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Abstract
Unlike global community detection, local community detection is to identify a cluster of nodes sharing similar feature 
information based on a given seed. The accuracy of many local community detection algorithms heavily relies on the qual-
ity of seed nodes. Only high-quality seed nodes can accurately detect local communities. At the same time, the inability 
to effectively obtain node attributes and structural information also leads to an increase in subgraph clustering error rates. 
This paper proposes a Local Community Detection based on Core Nodes using deep feature fusion, named LCDCN. We 
find the nearest nodes for the seed nodes, then construct a k-subgraph through a specific subgraph extractor based on the 
core nodes. Subsequently, two deep encoders are employed to encode and fuse the attribute and structure information of the 
subgraph, respectively. Finally, the local community is discovered by optimizing the fused feature representation through a 
self-supervised optimization function. Extensive experiments on 10 real and 4 synthetic datasets demonstrate that LCDCN 
outperforms its competitors in performance.

Keywords  Local community detection · Clustering · Seed selection · Feature fusion

1  Introduction

Community detection aims to discover tightly connected sets 
of nodes within a network to understand better and interpret 
the hidden relationships in complex networks. Scholars have 
extensively discussed community detection methods in order 
to uncover the true community structure within complex 
networks more effectively. Existing methods primarily focus 
on identifying global community structures [1], and even 
overlapping community structures [2]. Global community 
detection is identifying all potential community structures 

within the network. However, real-world data often grows 
exponentially, making traditional global community detec-
tion methods inadequate for large-scale networks. In most 
cases, the focus is not on the global structure of large net-
works but rather on individual or small local structures near 
the seed nodes [3]. For example, identifying delinquent users 
within banking networks [4], discovering specific protein 
groups in biological fields [5], and providing targeted rec-
ommendations for products within recommendation systems 
[6]. Therefore, separating specific node sets into a local com-
munity [7] within a network enables the rapid analysis of the 
local composition of a large-scale network.

Local community detection is initiated from a specific 
seed nodes in the graph and identifies closely related com-
munities to the seed nodes without traversing or analyz-
ing the entire graph. In local detection methods [8], the 
majority of focus is placed solely on the local informa-
tion of seed nodes without considering their effectiveness. 
Effective seed nodes are advantageous for detecting local 
communities; conversely, ineffective seed nodes can lead 
to significant discrepancies between community detection 
results and the actual node labels [9]. For example, when 
given seed nodes are located at the edge of a community 
or even at the global network edge, previous methods may 
fail to fully identify all community members to which the 
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seed node belongs and may even incorrectly label them 
with erroneous community tags. This has a significant 
impact on local community discovery work. Therefore, the 
initialization of seed nodes directly affects the accuracy of 
local community discovery results. However, in conduct-
ing local community detection work [10], it is important to 
focus on the local information of any random node rather 
than the specific node’s localized information. Thus, effec-
tively finding the nearest and most important nodes locally 
by selecting randomly initialized seed nodes is crucial.

Although traditional approaches have made great strides 
in community detection, conventional algorithms for local 
community detection often yield suboptimal results that 
tend towards locally optimal outcomes. On the other hand, 
methods based on deep learning can explore more com-
plete, comprehensive, and deeper complex information 
within networks addressing high-dimensional data prob-
lems [11] that traditional methods [12] cannot handle. 
While existing clustering methods have achieved the goal 
of community detection using deep learning techniques, 
they still face several unresolved challenges. Firstly, they 
independently obtain structure and attribute information, 
which cannot be perfectly fused [13]. Secondly, after 
multi-layer GNN networks, the obtained node features may 
be too similar to provide useful contributions to commu-
nity detection [14]. Finally, These local clustering methods 
only focus on local single nodes but fail to pay attention to 
local structures. Therefore, they are not suitable for detec-
tion by the local community.

Based on these problems, we propose a new local com-
munity detection method based on core nodes, which not 
only provides an effective method for finding the optimal 
seeds but also enhances the effectiveness of local community 
detection by using deep learning technology. Specifically, 
we identify the true core nodes of the seed nodes by cal-
culating the comprehensive scores of importance and cor-
relation between the seed nodes and their k-neighbor nodes. 
This approach not only avoids the problem of invalid seed 
nodes, but also effectively finds the most influential core 
nodes, increasing the accuracy of local community discov-
ery. Subsequently, we use k-subgraph extractors to focus on 
the subgraph information of nodes, rather than solely nodes 
attributes. This way transforms the node’s information into 
more comprehensive and rich subgraph information. Finally, 
a attribute encoder and structural encoder are utilized to sep-
arately encode the attribute and structural information. The 
attribute information obtained at each layer is fed back into 
the corresponding layer’s structural information, ensuring a 
more complete and integrated representation.

In conclusion, our main contributions to this paper are 
summarized as follows:

•	 We propose a new method to find the locally most impor-
tant core nodes through random seed nodes, which effec-
tively makes the community discovery results in a more 
accurate direction. In addition, we introduce a subgraph 
extractor to extract a more comprehensive subgraph 
structure from large-scale graphs to improve the effi-
ciency of local community detection.

•	 We proficiently integrate the node attribute informa-
tion obtained from the attribute encoder and the struc-
tural information obtained from the structure attention 
encoder, enhancing the node features for local clustering 
tasks. Additionally, we introduce a novel self-supervised 
optimization function to align the resulting local com-
munities with real structures.

•	 We conduct comprehensive experiments on real and syn-
thetic datasets to demonstrate the effectiveness of our 
approach.

2 � Related work

Community detection, a prominent research focus in com-
plex networks, has spurred the development of numerous 
algorithms in recent years. These methods typically detect 
communities by globally modifying the network topology. 
For example, the classic GN [15] algorithm detects com-
munities by iteratively removing edges with the highest 
betweenness. Newman proposed the concept of modularity 
[16] based on the density of connections within communi-
ties and iterated execution to achieve community division. 
However, these approaches often face challenges such as 
local optima and limited scalability to large networks. To 
overcome these issues, the structural information theory-
based method HSSInfo [17] adopts a parallel intersection 
and community merging algorithm, significantly reducing 
memory consumption and supporting high parallelism in 
large-scale networks scenarios. The effectiveness of this 
novel approach has been validated through its applications 
in SSSE [18] and UnDBot [19]. Unlike global community 
detection, local community detection aims to identify all 
nodes in the community where the seed nodes is located. 
Generally speaking, local community detection methods 
can be divided into traditional local community detection 
techniques and deep learning-based local graph clustering. 
In the following, we will introduce relevant work on local 
community detection from these two perspectives.

In traditional methods, the effective selection of seed 
nodes is crucial for accurately discovering the local com-
munity. Since the choice of seed nodes directly affects the 
detection results, local detection may produce different 
results from global algorithms. Therefore, the primary prob-
lem facing local community detection is selecting high-qual-
ity seeds. Many existing methods [20] ignore the importance 
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of seed nodes, which will inevitably reduce the quality of the 
local community obtained under such a premise. HqsMLCD 
[21] reveals the overlapping communities in which the seed 
node is located by exploring the potential communities of 
seed nodes; MAPPR [22] selects a series of high-quality 
seed nodes with a target by minimizing the conductivity 
relationship. Although these methods alleviate the problem 
of “Seed Wasted” to some extent, only considering how to 
select or alternatively select from a single perspective cannot 
effectively solve the problem.

