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ABSTRACT

In this paper we consider the problem of releasing a Gaussian Differentially Pri-
vate (GDP) 3D human face. The human face is a complex structure with many
features and inherently tied to one’s identity. Protecting this data, in a formally
private way, is important yet challenging given the dimensionality of the problem.
We extend approximate DP techniques for functional data to the GDP framework.
We further propose a novel representation, face radial curves, of a 3D face as a set
of functions and then utilize our proposed GDP functional data mechanism. To
preserve the shape of the face while injecting noise we rely on tools from shape
analysis for our novel representation of the face. We show that our method pre-
serves the shape of the average face and injects less noise than traditional methods
for the same privacy budget. Our mechanism consists of two primary components,
the first is generally applicable to function value summaries (as are commonly
found in nonparametric statistics or functional data analysis) while the second is
general to disk-like surfaces and hence more applicable than just to human faces.

1 INTRODUCTION

In statistical analyses, data and parameters appear in varying degrees of complexity, from simpler
forms such as scalars and vectors to more complex such as spherical or hyperbolic, for instance.
The structural constraints inherent to data need to be respected throughout any analysis as has been
shown in the “intrinsic statistics” frameworks (Pennec, 2006; Bhattacharya & Patrangenaru, 2003)
for accurate estimation and to preserve said structure. Complex data structures tend to come hand in
hand with complex statistical computations and hence the techniques for handling such data have not
been widely studied outside of specific scenarios. Further, the sheer amount of data that is captured
from individuals has increased significantly, and of course, this produces a growing concern for
one’s “privacy”. In this paper, to support broader sharing of confidential data, we propose releasing
a Gaussian Differentially Private, GDP, average 3D human face.

Motivation and Related Literature: Data that live in nonlinear spaces can be challenging to work
within the DP framework, as shown in the context of manifolds in Reimherr et al. (2021); Soto et al.
(2022); Utpala et al. (2022), private Riemannian optimization in Han et al. (2022), and Gaussian DP
on manifolds Jiang et al. (2023). Preservation of structure has also been considered in the context of
private covariance estimation for linear regression in Sheffet (2019) and private principal component
analysis in Chaudhuri et al. (2013) which is connected to the Stiefel manifold. For privacy, our
proposed “face radial curve” representation of a human face are functions extracted from a disk and
hence lends itself to be examined under the lens of private functional data analysis (FDA) which has
been considered inWasserman & Zhou (2010) and Mirshani et al. (2017), and references therein.
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With our faces constantly being captured (e.g., at a grocery store self-checkout), one could question
the privacy protections in place of the collected data. Further, there is a vast amount of literature on
identification of individuals from facial data in the area of “face recognition,” see, for instance, the
expansive literature review in Kortli et al. (2020). Also, perhaps quite surprisingly, Venkatesaramani
et al. (2021) and Klimentidis & Shriver (2009) showed that one could identify genomic information
from a person’s 2D face image; the former study further showed that adding noise to said 2D im-
ages can help protect this re-identification. For 2D images, two common practices to attain privacy
of faces are blurring and pixelation (Li & Choi, 2021; Vishwamitra et al., 2017). A major goal in
these previous works is privacy in form of anonymity which is usually measured by re identification
of individuals; our work, however, defines privacy by satisfying the conditions of differential pri-
vacy. This distinction is necessary as the former, generally, considers successful privacy by lack of
re identification while preserving utility while for the latter differential privacy is a property of our
mechanism. We do not work with 2D images here, however, the need for privacy is still present. The
need for privacy for 3D faces is similar to that in 2D images. Anthropological studies are often in-
terested in identification of DNA using labeled 3D faces (Sero et al., 2019), the connections between
DNA genotype and the associated facial phenotype (White et al., 2021; Naqvi et al., 2021; Weinberg
et al., 2019), and average faces for demographics such as age and race classification (Tokola et al.,
2015). In such studies, one might want to release the data, or may even be required to, so offering
provable confidentiality guarantees for people in the studies becomes an important task.

To generate our representation we rely on tools from shape analysis. The earlier forms of shape
analysis, such as Kendall’s shape space (Kendall, 1984), are limited to only representing a shape
as a finite point cloud. The field has expanded since to consider more complex data structures
such as continuous curves, both planar and space, as in Trouvé & Younes (2005); Klassen et al.
(2004); Srivastava et al. (2010), and surfaces as in Jermyn et al. (2017); Su et al. (2020). Human
faces have been considered in this space in a similar, yet subtly different, manner such as in Samir
et al. (2006); Drira et al. (2010) in which faces are represented as a set of curves “facial curves”
and “radial curves”, respectively. These methods represent a face with curves that are generated
independently of each other while we use an entire disk-parameterization to capture features across
all faces simultaneously.

Main Contributions: We develop a novel representation for a collection of 3D faces via a set of
curves which we extract from disk parameterizations and refer to these as face radial curves. We
construct the face radial curves using tools from statistical shape analysis in the interest of preserving
the shape of an average face during the data sanitization process. Further, we extend existing approx-
imate DP FDA tools into the Gaussian DP framework (Dong et al., 2019), a recent notion of privacy
with attractive properties including “tight” composition. Under our FDA Gaussian DP mechanism,
we generate a private average face of a collection of faces under our representation. While we use
our mechanism and representation for faces to address the inherent data privacy concerns, this same
methodology can be applied to any surfaces diffeomorphic to a unit disk such as terrain models and
additionally any settings where one wants private functional statistical summaries.

2 NOTATION AND BACKGROUND ON FACE REPRESENTATION

We require a disk-parameterized representation of each face from which we extract a set of func-
tions. We parameterize each face independently but “align” and “register” each face to a template.
Here, we broadly describe these relevant techniques from shape analysis including their necessity.
To the best of our knowledge, the use of parameterized surfaces in the context of DP has not been
explored. The software to accomplish parameterization, registration, and alignment are fully de-
scribed in (Jermyn et al., 2017), with accompanying implementation at GitHub repository (Laga,
2022). Further, in Figure 10 we display the entire pipeline for our methodology.

