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ABSTRACT

The statistical supervised learning framework assumesput-output set with a
joint probability distribution that is reliably represeudt by the training dataset.
The learner is then required to output a prediction rulenedrfrom the train-
ing dataset’s input-output pairs. In this work, we provideamingful insights
into the asymptotic equipartition property (AEPR) (Shannb®d8) in the context
of machine learning, and illuminate some of its potentiahifecations for few-
shot learning. We provide theoretical guarantees for idi¢earning under the
information-theoretic AEP, and for the generalizationoenvith respect to the
sample size. We then focus on a highly efficient recurrentaieet (RNN) frame-
work and propose a reduced-entropy algorithm for few-sentiing. We also pro-
pose a mathematical intuition for the RNN as an approximatfaa sparse coding
solver. We verify the applicability, robustness, and cotafianal efficiency of
the proposed approach with image deblurring and opticati@itte tomography
(OCT) speckle suppression. Our experimental results detraia significant po-
tential for improving learning models’ sample efficiencgngralization, and time
complexity, that can therefore be leveraged for practieal-time applications.

1 INTRODUCTION

In recent years, machine learning (ML) methods have led toyrstate-of-the-art results, spanning
through various fields of knowledge. Nevertheless, a cleaoretical understanding of important
aspects of artificial intelligence (Al) is still missing. Fnermore, there are many challenges con-
cerning the deployment and implementation of Al algoritimgractical applications, primarily
due to highly extensive computational complexity and ifisight generalization. Concerns have
also been raised regarding the effects of energy consumpfitraining large scale deep learning
systems|(Strubell et al., 2020). Improving sample efficyeaned generalization, and the integration
of physical models into ML have been the center of attentiweh @fforts of many in the industrial
and academic research community. Over the years signifizagtess has been made in training
large models. Nevertheless, it has not yet been clear whigdsrearepresentation good for complex
learning systems (Bottou etlal., 2007; Vincent et al., 2@B¥Ehgio, 2009; Zhang et al., 2021).

Main Contributions. In this work we investigate the theoretical and empiricakgbilities
of few shot learning and the use of RNNs as a powerful platfgimen limited ground truth
training data. (1) Based on the information-theoreticgingstotic equipartition property (AEP)
(Cover & Thomas, 2006), we show that there exists a relgtiselall set that can empirically rep-
resent the input-output data distribution for learning) If2 light of the theoretical analysis, we
promote the use of a compact RNN-based framework, to demadaghe applicability and effi-
ciency for few-shot learning for natural image deblurrimgl @ptical coherence tomography (OCT)
speckle suppression. We demonstrate the use of a singleitrgiging dataset, that generalizes
well, as an analogue to universal source coding with a kndatiodary. The method may be appli-
cable to other learning architectures as well as other egjins where the signal can be processed
locally, such as speech and audio, video, seismic imagiri®l, Mtrasound, natural language pro-
cessing and more. Training of the proposed framework ismety time efficient.Training takes
about 1-30 seconds on a GPU workstation and a few minutes dPlaw@orkstation (2-4 minutes)
and thus does not require expensive computational resau(@ We propose an upgraded RNN
framework incorporating receptive field normalization (RRseel(Pereg et al., 2021), Appendix C)
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that decreases the input data distribution entropy, andawais visual quality in noisy environments.
(4) We illuminate a possible optimization mechanism belMNNs. We observe that an RNN can
be viewed as a sparse solver starting from an initial comalitiased on the previous time step. The
proposed interpretation can be viewed as an intuitive exgtian for the mathematical functionality
behind the popularity and success of RNNs in solving pratficoblems.

2 DATA-GENERATION MODEL - A DIFFERENTPERSPECTIVE

Typically, in statistical learning (Shalev-Shwartz & BBavid, 2014| Vapnik, 1999), it is assumed
that the instances of the training data are generated by posbability distribution. For example,
we can assume a training input set = {{y;}>, : y; ~ Py}, such that there is some correct
target outputx, unknown to the learner, and each p@it, x;) in the training datal is generated
by first sampling a poiny; according toPy (-) and then labeling it. The examples in the training
set are randomly chosen and, hence, independently andcaéntlistributed (i.i.d.) according to
the distributionPy (-). We have access to the training error (also referred to asrieaiprisk),
which we normally try to minimize. The known phenomenon oédiiting is when the learning
system fits perfectly to the training set and fails to gerneealln classification problems, probably
approximately correct (PAC) learning defines the minimae sif a training set required to guarantee
a PAC solution. The sample complexity is a function of theuaacy of the labels and a confidence
parameter. It also depends on properties of the hypoth&sss.c To describe generalization we
normally differentiate between the empirical risk (traigierror) and the true risk. It is known that
the curse of dimensionality renders learning in high dinemn$o always amount to extrapolation
(out-of-sample extension) (Balestriero etlal., 2021).

INFORMATION THEORETICPERSPECTIVE CONNECTION TOAEP

Hereafter, we use the notatiari* to denote a sequence, zo, ..., z,,. In information theory, a
stationary stochastic proces8 taking values in some finite alphabitis called a source. In
communication theory we often refer to discrete memorysessces (DMS).(Kramer et al., 2008;
Cover & Thomas!|, 2006). However, many signals, such as imagghes, are usually modeled as
entities belonging to some probability distribution fongistatistical dependencies (e.g., a Markov-
Random-Field (MRF)L(Roth & Black, 2009; Weiss & Freemman, 2)@lescribing the relations be-
tween data points in close spatial or temporal proximityresleve will briefly summarize the AEP
for ergodic sources with memory (Austin, 2017). Althougke tormal definition of ergodic pro-
cess is somewhat involved, the general idea is simple. IrrgodiE process, every sequence that
is produced by the process is the same in statistical piep€$hannon, 1948). The symbol fre-
guencies obtained from particular sequences will appreagéfinite statistical limit, as the length
of the sequence is increased. More formally, we assume adliergource with memory that emits
n symbols from a discrete and finite alphabgtwith probability Py (w1, us, ..., u,). We recall a
theorem|(Breiman, 1957), here without proof.

Theoreml (Entropy and Ergodic Theoryletu, us, ..., u, be a stationary ergodic process ranging
over a finite alphabét, then there is a constaht such that

1
H = lim ——logy, Py(u1, ..., up)-

n—oo n
H is the entropy rate of the source.

Intuitively, when we observe a source with memory over ssEviime units, the uncertainty grows
more slowly asn grows, because once we know the previous sources entreslefrendencies
reduce the overall conditional uncertainty. The entrofg f&, which represents the average un-
certainty per time unit, converges over time. This, of ceumrmakes sense, as it is known that
H(X,Y) < H(X)+ H(Y). In other words, the uncertainty of a joint event is less thaaqual to
the sum of the individual uncertainties. The generalizatibthe AEP to arbitrary ergodic sources
is as following (McMillan | 1953).