Another significant challenge in traditional methods for 
local detection is the effective expansion of the community. 
FLCS [23] introduces the concept of local modularity to 
expand the communities, and Shang et al. [24] improve 
local modularity to discover local communities. On the 
other hand, node similarity is also an effective indicator of 
the degree of connection between community members, so 
optimization methods [25] based on node similarity func-
tions have also been used for local community expansion. 
LOCD [26] enhances the traditional similarity function and 
achieves the discovery of local communities by comparing 
fuzzy relations between nodes with greater centrality. What’s 
more, ASFWF [27] employs alternating fusion strategies of 
strong and weak fusion for node fusion to expand local com-
munities. JLDEC [28] dynamically decomposes the higher-
order similarity matrix of the network to characterize its 
topology. It effectively and efficiently identifies the optimal 
local solution through parallel processing of three decom-
position methods. It is important to note that these optimi-
zation extension methods focus solely on node or topologi-
cal information without effectively fusing them. Moreover, 
while there is a greater emphasis on localization informa-
tion, it is also essential to consider overall information about 
the localization network rather than individual nodes. Deep 
learning-based methods [29] can effectively address these 
problems that traditional methods cannot handle.

The potential of deep learning to capture information 
about the attributes and structure of a graph leads to a more 
comprehensive representation, making it better suited for 
downstream community detection tasks. NE2NMF [30] 
fuses network embedding and non-negative matrix fac-
torization to detect dynamic communities. DAEGC [29] 
uses attention coefficients to represent the correlation 
between nodes and capture structural information within 
communities. However, this overlooks the importance of 
node attribute information. Recently proposed CDBNE 
[31] uses graph attention mechanisms when encoding 
topological structure and node attributes. JLMDC [32] uti-
lizes network topology to extract node features guided by 
clustering, enabling the detection of communities within 
the network. However, there are redundancy issues with 
edge and node information encoded using the same atten-
tion mechanism. To address these issues, DDGAE [33] 

introduces a dual-view graph attention encoder that pro-
cesses structural and attribute information as independent 
views to learn embeddings for nodes effectively but still 
faces problems related to similar information. AEGraph 
[34] obtains attribute representation based on structural 
information by enhancing attribute coding, which can be 
utilized for clustering tasks. SEA [35] acquires deep graph 
representation by strengthening the deep attention encoder 
of graph features, while DMGAE [36] introduces a deep 
variational autoencoder to learn node attribute informa-
tion and enhance the accuracy of downstream clustering 
tasks. It is evident that applying deep learning technol-
ogy to community detection, particularly local community 
detection, is a significant approach. Therefore, building 
upon the proposal of the optimal seed node, our method 
presents a deep graph encoder framework aimed at obtain-
ing deeper and more comprehensive attribute and struc-
tural information for local community detection purposes.

Moreover, the random walk technique has proven effec-
tive in capturing intricate network information. RWI [37] 
calculates the random walk distance between nodes in the 
network. Nodes with significant influence on the commu-
nity structure can be identified. Furthermore, AMQCS-
RWS [38] utilizes random walk similarity to discover 
communities closely associated with query nodes and 
similar in the attribute space. TriDNR [39] adeptly inte-
grated random walk and deep network representation to 
capture potential community structures by generating a 
sequence of nodes. Similarly, RoSANE [40] proposed a 
robust attribute network embedding method for sparse 
networks and further enhanced the embedding represen-
tation capability of sparse networks by leveraging random 
walk technology, thereby improving community detection 
performance.

3 � Proposed method

In this section, we present the proposed LCDCN in detail, 
showing the overall framework shown in Fig. 1. We first 
find the core nodes most relevant to the given seed nodes. 
Next, we extract the k-subgraph of the core nodes as the 
model’s input. Then, we encode the attribute and structure 
information of the k-subgraph. We connect each attribute 
encoder layer with the structure encoder’s corresponding 
layer to fuse the attribute-specific representation into the 
structure-aware representation by a delivery operator. At 
the same time, we propose a joint loss to supervise the 
training of the attribute encoder and the structure encoder. 
Finally, we achieve the purpose of community detection. 
Below is a detailed description of our approach.
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3.1 � Problem formulation and definition

In the following, we refer to represent an undirected and 
unweighted graph with |V| = N  nodes as G = (V ,E,X) , 
where V = {v1, v2, ..., vN} denote a set of nodes, 
E = {evu|∀v, u ∈ V} denotes a set of edges between v and u. 
The node attributes for u ∈ V are denoted by xu ∈ ℝ

d , so the 
node attributes for all nodes are stored in X ∈ ℝ

N×d for a 
graph with N nodes. Also, d is the dimension for node attrib-
utes. Similarly, we let Gk

sub
= (Vk

sub
,Ek

sub
,Xk

sub
) denote a sub-

g raph  wi th  |||V
k
sub

||| = Nk
sub

 nodes  o f  G ,  where 
Vk
sub

= {v1, v2, ..., vNk
sub
} d e n o t e  a  s e t  o f  n o d e s , 

Ek
sub

= {evu|∀v, u ∈ Vk
sub

} denotes a set of edges between v 
and u. And the subgraph node attributes for v ∈ Vk

sub
 is also 

denoted by xv ∈ ℝ
d , so the node attributes for all subgraph 

are stored in Xk
sub

∈ ℝ
Nk
sub

×d . Given a seed node v, our goal 
is to detect the set of nodes most similar to the seed node.

3.2 � Location of core nodes

For local community detection, the seed node’s quality 
directly impacts the community’s quality. Therefore, identi-
fying the seed node is crucial in detecting the local commu-
nity. A new method is proposed to locate the core nodes that 
exert greater influence on the regional structure in random 
nodes. First, randomly select a node v as the initial seed node 
and calculate the importance of all nodes within its sec-
ond-order neighbors using Eq. (1). It is widely recognized 
that the degree of a node directly reflects its importance. 
Equation (1) also utilizes the initial seed’s first two layers of 

neighbor information. Compared to the importance function 
that only uses one layer of neighbors, Centrality(v) can better 
obtain the importance of the initial seed node.

here, deg(v) is the degree of the node, N(v) is the neighbor 
set of node v, and �1 is a parameter that regulates the impor-
tance of neighboring nodes. After calculating the importance 
of the k-neighbor nodes of v respectively, we will select the 
top � most important nodes and calculate the correlation 
between them and the random initial seed node v, as shown 
in Eq. (2).

where the Rele(v, u) represents the correlation between 
nodes v and u, and f1(v, u) denotes the first-order correla-
tion between nodes v and u. Similarly, f2(u, v) denotes the 
second-order correlation between nodes v and u, and �2 is a 
parameter that controls the importance of first and second-
order correlations. Finally, we calculate the Nearest with 
Greater Significance and Correlation(NGSC) score of each 

(1)

Centrality(v) = deg(v) +
∑

u∈N(v)

(
�
1
deg(u) + (1 − �

1
)
∑

w∈N(u)

deg(w)

)

(2)Rele(v, u) =�2f1(v, u) + (1 − �2)f2(v, u)

(3)f1(v, u) =
��N(v)

⋂
N(u)��

��N(v)
⋃

N(u)��

(4)f2(v, u) =
��N(N(v))

⋂
N(N(u))��
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⋃
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node in the k-order neighbors of the seed node v. The NGSC 
score is obtained by summing the importance and relevance 
of each node. Then, We select the node with the highest 
score as the local NGSC node of the initial seed nodes, i.e., 
the core nodes.

where, SNGSC(u) represents the NGSC score of node u. � 
and � represent the importance and relevance of joint coef-
ficients, respectively. Empirically, to make the score more 
realistic, we set �=0.1 and �=1.