2.1 PARAMETERIZATION

Each face is realized as a point cloud, a set of p many points in R3. We describe the data collection
process in A.4. A point cloud does not explicitly relay structural information; i.e., there is no natural
ordering nor explicit connectivity or relationship between points. Connectivity can be difficult to
infer since if two points are close in space, they may not be neighboring points, e.g., two points near
the tip of the nose, or any concave feature, can be close in R3, but based on measuring distance
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Figure 1: Left: A triangulated mesh face. Middle: A disk-parameterized face, the center of the disk
being the left nostril. Right: A disk-parameterized face after a Möbius transformation forcing the
center of the disk to be the tip of the nose.

on the surface of the face they may be relatively far apart. So, rather than treat a face as a set of
independent points, we can jointly model each face by imposing a parameterization. Specifically,
we represent each face as a disk-parameterized surface (Jermyn et al., 2017; Sun et al., 2022; Drira
et al., 2010).

We first compute a Delaunay triangulation using the MeshLab software (Cignoni et al., 2008) yield-
ing a triangulated mesh. Given a point cloud X ∈ Rp×3 the triangulated mesh, M = {V,E, T}, is
an object which consists of a set of vertices V (the original points), edges E, and triangles T com-
posed of said vertices and edges. The triangles meet at edges, do not overlap, and jointly represent
a mesh or surface. The left panel of Figure 1 displays a face as a triangulated mesh. We generate a
disk conformal map of M as in Choi & Lui (2018); a disk conformal map of the triangulated mesh
is a mapping from said mesh to a disk which preserves the angles of the triangles or, more generally,
the local geometry of the mesh.

Lastly, we generate a disk-parameterized surface as in Jermyn et al. (2017); Laga et al. (2018) via
the disk conformal mapping. Figure 1 displays two disk-parameterized surfaces in the middle and
right panels; we expand on the differences between these two panels in A.7. Each face, f , is thus a
map f : D → R3 with D = {r, θ|0 ≤ r ≤ 1, 0 ≤ θ < 2π}, the unit disk.

2.2 SHAPE ANALYSIS OF SURFACES

Figure 1 displays different representations of a face while retaining its shape. In our setting, the
shape of an object is that which is not affected by its scale, location, rotation, or parameterization.
The analysis we intend to do should not be dependent on any of these parameters. Next, we describe
how to remove this dependence.

Let F be the space of all parameterized surfaces, F ∋ f : D → R3 where D is the unit disk.
We assume all surfaces are smooth and genus-0, that is, they are differentiable and have no holes.
We first remove scale and location differences by forcing each face to have unit surface area and
be centered at the origin. That is, we scale the surface area to be one by setting f → f/

∫
D
|fr ×

fθ|2drdθ where fr, fθ are the partial derivatives of f with respect to r and θ, respectively. To center
the surface, set f → f − f̄ where f̄ is the centroid of the surface. For notational simplicity, let f
denote a surface which has unit surface area and the origin as its centroid.

Location and scale are characteristics that are intrinsic to each surface, so we achieve their removal
on each face independently. Rotational alignment and parametric registration, however, are relative.
Each face must be aligned and registered to a template face.1 Let ftemp be a template face of unit
area and origin centroid; in practice one could either choose an arbitrary surface from the dataset, a
training set, or some representative surface such as the mean surface.

Let O = {O|det(O) = 1} be the set of all 3 × 3 rotation matrices and let Γ = {γ|γ : D → D} be
the set of diffeomorphisms. Each γ is a reparameterization of a surface which acts on a surface on
the right as f ◦ γ; we fully describe this action in A.3. Rotations, O, act on the left as O · f and do
not effect scale nor centroid.

1In shape analysis it is more typical to do pairwise alignment and registration (Wallace et al., 2014; Cho
et al., 2019; Klassen et al., 2004) however our goal is not to do pairwise comparisons so we forego this approach.
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Figure 2: Left: A point cloud representation of a face. Right: A surface representation of the face
with an overlay of radial curves.

We optimally align each face to the template, ftemp, by considering the optimization

(γ̃, Õ) = argminγ∈Γ,O∈O ∥Of ◦ γ − ftemp∥2.

To accomplish this task we appeal to elastic shape analysis (ESA) (Jermyn et al., 2017). In short,
rather than solve the above minimization, ESA defines a metric which replaces the above L2 norm
and transforms each surface using the square-root normal field representation. For each face we
compute this minimization such that the registered and aligned face is f̃ := Õf ◦ γ̃. We elaborate
on this process in A.3.

3 NOVEL FACE RADIAL CURVES REPRESENTATION

We parameterize the entire face using a disk, however, our goal is to work with what we refer to as
“face radial curves.” This concept is similar to that of facial curves (Samir et al., 2006) and radial
curves (Drira et al., 2010). In the facial recognition literature, for instance, to construct a radial
curve representation one picks a focal point, typically the tip of the nose, and overlays curves on the
surface of the face with the nose as the center and each point of the curve being equidistant from the
tip of the nose. That is, given a focal point p each radial curve is g = {x|r = dF (p, x)} for a given
r ≥ 0 and where dF is distance measured on the surface of the face.

These previously mentioned methodologies do not take into account that the distribution of features
on faces is not uniform for everyone. That is, let gij represent the jth radial curve of the ith face,
then gij may be the curve which goes directly on the middle of the eyes for individual i but gi′j may
be directly on the forehead of individual i′ for the same j. Features, such as eyes and the mouth,
being disproportionately farther or closer to the focal point or each other hence causes issues. These
methodologies do, however consider registration within each j but not across all js simultaneously.
We propose a new method to have an entire global alignment and registration across all sets of curves
and faces.