Theorem2 (Shannon McMillan (AEP)) For e > 0, the typical setA” with respect to the ergodic
processPy (u) is the set of sequences= (uq,uz, ..., u,) € U™ obeying

1. Pru € A?] > 1 — ¢, for n sufficiently large.

2. 2—n(H+e) < PU(U) < 2—n(H—s)_



Under review as a conference paper at ICLR 2023

3. |A?| = 27,

|A| denotes the number of elements in the4eandPr[.A] denotes the probability of the evest.

In other words, if we draw a random sequelfee, us, ..., u,, ), the typical set has probability nearly
1, all elements of the typical set are nearly equally probabhd the number of elements of the
typical set is nearlp™”. This property is called the asymptotic equipartition mp (AEP). In
information theory the AEP is the analog of the law of largenbers|(Cover & Thomas, 2006). The
notion of a typical sequence was first introduced in 1948 bgnBhbn in his paper “A Mathematical
Theory of Communication’ (Shannon, 1948). Intuitivelye tigpical sequences® are the sequences
whoseempirical probability distribution is close t@; ().

As mentioned, the entropy rate is more often used for disammoryless sources (DMS), yet
“every ergodic source has the AER” (McMillan, 1953). Notatthntropy typicality applies also to
continuous random variables with a dengity replacing the discrete probabilil§, (v™) with the
density valuepy (u™). The AEP leads to Shannon’s source coding theorem statiidite average
number of bits required to specify a symbol in a sequencengjtten, when we consider only the
most probable sequences,As And it is the foundation for the known rate-distortion theand
channel capacity.

The AEP property divides the space of all possible sequente$wo sets: the typical set, where
the sample entropy is close to the true entropy, and the yminal set that consists of the other
sequences. We would like to show that most of our attenti@ulshbe on the typical sequences,
because any property that is true for the typical sequendethen be true with high probability
and will determine the average behavior of a large sample.

Let us assume a training s&t= {y;,x;}1",,
wherex; € R™*! are sampled fronA” (Px) Learning System

and paired withy; € R%*! by some function z" N S

. . . | |
as ground truth. The learning system is trained| source —»{ system H encoder [ ——>| decoder |——>
to output a prediction rulgF : Y¢ — X", As- ) Fonl) e — |

Measured Latent

sume an algorithm that trains the predictor by s atent

minimizing the training error (empirical error
or empirical risk). Assuming a discrete source Figure 1:The learning system problem.

Px () that emits i.i.d sequenceg’ of symbols

(for example: patches in an image, segments of

an audio signal, etc.), the estimator has access only tdaereed signaj?. In an inverse problem
y® would be a degraded signal originatingif, where the relationship betweefi andy¢ could be
linear or non-linear, with or without additive noise, sublattigenerally? = g(z™) + e(z"), where
g(+) ande(-) are functions of™. Giveny?, we produce an estimat&'. However, the following
proofs are not restricted to this framework. Our problentirsgis illustrated in Figl L. For the sake
of the following theoretical analysis we restrict the maggpF : ) — X to be a surjective func-
tion. Namely, for every:™, there is ay¢ such thatf(y¢) = ™. In other words, every element is
the image of at least one elementdf It is not required thag? be unique. In the presence of noise
this condition can only be met if the noise’s power is undeerain threshold. The goal is to prove
that learning withA? is sufficient for generalization of the entire distributisith the same gener-
alization error. Denote a sample sizel = m that is required to train a predict@y : Y¢ — X7,
such thatl ~ Px y. An algorithm minimizes the training error (empirical erar empirical risk)

Lo(Fo) = 3 UFalyo). ) @
i=1

where0 < ¢(x,%) < 1is some loss function. The empirical error over the trairsegat the end
of the training, for the specific trained predictoy is Ly (hg) < A,, << 1. The true error, or the
generalization error, in this setting is

‘C(h‘ll) = E(.x,y)NPx,Yg(h\P(y)vX)v (2)

whereE . .y~ py , (-) denotes the expectation oveg y .

TheorenB (AEP learning for systems with a surjective mappingssume the generalization error
of the trained predictoF : Y — &™ over the typical setd”(Px) is at moste%;. Then, the
generalization error of the trained predic#®r. V¢ — X" over the entire distribution is at mosf .
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Theorem4 (sample size for learning with a surjective mappingssume a training set that is
generated by randomly drawing samples fréta and labeling them by the target functigq-),
U = {{yi, %} x; ~ Px, yi = g(x:), x; € R™ y; € R¥™*11 g(.) is a deterministic
function, andf(-) = g~ !(-) is a surjective function. Assume the predictor was trainemtsssfully
to yield Ly (hy) < A,, << 1. The sample size: and the true error obey

Lhy) < Ay, m >24HE)

L(hy) <A, 2dH<Y>% <m <2V A, <AL ®)

- /am

In other words, as long as the sample size is larger or eqtiaéttypical set size, we are guaranteed
to have a generalization error that is as small as the tigi@iror. Otherwise, the upper bound on
the generalization error depends on the ratio between thpleaize and the input typical set size.

Theoremb (sample size for learning with a surjective mapping in p@avironment) Assume a
training set that is generated by randomly drawing samptes Px and labeling them by the target
function such that¥ = {{y;,x;}7%; : x; ~ Px, yi = g(x;) + n;, x; € R™*! y; € R"*},
whereg(-) is a deterministic known or unknown function, angdis an additive i.i.d noise; ~
N™(uu,02). The sample sizex and the true error obey

Lhy) < Ay, m > 2nEY)

L(hy) < A, 2”1<X%Y>% <m<2MEY) AL <A<, (4)
wherel(X;Y) = H(Y) — H(X]Y) is the mutual information betweeXi andY'.

Note that givenEY? < o2 + o2 we knowI(X;Y) < Llog(l+ o2/c2).

In this case, we can resolve an inpiftasz} if they are jointly typical. For each (typical) output
sequence:”, there are approximateB/*” (Y1X) possibley™ sequences, all of them equally likely.
We assume that no twe™ sequences produce the sagieoutput sequence, (otherwise, we will
not be able to decide which* sequence it originated from). Hence, the total number o$ipts
(typical) y" sequences is apprax* (), This set has to be divided into sets of siz& (Y1X),
corresponding to the differenf* sequences. The total number of disjoint sets is less thaqual e
to 27(H-HIX) — onI(X3Y) Hence, we can have at mast!(X:Y) distinguishable sequences of
lengthn. The proofs for Theorenis[3-5 can be found in Appeindix B.

Remark 1.Theoreni# is a specific case of theorlem 5, since in our settirthe absence of noise
I(X;Y)=H(Y).

Remark 2.The theorems and their proofs can be generalized to thencants case wittd” (px )
and differential entropy(px ).

Remark 3lt is often possible to assume th&tand)’ are discrete alphabets as a result of quantiza-
tion of real values, and therefore we can discuss discreétemn

Remark 4.The size of the typical set is exponential by Therefore, one could claim the size of a
typical training set is still large relative to standardrimag sets that represent the entire probability
distribution. However, it is known that data compressiod aaurce coding are based on the AEP.
And though the size of the typical set is exponentialrhycompression algorithms, such as JPEG
(Wallacé! 1991), can compress an image by a factor of 10.dmtliseless case, there &fgos: "
possible output sequences, where |Y|. Using the AEP it should be possible to train with signif-
icantly less examples, because we only try to generalizeV&Y) possible output sequences.
Remark 5/Zontak & Irani (2011) postulate that patches of the sameygsare internally repeated,
but unlikely to be found in other images. This notion mighpegr as a contradiction to the proposed
analysis. However, note that although the probability odlifiy a sequence that belongsAg is
close to one, the probability of finding a specific sequendhértypical set is very small.