3.3 � Extraction of k‑subgraph

To efficiently perform local community detection on large-
scale graphs using deep learning methods, we extract the 
k-subgraph Gk

sub
 based on k-neighbors of the core nodes u as 

the input for local communities. While directly accessing the 
k-subtree [41] of core nodes u has high computational effi-
ciency, it limits the transmission of node information, which 
is closely related to node feature aggregation. Influenced by 
[42], to acquire nodes in the subgraph more globally, we 
use a GNN network to extract u’s k-hop neighborhood of 
nodes in the k-subgraph to update u’s representation instead 
of simply using node u itself. Finally, we use a summation 
pooling function to aggregate k-hop neighborhood informa-
tion. Therefore, the k-subgraph extractor updates nodes u 
within the k-subgraph, as shown in Eq. (6).

where, Extra(u,Gk
sub

) represents the k-hop node feature 
extractor, the k denotes the number of hops. Nk(u) refers to 
the set of nodes within k hops of node u, while Gk

sub
 is the 

k-subgraph extracted based on the global graph with core 
nodes as a foundation. Similar to GNN, we enhance the 
expressiveness of the extractor by initializing original graph 
features X as inputs for the k-subgraph extractor. Finally, 
the aggregate feature representation of the k-subgraph is 
obtained through the k-subgraph extractor, which is denoted 
as Xk

sub
 . Specifically, the feature of node u is represented as 

x(u)k
sub

 . Despite continuously obtaining k-hop information 
for nodes through the k-subgraph extractor, its local sub-
graph Gk

sub
 has lightweight characteristics regarding node 

count and hop number. This approach not only avoids addi-
tional overhead but also maximizes performance efficiency.

3.4 � Deep linear AutoEncoder

Node attribute information is important, and effectively 
obtaining the node’s attributes is essential for discovering 
more appropriate communities. Therefore, we propose a 

(5)SNGSC(u) = �Centrality(u) + �Rele(v, u)

(6)Extra(u,Gk
sub

) =
∑

v∈Nk(u)

GNNGk
sub
(v)

Deep Linear AutoEncoder (DLAE) to encode the node’s local 
attribute information for generality. Particularly, through the 
�-layer encoder, the nodes with different characteristics are 
encoded from the original k-subgraph to enrich the hierarchical 
attribute information of nodes. Moreover, the encoded attrib-
ute information by � fully connected layers is fed into the �
-layer attention network to obtain a more appropriate node 
representation.

We assume that the DLAE has � layers of neural networks. 
Specifically, the output ẑ of the �-th layer of the autoencoder 
can be denoted as Eq. (7).

where �(.) is a non-linear activation function, such as ReLU 
or Tanh, and w�

e
 and b�

e
 are the weight matrix and bias of 

the �-th layer for encoder.ẑ�−1
v

 is the attribute information 
representations in the � -1 layer. Specifically, the input of the 
0-th layer of the deep linear autoencoder is the node feature 
X

k
sub

 of the k-subgraph, and the output of the �-th layer is 
Ẑ
� , which serves as the final output of the encoder. In the 

same way, we define a similar decoder based on the encoder 
function as Eq. (8). The decoder aims to map the encoded 
result back to the original space, thereby reconstructing the 
generated data.

here, w�

d
 and b�

d
 are the weight matrix and bias of the �-th 

layer for the decoder. Correspondingly, the input of the 0-th 
layer of the decoder is the output Ẑ

� of �-th layer of the 
encoder, and the output of the �-th layer is X̃k

sub
 , which is 

the final output of the decoder.
Considering that the output of the decoder is a reconstruc-

tion of the original graph, we formulate a loss function as 
Eq. (9) with the goal of minimizing the disparity between 
the decoder output and the original data. Training deep linear 
autoencoder in this manner can more effectively enhance the 
attribute information of nodes.

where Lres represents the attribute loss function, xk
sub

 denotes 
the feature representation obtained after fusion by the k-sub-
graph extractor, X̃k

sub
 is the output feature representation of 

the decoder, Nk
sub

 stands for the number of nodes in the 
k-subgraph, and || ⋅ ||2

2
 signifies the square of the L2 norm.

(7)ẑ
�

v
= 𝛿

(
w

�

e
ẑ
�−1
v

+ b�
e

)

(8)z
�

v
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w

�
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z
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)
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Lres = lossres(X
k
sub

, X̃
k

sub
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=
1

2Nk
sub
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sub∑

i=1

∣∣ xi − x̃i ∣∣
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2
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1
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∣∣2
2



	 International Journal of Machine Learning and Cybernetics

3.5 � Graph attention AutoEncoder

In this section, we encode the local structural informa-
tion of the k-subgraph using a novel Graph Attention 
AutoEncoder(GAAE) compared to previously. At the same 
time, the GAAE simultaneously incorporates the node 
attribute information learned in the DLAE to synthetically 
process two types of enhanced feature representations, 
thereby improving the accuracy of community detection 
results. Consequently, we obtain a comprehensive repre-
sentation of node information through the �-layer GAAE.

3.5.1 � Encoded of k‑subgraph by graph Attention

To learn more comprehensive node structure information, 
we constructed a variant of the graph attention network 
for a graph encoder to learn the attribute and structure 
information of the subgraph. Specifically, the encoder 
learns the embedding representation of nodes by encoding 
various neighbor information for each node. Subsequently, 
considering the limitations of the traditional coefficient 
of concern, which only considers the absolute coding 
between graphs and disregards the measurement of struc-
tural similarity, we have opted to utilize the new structural 
similarity as the coefficient of concern. This is intended 
to gauge the significance of different nodes from a graph 
structure perspective. Therefore, different neighbors will 
have varying levels of importance, which aligns with the 
characteristics of the attention network and results in node 
features with different emphases. Thus, we represent the 
embedding of node v using a layer-wise graph attention 
strategy, as shown in Eq. (10).

where f (x) = Wf x is the linear value function and Wf  is a 
linear projection matrix that can be trained.Pe represents a 
novel attention coefficient that is parameterized by trainable 
linear projection matrices W� and W� , as shown in Eq. (11).

It is noteworthy that we designate the initial 0-th layer fea-
ture input of GAAE as the output Xk

sub
 of the k-subgraph 

extractor, as formally described in Eq. (12).

(10)h
�

v
=

�

u∈N(v)

pe(h
�−1
v

, h�−1
u

)
∑

w∈N(v) pe(h
�−1
v

, h�−1
w

)
f (h�−1

u
)

(11)pe(hv, hu) = exp(
W�hv ⋅W�hu

‖‖W�hv
‖‖
2

2
+
‖‖‖w�hu

‖‖‖
2

2

)

(12)h
1
v
=

�

u∈N(v)

pe(x(u)
k
sub

, x(u)k
sub

)
∑

w∈N(v) pe(x(v)
k
sub

, x(w)k
sub

)
f (x(u)k

sub
)

Topologically, edges are the only indicators of connections 
between nodes, and the number of common neighbors indi-
cates the strength of node connections. While the attention 
coefficient structurally focuses on the correlation between 
nodes, it does not account for the edge strength. Therefore, 
a new calculation method is being considered to measure 
the strength of connections between nodes and incorporate 
it into the attention network as an attention weight. Since 
the graph exhibits complex structural relationships, we cal-
culate the connection strength by determining the number of 
common neighbors of node neighbors, as shown in Eq. (13).

here, pf (v, u) is the fiend-measure where �(v, u) = 1 if evu ∈ E 
and �(v, u) = 0 otherwise. Therefore, Eq. (10) is rewritten as 
Eq. (14) with a fiend-measure value.

The attention encoder pays more attention to the structural 
information of the graph and less attention to the attribute 
information, resulting in insufficient expression of node 
features. Therefore, we utilize the attribute information 
obtained from the DLAE as input for the GAAE encoder 
to compensate for the missing attribute information. Spe-
cifically, we consider combining the attribute information 
representations z�

v
 from the DLAE with h�

v
 from the GAAE 

encoder for enhanced feature representations as Eq. (15).

where the trade-off parameter � balances the impacts of 
attribute information and structure information. In this way, 
the GAAE encoder can pay attention to structural and attrib-
ute information at each layer. Therefore, we use z�

v
 as the 

input for the �-1-th layer attention network to generate the 
node representation of the �-th layer.