In the previous section, we set up a way to compute faces {f̃ (i)}i=1,···n that are registered and
aligned to a template face ftemp. Each face is a mapping f̃ (i) : D → R3 and we note a disk is an
infinite collection of concentric circles, and thus each f̃ (i) is a collection of curves f̃ (i)

r : Dr → R3,
where Dr ⊂ D is the circle of radius r. By construction, the alignment and registration to a template
implies these curves f̃ (i)

r capture the same features across all faces; these curves are what we refer
to face radial curves.

We apply our proposed method to data described in Sero et al. (2019); more details are available
in A.4. The left panel of Figure 2 displays a face as a point cloud and the right panel is the same
face but with the disk parameterization and some of the face radial curves overlain. While the disk
parameterization is an infinite collection of these curves, we pick some number of these curves to
represent the face. The number of curves is a tuning parameter where more curves implies, to an
extent, more definition in the face. We discuss this further in 5.
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4 GAUSSIAN DIFFERENTIAL PRIVACY FOR FUNCTIONAL DATA

Since the conception of DP (Dwork et al., 2006), noise calibration has been considered from different
perspectives leading to many variants. For instance, “zero concentrated differential privacy” (Bun
& Steinke, 2016) and “Rényi differential privacy” (Mironov, 2017) are notions of DP from the
perspective of a divergence of the distribution of the mechanism. In the present paper we utilize
“Gaussian DP” (GDP, Dong et al. (2019)), which considers DP from the perspective of a particular
set of hypothesis tests. As one of our key contributions in this paper, we extend GDP to functional
data analysis (FDA) in Section 4.2. We begin with a brief overview of DP for FDA.

4.1 BACKGROUND ON DIFFERENTIAL PRIVACY FOR FUNCTIONAL DATA

In this section and in A.5, we describe approximate DP, (ϵ, δ)-DP, in the context of FDA. This is a
needed background for our proposed extension of GDP into the space of functional data. For a more
thorough exposition on DP, see Blum et al. (2005); Dwork & Roth (2014); Dwork et al. (2006).

Let D denote a dataset of a size n, D = {x1, x2, . . . , xn}, and D be the space of all such datasets.
An adjacent dataset, D′, is a dataset which differs from D in exactly one element which, without
loss of generality, we can choose as the last element, D′ = {x1, x2, . . . , x

′
n}. We write D ∼ D′

to denote adjacency. Here h(D) denotes the statistical summary we aim to release, and a private
random version of the summary as h̃(D), which we will refer to as a privacy mechanism.

We consider releasing an estimate of a private mean function. To sanitize functions we rely on
tools and foundations of functional data analysis in the domain of privacy as in Hall et al. (2013);
Alda & Rubinstein (2017); Mirshani et al. (2017), with the latter considering spaces more extensive
than functions. The infinite dimensional nature of function valued summaries presents a critical
challenge in establishing formal privacy. In particular, traditional probability densities become much
more complicated as there is no default or baseline measure in infinite dimensions (unlike Lebesgue
measure in Rd). To overcome this challenge, there are currently two approaches. The first, taken by
Hall et al. (2013) is to work in finite dimensions and then take careful limits. The second approach,
introduced in Mirshani et al. (2017) and which we follow here, is to utilize carefully constructed
infinite dimensional densities so that the probability inequalities can be worked out directly (and
avoid having to take limits).

Let H denote a real separable Hilbert space in which we aim to release a summary statistic h(D) ∈
H, e.g., L2([0, 1]), Rn, or a reproducing kernel Hilbert space. We consider a Gaussian process in
H to add noise to h(D). Let X be a Gaussian process in H parameterized by its mean η ∈ H and
covariance operator C : H∗ → H where H∗ is the dual space of H. A stochastic process is said
to be Gaussian if any linear functional a ∈ H of X is Gaussian in R. We note that technically
a ∈ H∗, however since H ∼= H∗, we avoid this distinction unless necessary. Further, we have that
E[a(X)] = a(η) and C(a, b) = Cov(a(X), b(X)) with a, b ∈ H. We write that X ∼ N (η, C)
and Z ∼ N (0, C). In this setting we can achieve approximate DP via Theorem A.2. A critical
requirement is that our summary be compatible with the noise Z which, roughly stated, means that
while the noise lives in H, we require our summary to exists in a smaller space H ⊂ H. In our case
H is a reproducing kernel Hilbert space (RKHS) so the eigenfunctions arise from C and thus are
determined by our choice of kernel k(s, t).

Now that we have well defined noise, we consider releasing a specific summary statistic: a private
mean function with sample mean h(D) = X̄ = 1

n

∑
i xi. To have some control on the smoothness

of this estimate, we enforce smoothness by relying on an optimization problem with a penalty.
That is, we let h(D) = argminm∈H

∑
i ∥xi −m∥2H + ϕ∥m∥2H with ϕ being a smoothness penalty

parameter. This approach ensures the required noise compatibility. For our summary statistic, the
sensitivity, supD∼D′ ∥h(D)−h(D′)∥2, can be shown to be bounded as ∆2 ≤ 4τ2/(n2ϕ) (Mirshani
et al., 2017), where τ is a finite bound on the norm in the H space of the elements of all D ∈ D.

4.2 EXTENSION OF GDP TO FUNCTIONAL DATA

One especially useful interpretation of approximate DP comes from Wasserman & Zhou (2010),
which relates DP to hypothesis testing. In particular, for a sanitized output, h̃(D), one can consider
statistical tests for determining if the true underlying data source is D or some adjacent data set D′.
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In these simple cases, the optimal test is well known (Neyman-Pearson Lemma), so one can talk
about the optimal type 2 error (1-power) of a statistical test for given type 1 error rate. It turns out
that DP gives a bound for the type 2 error relative to the type 1 error, which Dong et al. (2019) took
a step further to define Gaussian DP. In particular, Dong et al. (2019) show a mechanism is µ-GDP
if its entire type 1/type 2 error tradeoff curve is bounded by that of a curve coming from comparing
a N(0, 1) to N(µ, 0), meaning it is harder to distinguish 0 and µ from N(0, 1) than it is h(D) from
h(D′) from h̃(D). We provide the formal definition below.

