.21 ± 1.46 74.86 ± 0.21

OE(Hendrycks et al., 2019b) 90.55± 0.87 90.34± 0.94 34.73± 3.85 73.59± 0.30 ✓
Energy (w. Daux)(Liu et al., 2020) 88.92± 0.57 89.13± 0.56 37.90± 2.59 57.85± 2.65 ✓
POEM(Ming et al., 2022) 88.95± 0.54 88.94± 0.31 38.10± 1.30 56.18± 1.92 ✓
OE+UM (ours) 91.04± 0.11 91.13± 0.24 34.71± 0.81 75.15 ± 0.18 ✓
Energy+UM (ours) 90.39± 0.40 90.14± 0.45 32.65± 3.13 71.95± 0.23 ✓
POEM+UM (ours) 91.18 ± 0.35 91.45 ± 0.27 30.78 ± 1.76 70.17± 0.01 ✓
OE+UMAP (ours) 91.10± 0.16 90.99± 0.23 33.62± 0.26 74.76± 0.11 ✓
Energy+UMAP (ours) 90.52± 0.26 90.46± 0.50 32.17± 0.30 72.76± 0.18 ✓
POEM+UMAP (ours) 91.10± 0.29 91.41± 0.28 31.02± 1.70 71.05± 0.04 ✓

Empirical verification on typical/atypical data. In the following Tables 9, 10, 11, 12, and 13, we
further conduct the experiments to identify the negative effect of learning on those atypical samples
by comparing with a counterpart that learning only with the typical samples. The results confirm that
the degeneration on detection performance is more likely to come from learning atypical samples.

In Table 9, we provide the main results for verification on typical/atypical samples. Intuitively, we
intend to separate the training dataset into a typical set and an atypical set and train respectively
on these two sets to see whether it is learning atypical samples that causes OOD performance to
decrease during the latter part of the training phase. We force training samples through the model
(DenseNet-101) of the 60th epoch and get the CE loss for separation. We provide the ACC of the
generated sets on the model of the 60th epoch (ACC in the tables). The extremely low ACCs of the
atypical sets show that the model of the 60th epoch can hardly predict the samples, which meets our
definition of the atypical sample. We then fine-tune the model of the 60th epoch with the generated
dataset and report the OOD performance. The results show learning from only those atypical data
fail to gain better detection performance than its counterpart, i.e., learning from only those typical
data. Learning on those atypical samples fails to draw the suitable features for the OOD detection
task, though it still can improve the original task performance. The experiments provide a conceptual
verification of our conjecture which links our observation and the proposed method.

Results of fine-tuning for less epochs. UM adopts finetuning on the proposed objective for
forgetting has shown the advantages of being cost-effective compared with train-from-scratch. For
the tuning epochs, we show in Figures 9 and 10 that fine-tuning using UM can converge within about
20 epochs, indicating that we can apply our UM/UMAP for far less than 100 epochs (compared with
train-from-scratch) to restore the better detection performance of the original well-trained model.
It is intuitively reasonable that finetuning with the newly designed objective would benefit from
the well-trained model, allowing a faster convergence since the two phases consider the same task
with the same training data. As for the major experiments conducted in our work, finetuning adopts
100 epochs for better exploring and understanding its learning dynamics for research purposes, this
configuration is indicated in the training details of Section 4.1.
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Table 9: Fine-tuning on typical/atypical samples with different model structures (%). ↑ indicates
higher values are better, and ↓ indicates lower values are better.

Din Dataset Size Structure Atypical/Typical AUROC↑ AUPR↑ FPR95↓

CIFAR-10 200
DenseNet-101 Atypical 81.45 82.40 62.10

Typical 82.86 84.38 60.01

WRN-40-4 Atypical 85.13 86.57 66.41
Typical 86.26 86.89 59.93

CIFAR-100 1000
DenseNet-101 Atypical 71.96 73.16 85.57

Typical 74.79 75.83 80.97

WRN-40-4 Atypical 66.64 67.41 86.92
Typical 71.95 72.02 80.00

Table 10: Fine-tuning on typical/atypical CIFAR-10 samples with DenseNet-101 (%). ↑ indicates
higher values are better, and ↓ indicates lower values are better.