3.5.2 � Decoded of k‑subgraph by graph attention

We construct the loss function using the simplest graph 
decoder to optimize the output representation of the encoder. 
Different decoders focus on various aspects of information 
within the graph. We reconstruct the subgraph using the out-
put of the encoder and then create a loss function based on 
the reconstructed and original graphs.
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Inspired by the previous work of [43], nodes with higher 
similarity are more likely to be connected by edges in the 
feature space. The similarity between nodes u and v can be 
approximatively represented by the inner product of their 
features hu and hv . Consequently, a larger inner product indi-
cates a higher likelihood of interconnected edges between 
the nodes. Finally, by applying the sigmoid function, these 
inner products are transformed into values within the range 
(0, 1), allowing for estimation of the probability of adja-
cency between nodes. This process generates a reconstructed 
adjacency matrix Ã similar to the A. So, we adopt the inner 
product of the GAAE encoder’s output H and its transpose 
to predict the connection relationship between nodes in the 
reconstructed graph. We reconstruct the adjacency matrix 
as Eq.  (17).

where Ã is the reconstructed structure matrix of the k-sub-
graph and � is the activation function, such as sigmoid.

3.5.3 � Loss function of graph attention

We reconstruct the original graph using the above method 
to minimize the difference between the reconstructed image 
and the original graph. The encoder is optimized to generate 
more appropriate node features by minimizing the Eq. (18).

3.6 � Joint self‑supervised optimization

While high-quality embeddings accurately capture node 
attribute and structure information, they may not always 
result in the most optimal community detection. Local com-
munity detection aims to identify a group of similar nodes 
based on a seed node, which must be integrated as a step in 
embedding optimization. This is crucial and essential for 
the task of community detection. On the other hand, node 
labels are not considered when learning node attributes and 
features, which is detrimental to community detection. To 
align the generated node embedding representation more 
closely with the characteristics of community detection 
while aggregating structure and attributes, we propose an 
optimization strategy for embedding. The aim is to enhance 
the usefulness of the generated node representation for com-
munity detection.

We evaluate this score based on similarity to find the set 
of remaining nodes that belong to the same community as 
the seed node. The higher the similarity, the more likely it is 

(17)Ã = �(HT
H)

(18)

Lcre = losscre(A, Ã)

= −
1

Nk
sub

Nk
sub∑

i=1

Nk
sub∑

j=1

(aij log ãij + (1 − aij) log(1 − ãij))

that the seed node will become a member of the community. 
Therefore, we first calculate the similarity coS(v, u) between 
the seed node v and the remaining local nodes u using cosine 
similarity, as shown in Eq.  (19).

To comprehensively measure the symmetric difference 
between the seed node and surrounding nodes, we propose 
a new loss function that considers the similarity between 
nodes to minimize the difference between them, thereby 
making similar nodes more similar and dissimilar nodes less 
so. The nodes are more dissimilar, which helps to find more 
accurate communities based on seed nodes. Therefore, self-
supervised community optimization is performed on node 
embeddings according to Eq. (20)

If P and Q are significantly different from each other, they 
will have no overlap, resulting in the disappearance of the 
gradient. Therefore, we modified it and proposed S =

(P+Q)

2
 

so that the original asymmetric loss becomes a symmetric 
structure, as shown in Eq. (21).

the quv measures the similarity between node embedding u 
and community seed node embedding v, and we measure it 
using the Eq.  (21) distribution. Specifically, quv represents 
the soft label distribution indicating whether each node and 
the community seed node belong to the same community.

After obtaining the community labels for both the nodes 
and seed nodes, our objective is to facilitate the gathering of 
nodes similar to the seed node while ensuring that dissimilar 
nodes remain distant from the seed node. To achieve this, 
we establish that the label distribution’s target distribution 
is puv , as shown in Eq.  (23).

We supervise the current community distribution through 
the target distribution Q, making the resulting embeddings 
easier to find communities based on seed nodes. In this way, 
we combine the structural and attribute loss functions to 
construct a new joint target loss function, such as Eq. (24).
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where Lres and Lcre are the attribute loss function and the 
structural loss function, and Lclu is the community optimiza-
tion loss function. The hyper-parameter � is a coefficient that 
controls the balance in between.

As in the traditional, we jointly optimize the loss func-
tion through stochastic gradient descent to achieve optimal 
parameters. When the network is trained until the model 
converges, we take the result of the soft assignment Q opti-
mization loss as the final community detection result. For-
mally, as shown in Eq. (25).

4 � Experiments

In this section, we conducted comprehensive experiments to 
demonstrate the superiority of the proposed LCDCN frame-
work in local community detection on widely used graph 
networks.

4.1 � Datasets

4.1.1 � Real‑world networks

We conducted experiments on ten standard real-world 
networks of various scales commonly used for evaluating 
attributed graph analysis. These networks consist of seven 
large-scale datasets and three relatively small-scale data-
sets. Detailed statistical information about the datasets is 
presented in Table 1. Specifically, The Polblogs dataset [44] 
focuses on political blogs in the United States, categorizing 
each blog as conservative or liberal based on its political 
attributes. In contrast, the Mich dataset [45] is sourced from 
a university’s social network and obtained from Facebook. 

(24)L = Lres + Lcre + �Lclu

(25)ŷu = argmax quv

The DBLP [46] dataset contains comprehensive informa-
tion about academic papers, including abstracts, authors, 
year of publication, venue, and title. The Orkut [47] dataset 
includes friendship connections and real communities from 
the Orkut.com online platform. The BlogCatalog [46] is a 
social blog relationship network that contains social rela-
tionships between bloggers and group members. Wikipedia 
[46] provides an English dataset with annotations specifi-
cally designed for domain detection sourced from Wikipedia 
articles. The HepPh [48] citation network is derived from 
the arXiv and features nodes representing papers and edges 
representing citation relationships. The Slashdot [48] social 
network comprises users as nodes and their friendships as 
edges. In the WebStanford [48] dataset, each node represents 
a page in a web network, and an edge signifies a connection 
between two different pages. The Amazon [49] network is a 
product purchase network where connections link two prod-
ucts purchased together, and communities represent various 
product categories. These datasets are commonly used to 
evaluate methods for embedding attributed graphs. In all 
datasets, each node belongs to one community. We divide 
the dataset randomly into 60% for training, 20% for testing, 
and 20% for validation purposes.

4.1.2 � Synthetic networks

We selected real datasets and artificial synthetic networks 
generated based on the artificial generative model LFR [50]. 
The model method in this article can be more comprehen-
sively evaluated through such a unique dataset. Therefore, 
according to the control parameters and their meanings 
in Table 2, we generated five special datasets of varying 
scales through LFR, named LFR-0, LFR-1, LFR-2, LFR-3, 
and LFR-4 in Table 3, respectively. Particularly, to ensure 
that the visual experiments in the following text can visu-
ally reflect the accuracy of the algorithm and the differences 
between the baseline algorithm, we only choose to use 
LFR-0 with a small number of nodes for visual experiments 
and use the rest of the dataset for other experiments.

Table 1   Real-world dataset summary

 Dataset Nodes Edges Communities

Polblogs 1490 19090 2
Mich 2933 54903 13
Dblp 12547 55748 4
Orkut 11751 237171 5
BlogCatalog 10312 333983 39
Wikipedia 4777 184812 40
HepPh 34546 421578 Unknown
Slashdot 77360 905468 Unknown
WebStanford 281903 2312497 Unknown
Amazon 334863 925872 49732

Table 2   Parameters for the LFR benchmark

Parameter Description

N number of nodes

k average degree

maxdeg maximum degree
� mixing parameter
�
1

minus exponent for the degree sequence
�
2

minus exponent for the community size distribution
minc minimum for the community sizes
maxc maximum for the community sizes
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4.2 �  Experimental settings

4.2.1 � Evaluation metrics

To comprehensively evaluate our proposed method, we 
employed three evaluation metrics, which are widely rec-
ognized in local community detection. The first metric is the 
F1 score, a well-known measure that combines Recall and 
Precision, and is defined as follows:

In general, the F1 score ranges from [0, 1], where a higher 
value indicates improved precision in community detection 
achieved by our algorithm.