The AEP tells us that there exists a relatively small groupahing examples that would be suffi-
cient for generalization. However, the AEP property dogsdedine this set, nor the correct coding,
learning or prediction method. It just reassures us thaetegists a set of the sort. How do we
find the typical learning set? One option may be by predefimddasned dictionary coding: build
a training set that represents the typical set, consistiniggomost common structures, in a similar
manner to universal source coding based on a known diciid@aver & Thomas, 2006).
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3 PRELIMINARIES

3.1 RNN FRAMEWORK

Assume an observation data sequegce [yo,y1,...,yYr-1), y¢+ € R¥*1 ¢t € [0,L — 1], and
a corresponding output sequence= [xg,X1,...,xz_1], Xx; € RFXL. The RNN forms a map
f 'y — z, from the input data to the latent space variables. Thawisinputy, and statez,
of time stept, the RNN output is generally formulated as= f(z;—1,y:) (Pascanu et al., 2013).
Hereafter, we will focus on the specific parametrization:

Zy = J(WZyyt + WZzthl + b)a (5)

whereo is an activation functionW ., € RV>*" andW,, € R"»*": are weight matrices and
b € R™*! s the bias vector, assuming, number of neurons in an RNN cell. At= 0 previous
outputs are zero. Here, we use the ReLU activation funcRefb,U(z) = max{0, z}. At this stage,
we wrap the cell with a fully connected layer such that theérdddinal output isx; = FC(z;).

Traditionally, RNNs are used for processing of time relaggghals, to predict future outcomes,
and for natural language processing tasks such as hanaywdtognition|(Graves etlal., 2009) and
speech recognition (Graves et al., 2013). In computer viRNNSs are less popular, due to gradient
exploding and gradient vanishing issues (Pascanu et dl3)2@nd their expensive computational
complexity compared to CNNs._Liang & Hu (2015) proposed the af recurrent convolutional
networks (RCNNs) for object recognition. Pixel-RNN (VanD®ord et al, 2016) sequentially pre-
dicts pixels in an image along the two spatial dimensions.

3.2 SARSECODING & ITERATIVE SHRINKAGE ALGORITHMS

In sparse coding (SC) a signale RV*! is modeled as a sparse superposition of feature vectors
(Elad/2010; Chen et Al., 2001). Formally, the observatigna obeysy = Dz, whereD ¢ RY*M

is a dictionary ofA atomsd; € RVY*! ¢ = 1,..,M, andz € RM*! is asparsevector of the
atoms weights. Over the years, many efforts have been gdéstsparse coding, both in a noise
free environment, or when allowing some error,

min [zly sty —Dz: <¢, (6)

where||z|l; = 3, |2, |lz]l2 £ /Y, 22 ande is the residual noise or error energy. Further details
on sparse coding are in Appendix A.

Consider the cost function, 1
2
f(z) = 5 lly — Dzl; + Allzll; (7

for some scalain. Following Majorization Minimization (MM) strategy, we nabuild a surrogate
function (Daubechies et al., 2004; Elad, 2010)

1 c 1
Q(220) = f(2) + d(z,2) = 5 Iy — Dall} + Az, + 512~ 20[}3 ~ 5Dz ~ Dzol3.  (8)

The parametet is chosen such that the added expression
c 9 1 9
d(z,20) = Q(2,20) — f(2) = 5|z — 20[2 — 5| Dz — Dz|[; 9)

is strictly convex, requiring its Hessian to be positive oiédi, cI — D”’D >~ 0. Thereforec >
IDTD||2 = ama:(DTD), i.e., greater than the largest eigenvalue of the coheneratex D7 D.

The termd(z, zo) is a measure of proximity to a previous solutian If the vector difference — zy

is spanned b, the distance drops to nearly zero. Alternativelypifs not full rank and the change

z — z¢ IS close to the null space @D, the distance is simply the approximate Euclidean distance
between the current solution to the previous one. The seguehiterative solutions minimizing
Q(z,zp) instead off(z), is generated by the recurrent formula ; = arg min, Q(z,z), where

0 € N s the iteration index. We can find a closed-form solutionif®global minimizer that can be
intuitively viewed as an iterative projection of the diatary on the residual term, starting from the
initial solution that is a thresholded projection of thetdinary on the observation signaly(= 0):
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1 1 1
2041 = Sx (EDT(y ~ Dazy) + ze) =S, (EDTy +(1— EDTD)ZQ), (10)

where theSs(z) = (|z| — 5)+sgn(z) is the soft threshold operator. Assuming the constaist
large enough, it was shown lin_ Daubechies et al. (2004), @tié guaranteed to converge to its
global minimum. Over time, faster extensions have beenestgd, such as: Fast-ISTA (FISTA)
(Beck & Teboulle, 2009a), and Learned-ISTA (LISTA) (GredgoteCun, 2010),

Zoy1 = S% (Wy + SZg). (1))

W andS are learned over a set of training samp{es, z;}7>,. W andS re-parametrize the
matrices: D” and(I - 1D” D), respectively. Note tha andS are no longer constrained @Y.

4 RNN ANALYZED VIA SPARSECODING

Observing the similar structure ¢f (5) and11), we redefiredost function[(7)

1
f(z¢) = 3 lye — Dzelf5 + Allze]],. (12)
Now, building a surrogate function
1 2 C 2 1 2
Q(zt,2:-1) = f(2¢)+d(24,2¢-1) = 3 lly: — DZt||2+)\||Zt||1+§HZt—thl||2—§||th—DZt71sz
(13)

where the added tera(z;, z; 1) represents the distance betweendhgent solutionand thepre-
vious solutiorat thepreceding time stefrather than the previous iteration), yields

1
70 = 83 (D7 (vt = Dzi-1) +21), (14)
which in its learned version can be re-parametrized as,
20 = Sp (WZTyyt + WZTZZH). (15)

Clearly, [I5) is equivalent to5). In other wor@gsRNN can be viewed as unfolding of one iteration
of a learned sparse coder, based on an assumption that thé@oht timet is close to the solution
intimet — 1. In subsectiof 3]1, the RNN state encodes the vector tort lpace. Then the FC net
decodes the latent variable back to a space of the requineeihdions. Given this interpretation, it
may be claimed that RNN’s use should not be restricted towliiteobvious time or depth relations.
The RNN merely serves as an encoder providing a rough estimaftthe sparse code of the input
data. The RNN’s memory serves the optimization processairsg the computation from a closer
solution. Thus placing the initial solution in a “close neigrhood” or close proximity, and help-
ing the optimization gravitate more easily towards theriagpace sparse approximation. Clearly,
convergence is not guaranteed.