Din Dataset Size Atypical/Typical ACC AUROC↑ AUPR↑ FPR95↓

CIFAR-10

200
Atypical 3.50 81.45 82.40 62.10
Typical 100.00 82.86 83.48 60.01

350
Atypical 11.14 85.90 86.01 55.10
Typical 100.00 85.90 86.16 52.81

500
Atypical 16.80 84.94 85.33 59.27
Typical 100.00 85.53 86.10 58.74

Table 11: Fine-tuning on typical/atypical CIFAR-10 samples with WRN-40-4 (%). ↑ indicates higher
values are better, and ↓ indicates lower values are better.

Din Dataset Size Atypical/Typical ACC AUROC↑ AUPR↑ FPR95↓

CIFAR-10

200
Atypical 3.50 85.13 86.57 66.41
Typical 100.00 86.26 86.89 59.93

350
Atypical 11.14 82.92 84.24 68.57
Typical 100.00 85.82 87.84 65.54

500
Atypical 16.80 82.88 83.22 66.75
Typical 100.00 87.38 87.93 52.27

Table 12: Fine-tuning on typical/atypical CIFAR-100 samples with DenseNet-101 (%). ↑ indicates
higher values are better, and ↓ indicates lower values are better.

Din Dataset Size Atypical/Typical ACC AUROC↑ AUPR↑ FPR95↓

CIFAR-100

500
Atypical 1.00 72.69 73.28 80.71
Typical 100.00 74.07 75.20 80.19

800
Atypical 2.88 69.74 71.15 85.46
Typical 100.00 72.49 73.17 81.97

1000
Atypical 3.50 71.96 73.16 85.57
Typical 100.00 74.79 75.83 80.97

We also provide an extra comparison to show the relative efficiency of our proposed UM/UMAP in
the following Table 14 and Table 15. The results show that UM and UMAP can efficiently restore
detection performance compared with the baseline. It is intuitively reasonable that fine-tuning would
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Table 13: Fine-tuning on typical/atypical CIFAR-100 samples with WRN-40-4 (%). ↑ indicates
higher values are better, and ↓ indicates lower values are better.

Din Dataset Size Atypical/Typical ACC AUROC↑ AUPR↑ FPR95↓

CIFAR-100

500
Atypical 1.00 66.03 66.17 89.56
Typical 100.00 68.60 69.93 86.53

800
Atypical 2.88 67.59 68.66 85.61
Typical 100.00 70.25 68.95 79.66

1000
Atypical 3.50 66.64 67.41 86.92
Typical 100.00 71.95 72.02 80.00

benefit from the well-trained model, allowing a faster convergence as the two phases consider the
same task and training data. Considering the significance of the OOD awareness for those safety-
critical areas, it is worthwhile to further excavate the OOD detection capability of the deployed
well-trained model using our UM and UMAP.

Table 14: Fine-tuning for 20 epochs with DenseNet-101 (%). ↑ indicates higher values are better, and
↓ indicates lower values are better.

Din Epoch Method AUROC↑ AUPR↑ FPR95↓ ID-ACC↑

CIFAR-10

100

MSP 89.90 91.48 60.08 94.01
ODIN 91.46 91.67 42.31 94.01
Energy 92.07 92.72 42.69 94.01
Energy + UM 93.73 94.27 33.29 92.80
Energy + UMAP 93.97 94.38 30.71 94.01

20

MSP + UM 90.31 91.99 53.61 91.70
ODIN +UM 94.08 94.67 31.01 91.70
Energy + UM 93.60 94.32 33.03 91.70
MSP + UMAP 88.70 90.39 57.69 94.01
ODIN + UMAP 92.88 93.33 35.19 94.01
Energy + UMAP 92.88 93.39 35.60 94.01

Table 15: Fine-tuning for 20 epochs with WRN-40-4 (%). ↑ indicates higher values are better, and ↓
indicates lower values are better.

Din Epoch Method AUROC↑ AUPR↑ FPR95↓ ID-ACC↑

CIFAR-10

100

MSP 87.12 87.84 68.29 93.86
ODIN 83.29 82.74 65.68 93.86
Energy 87.69 88.16 58.47 93.86
Energy + UM 91.74 92.67 40.40 92.68
Energy + UMAP 88.84 89.31 50.23 93.86

20

MSP + UM 89.86 91.32 51.62 91.96
ODIN +UM 91.97 92.58 41.78 91.96
Energy + UM 92.95 93.64 36.21 91.96
MSP + UMAP 88.77 90.61 61.60 93.86
ODIN + UMAP 90.85 91.89 45.70 93.86
Energy + UMAP 91.66 92.49 42.94 93.86