Furthermore, we also use another commonly used metric 
for local community detection, called Conductance Con, to 
evaluate the accuracy of our algorithm. The Con refers to 
the ratio of internal nodes to edges connected to the outside 
of the local community, which can accurately describe the 
tightness of the internal structure of the local community. 
The definition of Con is as follows:

When �(u, v) = 1 ,  node u  and v  are connected 
through an edge. Otherwise, �(u, v) = 0 . In addi-
tion,vol(C) =

∑
u∈C deg(u) , and the other end point in the 

complement set C = V�C . Correspondingly, the value of 
Con also falls within the [0, 1] range. On the contrary, the 
difference from the F1-score is that the lower [51] the Con, 
the better the accuracy of the community detection results 
by our algorithm will be.

Finally, we choose a third evaluation metric, the local 
NMI evaluation index, to further reveal the community 
structure information. Different from the global NMI value, 
the calculation of local NMI only focuses on the local com-
munity structure where the seed node is located, without 
considering the overall community structure, so that the 
calculation results can more accurately reflect the accuracy 
of the local community. The NMILocal value is defined as 
follows:

(26)

F1(Cdet, Cture) = 2 ×
Precision(Cdet, Cture) ⋅ Recall(Cdet, Cture)

Precision(Cdet, Cture) + Recall(Cdet, Cture)

(27)Con(C) =

∑
u∈C

∑
v∈C

�(u, v)

min(vol(C), vol(C))

Similar to the global NMI, when NMILocal is close to 1, the 
detected community structure is closer to the real situation; 
on the contrary, it means that the detected community qual-
ity is low.

4.2.2 � Baseline algorithms

To verify the performance of the proposed architecture, 
we selected several state-of-the-art methods recently pro-
posed based on community detection to conduct compara-
tive experiments with the LCDCN. The baseline methods 
include recent state-of-the-art deep community detection 
methods like EFR-DGC, DFCN, and SDCN. In addition, 
considering that traditional methods dominate the field of 
local community detection, we have selected some recent 
traditional methods that have demonstrated superior perfor-
mance in this area for comparison. Such as ASFWF, LCDS-
A, LCDPC, and LCDMD. The summary of all compared 
methods is as follows:

•	 (EL-Trans [52]) The EL-Trans is a deep learning mode 
in local community detection; the proposed knowledge 
graph Embedding model is based on entity feature infor-
mation and local importance.

•	 (SDCN [53]) The SDCN algorithm uses a novel transfer 
operator and dual self-supervision modules. In this way, 
multiple data structures, from low-order to high-order, 
are naturally combined with the various representations 
learned by the autoencoder.

•	 (DFCN [13]) The DFCN integrates two sample embed-
dings from the local and global levels to perform consen-
sus representation learning. Afterward, a more accurate 
target distribution is obtained by estimating the similarity 
between sample points and precomputed cluster centers 
in the latent embedding space.

•	 (ASFWF [27]) The ASFWF algorithm employs two 
strategies: strong fusion, which takes into account the 
information and connections between the two nodes and 
the local community, and weak fusion, which evaluates 

(28)NMILocal = −2 ×

∑
i

∑
j

Xij log
�

XijN

XiXj

�

∑
i

Xi log
�

Xi

N

�
+
∑
j

Xj log
�

Xj

N

�

Table 3   Parameters 
configuration of LFR-0, LFR-1, 
LFR-2, LFR-3, and LFR-4

Networks N k maxdeg � �
1

�
2

 minc  maxc

LFR-0 100 5 15 0.1 2 1 10 50
LFR-1 1000 10 50 0.1 2 1 20 50
LFR-2 5000 10 50 0.1 2 1 20 90
LFR-3 10000 10 50 0.1 2 1 20 100
LFR-4 20000 10 50 0.1 2 1 20 50
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parameter similarity. These strategies are alternately 
cycled to fuse the nodes.

•	 (LCDS-A [54]) The LCDS-A determines the most sta-
ble anchor community by tracking the evolution of key 
nodes in the community over time, which are referred to 
as anchors.

•	 (LCDPC [55]) The LCDPC first replaces the given node 
with a new seed node by calculating node importance 
and node similarity. Finally, the similar nodes between 
the potential community and the extended community 
of qualified nodes are selected and added to the initial 
community to expand the community.

•	 (LCDMD [56]) The LCDMD algorithm is divided into 
two phases: the core area detection phase and the local 
community expansion phase, based on the proximity of 
the local community. Finally, these two different stages 
are alternately performed to detect local communities 
that satisfy the specified conditions.

4.2.3 � Experimental settings

To ensure the fairness of the experiment and enable the base-
line methods to achieve the best performance, we adhered 
to the parameter settings specified in the original paper of 
the baseline experiment. For our model, we set the num-
ber of layers � of the k-subgraph deep linear autoencoder 
with L = 5 fully-connected layers. At the same time, we 
maintain the number of layers � of k-subgraph attention 
autoencoder with the same fully connected layer, resulting 
in the k-subgraph attention auto-encoder layer L = 5 . At the 
beginning of the experiment, we initially employed an end-
to-end approach to pre-train the deep linear autoencoder and 
attention autoencoder. This approach serves a dual purpose: 
initializing the model parameters in the network and accel-
erating the model’s convergence to stability. Specifically, 
we set different dimensions in each layer of the deep lin-
ear autoencoder and attention autoencoder but ensure that 
the deep linear autoencoder and attention autoencoder have 
the same output dimension at each layer. Specifically, we 
set Hidden_1 = 1024 , Hidden_2 = 512 , Hidden_3 = 256 , 
Hidden_4 = 128 , Hidden_5 = 32 , and Embedding = 16 . 
Based on experience, during the pre-training stage, we uti-
lize the commonly used optimizer AdamW, set the number 
of iterations to 65, initialize the learning rate to 1 × 10−3 , and 
identify the local optimum using the cosine annealing algo-
rithm. We optimize the linear encoder and attention encoder 
using a self-supervised mechanism to minimize the Lres and 
Lcre loss functions. After completing the pre-training phase, 
we integrate the initially trained deep linear encoder and 
attention encoder into a unified module to form our model. 
Finally, according to the hyper-parameter experiment, when 
the hyper-parameters � = 0.2 and � = 1.0 , the experimental 
results reached the optimal solution, respectively.

4.3 �  Experimental results and analysis

To enhance the credibility of the experimental results, we 
conducted experiments on both real and synthetic datasets. 
We selected various evaluation indices for local community 
detection to assess the experimental performance. Consid-
ering the sensitivity of the initial seed to local community 
detection, we selected different numbers of nodes as ini-
tial seeds based on the dataset’s node count to minimize 
the seeds’ influence on the experimental outcomes. In 
the actual dataset, when the number of nodes is less than 
5000, 3000 nodes are randomly chosen as initial seeds. For 
node numbers falling within the range of 5000 to 10000, 
6000 nodes are selected as initial seeds. When the number 
of nodes ranges from 10000 to 100000, 10000 nodes are 
randomly chosen as initial seeds. If the number of nodes 
exceeds 100000, 100000 random seeds are selected for local 
community detection experiments to assess the method’s 
competitiveness. In addition, in the synthetic dataset, half of 
the total number of nodes is used as the initial seed number 
to enhance the interpretability of the experimental results. 
Finally, the ultimate experimental result is the average value 
of the same evaluation index from different nodes within a 
single dataset.