Definition 4.1. A mechanism h̃(D) is said to satisfy µ−Gaussian differential privacy (µ−GDP)
(Dong et al., 2019) if for all adjacent datasets D ∼ D′,

T (h̃(x;D), h̃(x;D′)) ≥ Gµ,

where T is a trade-off function and Gµ := T (N(0, 1), N(µ, 1)). Here a trade-off function T :
[0, 1] → [0, 1] for two probability distributions U1 and U2 is T (U1, U2)(α) = infζ{βζ : αζ ≤ α}
with ζ being a rejection rule, α being the type 1 error, and βζ the type 2 error for ζ.

In our main Theorem 4.3, we prove that the DP framework for functions as defined in Theorem A.2
is µ−GDP; we utilize the following corollary to achieve this.
Corollary 4.2 (Dong et al. (2019)). A mechanism is µ−GDP if and only if it is (ϵ, δ(ϵ))−DP for all

ϵ ≥ 0, where δ(ϵ) ≥ Φ
(
− ϵ

µ + µ
2

)
− eϵΦ

(
− ϵ

µ − µ
2

)
.

Corollary 4.2 also appears in Balle & Wang (2018) in the context of the calibrating the Gaussian
mechanism, but in the presented form the corollary is more readily applicable for our setting.

Theorem 4.3. The mechanism h̃(D) = h(D) + σZ as defined in Theorem A.2 is µ-GDP with
σ ≥ ∆/µ. Here ∆ is the same global sensitivity as before.

Proof. We need to show that the distribution induced by our Gaussian process in H of h̃(D) is
µ−GDP by bounding the δ(ϵ) in Theorem A.2 as in Corollary 4.2. The key here is the use of H, as
our function space is infinite-dimensional and hence it is not possible to define a measure analogous
to that of the Lebesgue measure.

Mirshani et al. (2017) provide the framework to define a useful density of h̃(D) over H, however
they do not consider bounding the tail probabilities nor the privacy loss random variable as we do
next. We first define the privacy loss random variable as PL = log

[
dP (D)
dQ /dP (D′)

dQ

]
, where Q is the

probability measure induced by our noise Z and P (D) the family of measures of our mechanism
h̃(D). By construction we have that h(D) is compatible with Z and hence the above is well defined:

dP (D)

dQ
(y) = exp

{
− 1

2σ

[
∥h(D)∥2H − 2Th(D)(y)

]}
.

Here Th(D) is a linear operator and thus Th(D)(h̃(D)) is normally distributed.

From Mirshani et al. (2017), we have that Th(D)(h̃(D))−Th(D′)(h̃(D)) ∼ N(0, ∥h(D)−h(D′)∥2H).
Using this, we can show that

δ := P (PL ≥ ϵ)− eϵP (PL ≤ −ϵ) (1)

= Φ

(
−ϵσ

∆
+

∆

2σ

)
− eϵΦ

(
−σϵ

∆
− ∆

2σ

)
(2)

= Φ

(
− ϵ

µ
+

µ

2

)
− eϵΦ

(
− ϵ

µ
− µ

2

)
. (3)

The last equality is a reparametrization setting µ = ∆/σ and the rest of the details are in the A.8.

For facial radial curves and other disc-like surfaces, by construction, we need to sanitize many
mean curves, so we require composition of a multitude of mechanisms with their respective budgets
µi’s. Composition in the GDP framework is “tight.” Given two mechanisms h̃1, h̃2 with privacy
parameters µ1 and µ2, their composition (h̃1, h̃2) is

√
µ2
1 + µ2

2-GDP (Dong et al., 2019, Corallary
3.3).

6



Published as a conference paper at ICLR 2025

Figure 3: Left: The same face represented using 16, 27, and 80 face radial curves, respectively.
Right: The x, y, and z coordinate curves, respectively, for a particular face radial curve.

5 FACE RADIAL CURVE EXAMPLE

Here, we apply our proposed methods from sections 3 and 4.2 on data described in Sero et al. (2019)
and A.4. Figure 3 displays from left to right the same face with J = 16, 27, and 80 face radial curves.
Larger values of J add definition to the face, but J need not be too large to encapsulate the facial
structures. Based on that, we represent the n = 1000 faces with J = 23 face radial curves; one could
pick J in a data driven way as well. We treat the J sets of curves across the faces independently.

We note an important subtle strength in our construction. Each face radial curve has three coordi-
nates, x, y, z, and by our construction x, y are effectively a circle and z encode facial features. The
right panel of Figure 3 displays the coordinate curves of an example face radial curve. The first two
coordinates are quite simple and are roughly one period of a sine curve. We leverage this simplicity
in these two coordinate curves to conserve privacy budget by enforcing a larger smoothing param-
eter as compared to the last coordinate curve and also treat the coordinate curves separately at each
radial curve.

Let {fi} be the set of radial curves for a specific coordinate at the jth position and i being the index
of for particular face. For simplicity one can imagine j = 1 being the curve nearest the tip of the
nose and j = 23 as the curve nearest the border of the face. Each curve fi is a closed parameterized
curve, f : S1 → R where S1 is the unit circle, as in the right panels of Figure 3. In general, we drop
the j as we treat each set independent of each other. We parameterize the curve with unit circle but
for simplicity we say f : [0, 1] → R with f(0) = f(1).