Fine-grained results on OOD data. In order to further figure out the effectiveness of the pro-
posed UM and UMAP on different OOD datasets, we further report the fine-grained results of our
experiments on CIFAR-10 and CIFAR-100 with 6 OOD datasets (CIFAR-10/CIFAR-100, textures,
Places365, SUN, LSUN, iNaturalist). The results on the 6 OOD datasets show the general effective-
ness of the proposed UM as well as UMAP. In Table 16, OE + UM can outperform all the OOD
baselines, and further improve the OOD performance even though the original detection performance
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Table 16: Fine-grained Results (%) of DenseNet-101 on CIFAR-10. Comparison on different OOD
benchmark datasets respectively. ↑ indicates higher values are better, and ↓ indicates lower values are
better.

ID dataset Method
OOD dataset

CIFAR-100 Textures Places365
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-10

Energy + UMAP 54.95± 2.61 87.72± 1.05 33.59± 1.32 92.67± 0.23 32.80± 4.14 93.57± 1.12

OE 59.29± 1.30 88.51± 0.22 2.89± 0.30 99.16± 0.05 11.14± 1.11 97.50± 0.19
Energy (w. Daux) 79.88± 2.47 74.99± 2.40 4.27± 0.57 98.80± 0.19 14.22± 3.99 97.07± 0.72
POEM 82.30± 1.57 72.74± 1.42 1.91± 0.41 99.40± 0.10 11.24± 2.70 96.67± 0.48
OE + UM (ours) 55.74 ± 1.47 89.53 ± 0.18 1.42 ± 0.15 99.49 ± 0.04 7.77 ± 0.69 98.15 ± 0.08
Energy (w. Daux)+ UM (ours) 84.52± 0.01 70.09± 0.47 8.30± 0.88 97.76± 0.05 20.27± 1.30 96.06± 0.31
POEM + UM (ours) 84.87± 1.56 68.97± 0.39 4.73± 0.52 98.88± 0.13 19.83± 0.34 96.35± 0.09
OE + UMAP (ours) 59.05± 1.41 89.14± 0.14 1.86± 0.07 99.35± 0.00 8.21± 0.12 98.07± 0.03
Energy (w. Daux) + UMAP (ours) 75.18± 4.96 80.93± 4.49 2.24± 1.34 99.25± 0.29 9.30± 2.12 97.90± 0.40
POEM + UMAP (ours) 79.33± 4.14 76.89± 4.86 2.10± 1.37 99.34± 0.30 9.94± 6.92 98.01± 1.11

Method SUN LSUN iNaturalist
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Energy + UMAP 29.05± 2.78 94.41± 0.73 2.31± 0.88 99.42± 0.04 47.22± 14.03 92.63± 2.14

OE 8.38± 0.71 98.00± 0.14 5.90± 1.43 98.60± 0.21 5.09± 0.64 98.76± 0.11
Energy (w. Daux) 10.30± 3.82 97.77± 0.64 12.80± 4.67 96.08± 1.38 6.93± 1.86 98.40± 0.32
POEM 8.39± 2.42 98.16± 0.43 9.69± 1.89 97.25± 0.58 3.78± 0.90 98.99± 0.17
OE + UM (ours) 5.51 ± 0.44 98.55 ± 0.07 3.51 ± 0.43 98.93 ± 0.09 2.87 ± 0.49 99.14 ± 0.09
Energy (w. Daux)+ UM (ours) 16.13± 1.86 96.84± 0.30 23.27± 2.40 92.11± 0.94 11.20± 2.35 97.54± 0.42
POEM + UM (ours) 16.16± 0.57 97.01± 0.08 25.69± 0.15 93.38± 0.27 9.30± 1.60 98.05± 0.24
OE + UMAP (ours) 6.16± 0.02 98.49± 0.01 4.53± 0.16 98.86± 0.06 3.40± 0.74 98.96± 0.09
Energy (w. Daux) + UMAP (ours) 6.67± 1.50 98.40± 0.32 23.50± 5.61 94.78± 2.04 3.77± 2.14 98.93± 0.46
POEM + UMAP (ours) 7.00± 5.80 98.46± 0.96 21.17± 12.84 94.74± 3.67 3.63± 2.78 98.99± 0.54

Table 17: Fine-grained Results (%) of DenseNet-101 on CIFAR-100. Comparison on different OOD
benchmark datasets respectively. ↑ indicates higher values are better, and ↓ indicates lower values are
better.