4.3.1 � The results and analysis on real‑world networks

This experiment evaluated the disparity between the 
acquired community structure and the actual ground com-
munity by analyzing various evaluation indicators across 
different datasets and baseline algorithms. F1-score, Con, 
and local mutual information value NMILocal of the resulting 
communities are presented in Tables 4, 5, and 6, respec-
tively. It can be observed from the results in these tables that 
across different evaluation metrics, the LCDCN method out-
performs nearly all other approaches. This superiority can 
primarily be attributed to several key inherent factors within 
LCDCN. Especially when compared with the latest deep-
embedded work EL-Trans, it surpasses EL-Trans by more 
than twice on various indicators. This is because our work, 
on the one hand, better handles the relationship between 
neighboring nodes through novel attention weights, obtain-
ing more comprehensive structural information. On the other 
hand, our model effectively introduces a supervised optimi-
zation mechanism to guide the model towards the desired 
direction. In addition, it is worth noting that the LCDCN 
performs well on relatively small-scale datasets such as 
Polblogs and Mich. It also achieves the highest scores on 
large-scale datasets like Slashdot and even on super-large-
scale datasets like Amazon. There are two main reasons 
for this phenomenon. Firstly, our selection strategy can 
better select core seeds as the starting point of community 
detection, thereby improving the accuracy of community 
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detection from the source. Secondly, setting the number of 
seeds chosen in small-scale and super-large-scale datasets 
can reduce the algorithm’s time and memory overhead and 
make the local community discovery work independent of 
the graph’s size. By doing so, LCDMD still demonstrates 
excellent performance on large-scale datasets. In contrast, 
the deep embedding method EL-Trans and the deep cluster-
ing method DFCN cannot avoid this limitation, which results 
in relatively poor experimental outcomes.

However, as can be seen from Tables 4, 5, and 6, our 
proposed method also has a few limitations, resulting in 

a slightly lower amount of data than the baseline method. 
This phenomenon occurs especially in the Wikipedia dataset 
because, despite our emphasis on the influence of neighbor-
ing nodes on the structure, in the case of Wikipedia, which 
has a high node density, nodes with more neighbors tend 
to prioritize neighbor-related information. Especially when 
the number of neighboring layers increases, the algorithm’s 
complexity significantly rises, leading to a decrease in algo-
rithm performance. Therefore, our proposed method will 
be more suitable for scenarios with a slightly lower node 
density in the graph.

Table 4   The scores of F
1
 on 

real-world networks
Data EL-Trans SDCN DFCN ASFWF LCDS-A LCDPC LCDMD LCDCN

Polblogs 0.6246 0.6738 0.6604 0.7071 0.6955 0.7014 0.7428 0.8343
Mich 0.6482 0.6837 0.6128 0.7754 0.6978 0.7021 0.7478 0.8133
Dblp 0.4158 0.4619 0.4876 0.7152 0.5043 0.6977 0.7071 0.7237
Orkut 0.6207 0.6221 0.5989 0.6876 0.5541 0.5875 0.6804 0.6599
BlogCatalog 0.4549 0.5338 0.5892 0.6418 0.6327 0.5988 0.6095 0.7031
Wikipedia 0.6087 0.6603 0.6620 0.6975 0.5942 0.6119 0.6228 0.6559
HepPh 0.4768 0.4967 0.4837 0.5683 0.4203 0.4723 0.5015 0.5849
Slashdot 0.4463 0.4361 0.4088 0.6629 0.4978 0.5361 0.5796 0.6585
WebStanford 0.3098 0.4297 0.4496 0.5997 0.2332 0.4987 0.5048 0.6831
Amazon 0.2879 0.3212 0.3316 0.4768 0.4921 0.5079 0.5226 0.6231

Table 5   The scores of Con on 
real-world networks

Data EL-Trans SDCN DFCN ASFWF LCDS-A LCDPC LCDMD LCDCN

Polblogs 0.4020 0.4496 0.5768 0.2968 0.3208 0.3230 0.2921 0.2033
Mich 0.5889 0.4766 0.5055 0.4142 0.4933 0.4295 0.4683 0.3991
Dblp 0.5743 0.5428 0.4896 0.3729 0.4933 0.5585 0.3946 0.3985
Orkut 0.5452 0.5438 0.6877 0.4591 0.4977 0.5182 0.4858 0.4065
BlogCatalog 0.4923 0.5438 0.5234 0.3996 0.4870 0.4256 0.4098 0.3999
Wikipedia 0.4044 0.4496 0.3768 0.3092 0.316 0.4579 0.3424 0.3183
HepPh 0.5342 0.5455 0.4964 0.4668 0.5002 0.4886 0.4827 0.4663
Slashdot 0.5978 0.6687 0.6238 0.5053 0.5326 0.5895 0.5097 0.5123
WebStanford 0.6632 0.6993 0.6460 0.6011 0.5874 0.5927 0.4908 0.4837
Amazon 0.6786 0.5893 0.5533 0.5024 0.5437 0.5621 0.4438 0.4667

Table 6   The scores of NMI
Local

 
on real-world networks

Data EL-Trans SDCN DFCN ASFWF LCDS-A LCDPC LCDMD LCDCN

Polblogs 0.4836 0.5748 0.6069 0.7955 0.7364 0.7558 0.6189 0.8134
Mich 0.5208 0.5030 0.4998 0.7425 0.6957 0.7011 0.6748 0.7956
Dblp 0.5206 0.4703 0.4923 0.6435 0.5725 0.6025 0.5947 0.6347
Orkut 0.4998 0.4837 0.4232 0.5923 0.5124 0.5026 0.5937 0.5930
BlogCatalog 0.4182 0.3997 0.4205 0.5223 0.5033 0.4978 0.5034 0.5991
Wikipedia 0.5931 0.5537 0.5025 0.6997 0.6341 0.4978 0.7021 0.6938
HepPh 0.4131 0.4852 0.4408 0.5984 0.5023 0.5850 0.5376 0.6000
Slashdot 0.3956 0.3846 0.4011 0.5323 0.5028 0.5527 0.5413 0.5855
WebStanford 0.2224 0.3703 0.3406 0.4447 0.4078 0.3585 0.4078 0.4485
Amazon 0.1628 0.2856 0.2497 0.5621 0.4432 0.4998 0.5108 0.6233
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4.3.2 � The results and analysis on synthetic networks

To ensure experimental fairness, we adopted the same num-
ber of initial seed nodes as in the real network and calcu-
lated the evaluation index scores using identical methods. 
We evaluated the performance of our proposed method 
LCDCN against baseline approaches and four synthetic net-
works of varying sizes. Table 7 presents F1 , while Tables 8 
and 9 display Con and NMILocal on the four synthetic net-
works. The experimental results demonstrate that LCDCN 
consistently outperforms other methods across all datasets 
and evaluation indexes, indicating its ability to detect local 
community structures resembling those in real communities 
accurately. Notably, LCDCN achieves near-perfect align-
ment with actual communities on the small-scale LFR-1 
dataset. This can be attributed to the advantages offered by 
synthetic networks for maximizing LCDCN’s performance 
and LCDCN’s capability to learn optimal node features and 
structural information from smaller datasets. Furthermore, 
on the large-scale LFR-4 dataset, LCDCN demonstrates out-
standing performance, surpassing all baseline methods in 
every index, considered state-of-the-art techniques. One cru-
cial factor contributing to this achievement is that baseline 
methods are constrained by sensitivity towards seed node 
selection and dataset size sensitivity; thus, they fail to out-
perform our proposed method LCDNN regarding algorith-
mic performance. From Table 9 depicting NMILocal on the 
LFR-3 dataset, ASFWF demonstrates a slight advantage over 
other approaches. However, despite mitigating seed selection 

sensitivity through integrating two different strategies within 
the ASFWF framework, it fails to effectively integrate 
information from diverse types of nodes, resulting in sub-
optimal solutions at a local level compared to our approach 
- LCDCN. Therefore, we can conclude that LCDCN can 
stably achieve the best results for different datasets.