By design we have closed curves, so to retain this structure we use a periodic kernel that takes the
form k(s, t) = exp (− [dS1(ω(t), ω(s))/ρ]

α
) (Gneiting, 2013) with t, s ∈ [0, 1]. The distance of

two points a, b on S1 is arccos⟨a, b⟩, however, the previous t, s are parameters on the unit interval,
so we first “wrap” the interval around the circle to compute this distance hence the need for ω(·),
a wrapping function. This kernel is a powered exponential on spheres with kernel range parameter
ρ and smoothness parameter α ∈ (0, 1]. For our experiments we set α = 1 as we can control
smoothness instead via ϕ in the mean estimation as in 4.1.

We compute kernel matrix K of the the unit interval [0, 1] with [K]ij = k(ω(i/m), ω(j/m)) where
m = 80 is an integer defining the fineness of the uniform grid on the unit interval and i, j =
0, 1, . . .m. Let the eigenvalues, of K, and their associated eigenfunctions be denoted as (λi, bi).
It can be shown that non-private mean in the RKHS space is h(D) = 1

n

∑
i

∑
j

λj

λj+ϕ ⟨fi, bj⟩bj .
Since we are sanitizing the coordinates independently, we have a smoothness parameter for each
coordinate, ϕx, ϕy , and ϕz . The left panel of Figure 4 displays the mean face constructed from
mean face radial curves with ϕx = ϕy = 0.01 and ϕz = 0.005.

5.1 EXPERIMENTAL RESULTS

To highlight the difficulty of working with such complex data we present some preliminary results.
We have 1000 faces each with 7150 points; we fully describe the data in A.4. The points are
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Figure 4: Left: Two angles of the average face constructed of average face radial curves with ϕx =
ϕy = 0.01 and ϕz = 0.005. Right: Two angles of the point-wise mean.

Figure 5: Left: Two angles of a private face sanitized with point wise Gaussian noise with total
µT = 2. Right: Two angles of a differentially private face constructed from private mean face radial
curves with µT = 2.9961 ϕx = ϕy = 0.01 and ϕz = 0.005.

“registered”, via the data collection method, across all the faces. Without this registration, the
following would not be immediately feasible. Let D = {Xi} and Xi ∈ R7150×3. We first compute
the point-wise mean of the faces, X̄ = 1/n

∑
i Xi and display this in the right panel of Figure 4.

Suppose we have a total budget of µT and we wish to sanitize, independently, the 7150 points
each of which has 3 coordinates. To split the budget evenly, each point’s coordinate is allocated
µp :=

√
µ2
T /(7150 · 3) of the budget. For each point and each coordinate we compute sensitivity

as ∆k,l = maxi,j |Xi[k, l]−Xj [k, l]|. That is, among all faces this measures the variability at each
point. We note that this sensitivity calculation does violate privacy, as it is data driven, and that
an entirely private form of this calculation is strictly larger. That is, our sensitivity calculation is
smaller, so a private method would lead to noisier estimates. We add noise to each coordinate of
each point as X̄[k, l]+∆k,l/µp · z where z ∼ N (0, 1). Figure 5 displays two angles of a point-wise
private face in the left panel with total privacy budget µT = 3 with more results in A.9.

Next we apply our approach using face radial curves. We have J many sets of curves, {fi}j each
of which has three coordinate curves, fi = (fix, fiy, fiz). We sanitize the regularized mean, in-
dependently, for each coordinate and each radial curve, using our mechanism which satisfies GDP
with sensitivity is ∆2 ≤ 4τ2/(n2ϕ). Earlier we saw that the x and y coordinate curves, at every J ,
are effectively one period of a sinusoidal curve, we take advantage of this construction to conserve
budget. We thus spend less budget sanitizing the x and y coordinate curves and spend more on z as
they contain more feature information.

We need to determine the τ , an upper bound on the norm of the curves, in our ∆. We determine
this τ , in a similar way as the point-wise approach of computing sensitivity, through the data at
each set of radial curves and each coordinate. That is, for each j and at each coordinate w, τw =
maxi ∥fi(w)∥H. Again, we have a sensitivity that is partially data driven. However we note since
we use shape analysis to do our processing, all the faces are scaled to have unit surface area, and
hence all the curves are scaled. Thus, individually none of these norms hold any meaningful size
information. Further, our analysis is entirely scale invariant, meaning that if a face is much larger
or smaller than average, that information is completely removed when we scale. This is a strength
of shape analysis as the emphasis is the shape of the face and not the nuisance parameters.

8
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Table 1: Mean Squared Error between private estimates and the point-wise mean. The last column
is the point-wise MSE between our method and the RKHS mean. All values are at E-04.

µT

2 3 2.9961 (Ours) Ours*
MSE 14 7.5807 5.2989 3.6365

Figure 6: Blue points are the point-wise mean. Left: The red points are the point-wise private mean
with µT = 3. Right: The red points are our private mean with µT = 2.9961.

We choose a budget for each of the coordinates µx, µy, µz which are the same at all levels j of
curves; i.e., at each j for the w coordinate curve h̃({fiw}) = h({fiw}) + ∆w

µw
Z with ∆2

w ≤
4τ2w/(n

2ϕ) and Z is a standard normal Gaussian process. The right panel of Figure 5 displays

an example private mean face with µT = 2.9661 where µT =
√
J(µ2

x + µ2
y + µ2

z) with J = 23,
µx = µy = 0.2 and µz = 0.55. For each coordinate we have separate smoothing parameters we
display results with ϕx = ϕy = 0.01 and ϕz = 0.005. Comparing our private mean to left panel
of Figure 4 we see there is some clear smoothing in the lips area and some subtle smoothing in the
eyes as well.

Lastly, we quantify the amount of injected noise by computing a mean squared error. We let the
point-wise mean be our baseline non-private estimate, the right panel of Figure 4. For the point-
wise private estimate X̃ the MSE = 1

N

∑
i |X̄i − X̃i|2 where N = 7150 is the number points.