ID dataset Method
OOD dataset

CIFAR-10 Textures Places365
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-100

MSP 83.53± 0.33 75.11± 0.27 86.90± 0.18 71.45± 0.40 85.83± 0.48 70.54± 0.42
ODIN 85.29± 0.17 73.31± 0.24 86.45± 1.27 71.91± 0.27 84.35± 0.64 73.58± 0.51
Mahalanobis 98.25± 0.05 49.60± 1.51 33.06 ± 3.76 90.19 ± 1.21 95.20± 0.49 53.69± 1.55
Energy 82.16 ± 0.59 75.31 ± 0.21 90.20± 0.30 68.98± 0.34 82.39± 0.97 73.78± 0.66
Energy+UM (ours) 89.62± 0.07 66.12± 0.93 86.99± 1.22 65.39± 1.44 77.30 ± 2.08 76.06 ± 1.05
OE 90.97± 0.46 69.02± 0.39 14.36± 0.25 95.92± 0.12 40.19± 6.97 90.70± 2.01
Energy (w. Daux) 96.14± 0.06 57.52± 0.88 9.02± 0.06 97.16± 0.26 35.18± 4.73 93.29± 1.14
POEM 96.19± 0.16 55.82± 1.05 7.63± 1.40 97.69± 0.06 32.67± 3.73 93.94± 0.68
OE + UM (ours) 89.61± 0.08 71.24 ± 0.08 16.78± 0.25 95.60± 0.08 39.77± 0.34 91.07± 0.13
Energy (w. Daux)+ UM (ours) 95.38± 0.45 63.41± 0.14 6.41± 0.83 97.77± 0.33 30.96± 3.61 92.85± 0.69
POEM + UM (ours) 95.78± 0.14 60.23± 0.70 5.17 ± 0.18 98.53 ± 0.03 23.90 ± 0.84 95.45 ± 0.11
OE + UMAP (ours) 90.72 ± 0.35 69.76± 0.25 15.32± 0.23 95.72± 0.01 36.42± 1.91 92.08± 0.49
Energy (w. Daux) + UMAP (ours) 95.39± 0.10 63.26± 0.18 6.52± 0.44 97.83± 0.18 31.18± 0.43 93.13± 0.41
POEM + UMAP (ours) 95.69± 0.17 61.62± 0.24 5.23± 0.58 98.52± 0.01 26.06± 1.16 94.91± 0.25

Method SUN LSUN iNaturalist
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 88.75± 0.23 66.75± 0.25 67.83± 1.37 82.94± 0.32 85.00± 0.73 76.62± 0.25
ODIN 88.49± 0.99 69.64± 0.61 34.80± 2.55 93.92± 0.75 81.67± 2.77 78.36± 1.57
Mahalanobis 95.53± 0.37 54.37± 1.35 89.31± 4.83 43.19± 16.36 93.63± 1.19 49.60± 1.51
Energy 97.17± 0.92 69.04± 0.83 35.09± 3.17 93.49± 0.87 85.70± 2.14 75.82± 1.72
Energy+UM (ours) 81.96 ± 2.26 71.47 ± 1.88 22.54 ± 5.93 94.98 ± 1.75 74.28 ± 3.72 80.72 ± 3.75
OE 44.47± 9.10 90.70± 2.01 5.75 ± 1.18 98.57± 0.13 25.51± 4.12 94.46± 0.88
Energy (w. Daux) 32.69± 5.69 93.63± 1.48 55.75± 4.31 87.96± 1.03 17.34± 4.54 96.50± 0.81
POEM 30.45± 5.11 94.26± 0.90 46.68± 3.59 90.30± 2.17 16.50± 2.09 96.63± 0.23
OE + UM (ours) 44.23± 0.20 90.28± 0.03 5.80± 0.33 98.63± 0.03 26.72± 1.95 94.51± 0.43
Energy (w. Daux)+ UM (ours) 28.98± 3.15 93.18± 0.69 37.56± 4.81 91.98± 0.83 10.83± 2.06 97.09± 0.69
POEM + UM (ours) 21.34 ± 1.07 95.76 ± 0.22 33.74± 6.22 94.43± 1.18 8.85 ± 0.23 97.93 ± 0.03
OE + UMAP (ours) 39.58± 2.02 91.37± 0.52 5.77± 0.71 98.64 ± 0.12 23.33± 1.24 95.08± 0.22
Energy (w. Daux) + UMAP (ours) 29.65± 1.06 93.38± 0.19 35.94± 0.75 92.08± 0.39 13.96± 2.48 96.87± 0.15
POEM + UMAP (ours) 23.73± 0.71 95.25± 0.06 33.09± 5.94 93.57± 0.88 9.76± 1.09 97.77± 0.24