4.4 � Hyper‑parameters analysis

In our experiments, the values of three hyper-parameters � , 
� , and k directly determine the performance of our model. 
The first hyper-parameter, � , functions to combine attribute 
information and structural information with varying weights. 
The second hyper-parameter is � , which controls the propor-
tion of clustering loss. The last hyper-parameter is k, which 
represents the local order. Therefore, we conducted vari-
ous experiments to assess the influence of different hyper-
parameters on the outcomes and to employ suitable models 
to achieve the optimal solution.

4.4.1 � Analysis of hyper‑parameter �

As previously stated, � is the control parameter that inte-
grates attribute information into structural information. 
Only reasonable fusion can make the combined information 
more accurate. To achieve the best solution, we uniformly 
select eleven points in the range [0,1] and calculate F1 and 
NMILocal using various data sets. We aim to identify the most 

Table 7   The scores of F
1
 on 

synthetic networks
Data EL-Trans SDCN DFCN ASFWF LCDS-A LCDPC LCDMD LCDCN

LFR-1 0.7279 0.7388 0.7221 0.9690 0.9005 0.8832 0.9206 1.0000
LFR-2 0.6747 0.6822 0.6806 0.9281 0.7832 0.7307 0.8733 0.9529
LFR-3 0.5654 0.5250 0.5995 0.8871 0.7058 0.7990 0.7956 0.8982
LFR-4 0.5211 0.5119 0.5376 0.7511 0.7118 0.6902 0.7845 0.8581

Table 8   The scores of Con on 
synthetic networks

Data EL-Trans SDCN DFCN ASFWF LCDS-A LCDPC LCDMD LCDCN

LFR-1 0.3835 0.3366 0.3276 0.2017 0.3149 0.3341 0.2920 0.1778
LFR-2 0.3567 0.3088 0.3254 0.2472 0.3971 0.3072 0.3300 0.1996
LFR-3 0.4455 0.4647 0.4896 0.4063 0.5019 0.4972 0.3998 0.2019
LFR-4 0.6448 0.6606 0.5996 0.4895 0.6482 0.6219 0.5210 0.3098

Table 9   The scores of NMI
Local

 
on synthetic networks

Data EL-Trans SDCN DFCN ASFWF LCDS-A LCDPC LCDMD LCDCN

LFR-1 0.7089 0.7356 0.7402 0.8447 0.7028 0.6988 0.8021 0.9129
LFR-2 0.6674 0.6922 0.6218 0.7548 0.6509 0.6532 0.7092 0.8859
LFR-3 0.6061 0.5948 0.5768 0.8189 0.7010 0.5956 0.6650 0.8093
LFR-4 0.4950 0.4837 0.4578 0.6927 0.5867 0.6654 0.6982 0.7012
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appropriate value through multiple iterations and verifica-
tions. The results are shown in Figs. 2 and 3.

It is not difficult to see from Figs. 2 and 3 that when 
� = 0.2 , the model’s performance reaches its peak. As the 
value of � increases gradually, the final score of the model 
decreases slowly. The reason for this result is that attribute 
information complements structural information. There-
fore, incorporating attribute information will undoubtedly 
enhance the model’s performance. It is important to note that 
structural information in a graph contains significant data 
that can more directly reflect the graph’s structural charac-
teristics than attribute information. Therefore, the attribute 
information of the graph complements and enhances the 
structural information.

4.4.2 � Analysis of hyper‑parameter 


The second hyper-parameter � appears in Eq. (24). As shown 
in Eq. (24), its role is to balance the optimization term in 
the loss function, which will control the performance of 
community discovery. We deliberately selected several odd 
numbers of varying magnitudes to investigate the influence 
of various values � on the outcomes. The purpose of select-
ing odd numbers is that it allows for arbitrary distribution 
of � . It can be punitive to discourage the community from 
moving in the wrong direction. In the same way, it can also 
serve as a reward item to incentivize community detection 
more effectively. Therefore, we select representative num-
bers at different intervals to validate the experimental results 
and to determine the most appropriate values to enhance 
experimental performance. The F1 and NMILocal in different 
datasets shown in Fig. 4a, b.

As shown in the four subfigures of Fig. 4, when � = 1 , the 
model’s performance reaches its optimal level. In addition, it 
is not difficult to see from the figure that although the range 
of parameters is extensive, the impact on the experimental 
results is minimal. This is because our method is robust, 
which ensures stable results. Consequently, the optimiza-
tion parameters remain stable, enhancing its optimization 
performance.

4.4.3 � Analysis of hyper‑parameter k

k is a hyper-parameter in the k-subgraph extractor. Spe-
cifically, k determines the number of layers to traverse the 
neighbors around the seed node. On the one hand, having 
too many layers can cause the experiment’s memory con-
sumption exponentially, eventually leading to memory over-
flow, which is not conducive to the experiment. On the other 
hand, having too many levels will increase the experiment’s 
complexity, leading to time consumption challenges. On 
the contrary, having too few levels may result in incomplete 
local community detection and an inadequate graph struc-
ture. Therefore, selecting an appropriate value for k ensures 
experimental accuracy and complexity. Figure 5a, b illus-
trate the influence of the selection of k in different datasets 
on F1 and NMILocal.

When k is around 3, we observed that the models exhibit 
the best performance. When k does not exceed 3, the impact 
of the k-subgraph extractor on the experiment is relatively 
large. This is because too little subgraph information cannot 
enhance the performance of local community detection. On 
the contrary, it will reduce the performance of community 
detection. When k exceeds 3, the experimental performance 
gradually stabilizes, but there is also a slight decreasing 
trend. The reason for this phenomenon is that as the number 
of layers increases, the complexity of the experiment also 
increases, leading to memory overflow, especially in datasets 

Fig. 2   The score of F
1
 with hyper-parameter � in different datasets

Fig. 3   The score of NMI
Local

 with hyper-parameter � in different data-
sets
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with a large average node degree. This phenomenon is more 
pronounced, ultimately resulting in poor experimental per-
formance. It cannot continue to increase or even decrease.

4.5 � Ablation studies

In this section, we conduct ablation experiments to validate 
the efficacy of different modules in LCDCN, and the results 
are presented in Figs. 6, 7, and 8. Specifically, first of all, 
we employ the DLAE, GAAE, as well as their synthesis 
LCDCN to generate feature representations, respectively. 
These methods were used to compute the corresponding 

evaluation index results on two real and two synthetic data-
sets, and the findings are presented in Fig. 6a,b,c,d. Figure 6 
reveals that using DLAE or GAAE alone fails to achieve 
comparable performance to LCDCN; in fact, it falls sig-
nificantly short even by less than half of its results. This 
discrepancy can be attributed to DLAE’s inability to accu-
rately capture complex graph data structures solely based on 
attribute information, which inadequately reflects real struc-
tural states. Similarly, although GAAE exhibits improved 
performance compared to DLAE in capturing structural 
information for community detection tasks, it still falls 
short compared to LCDCN due to its failure to capture node 

(a) (b)

Fig. 4   The score of F
1
 and NMI

Local
 with hyper-parameter � in different datasets

Fig. 5   The score of F
1
 and NMI

Local
 with hyper-parameter k in different datasets
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attribute information, which is crucial for a comprehensive 
analysis of graph data. Therefore, from an individual module 
perspective, only through their organic integration can they 
mutually maximize potential and enhance the accuracy of 
community detection.