Table 1 displays these errors in the first two columns. Our sanitized mean, however, is a set of
functions so we first discretize it into 1863 points (23 curves at 81 points) and denote this as Ṽ . We
let MSE = 1

M

∑
j mini |X̄i − Ṽj |2 with M = 1863. Since the two point clouds have different

number of points, this MSE finds the nearest point in the non-private face to that of the private face
Ṽ . We further scale Ṽ → aṼ to align it to X̄ as X̄ is not processed data. Table 1 displays the
error in the third column of 5.2989, less than both of the point-wise private faces. This MSE does
incur an inflation, though, as the point-wise mean is not a surface and thus lacks a registered point at
the location of our private mean. We can clearly see this in Figure 6, in both panels the blue points
are the point-wise mean, the left panel has the point-wise private mean in red, and the right panel
has our private (discretized) mean in red. We see that our method has points that seem to lie on the
“surface” of the face but the non private mean may not have a point there. We also clearly see that
the point-wise private mean adds noise in the ambient space and thus creates a rough, fuzzy estimate
not entirely resembling a smooth face; i.e., the facial structures are distorted. Also, the MSE of
our facial radial curve based GDP method is less than the MSE of the point-wise sanitized estimate
which has a slightly larger privacy budget. To even further emphasize this point, the last column
of Table 1 is the MSE between our private mean and the RKHS mean, we see it is less than half in
comparison to the point-wise sanitization.

6 CONCLUSIONS

We have developed a framework for releasing a µ-GDP human face with our novel face radial curve
representation. We extended (ϵ, δ)-DP FDA (Mirshani et al., 2017) techniques into the µ-GDP
framework (Dong et al., 2019) to take advantage of its tight composition of budgets. We utilized
the new µ-GDP FDA framework specifically for faces but note this is applicable for other FDA
applications. Further, we utilize the shape analysis techniques of Samir et al. (2006); Drira et al.
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(2010); Jermyn et al. (2017) to create a novel curve representation of a face. We focus on human
faces, however, one can use our framework to sanitize other surfaces which are diffeomorphic to a
disk. Our representation changes the problem of sanitization from needing thousands of point-wise
estimations to a few dozen functional estimates. We discuss the limitations of our methods in A.1.

A persons face contains information of ones identity and, as noted earlier, its image contains ge-
nomic information (Venkatesaramani et al., 2021), thus, the need to protect this information while
sharing these data (e.g., anthropological studies) is crucial. We demonstrate via empirical and quan-
titative results that our methodology adds less noise and preserves the structure of the face. We
chose the number of face radial curves needed for our representation, but one could develop a pri-
vate cross-validation method to do so.

In A.4 we describe how the data is collected by Sero et al. (2019), so here we mention some limita-
tions in our experimental results as well as in A.1. In a sense, our data is very clean, and hence our
methodology is only tested in this circumstance. All faces in the dataset have a neutral expression,
so to handle other expressions would require additional processing or extending the methodology.
Expression variation is a complex source of variability which is critical in areas such as face recog-
nition (Smeets et al., 2012). It is not entirely clear how to handle such variability for estimation of an
average. The parametrization requires a genus-0 surface, i.e. no holes, so if a face has missing data
this would need to be rectified. For instance, preprocessing by patching “holes” or missing data has
been considered by Passalis et al. (2011) which leverage the symmetry of the face for interpolation.
There is a vast amount of survey papers in the face cognition literature such as Zhao et al. (2003);
Jafri & Arabnia (2009); Li et al. (2020), to name a few, which encounters similar issues all to say
these problems are not trivial and are potential future research opportunities.
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A APPENDIX

A.1 LIMITATIONS

We do not collect any data, however, in A.4 we describe the data and how it was collected. In many
regards our data is clean, so we did not test our methods on noisy data. In a sense, we can consider
our data as processed data, so noisy data would require some processing which we do not consider in
this work. It is possible that if the data is more noisy then it would require further smoothing which
our method does allow. We further have an assumption of a genus-0 surface (a face with no holes)
which may be an issue if there are missing data points. This type of data would require additional
pre-processing. We also only test our method on one dataset; one could encounter the issue of
variability of noise in other datasets but this can be overcome with the smoothness parameters in our
method.

A limitation which we have already mentioned in 5.1 is the method for computing sensitivity, ∆,
in both our method and the point-wise method which we compare ourselves to. This, however, is
an inherent issue in differential privacy rather than our method. That is, for both our method and
the point-wise private estimate, we use the data to estimate the sensitivity. Ideally one could use a
second dataset or a training set to estimate the many sensitivity values needed in a private way.

In terms of limitations of privacy and fairness, these are the exact problems we address. As men-
tioned in 1, one may want to release private average faces for demographics. Our methods are
intended for facilitate this goal although we do not consider variability of sample sizes by demo-
graphics.

A.2 EXPERIMENTS COMPUTE RESOURCES

We ran experiments almost exclusively on a desktop computer with an Intel i7 processor and 32GB
of RAM on Windows 11. Creating a triangulated mesh for a face takes about 5 seconds on the
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desktop, so this was done locally for each face. Parameterizing each face costs about 20 seconds on
the desktop, this was also done locally. Reparameterizing, however, each face to a template costs
upwards of 3 minutes on the desktop, so since we have 1000 faces we did this on a supercomputer.

Computing the mean and privatization with our method costs about 3 total minutes on the desktop
computer. The mean computation and privatization of the point-wise method only requires about 1
minute of computational time on the desktop.