5 FEW SHOT LEARNING VIA RNN

The setting described in this subsection has been preyi@mployed for various applications.
Biswas et al.|(2018) and Pereg et al. (2020a) used a simdardwork to facilitate automatic ve-
locity analysis, where they used a portion of the acquirdd &t training and let the system infer
the rest of the missing velocities. Pereg etlal. (2020b) assinilar framework to perform seis-
mic inversion with synthetic training data. Here, we expamnd elaborate its application, while
connecting it to the theoretical intuition in Sectldn 2. Tdescription below is formulated for two-
dimensional (2D) input signals, but can be easily adapteatter input data dimensions. We use
similar definitions and notations as previously descrilme(®Pereg et all, 20204a;b).
Definition 1 (Analysis Patch)We define aranalysis patctas a 2D patch of sizé; x N enclosing
L, time (depth) samples @¥ consecutive neighboring columns of the observed inggeR /.
Assume{nr,,ng € N: n;, + ng = N — 1}. The analysis patch (7) associated with an image
point at location(s, j), such that elemertt, 1) of A7) is

A,(:A’lj) = {Si+k,j+l ck1€Z,1—-Li <k<0, —np <l<ng}.
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An analysis patchA (+7) € RE*N js associated with a pixdk; ; in the output image. To produce
a point in the estimateﬁ{m we set an input to the RNN as = A(%J). Each time step input
is a group of N neighboring pixels of the same corresponding time (depth)other words, in
our applicationy; = [S;—r,+14tj-np: - Si*Lt+1+t,j+nR]T- We set the size of the output vector
x; to one expected pixel{ = 1), such thatx is expected to be the corresponding segment

[Ri—(Lo—1),j» - Rij] T Lastly, we ignore the first, —1 values of the output and set the predicted

pixel Ri’j as the last oneg,. The analysis patch moves through the input image and pesduc
all expected output points in the same manner. Each anglgsih and a corresponding output
vector are an instance for the net. The size and shape of ghgsenpatch defines the geometrical
distribution of columns and samples that are consideredéh eutput point computation.

Note that, in the above framework the number of hidden usityypically much larger than the
dimension of the inputy,, >> N, (N << M). The dimension of the latent space can be 3 orders
of magnitude larger than the input space dimension. In a@ecwe with that, it has been observed
that over-parametrized neural networks generalize b@rshabur et al., 2018) and that dictionary
recovery may be facilitated with over-realized models §&8ukt al., 2022).

RFN-RNN. Employing one projection assuming_; is close tox; may throw us far away from
the desired solution. RFN_(Pereg et al., 2021) refers tol Isigmal normalization, in an attempt
to find the detected features’ support in fewer iterationsatoiding the liability of unbalanced
energy. Since the RNN is essentially a sparse solver, weopeoio apply 2D-RFN, prior to applying
the RNN. We then multiply the latent space support normdlizeights by the non-normalized
projection of the learned dictionary on the original inpigi&l to regain the local energy. Appendix
describes 2D-RFN, and provides the proposed method'saforwass in Algorithrill. The RFN
signal’s distribution is confined to a smaller set of valuBsus, RFN decreases the signal’s entropy
and the size of the typical set associated with the inputiligton.

6 NUMERICAL EXPERIMENTS

6.1 CASE STUDY: IMAGE DEBLURRING

We studied the RNN framework in Sectigh 5 and Algorifim 1 (RRRN) for Gaussian deblurring.
First, we follow the same Gaussian deblurring experimerfop@ed in Romano et al. (2017), using
the set of natural images provided by the authors. All pixdligs are in the range of [0,255]. The
images were convolved with a 2D Gaussian RSk 25 with standard deviation of 1.6. RGB images
are converted to YCbCr color-space. Inversion is applietthéoluminance channel, and the result
is converted back to the RGB domain. As a figure of merit, waldbe peak signal to noise ratio
(PSNR) and the SSIM, both computed on the estimated luméienannel of the ground truth and
the estimated image. We investigated the basic RNN and RRN-fRameworks, and studied the
effect of different training and testing images, with at@itWGN with o,, = /2.

For each experiment, we used one of the images for trainidgteremaining 9 images for testing.
The assumption that the latent space representation isespas verified in the numerical experi-
ments. Tablg]1 presents the optimal PSNR and SSIM scoreisethfar each image, and compares
the PSNR scores to state-of-the-art image deblurring ndsthBISTA (Beck & Teboulle, 2009b),
NCSR (Dong et &ll, 2013) and RED (Romano et al., 2017). Naterttost deblurring methods re-
quire prior knowledge of the degradation process. Whereggrtiposed approach requires only one
example of the degraded image and its corresponding grautid fThe best scores were obtained
by training with either one of the images: butterfly, boatsirpt, starfish and peppers. Hence, it
is safe to assume that the patches in these images religirsent the typical set associated with
natural images to a certain degree. Figlié$ 2-3 presentpdearnf the proposed methods. Fig-
urel@ show the evolution of the PSNR scores for RNN and RNN-R#hlincreasing additive noise
variances,, € [0,10+/2] . As the noise level is increased RFN suppresses noise.battditional
examples and training details are in Apperidix|D.1.

At this stage, we are not suggesting that the results are etitiap with state-of-the-art denois-
ers. Currently, the main advantage is substantial speedsofow (Abadi et al., 2016) imple-
mentation converges in about 1700 iterations in an averfdet.d9 seconds on a laptop GPU
(NVIDIA GeForce GTX Ti 1650 with 4GB video memory) and 2.01mates on i-7 CPU. Pytorch
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(b) (d)

Figure 2: Visual comparison of deblurring of the image starfish: (a) Ground tr{thinput, 24.8dB; (c)
RED-SD, PSNR=32.42dB; (d) RNN 29.18dB; (e) RNN-RFN, 28R5d

@ (b)

(d) (e)
Figure 3: Visual comparison of deblurring of the parrot image: (a) Ground tr(ih input, 25.33dB; (c)
RED-SD, PSNR=33.18dB; (d) RNN 30.10dB; (¢) RNN-RFN, 2984d

Il, 2019) implementation training convergetiepochs on average in 30.73 seconds
on a GPU NVIDIA GeForce RTX 2080 Ti, and 2.73 minutes on i-7 CRiference takes-500
msec. For reference, RED-SD takes 15-20 minutes of prowgési each image, on a CPU.

As the focus of this study is to bridge between theory andiegipbn for few-shot learning, and
to provide theoretical justifications, rather than to achistate-of-the-art results, we verified the
theoretical results in Theorel 5 for the image deblurringecaTlo this end, we trained the RNN
network with varying sample sizes while trying to keep a t¢anstraining errorLqe (he) < Ap,.
The training data consists of patches belonging to a singggé (starfish). We consider the recovery
error, denoted aé(hq,), over the other non-training 9 images as an empirical appration for the
generalization error. Figufé 9 shows the evolution of thvery error with increasing sample size
chosen uniformly in the range [1, 61752]. Evidentlyhy) > Ly (hv), While Ly (he) < A, which
implies thatm < 2/(X3Y) In this regionZ(he) < 1—-m2-"1XY)(1-A,,) < A (see proof). Hence,
empirically we can deducE X;Y") > 0.33. Our code will be available upon acceptance.