is already well. By equipping with our proposed UM and UMAP, the baselines can outperform their
counterparts on most of the OOD datasets. For instance, the FPR95 can decrease from 1.91 to 1.42.
In Table 17, we also take a closer check about results on CIFAR-100 with 6 OOD datasets. Our
proposed method can almost improve all competitive baselines (either the scoring functions or the
finetuning with auxiliary outliers) on the 6 OOD datasets. In both w. Daux and w.o. Daux scenarios,
Unleashing Mask can significantly excavate the intrinsic OOD detection capability of the model. In
addition to unleashing the excellent OOD performance, UMAP can also maintain the high ID-ACC
by learning a binary mask instead of tuning the well-trained original parameters directly.
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Table 18: Results (%) of WRN-40-4. Comparison with competitive OOD detection baselines. We
respectively train WRN-40-4 on CIFAR-10 and CIFAR-100. For those methods involving outliers,
we retrieve 5000 samples from ImageNet-1k. ↑ indicates higher values are better, and ↓ indicates
lower values are better.

Din Method AUROC↑ AUPR↑ FPR95↓ ID-ACC↑

CIFAR-10

MSP(Hendrycks & Gimpel, 2017a) 87.12± 0.25 87.84± 0.30 68.29± 0.96 93.86 ± 0.19
ODIN(Liang et al., 2018) 83.29± 0.72 82.74± 0.79 65.68± 0.77 93.86 ± 0.19
Mahalanobis(Lee et al., 2018b) 77.57± 0.28 76.11± 0.10 61.18± 0.10 93.86 ± 0.19
Energy(Liu et al., 2020) 87.69± 0.54 88.16± 0.69 58.47± 1.94 93.86 ± 0.19
Energy+UM (ours) 91.74 ± 0.43 92.67 ± 0.52 40.40 ± 1.32 92.68± 0.23
Energy+UMAP (ours) 88.84± 1.02 89.31± 1.44 50.23± 2.25 93.86 ± 0.19

CIFAR-100

MSP(Hendrycks & Gimpel, 2017a) 72.34± 0.63 72.69± 0.44 85.40± 0.59 75.01 ± 0.07
ODIN(Liang et al., 2018) 68.78± 0.67 66.92± 0.72 85.28± 0.64 75.01 ± 0.07
Mahalanobis(Lee et al., 2018b) 68.20± 0.99 68.30± 1.15 76.46± 2.02 75.01 ± 0.07
Energy(Liu et al., 2020) 74.00± 0.41 73.02± 0.47 81.37± 0.08 75.01 ± 0.07
Energy+UM (ours) 76.07± 0.04 76.94± 0.06 74.29± 1.66 59.08± 2.75
Energy+UMAP (ours) 77.35 ± 0.78 77.43 ± 0.91 68.20 ± 0.06 75.01 ± 0.07

Table 19: Fine-grained Results (%) of WRN-40-4 on CIFAR-10. Comparison on different OOD
benchmark datasets. ↑ indicates higher values are better, and ↓ indicates lower values are better.

ID dataset Method
OOD dataset

CIFAR-100 Textures Places365
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-10

MSP 70.96± 0.70 86.08± 0.08 68.81± 1.29 86.53± 0.83 68.31± 0.25 86.71± 0.13
ODIN 64.97± 0.08 83.36± 0.11 66.86± 2.24 81.34± 0.81 66.49± 1.16 83.47± 0.93
Mahalanobis 79.84± 0.55 70.33± 0.24 22.56 ± 0.08 94.07 ± 0.04 85.09± 0.59 67.90± 0.37
Energy 61.09± 0.58 86.66± 0.04 64.29± 1.72 85.56± 0.53 55.32± 0.13 88.29± 0.26
Energy+UM (ours) 57.21 ± 1.41 87.56 ± 0.15 46.49± 1.03 89.74± 0.45 40.68 ± 4.46 92.51 ± 0.97
Energy+UMAP (ours) 65.45± 1.10 84.65± 0.95 59.14± 1.64 85.27± 1.74 48.16± 1.89 90.43± 0.47