A.3 REPARAMETERIZATION

To optimally register two surfaces we use the methods as described in Jermyn et al. (2017) which
we summarize next. Suppose we have two surfaces f1, f2 ∈ F which we wish to optimally register
over the parameterization group Γ. Here F is as in 2.2 F ∋ f : D → R3 where D is the unit
disk. The action of Γ on a surface is right composition, f ◦ γ for γ ∈ Γ, and reparameterizes the
surfaces but does not change its image which in our case is the face. The authors in Jermyn et al.
(2017) leverage a transformation of f referred to as the square-root normal field (SRNF) defined as
q = n

|n|1/2 where n is the normal vector n = ∂f
∂u × ∂f

∂v . The corresponding action of Γ on q is then

(q, γ) :=
√
J(γ)q ◦ γ. This transformation is necessary for an isometric action of Γ but the details

of this are lengthy and not necessary for our application.

The authors define an energy function Ereg : Γ → R≥0 to implement an iterative gradient descent
method for the registration. The energy is defined as Ereg(γ) = ∥q1 − (q̃2, γ)∥2 where q̃2 is the
“current” stage of the surface being reparameterized. Here γ is the incremental reparameterization
with q̃2 = (q2, γ). Here q1 would be our template surface from 2.2 and we register all surfaces to
this template.

Since the reparameterization is done in an iterative manner it results in incrementally improved
registration. This method is iterative as the gradient is taken about the identity of Γ, γidentity and
thus lives in the tangent space of this element. Suppose we have an orthonormal basis B = {b} for
the tangent space of the Γ at the identity, Tid(Γ) where each b is a unit “vector” in the tangent space
Tid(Γ). The full gradient is given by

∑
bi∈B⟨q1 − q̃2, d(bi, γ)⟩2bi and we use the implementation

mentioned in 2.2 and refer the interested reader to the cited materials.

This reparameterization is costly due to the dimension, iterative construction, and reliance on a basis.
To alleviate some expense, we set the center of the surface as the tip of the nose as noted in A.7 with
the triangulated mesh before we impose the disk parameterization. The reparameterization iterative
method thus has to search over a smaller space as the center of the disk is pre-registered.

A.4 DATA DETAILS

For a full description of how the data is collected we refer to Sero et al. (2019) but we summarize
and emphasize the relevant points. All participants have the same neutral face expressions, so the
data is not heterogeneous in terms of facial expression. Each face is captured with 7150 points
which the authors refer to as quasi-landmarks. Further, these landmarks are registered across all
individuals which Sero et al. (2019) refer to as “homologous.” This registration is a point-wise
correspondence across faces while the registration in A.3 is an entire disk correspondence. Similar
to our approach the faces are aligned using Procrustes Analysis, which finds the optimal rotation but
again considering the faces as a set of points not a disk-like surface.

A.5 SUPPLEMENTAL NOTES ON DP

We first present the definition for approximate differential privacy.

Definition A.1 ((Dwork et al., 2006)). Let D ∼ D′ and h̃(D) be a random privacy mechanism,
the mechanism is said to achieve approximate differential privacy, (ϵ, δ)-DP, for some ϵ > 0 and
0 < δ < 1, if it satisfies the probabilistic inequality

P (h̃(D) ∈ A) ≤ eϵP (h̃(D′) ∈ A) + δ,

for any measurable set A.
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Both ϵ and δ are pre-specified parameters referred to as the privacy budget. When δ = 0, this is
referred to as pure differential privacy. Differential privacy is an attribute of the random mechanism
and roughly states that the distributions over adjacent datasets are not too different. To achieve
approximate DP for functional data Mirshani et al. (2017) establish the following mechanism.

Theorem A.2 (Mirshani et al. (2017)). Let h(D) be a functional summary of a dataset D that is
compatible with standard Gaussian process noise Z and ϵ ≤ 1. We have that h̃(D) := h(D) + σZ

achieves (ϵ, δ)−DP over H where σ ≥ 2 log(2/δ)
ϵ2 ∆2. Here ∆ is the global sensitivity of the summary

h(D) and ∆2 = supD∼D′∥h(D)− h(D′)∥2H where the norm is over the space of the noise Z.

Assuming compatibility, let Q denote the probability measure induced by Z over H and {P (D) :

D ∈ D} denote the family of measures over H induced by h̃(D) as in Theorem A.2. The density of
h̃(D) over H with respect to Q, which exists if compatability holds, takes the form

dP (D)

dQ
(y) = exp

{
− 1

2σ

[
∥h(D)∥2H − 2Th(D)(y)

]}
,

Q almost everywhere with Th(D)(y) = ⟨h(D), y⟩H. The inner product on H can be defined in terms
of eigenvalues (λi) and eigenfunctions (bi), as ⟨x, y⟩H =

∑
i λ

−1
i ⟨x, bi⟩H⟨y, bi⟩H but can generally

be expressed using any basis.

A.6 PRIVATE POINT-WISE FACE

Here we have more details on the benchmark method. We have n = 1000 faces each with 7150
points. Let D = {Xi} and Xi ∈ R7150×3 be the set of faces; further let Xi[k, l] be the lth
coordinate, (x, y, z), of the kth point of the ith face, l ∈ {1, 2, 3}, k ∈ {1, . . . , 7150}, and i ∈
{1, . . . , 1000}. The points are “registered” across all the faces i.e. Xi[k, ·] and Xj [k, ·] represent the
same facial feature e.g. the tip of the nose.

We compute the point-wise mean of D, the faces, as X̄ = 1/n
∑

i Xi and display this in the right
panel of Figure 4. We have a total budget of µT for the entire face which we need to split across all
points, X̄[k, ·]. We sanitize, independently, the 7150 points, X̄[k, ·], each of which has 3 coordinates
X̄[k, l]. To split the budget evenly, each point’s coordinate is allocated µp :=

√
µ2
T /(7150 · 3) of the

budget. That is, we require (7150 · 3) many mechanisms and their budget composition is
√∑

µ2
p,

since we are using µ-GDP. For each coordinate of each point of the average, X̄[k, l], we compute
sensitivity as ∆k,l = maxi,j |Xi[k, l]−Xj [k, l]|. We add noise to each coordinate of each point as
X̄[k, l] + ∆k,l/µp · z where z ∼ N (0, 1).