6.2 CASESTUDY: OCT SPECKLE SUPPRESSION

OCT uses low coherence interferometry to produce crogssset tomographic images of internal
structure of biological tissue. It is routinely used for gli@stic imaging of the anterior eye, the
retina, and, through a fiber-optic catheter, the coronamrias. Unfortunately, OCT images are
degraded by the presence of speckle (Schmitt/et al., 1998di®an| 2007), which appear as grain-
like structures in the image, with a size equivalent to theinal spatial resolution of the OCT
system. Speckle significantly degrade images and comelintdrpretation and medical diagnosis
by confounding tissue anatomy and masking changes in ts&mttering properties. Though speckle
share many statistical properties with noise, it is esaptinresolved spatial information as a result
of the interference of many sub-resolution spaced scasté@uratolo et ll, 2013).

Here, we show two examples of supervised learning specklpreasion with OCT experimental

data, for demonstration. We used intensity OCT tomograsalying the log-scaled squared norm
of the complex-valued tomogram. As ground truth for tragnand for evaluation of the general-

ization, we used hardware-based speckle mitigation obdaby dense angular compounding, in
a method similar to Desjardins et €l. (2007). We investigateo challenging cases of mismatch
between the training data and the testing data: (1) Tisquee rtyismatch. (2) Tissue type and ac-
quisition system mismatch. Namely, in the first case, OCTomgrams of chicken tissue and a
blueberry were acquired by the same system and used asigréimage and testing image, respec-
tively. Whereas, in the second case, the training image wasagram of chicken-skin acquired

by one system, and the learning performance was tested onagtam of cucumber imaged with a

different OCT system. Further details are in Apperdix|D.2.
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@ (b) (c) (d) (e)
Figure 4: OCT speckle suppression with tissue mismatch and identical imaging sy3taining images:
(a) Chicken muscle with speckle (PSNR = 26.03 dB); (b) Ground tryb¢lde-suppressed tomogram; (c)
Blueberry with (PSNR = 21.39 dB) and (d) without speckle (ground }ru#) Predicted speckle-suppressed
tomogram (PSNR=31.1dB). Scale bars: 260

CY (b) (c) (d) (e)
Figure 5:0CT speckle suppression with tissue and system mismatch: Training infay&hicken skin with
speckle (PSNR = 28.96 dB); (b) Ground truth, speckle-supprassedgram; (c) Cucumber with (PSNR =
29.40 dB) and (d) without speckle (ground truth), imaged with inferiarkd resolution and lower lateral sam-
pling than training image; (e) Predicted speckle-suppressed tomo§@NR=31.34dB). Scale bars: 204.

Figured4(a)-(b) show the speckle-corrupted and specidpressed tomograms of chicken tissue
used for training. The speckle-suppressed tomogram irff4fi.has a homogeneous appearance,
whereas the speckled signal in Fify. 4(a) is strongly texigrhibiting a grainy pattern with spots of
bright, high intensity signal, alternating with regionswvefry low signal. Figuregl4(c)-(d) show the
speckle-corrupted and speckle-suppressed tomograms blitbberry used for testing. As shown in
the inferred result in Fid.]4(e), the system is able to sigaiftly reduce speckle while maintaining
spatial resolution, despite the structural differencdws/ben the training and the testing images.

Figured b(a)-(b) show the original and compounded tomografithicken skin used for training.
Visibly the training data is non-stationary and of complaxsture. Figuregl5(c)-(d) show the orig-
inal and compounded tomograms of cucumber used for teskimg cucumber image was acquired
with a different sample objective lens resulting in twiceoper lateral resolution. The lateral sam-
pling space was increased from 2ib to 8um, resulting in system mismatch between training and
testing data, in addition to the tissue mismatch. As can ba,gbe learning system is able to de-
tect most features and to significantly remove speckle.2dotal lines appear slightly sharper than
vertical ones.

Computational resources. The proposed framework training time is only 35.00 seconma stan-
dard CPU workstation equipped with an Intel(R) Core(TM) TB20HQ CPU @ 2.30 GHz, or
alternatively4.56 seconds on average on a laptop GPU NVIDIA GeForce GTX Ti 1650 with 4GB
video memory, and converges typically in less than 700titana.

7 CONCLUSIONS

"The curse of dimensionality can be viewed either as thetéitiin on data analysis due to the
large amount of data or parameters needed to analyze tHe(Batmio et al.| 2007). In this work,
we investigated the properties of the AEP in the context pesvised learning, and its practical
ramifications in relieving computational complexity in teang systems. We focused on a RNN
framework as a powerful tool for learning with limited traig data. The low computational com-
plexity can be leveraged for medical areas where there kisdhdata and resources. Future work
could extend the proposed work to other tasks and applitatioother domains. Our future work
will extend the AEP hypothesis to the automatic design oftB® training dataset for unsupervised
medical imaging learning tasks.
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A SPARSEREPRESENTATIONS

Sparse coding (SC) is a popular task in many fields, such aagenprocessing (Elad, 2010),
computer vision [ (Jarrett etfal., 2009), compressed senEhomoho, 2006), ultrasound imaging
(Bendory et al., 2016), seismologdy (Pereg & Cohen, 2017edPetal., 2017; 2019; 2021), and vi-
sual neurosciense (Olshausen & Field, 1996; | eelet al.;)2009

A sparse representations model (FElad, 2010) assumes & gignR**! that is analyzed as a sparse
linear combination of some dictionary basis components:

y = DZ, (16)
whereD € R?M s a matrix called the dictionary, built of the atomdg € R**!, i = 1,..., M, as
its columns, and € RM*1 is the sparse vector of the atoms weights. Sparse codingistthe

recovery ofz, has been the center of tremendous research efforts. Bitttrnsparsest solution, the
one with the smalledt,-norm, is basically attempting to solve

(Po) : min ||z||o s.t. y = Dz, a7)
where ||z||, denotes the number of non-zeroszn Unfortunately, P, is in general NP-Hard
(Natarajan, 1995), therefore tiig-norm is often replaced with thg-norm

(Py) : min ||z||1 s.t. y = Dz, (18)
where|z|[; £ Y, |z:|. In many real-life scenarios, such as in the presence oermisvhen some
error is allowed, we solve

(Pre): mzin l|z]1 s.t. lly — Dzl||2 <e, (19)

where|z[» £ />, 22. The sparsest solution t and P; is unique under certain conditions,
and can be obtained with known algorithms, such as orthoalommatching pursuit (OMP) or basis
pursuit (BP), depending on the dictionary’s properties thieddegree of sparsity af That is, when

llzllo < %(1 + ﬁ) whereu (D) is the mutual coherence defined as

dfd;
(D) = max — 1 L (20)
D) = me LT

the true sparse codecan be perfectly recovered (Carglet al., 2011).