Method SUN LSUN iNaturalist
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 68.62± 0.50 86.95± 0.23 52.97± 3.07 92.41± 0.18 76.05± 0.01 83.44± 0.36
ODIN 65.47± 0.78 83.79± 1.10 31.89± 3.44 94.34± 0.89 79.28± 0.18 79.80± 0.35
Mahalanobis 82.92± 0.28 70.52± 0.47 64.31± 0.57 67.75± 0.55 81.50± 2.91 74.97± 2.91
Energy 54.88± 0.18 88.67± 0.30 24.99± 1.38 95.98± 0.37 75.89± 0.85 82.40± 0.22
Energy+UM (ours) 38.92 ± 3.46 92.98 ± 0.95 8.38 ± 0.77 98.18 ± 0.16 66.02 ± 6.70 85.22 ± 3.42
Energy+UMAP (ours) 45.94± 2.64 91.27± 0.56 14.10± 0.04 97.46± 0.14 74.69± 0.15 81.13± 1.12

Experiment on different model structure. Following 4.2, we additionally conduct critical experi-
ments on the WRN-40-4 (Lin et al., 2021) backbone to demonstrate the effectiveness of the proposed
UM and UMAP. In Figure 7, we can find during the model training phase on ID data, there also exists
the once-covered OOD detection capability can be explored in later development. In Table 18, we
show the comparison of multiple OOD detection baselines, evaluating the OOD performance on the 7
OOD datasets mentioned in Section 4.1. The results again demonstrate that our proposed method
indeed excavates the intrinsic detection capability and improves the performance.

As for the fine-grained results of WRN-40-4, we report results on 6 OOD datasets respectively. When
trained on CIFAR-10, UM can outstrip all the scoring function baselines on 5 OOD datasets except
Textures on which Mahalanobis performs better while UMAP still has excellent OOD performance
ranking only second to UM. When trained on CIFAR-100, UM and UMAP can also outperform the
baselines on most OOD datasets. The fine-grained results of WRN-40-4 further demonstrate the
effectiveness of the proposed UM/UMAP on other architectures.

Additional results about the general existence of once-covered OOD detection capability. In
Section 4.3, we display the once-covered OOD detection capability on CIFAR-10 using SVHN as
the OOD dataset. Here, we additionally verify the previously observed trend during training when
training DenseNet-101 on CIFAR-100 using iNaturalist as an OOD dataset. In Figure 5, we trace
the three evaluation metrics during training on CIFAR-100 using 4 different learning rate schedules.
Consistent with the original experiment, we still use iNaturalist as the OOD dataset. It can be seen
for all the three metrics that exists a middle stage where the model has the better OOD detection
capability (For FPR95, it is smaller (better) in the middle stage; for AUROC and AUPR, they are
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Table 20: Fine-grained Results (%) of WRN-40-4 on CIFAR-100. Comparison on different OOD
benchmark datasets. ↑ indicates higher values are better, and ↓ indicates lower values are better.

ID dataset Method
OOD dataset

CIFAR-10 Textures Places365
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-100

MSP 83.83± 0.29 75.50± 0.21 86.15± 0.23 72.36± 0.40 86.72± 0.29 69.60± 0.27
ODIN 83.70± 0.30 74.32± 0.03 81.57± 1.74 71.67± 0.28 88.07± 0.11 64.83± 1.36
Mahalanobis 96.89± 0.11 68.78± 0.67 31.02 ± 2.04 91.85 ± 0.91 93.34± 0.44 61.28± 1.62
Energy 81.32 ± 0.47 77.49 ± 0.26 86.38± 0.49 73.50± 0.45 84.45± 0.38 69.82± 0.63
Energy+UM (ours) 89.23± 1.51 63.85± 1.73 78.90± 0.07 72.58± 1.33 80.46 ± 1.99 70.49± 1.01
Energy+UMAP (ours) 94.11± 0.72 60.77± 0.96 66.94± 4.49 75.82± 5.33 82.59± 0.27 71.92 ± 3.58