A.7 MÖBIUS TRANSFORMATION

The reparameterization defined in 2.1 is computationally expensive. To make the repameterization
less expensive, we leverage the Möbius transformation of conformal maps. We give a high level idea
of this transformation with more details available in Choi & Lui (2015; 2018); Choi et al. (2020)
and implementation available at GitHub repository Choi (2020).

The left most panel of Figure 7 displays a triangulated mesh of a face. The next step in our pre-
processing is to generate a disk conformal map. The middle column of Figure 7 displays two differ-
ent disk conformal maps of the same triangulated mesh in the left panel. It is, admittedly, difficult
to discern features, but in each panel of the middle column one can see approximately four dense
areas of which the middle corresponds to the nose. Recall that this disk conformal map embeds the
triangulated mesh onto the disk while attempting to locally preserve all angles.

The panels in the right column of Figure 7 are the disk parameterized surface corresponding to the
adjacent middle column disk conformal map. The center of the disk conformal disk, and hence the
disk parameterized surface, is not known a priori. Either of these disk parameterized surfaces will
suffice in our construction as we can optimally register it to a template as explained in 2.2. However,
since reparameterization is costly, we can save cost by prespecifying the center of the disk of both
the template and each face. A natural choice is to designate the center of the disk with feature such
as the tip of the nose.
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Figure 7: Left column: A triangulated mesh of a face. Middle column: Two disk conformal maps of
the triangulated mesh on the left. Right column: The disk parameterized surface resulting from the
adjacent middle column conformal map.

The bottom panel of the middle row is constructed using the Möbius transformation on the disk
conformal map of the top panel of the middle row. We note that the Möbius transformation is for the
disk conformal map and not the disk paramterized surface. This Möbius transformation costs effec-
tively no time, but reparameterization of the bottom right disk parameterized surface is much faster
than reparameterizing the top right to the template. This is because the methodology in A.3 looks
at the gradient about the identity, so shifting the center of the disk requires a lot of energy. Having
prespecified the nose as the center of the disk, though, the search space for reparamterization is
much smaller. We lastly also note that all from the left and right columns of the figure have the same
shape but have different representations; that is to say, shape is not effected by its parameterization
nor representation.

A.8 PROOF DETAILS

We include details to the proof of Theorem 4.3. First we show the bound on the upper bound on the
privacy loss random variable.

P (PL ≥ ϵ) = P

(
log

[
exp{− 1

2σ (∥h(D)∥2H − 2TD(x))}
exp{− 1

2σ (∥h(D′)∥2H − 2TD′(x))}

]
≥ ϵ

)
= P

(
log

[
exp{− 1

2σ

(
∥h(D)∥2H − ∥h(D′)∥2H − 2(TD − TD′)(x)

)
}
]
≥ ϵ

)
= P

(
− 1

2σ2
(∥h(D)∥2H − ∥h(D′)∥2H − 2(TD − TD′)(x)) ≥ ϵ

)
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Figure 8: Left: A private face sanitized with Gaussian noise point-wise with total µT = 2. Right: A
private face sanitized with Gaussian noise point-wise with total µT = 3.

Note that we have ∥h(D′)∥H − ∥h(D)∥H = ∥h(D) − h(D′)∥H − 2⟨h(D) − h(D′), h(D)⟩H and
⟨h(D)− h(D′), h(D)⟩H = (TD − TD′)(h(D)). Thus it follows that,

P

(
− 1

2σ2
(∥h(D)∥2H − ∥h(D′)∥2H − 2(TD − TD′)(x)) ≥ ϵ

)
= P

(
− 1

2σ2

(
−∥h(D)− h(D′)∥2H − 2(TD − TD′)(x− h(D)

)
≥ ϵ

)
≤ P

(
− 1

2σ2

(
−∆2 − 2(TD − TD′)(x− h(D))

)
≥ ϵ

)
= P

(
(TD − TD′)(x− h(D)) ≥ σ2ϵ− ∆2

2

)
= P

(
σ∆Z ≥ σ2ϵ− ∆2

2

)
= P (Z ≥ σϵ

∆
− ∆

2σ
) = Φ

(
−σϵ

∆
+

∆

2σ

)
This is the upper bound we needed of the privacy loss random variable. We similar need a lower
bound on the privacy loss random variable. The steps are very similar, we have that,

P (PL ≤ ϵ) = P

(
log

[
exp{− 1

2σ (∥h(D)∥2H − 2TD(x))}
exp{− 1

2σ (∥h(D′)∥2H − 2TD′(x))}

]
≤ ϵ

)
= P

(
Z ≤ σϵ

∆
− ∆

2σ

)
= Φ

(
σϵ

∆
− ∆

2σ

)
.

This completes the proof.

A.9 ADDITIONAL RESULTS

In 5.1 we describe how to privatize a point-wise average face. Figure 8 displays a comparison of
two private faces with µT = 2 and µT = 3, each from two angles. The two faces look fairly similar,
but this is an artifact of the noise making the face rough and fuzzy. The face on the right column has
a smoother outline as compared to the face on the left. In Table 1 we see that the MSE of the face
on the right is nearly half of that of the face on the left.

In the right panel of Figure 3 we show the coordinate curves of one face radial curve for one face;
In Figure 9 we show the coordinate curves of one face radial curve for one hundred faces. We see
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Figure 9: The x, y, and z coordinate curves, from left to right, of one face radial curve for one
hundred individuals.

in Figure 9 that the curves (and hence the features) are aligned across individuals; this empirically
shows the alignment and registration achieved by the methodology in Section 2.2.
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Figure 10: A pipeline diagram of our methodology. We generate disk parameterized surfaces which
we register and align to a template face. We extract the face radial curves from the disk parametriza-
tion and produce a sanitized mean via our GDP functional data mechanism.
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