An intuitive way to recovetr is to projecty on the dictionary, and then extract the atoms with the
strongest response by taking a hard or a soft thresholdz ke H 3 (D”y) orz = S (DTy), where
the hard threshold and the soft threshold operators arectgply defined as

Z+ﬂ7 Z<_B
W) ={5 20 and S =qo.  d<p.
’ o Z_ﬁa Z>ﬂ

Note that the ReLU activation function obeys

0, z2<p

ReLU(Z_ﬁ):max(z—ﬁ,0)=$§(2)é{z_ﬁ z>B"

Therefore, the soft threshold solution can be also writgen a
z= S/—;(DTY) - S;(—DTY) = ReLU(DTy -B) - ReLU(—DTy _B).
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It is possible to assume a nonnegative sparse code suchhthateights are solely positive, es-
sentially assuming a compounded dictionipy, —D] (Papyan et all, 2017). Hence a nonnegative
model does not affect the expressiveness of the model.d®stipport recovery by simple threshold-

ing is guaranteed only whejz||o < % (1+ ) ﬁ'“‘”‘) Where|z|min, and|z|max are the minimum

and maximum values of the vectai on the support, implying that this approach may have stgbili
issues when the data is unbalanced.

In the special case whei@ is a convolutional dictionary, the task of extractiags referred to as
convolutional sparse coding (CSC). In this case, the dietipD is a convolutional matrix con-
structed by shifting a local matrix of filters in all possilgesitions! Papyan etlal. (2017) show that
the forward pass of CNNs is equivalent to the layered thie#hg algorithm designed to solve the
CSC problem.

B PROOFs

B.1 PROOF OFTHEOREM[3

We assume a training s&t where{x; } ; are sampled froml” (Px ) and labeled by some function
asground truthf = {{y;,x;}I", : x; € A?(Px)}. The output of a predictoF : Y — X'. Assume
an algorithm that minimizes the training error (empiricabe or empirical risk)

:iZEﬁ (%), ¥4) (21)
m =1

Assuming a discrete sourdex (-) that emits i.i.d sequenceas’ of symbols (for example: patches
in an image, segments of an audio signal, etc.). The estinha@® access only to the observed
signaly®. (In an inverse problemy“ would be a degraded signal originating ift, where the
relationship between” andy“ could be linear or non-linear, deterministic or stochasBienerally,

4 = g(z") + e(z™).) Giveny?, we produce an estimat&®. However the following proof is
not restricted to this framework. For the sake of the follogvtheoretical analysis we restrict the
mappingF : Y — X™ to be a surjective function. In other words, for evety there is a/? such
that f(y?) = ™. In other words, every element is the image of at least one elementdf It is
not required thay be unique. In the presence of noise this condition can onipéif the noise’s
power is under a certain threshold. The goal is to prove #aning withA” (Px) is equivalent to
training with the entire distribution with the same genization error.

A sequence,? of symbols is passed to the learning system. For example,dossible that this
system is built as an encoder-decoder, such that the entoatapresses’ into a latent space
representation vectar® and sends” into the decoder. The decoder reconstructsrom z*, as
" (2%). Generally speaking, the predictor reconstrifetfrom y¢ and is said to be successful if
#" = x™. We consider the case where every source sequehizassigned a unique’. Therefore
one can reconstruet® perfectly. Note that the same latent spatean represent different observed
sequences?. This assumption is true if and only if the mappifg: V¢ — X'™ is unique. In other
words, every:” can be mapped to more than oyt but everyy? can only be mapped to oné'.
The goal is to prove that learning by training over the typsea A? ( Px ) is sufficient.

DenoteA = {z" : 2™ € A?(Px)}, B = {z" : 2™ ¢ A?(Px)}, |B| = é.(n). We train the
predictor with a training se¥ 4 = {{y?, 27}, : 27 € A}, such that the generalization error (risk)
overz™ € Ais at most?,. Now, given some test inpyt!, if 2" (y?) € A" (Px) the encoder passes
to the decoder the* that represents this sequence. In the general case, thetprateciphers)?

as trained by generalization. Howeverif(y?) ¢ A”(Px) we can assume some unknown output

" (the encoder sends to the decoder some unkndigenerated by the trained learning system),
with errore%. The average error is upperbounded by

L(hg) < Pr{z" € A?(PX)}Ef + Pr{a" ¢ A?(PX)}EJJ; < 5§ + 56(n)5§. (22)

But sinced,(n) — 0 asn — oo, we havel(hy) < £%. O
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An alternative way to derive the same result is as followifige generalization error of the trained
predictorhy is

L(hg) = Egympyy Lhu(y),z) = Y Pxy(z,y) {(hu(y),z)

(z,y)~Px,y

Z Px(x) Z Pyix(ylz) £(h(y), )

z~Px y~Py | x
= Z Px(z) Z Py x(ylx) £(hw(y), x) = La(hw) < €7,
r€AR(Px) y~Py|x

where £ 4 (hy) denotes the generalization error over the typicalA&tPx). The third equality
follows from Pr[z™ € A™(Px)] = 1. Throughout the proofs we sometimes omit the superseript
for simplicity. Note that this derivation is symmetric forandy, therefore it is possible to build a
training set by drawing sampleg € AZ(Py) and pairing them with the corresponding, under
the assumption that the mappig: Y¢ — X™ is a surjective function. Alternatively, it is possible
to define the jointly typical seB = {(z",y¢) : (2", y?) € A4 (Pxy),y" € Ad(Py),2" €
A?(Px)} and assume the training input-output pairs are drawn ffom

B.2 PROOF OFTHEOREMHA

Assume a supervised learning algorithm with a trainingdsegampled from an unknown distribu-
tion Px and paired withy by some target function(-), to learn a predictohy : Y4 — X™. (Here,
the subscriptl emphasizes that the output predictor depend¥gnThe goal of the algorithm is
to find Fy that minimizes the error with respect to the unknaifgy (-) over X" x Y<¢. Since the
learner does not knowx y (-), the true error is not available to the learner. A usefularobdf error
that can be calculated by the learner is the training ertar érror over the training sample), a.k.a
the empirical error or empirical risk,

Ly(h) = C(h(xi),y:) (23)
=1

1
m <

?

wherem = |¥| and{(z, &) is some loss function, such as: MSE,norm, etc. The training sample
is only a glimpse into the world that is available to the learriThis learning paradigm coming up
with a predictor that minimize£y (Fy) is called Empirical Risk Minimization or ERM for short
(Shalev-Shwartz & Ben-David, 2014). We define the true ewpthe generalization error, in our

framework as

£(h‘ll) = E(m,y)wpxyyg(h\l/(y)vl')v (24)
whereE . .y~ pyx , (-) denotes the expectation oveg y .
Let the learner’s output sequences R™*! be a finite sequence whose i'th entrytakes on values
in a discrete and finite alphab&t We write X™ for the Cartesian product of the sE&twith itself n

times. In other words, our hypothesis clag®beysH = {h : Y — x™}. For a training sampl&
the trained predictohy, minimizing (23),

hy € arg hmél;{l Ly(h)