Subsequently, we proceeded with the design of ablation 
experiments by individually substituting the DLAE module 
for capturing attribute information and the GAAE module 
for capturing structure information. Additional experimen-
tal results are presented in Figs. 7 and 8. Specifically, we 
initially replaced the DLAE module with an ordinary, sim-
ple, basic attribute encoder and a stacked attribute encoder. 
Furthermore, our approach substituted graph convolutional 
network (GCN) and graph attention network (GAT) for the 
GAAE module. Finally, we experimented with the replaced 

components on the real dataset BlogCatalog and the syn-
thetic dataset LFR-2. We evaluated the scores of different 
method combinations on the two evaluation metrics F1 and 
NMILocal.

The results presented in Figs. 7 and 8 demonstrate that 
the various modules of LCDCN consistently outperform 
other methods of the same type, both on real and synthetic 
datasets. This indicates that our model’s module compo-
nents perform better than other methods with similar func-
tionality. Several reasons contribute to this observation: 
Firstly, the deep linear encoder in LCDCN significantly 
enhances learning generalization ability by incorporating a 
unique bias term. Secondly, unlike traditional approaches, 
the attention encoder in our model reconstructs attention 
coefficients based on neighboring nodes, enabling the fusion 

(a) (b)

(c) (d)

Fig. 6   Local communities detected results by F
1
-Score, Con, and NMI

Local
 based on different datasets
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of higher-order information as an attention mechanism 
within LCDCN. Consequently, its performance surpasses 
graph neural networks and traditional attention networks. 
Additionally, we observed a mild and insignificant decline 
in experimental performance when excluding the attribute 
encoding component; however, omitting the structure encod-
ing component resulted in a significant overall decrease in 
performance. This finding confirms that attribute informa-
tion is complementary while structural information domi-
nates graph data structures. In summary, each module of 
LCDCN exhibits strong capabilities for processing node 
information.

In addition, it is evident from Figs. 7 and 8 that there 
exists a significant distinction between encoders lacking 
attribute encoding and structure encoding and those with 
encoders. This proves the importance of both attribute and 
structural information for graph data structures. Further-
more, it is observed from Figs. 7 and 8 that the basic and 
stack attribute encoders have minimal impact on the experi-
mental results, indicating that more than simply stacking 
encoders does not notably enhance model performance. 
In contrast, DLAE effectively integrates multiple layers of 
information through newly added bias to improve perfor-
mance. Similarly, the influence of GAT and GCN structure 

(a) (b)

Fig. 7   Local community detection results of F
1
-Score and NMI

Local
 based on attribute and structural Encode on BlogCatalog dataset

(a) (b)

Fig. 8   Local community detection results of F
1
-Score and NMI

Local
 based on different attribute and structural encode on LFR-2 dataset
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encoders on experimental results is inconspicuous due to 
their similar framework to GAT’s reliance on the GCN 
framework. While GAT proposes the attention coefficients 
fusion neighbor information, it fails to consider the substruc-
ture around the node. In contrast, GAAE considers the local 
substructure around each node and fuses it with structural 
attention. This enhancement results in more abundant struc-
ture information.

4.6 � Time complexity analysis

In this paper, we assume that the number of nodes is N, the 
number of edges is |E|, and the output dimension of each 
layer of the encoder is d1, d2, ..., dL . Since DLAE focuses 
on node features, its time complexity is O(Nd1d2...dL) . For 
GAAE, its time complexity consists of two parts: feature 
mapping and attention calculation. Therefore, its com-
plexity is approximately O(Nd1d2...dL) + |E|d1d2...dL)
=O((N + |E|)d1d2...dL) . Finally, the complexity of the self-
supervised optimization of formula 20 is O(NlogN). So, the 
total time complexity is O((N + |E|)d1d2...dL) + O(NlogN).

To verify the time complexity, we compare the time 
with three deep learning baseline methods and a traditional 
local community detection method. Our goal is to find com-
munities similar to the seed node. Our timing starts from 
the beginning of the algorithm and ends when the goal is 
achieved. We choose two datasets of different sizes. For 
each dataset, we calculate the results at various scales. Fig-
ure 9 shows the relationship between the running time of the 
method and the network size.

The experimental results show that our method has suf-
ficient advantages. The main reasons for this are as follows. 
First, existing deep learning methods focus on the global 
graph information, which increases the time to visit irrel-
evant nodes for local community detection. Such operations 
will lead to an increase in time complexity. Secondly, as the 
number of nodes increases, traditional methods gradually 
lose competitiveness.

In addition, we let the input of baseline methods SDCN 
and DFCN no longer be the global graph information but 
a local k-subgraph. The experimental results are shown in 
Fig. 10. We found that the complexity of our method can-
not reach the optimal level but is infinitely close to them. 
Our process focuses on the local structural information of 
the node, resulting in a slightly higher complexity than the 
method that only focuses on the node itself. However, the 
results of the experimental accuracy show that such a sac-
rifice is worthwhile.

4.7 � Visualization analysis

To demonstrate our algorithm LCDCN’s superiority, we 
visually demonstrated the experimental results and the 
baseline method DFCN and ASFWF to show the differ-
ences between LCDCN and the baseline method. Spe-
cifically, we used the same random seed node for local 
community detection on the small dataset LFR-0 and 
compared it with the DFCN and ASFWF algorithms. 
Figure 11 shows the experimental results. In particular, 
Fig. 11a shows the real community structure of LFR-0, 

(a) Running time on Dblp dataset (b) Running time on HepPh dataset

Fig. 9   Algorithm runtime comparison on global graph
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and a total of 5 communities can be observed. Figure 11b 
shows the visual demonstration results of our method 
LCDCN. Figures 11c, d show the baseline method’s local 
community visualization results. To avoid the occasional 
high-accuracy error caused by selecting a special seed, we 
decided to use edge node 4 as the initial seed node. The set 
of purple nodes represents the detected local community 
structure.

It can be observed from the four subgraphs in Fig. 11 
that our algorithm can accurately detect communities con-
sistent with real tags. The LCDCN algorithm itself has 
high accuracy, even in the case of edge node 4. The main 
reason is that we find the most recent and most impor-
tant node in the local area through any node to divide the 
community. This largely avoids the situation of the real 
community being unable to be found through edge nodes. 
However, some nodes are misidentified and incorrectly 
identified in the baseline methods DFCN Fig. 11c and 
ASFWF Fig. 11d. After observation, it is found that the 
main reason for this situation is that the baseline method 
is not sensitive to edge nodes and even regards other com-
munity top core nodes 90 as the same label as node 4. In 
addition, this is closely related to the characteristics of the 
original algorithm itself, which makes the algorithm only 
focus on the local state of seed nodes and ignore the com-
munity edge nodes, resulting in a decrease in ASFW and 
DFCN accuracy. Because of the above reasons, LCDCN is 
ahead of the most advanced baseline methods.

5 � Conclusions

This paper comprehensively discusses local community 
detection work, addressing current challenges and propos-
ing an LCDCN framework for local community detection. 
Firstly, LCDCN addresses the critical issue of selection in 
local community detection by considering the high-order 
neighbor structure and utilizing similarity and correlation as 
influencing factors for selection. This approach ensures that 
the selected seed solution aligns more consistently with core 
node characteristics. Secondly, the reconstructed k-subgraph 
provides convenience for large-scale networks and can be 
expanded and applied in local community detection work 
on large graphs. Lastly, a new node encoding method is 
employed to comprehensively obtain structural information 
and attribute information for clustering purposes, signifi-
cantly improving the accuracy of local community detection 
tasks. Experimental results also confirm the effectiveness 
of LCDCN in local community detection tasks. In future 
work, we will continue to explore multi-view approaches to 
local community detection and address interference caused 
by seed nodes belonging to overlapping communities. By 
employing multi-view techniques, we aim to identify each 
different community where the seed node is located instead 
of a single or merged community. Additionally, we will 
enhance algorithm robustness and universality by introduc-
ing dynamic algorithm strategies.

(a) Running time on Dblp dataset (b) Running time on HepPh dataset

Fig. 10   Algorithm runtime comparison on k-subgraph
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