Method SUN LSUN iNaturalist
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 88.88± 0.83 65.22± 0.85 78.56± 0.66 79.10± 0.53 86.72± 0.29 73, 75± 0.56
ODIN 91.00± 0.10 59.06± 1.81 70.14± 2.42 84.03± 0.86 87.86± 1.13 64.52± 1.51
Mahalanobis 94.22± 0.01 60.09± 1.56 89.73± 2.87 40.81± 3.07 87.25± 3.28 74.98± 2.85
Energy 88.35± 0.52 64.04± 0.76 59.84± 0.06 87.91± 0.53 88.91± 0.78 67.81± 0.91
Energy+UM (ours) 84.04± 0.09 67.19± 0.14 33.87± 1.21 92.29± 0.02 76.91± 6.07 79.28± 4.17
Energy+UMAP (ours) 80.53 ± 1.31 72.68 ± 4.50 27.79 ± 2.19 93.39 ± 0.57 55.53 ± 4.61 85.65 ± 0.83
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Figure 5: Ablation studies on three metrics with 4 different learning rate schedules. The model is
DenseNet-101 trained on CIFAR-100 with iNaturalist as the OOD dataset. (a) change of FPR95
throughout the pruning phase when training on CIFAR-100; (b) change of AUROC throughout the
pruning phase when training on CIFAR-100; (c) change of AUPR throughout the pruning phase when
training on CIFAR-100. It demonstrates a better middle stage exists according to the three metrics.

higher (better) in the middle stage). Besides that, we also look into the change of OOD performance
on other architecture (e.g., WRN-40-4) in Figure 6 and Figure 7. In Figure 6, we display the curves
of three metrics of WRN-40-4 when trained on CIFAR-10 with SVHN and Textures as OOD datasets.
The trend that the OOD performance first goes better and then converges to worse OOD performance
can be reflected. In Figure 7, we continually provide curves of the three metrics of WRN-40-4 during
training on CIFAR-100 with iNaturalist, Places365, and SUN as OOD datasets. A clear better middle
stage can still be excavated in this scenario.

UMAP: adopting pruning on UM. We conduct various experiments to see whether pruning has
an impact on Unleashing Mask itself. To be specific, we expect the pruning to learn a mask on the
given model while not impairing the excellent OOD performance that UM brings. In Figure 8, it
presents that pruning from a wide range (e.g. p ∈ [0.3, 0.9]) can well maintain the effectiveness
of UM while possessing a terrific convergence trend. For simplicity, we use prune to indicate the
original pruning approach and UMAP indicate UM with pruning on the mask with our newly designed
forgetting objective in Figure 8. In Figure 8(a), the solid lines represent the proposed UMAP and the
dashed lines represent only pruning the well-trained model at prune rates 0.2, 0.5, and 0.8. While the
model’s OOD performance can’t be improved (not better than the baseline) through only pruning,
using our proposed forgetting objective for the loss constrain can significantly bring out better OOD
performance at a wide range of mask rates (e.g. p ∈ [0.5, 0.8]). In Figure 8(b), we intuitively reflect
the effect of the estimated loss constraint by the initialized mask which redirects the gradients when
the loss reaches the value, while the loss will just approach 0 when pruning only. In Figure 8(c), we
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Figure 6: Ablation studies on three metrics of WRN-40-4 with CIFAR-10 as ID dataset, SVHN,
and Textures as OOD datasets. (a) change of FPR95 throughout the pruning phase when training on
CIFAR-10; (b) change of AUROC throughout the pruning phase when training on CIFAR-10; (c)
change of AUPR throughout the pruning phase when training on CIFAR-10. It demonstrates a better
middle stage exists according to the three metrics.

0 20 40 60 80 100
Epochs

70

75

80

85

90

95

100

FP
R9

5

iNaturalist
Places
SUN

(a) FPR95 Curves

0 20 40 60 80 100
Epochs

50

60

70

80

90

AU
RO

C

iNaturalist
Places
SUN

(b) AUROC Curves

0 20 40 60 80 100
Epochs

40

50

60

70

80

90

AU
PR

iNaturalist
Places
SUN

(c) AUPR Curves

Figure 7: Ablation studies on three metrics of WRN-40-4 with CIFAR-100 as ID dataset, iNaturalist,
Places365, and SUN as OOD datasets. (a) change of FPR95 throughout the pruning phase when
training on CIFAR-100; (b) change of AUROC throughout the pruning phase when training on
CIFAR-100; (c) change of AUPR throughout the pruning phase when training on CIFAR-100. It
demonstrates a better middle stage exists according to the three metrics.

can see that ID-ACC for both UMAP and Prune can converge to approximately the same high level
(92 ∼ 94), though we can simply remove the learned mask to recover the original ID-ACC.