Assume the predictor was trained successfully to yigldhy ) < A,, << 1. Recall the sequences
that serve as the examples in the training set are indeptyderd identically distributed (i.i.d.).
We are interested in finding the sample sizero$equences of instances that will lead to a bounded
generalization error for the specific trained predicttiy) < A. Namely,

L(hw) = Egyyopyy Lhe(y), ) = Z Pxy(z,y) £(hu(y),z)

=> P (), fW) = Y. Pr(y) L), f(v),

Y yEAZ(Py)

the second equation follows froff(X,Y) = P(Y)P(X|Y). Recall that we assumegl-) is a
deterministic function, and that(-) is a subjective function, therefol®(X = f(y)|Y = y) = 1.
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And the third equation follows fronPr[y? € A4 = 1. If m > 2470 and sincg A%(Py)| =
QdH(Y) andPy (y?) = 2—dH(Y) then clearlyC(hy) = Ly(hy) < A,,. Otherwisejn < 9dH(Y)
and

Lhg) < M) —m)2= 1Y) A, 07 HE) <A

where we have used the fact thiat, #) < 1. We now have

1-m2 #HY)(1 - A,) <A, (25)
And sinceA,, << 1,
m > 2dH(Y>% ~ 25 (1 — A)(1+ A, (26)
or approximately
m > 20 (1 — A). (27)
Equivalently,
m
A > 1- W(l - Am)- (28)

Hence the ratio between the sample size and the input détakyget determines the upper bound
on the generalization error.

B.3 PrROOF OFTHEOREM[E

Sincey = g(x) + n, each of the possiblg sequences induces a probability distribution onthe
sequences. Since two differegit may originate in the same" sequence, the™ are confusable.
For a “hon-confusable” subset of input sequences, suchwiitiahigh probability there is only one
highly likely ™ that could have caused the particular output, we can recmighe sequence at
the output with a negligible probability of error, by mapgithe observations into the appropri-
ate “widely spaced” hidden sequences. We can define the teumali entropyH (Y| X') assuming
they are ergodic and have a stationary coupling (Gray,|20D&fining their mutual information
I(X;Y)=H(Y)- H(Y|X), their jointly typical set follows similar properties (Cenv& Thomas,
2006). DefineB = {(z",y") : (2",y") € A"(Pxy),y" € A*(Py),z" € A"(Px)},and
A?(ny‘$n> = {yn : ((En,yn) € A?(nyy)} Observe thaﬂ?(nyykfn) = (if 2" ¢ A?(Px)
(Kramer et al., 2008).

Pr[Y" € A™(Pxy|z")| X" = 2" ~ 1. (29)
Pr[(z",y") € B] ~ 27 (XY, (30)
|B| ~ 2nI(X3Y), (31)

Roughly speaking, we can resolve an inpfitasz if they are jointly typical. For each (typical)
outputz™ sequence, there are approximatgly’ (¥ IX) possibley™ sequences, all of them equally
likely. We wish to ensure that no twg* sequences produce the sagiteoutput sequence, otherwise,
we will not be able to decide which® sequence it was originated from. The total number of passibl
(typical) y" sequences is apprax*’(Y). This set has to be divided into sets of sizg?(YX)
corresponding to the different input X sequences. The tatahber of disjoint sets is less than
or equal to2(H()—HIX)) — 9nl(X;Y) Hence, we can have at magt! (X3Y) distinguishable
sequences of length n. Therefore,

L(hy) = Egypyy L(hu(y), z) = ZPX,Y(%Q) ((hy(y),z) = Z Pxy(x,y) {(hw(y), ),

where the last equation follows frorh (29). # > 2"/(X3Y) and sincgB| = 2"/(X3Y), and
Pr[(z™,y") € B] = 27"1(X5Y) then clearlyl(hy) = Ly(hy) < A,,. Otherwise, whem <
27 (X3Y) "we have

C(h\p) < (27LI(X;Y) _ m)2—nI(X;Y) +mAm2—7zI(X;Y) < A,
assuming/(x, &) < 1. We now have
m2 MY (1 AL > 1 - A, (32)
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Assumingl — A,, =~ 1,

m > 250 A, (33)
Equivalently
m
O

C RECEPTIVEFIELD NORMALIZATION

Pereg et al! (2021) propose a fast alternative algorithepiiad by the classic iterative thresholding
algorithms, that produces a relatively good approximabbm convolutional sparse code. Most
solvers are slowed down by the use of one global threshois)Id detect each local feature shift
along the signal, or a predetermined constant local thtdshghen we apply a global threshold at
each iteration, if the threshold is too high, weak exprassare annihilated, and strong expressions
can “shadow” over low-energy regions in the signal, whichtim, can be interpreted as false-
positive support locations. On the other hand, if the tholssis very small, as often is the case in
ISTA, many iterations are required to compensate for fagtealions of early iterations. This issue
is aggravated in the presence of noise, and in real-timecagpipins due to model perturbations. The
proposed remedy is to normalize each data point by a locadlyded data energy measure, before
applying a threshold. In other words, each receptive fielthefdata is scaled with respect to the
local energy. This way even when the data is inherently wmzad, we can still use a common bias
for all receptive fields, without requiring many iteraticdlsdetect the features support.

We briefly reformulate RFN for 2D signals.

Definition C.1 (2D Receptive Field Normalization Kerné\)kernelh[k, ], k,l € Z, can be referred
to as a receptive field normalization kernel if

1. The kernel is positiveh[k,l] > 0 Vk,I.

2. The kernel is symmetridi[k, ] = h[—k,—1] Vk,I.

3. The kernel's global maximum is at its cent&f0, 0] = 1 > hlk,l] Yk, #0.
4. The kernel's energy is finités, ; hlk, 1] < co.

Definition C.2 (2D Receptive Field Normalization)e define the local weighted energy centered
aroundS[k, [], a sample of a 2D observed sigitak RL> 7,

Ly—1

2

oslk, 1] é( > h[k’,l’]52[k—k’,l—l’]> : (35)

Ly—1
R =—Ltn-t

whereh[k, ] is a RFN window function of sizé&, x Ly, Ly, << L, is an odd number of samples.
For our application we used a truncated Gaussian-shapetbwjiut one can use any other window
function depending on the application, such as: a rectanguihdow, Epanechnikov window, etc.
The choice of the normalization window and its length aebe thresholding parametershlk;, /]

is a rectangular window, theri [k, (] is simply the Frobenius norm of a data patch centered around
the [k, []th location. Otherwise, if the chosen RFN window is attemggtthen the energy is focused

in the center of the receptive field, and possible eventseatrtargins are repressed. RFN is em-
ployed by dividing each data point by the local weighted gndvefore projecting the signal on the
dictionary and taking a threshold. We compute local weidleteergy as defined i (B5). Namely,

oslk,l] = \/hlk, 1] x S?[k, ], (36)

wherehlk, ] is a receptive field normalization window, arddenotes the convolution operation.
Then, we normalize the signal by dividing each data pointh®y ¢orresponding receptive field
energy. In order to avoid amplification of low energy regiowe use a clipped version ofs|[k].
Namely,

. B [ >
"SW]_{1 |os[k, )| < 77 37
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wherer > 0 is a predetermined threshold. Empirically, for our apglama0.15 < 7 < 0.4 works

well. The RFN imagéS image is
Q _ S[kJ]
Sik. 1] = sk, 1]

(38)

Assuming an analysis patdly; };% € RL*N from RFN imageS € RY*” (as defined in Def-
inition [B), given a normalized convolutional dictionaly, an initial solutionx, = 0, the detected
support (at the first iteration) is

q; = 1-51 (DTYi)7 (39)
whereZ is an element-wise thresholding indicator function
1 ok > B

s, (zk) = 40

e ={y 20 (40)

Algorithm 1: 2D RFN-RNN (forward pass)

input : InputimageS € RX*/, RFN-kerneh € Ri+*n ' W, W, T
Init: zo =0,qp =0, =0

compute:

oslk,n] & \/hlk, 1] * S2[k,1].