The effectiveness of UM. In Figure 9, we present the FPR95, AUROC, and AUPR curves during
training to show the comparison of the original training and our proposed UM on ID data. We observe
that training using UM can consistently outperform than the vanilla model training, either for the
final stage or the middle stage with the best OOD detection performance indicated by the FPR95
curve. In Figure 10, we also adopt different mask rates for the initialized loss constraint estimation
for forgetting the atypical samples. The results show that a wide range of mask ratios (i.e., from
96% to 99%) to estimate the loss constraint used in Eq.3 can gain better OOD detection performance
than the baseline. It shows the mask ratio would be robust to hyper-parameter selection under a
certain value. The principle intuition behind this is our revealed important observation as indicated
in Figures 1(a), 2(b), and 2(c). With the guidance of the general mechanism, empirically choosing
the hyper-parameter using the validation set is supportable and valuable for excavating better OOD
detection capability of the model as conducted by previous literature (Hendrycks et al., 2019b; Liu
et al., 2020; Sun et al., 2021).

In our experiments, we empirically determine the value of our proposed UM and UMAP by examining
the training loss on the masked output. For CIFAR-10 as ID datasets, the value of mask rate is 97.5%
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Figure 8: Ablation studies on Prune Rate of UMAP. (a) change of OOD performance throughout the
pruning phase; (b) training loss converges to estimated loss constraint properly; (c) though ID-ACC
is not taken into consideration for UMAP, it still raise high after training for 100 epochs.
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Figure 9: Ablation studies to reflect the effectiveness of UM. The mask ratio of UM is 99.5%. (a)
change of FPR95 throughout the training phase on CIFAR-10; (b) change of AUROC throughout the
training phase on CIFAR-10; (c) change of AUPR throughout the training phase on CIFAR-10.

and the estimated loss constraint for forgetting is 0.10 for our tuning until the convergence; For
CIFAR-100, the value of mask rate is 97% and the estimated loss constraint for forgetting is 1.20 for
our tuning until the convergence.

To choose the parameters of the estimated loss constraint, we use the TinyImageNet (Tavanaei, 2020)
dataset as the validation set, which is not seen during training and is not considered in our evaluation
of OOD detection performance. Since the core intuition behind our method is to restore the OOD
detection performance starting from the well-trained model stage, forgetting a relatively small portion
(empirically found around 97% mask ratio) of atypical samples can be beneficial. To find the optimal
parameter for tuning, more advanced searching techniques like AutoML or validation design based
on the important observation in our work may be further employed in the future.

Fine-grained comparison of the model weights. We display the weights of the original model,
pruned model, and the UMAP model respectively in Figure 11. The histograms show that the
adopted pruning algorithm tends to choose weights far from 0 for the first convolution layer, shown in
Figure 11(a). However, for almost all layers (from the 2nd to the 98th), the pruning chooses weights
with no respect to the value of weights, shown in Figure 11(b). For the "head" of the model (the fully
connected layer), the pruning algorithm itself still keeps its behavior on the first layer, while UMAP
forces the prune algorithm to choose weights near 0, shown in Figure 11(c), indicating that forgetting
learned atypical samples doesn’t necessarily correspond to larger weights or smaller weights.
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Figure 10: Ablation studies of WRN-40-4 on various Mask Ratios. The mask rate is from 95.8% to
99.0%. (a) change of FPR95 throughout the training on CIFAR-10; (b) change of AUROC throughout
the training on CIFAR-10; (c) change of AUPR throughout the training on CIFAR-10.
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Figure 11: Histograms of different layers for the original model, pruned model, and UMAP model.
The model is DenseNet-101 with a prune rate of 50%. (a) the histogram of the first convolution layer;
(b) the histogram of the 50th convolution layer; (c) the histogram of the last (fully connected) layer.
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(b) Layer-wise masking weights
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(c) Model-wise masking scores
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(d) Model-wise masking weights

Figure 12: Examples of misclassified samples after masking the original well-trained model. The
scores are estimated according to uniform distribution. (a) layer-wise masking scores; (b) layer-wise
masking weights directly; (c) model-wise masking scores; (d) model-wise masking weights directly.
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