N B (Ty[k’,l] loslk, ]| > 7
oslk, 1] = {1 o[k, 1] < 7
S[k,1] = S[k,1]/os]k, 1]
for kto L, do

for [ to J do

set: analysis patchy; }/% € RE*N from imageS € R*”, and its corresponding
analysis patciy;} /% € RL*N from RFN imageS € RE*7
fort =1toT do
q: = O’(Wzyyt +WZLz,_1+b)
ry = C1WZTth
Zt =qt OT
end

end

end

The implied assumption is thaV ., represents D, therefore, it is also possible to add additional
regularization loss terms enforcizgg = Dz, y, = Dz, wherey, is the RFN-input signal ang,
is the RFN latent supports vector.

D EXPERIMENTSDETAILS

D.1 IMAGE DEBLURRING

Table 1:PSNR (dB) and SSIM scores for natural image deblurring

Butterfly] Boats | C.Man [ House [ Parrot | Lena [ Barbard Starfish] Pepper$ Leaves[ Avg |

Input PSNR 22.84 26.40 | 23.30 28.52 27.05 26.33 | 23.84 24.80 25.97 22.26 25.26
FISTA 30.36 29.36 | 26.81 31.50 31.23 29.47 | 25.03 29.65 29.42 29.36 29.22
NCSR 30.84 31.49 | 28.34 33.63 33.39 31.26 | 27.91 32.27 30.16 31.57 31.09
RED:SD-TNRD | 31.57 31.53 | 2831 33.71 33.19 31.47 | 26.62 32.46 29.98 31.95 31.08
RNN 27.80 29.40 | 25.44 31.27 30.25 29.00 | 27.75 29.25 28.17 26.82 28.52
0.93 0.91 0.88 0.93 0.95 0.92 0.82 0.92 0.90 0.94 0.91
RNN-RFN 26.16 28.46 | 25.16 30.65 29.81 28.49 | 24.47 28.73 28.01 25.61 27.56
0.91 0.90 0.88 0.92 0.94 0.91 0.81 0.92 0.91 0.91 0.90

To test the systems’ performance under more challengirimgete tested RNN and RNN-RFN
with increasing additive noise varianeg in the range0, 10v/2]. We trained the network with a
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singleexample of the blurred image boat contaminated by Gaussise with variancer,, = /2.
As can be seen in Fiff] 6 as the noise level is increased - RFpresges noise better. Figufék]7-8
provide additional examples of the reconstruction of imsigefish foro,, = 2v/2 ando,, = 7v/2.
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Figure 7:Visual comparison of deblurring of the image starfish for differensatevels: (a) Ground truth; (b)
input, PSNR=24.25dB7,, = 4.24; (c) RNN result, PSNR=28.07dB ; (d) RNN-RFN result, PSNR=27E1d

(b) (d)

Figure 8:Visual comparison of deblurring of the image starfish for differensatevels: (a) Ground truth; (b)
input, PSNR=23.02dBg,, = 9.90; (c) RNN result, PSNR=25.02dB ; (d) RNN-RFN result, PSNR=2587d

D.2 OCT $ECKLE SUPREESION

The learning system is the RNN framework described in seio We denotes ¢ RZ-*/ as

a cropped single intensity image of a coherent tomogrammatigwith a speckle suppressed to-
mogramR. € R%*7. We then define an analysis patch as a 2D patch of kjze N enclos-

ing L; time (depth) samples of N consecutive traces of the obsémadeS. An analysis patch
A(J) associated with a pixeR; ; in the speckle suppressed intensity tomogram. To produce a
point in the final tomogranR; ;, we set the input to the RNN as = A7), Each time step in-

put is a group ofN neighboring pixels of the same corresponding time (deplh)other words,

Vi = [SicLit14tj—np» - Si_LtHH,jMR]T is rowt of the corresponding analysis patch. We set
the size of the output vector; to one expected pixelP = 1. Such thatx is the expected segment
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Figure 9: Recovery errof.(hy) and training errorly (hy) < A,, (log;, scale) as a function
of the sample sizen. Empirically, Ly (hy) < 1 — am, wherea = 27 1(X3Y)(1 — A,), for
I(X;Y) > 0.33.

of the corresponding enhanced tomogram; [Ri_(Lt_l)_j, cery Ri,j]T. Lastly, we ignore the first
Ly — 1 values of the output, and set the predicted pixﬁm as the last onex,,

The analysis patch moves through the image and produce®ditfed speckle suppressed intensity
tomogram points in the same manner. Each output pixel isvezed by taking into consideration
its relations to neighboring pixeld.;_, preceding pixels in the axial direction at the same lateral
position, and N — 1) L pixels fromN — 1 laterally neighboring surrounding pixels (in space), from
adjacent A-lines. For all experiments, we set the numbeeafons as,, = 1000. Increasing the
number of neurons did not improve the results significabtly,increases training time.

In a recurrent neural network the nodes of the graph are ctedidéy both feedforward connections
andfeedbackconnections (Hochreiter & Schmidhuber, 199°&r@n, 2017): At a current state, the
current output depends on current inputs, and on outputeaiopis states. In a sense, we can say
that the network is able to make decisions that are basedaltite memory of its past decisions,
that it remembers” its past outputs and takes them intoidenation when computing the current
output. We believe RNN fits this task because it is able to &erer” both in space and time
dimensions. Most OCT images have layered structure, anibieskring relations along the axial
and lateral axes. RNNs can efficiently capture those relatimd exploit them.

Figured#(a)-(b) show the speckle-corrupted and speciipressed tomograms of chicken tissue of
size341 x 691 used for training. The analysis patch size was of §izeN] = [9, 9]. The axial and
lateral spacing for both training and testing dataAfe= 3.06um, A, = 6pm.

In Figs.[B(a)-(b) a tomogram of siz&®0 x 643 was used for training. Here, the lateral and axial
spatial sampling spacing ar®, = 2.5um, A, = 4.78um, respectively. Whereas, the cucumber
axial and lateral spacing ark, = 8um, A, = 4.78um, respectively. Note that, the cucumber
image is sampled at significantly lower rate along the latdiraction. Due to the system mismatch

between the training data and the testing data, we set thesenpatch size to [8,7], to match the

testing data parameters, rather than the optimal analgtit gize that would fit the training data.
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