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Abstract

The “right to be forgotten” and the data privacy laws that encode it have1

motivated machine unlearning since its earliest days. Now, some argue that2

an inbound wave of artificial intelligence regulations — like the European3

Union’s Artificial Intelligence Act (AIA) — may offer important new use4

cases for machine unlearning. However, we argue this opportunity will only5

be realized if researchers proactively bridge the (sometimes sizable) gaps6

between machine unlearning’s state of the art and its potential applications7

to AI regulation. To demonstrate this point, we use the AIA as an example.8

Specifically, we deliver a “state of the union” as regards machine unlearning’s9

current potential (or, in many cases, lack thereof) for aiding compliance with10

the AIA. This starts with a precise cataloging of the potential applications11

of machine unlearning to AIA compliance. For each, we flag the technical12

gaps that exist between the potential application and the state of the art13

of machine unlearning. Finally, we end with a call to action: for machine14

learning researchers to solve the open technical questions that could unlock15

machine unlearning’s potential to assist compliance with the AIA — and16

other AI regulation like it.17

1 Introduction18

Since its inception, Machine Unlearning (MU) has been motivated by the so-called “right19

to be forgotten” (RTBF) [11], which is encoded in data privacy laws like the European20

Union’s General Data Protection Regulation (GDPR) [33, Art. 17]. Worldwide, multiple AI21

regulation efforts are working their way through the legislative process [7, 6, 128] or have22

graduated it and gone into effect [35, 22]. As these frameworks take shape, researchers have23

begun to explore whether MU can play a role in supporting compliance with these new AI24

regulations [75, 87, 43, 90, 85, 56, 60]. However, recent works call into question whether this25

motivation really holds water [24].26

In this paper, we argue that MU’s potential to assist compliance with AI27

regulation will only be realized if researchers close the technical gaps between28

MU’s state of the art and this prospective new application.29

We use the European Union’s Artificial Intelligence Act (AIA) [35] as an example to support30

our argument. This starts with a thorough cataloging of the AIA requirements that MU31

can hypothetically assist compliance with. For each potential use case, we flag any legal32

ambiguities that lawmakers, in order to clarify MU’s potential as an AIA compliance tool,33

should address when amending, updating, or translating the AIA into codes of practice or34

technical specifications. What is more, we scrutinize, from a technical perspective, whether35

the state of the art (SOTA) of MU can really support the hypothesized application. In many36

cases, we identify considerable gaps between the two. Finally, we conclude with a pointed37

call for the AI research community to take action and fill these gaps in order to help make38

MU a viable tool for assisting AI regulation compliance.39



2 Machine Unlearning40

To set the stage for our analysis, we set forth, in this section, we define and provide an41

overview of MU and its key concepts:42

2.1 Formal Definition of Unlearning43

Let M = A(D) denote a model trained on dataset D using algorithm A. An unlearning44

query specifies a forget-set Df ⊂ D, with the retain-set defined as Dr = D \ Df . The45

goal of an unlearning algorithm U is to remove the influence of Df from M , yielding an46

unlearned model Mu = U(M ; Df , Dr). Depending on the approach, U may not require47

access to Dr [130].48

Definition 2.1. Following [44], U is an (ϵ, δ)-unlearner if the distribution of U(M ; Df , Dr)49

is (ϵ, δ)-close to that of A(Dr). Specifically, two distributions µ and ν are (ϵ, δ)-close if for50

all measurable events B: µ(B) ≤ eϵν(B) + δ and ν(B) ≤ eϵµ(B) + δ.51

This definition provides a natural taxonomy for MU algorithms. When ϵ = δ = 0, U is52

termed exact unlearning; otherwise, it is referred to as approximate unlearning.53

2.2 Informal Definitions54

While Def. 2.1 provides a rigorous formulation of MU, researchers commonly use informal55

interpretations, typically phrased as removing x from M . However, deriving informal56

definitions directly from Def. 2.1 can be challenging, as the entity to remove may not be57

explicitly identifiable. For example, in generative models, x often corresponds to a fact or58

concept without explicit representation in M or D.59

Additionally, MU is broadly applied to various methods, but overly general definitions60

introduce unnecessary complexity, potentially obstructing clear scientific discourse. Therefore,61

we restrict MU in this paper to ML techniques that explicitly modify the model’s parameter-62

set (e.g., deletion and retraining, fine-tuning, parameter addition or removal). This scoped63

definition allows MU to remain a practical tool for applications such as safeguarding and64

alignment, while methods like guardrailing (or "output suppression" as per [24]) remain65

distinct, meriting separate evaluation in regulatory and other contexts.66

2.3 Evaluation metrics67

While Def. 2.1 is widely accepted in the MU community, it presents several challenges in68

practical settings. First, some works question whether this definition is necessary or sufficient69

to achieve true MU [108]. Second, in large-scale applications, it is computationally infeasible70

to directly measure the closeness between the distributions A(Dr) and U(M ; Df , Dr). As a71

result, researchers often resort to alternative proxies to verify MU. These proxies include72

performance metrics (e.g., classification accuracy [47] or generative performance using73

metrics like ROUGE for large language models [84]) and privacy attacks, such as membership74

inference attacks [57, 110].75

2.4 Trade-offs and risks76

MU algorithms strive balance three key objectives: Model Utility, Forgetting Quality,77

and Efficiency. In certain privacy-centric applications, forgetting can be synonymous78

with achieving privacy [79]. Hyperparameters and regularizers impact these trade-offs. For79

example, in MU via Fine-tune, the number of steps and learning rate dictate the balance80

between forgetting quality and efficiency. Similarly, in Gradient Ascent, the number of81

steps determines the trade-off between effective MU and preserving model’s utility.82

Additionally, forgetting may sometimes conflict with privacy due to two phenomena. First,83

unlearning specific data points can inadvertently expose information about others in the84

retained set due to the "onion effect" of privacy [13]. Second, over-forgetting [70] a data85

point may reveal its membership in the original training set—a phenomenon known as86
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the "Streisand Effect" [47]. Addressing these challenges requires careful calibration of MU87

methods to ensure a delicate equilibrium across these competing objectives.88

Beyond these trade-offs, MU introduces risks associated with untrusted parties [73] and89

malicious unlearning [97]. Malicious entities could exploit MU to make fake deletion queries,90

or introduce computation overhead to systems [60].91

3 The EU’s Artificial Intelligence Act92

The AIA sets forth requirements for AI systems and models placed on the market or put93

into service in the EU [35, Art. 1]. These requirements largely target two categories of AI:94

AI systems and general-purpose AI (“GPAI”) models. Here, we define these categories and,95

for each, review some the AIA requirements that relate to the discussion at hand.96

3.1 AI Systems97

The AIA broadly defines AI systems to include any “machine-based system that is designed to98

operate with varying levels of autonomy and that may exhibit adaptiveness after deployment,99

and that, for explicit or implicit objectives, infers, from the input it receives, how to generate100

outputs such as predictions, content, recommendations, or decisions that can influence101

physical or virtual environments” [35, Art. 3.1]. An example of a system that might meet102

this criteria is ChatGPT [38].103

In laying out its rules for these AI systems, the AIA relies on a “risk-based” approach [83],104

by which an AI system’s perceived degree of risk determines the exact rules that apply105

to it. Here, the strictest requirements — and the ones most relevant to our discussion —106

are reserved for those AI systems deemed to be high-risk [35, Art. 6]. Such high-risk AI107

(“HRAI”) systems are subject to a bevy of requirements [35, Chap. III]. Among them, the108

following are the most relevant to us:109

Risk management: HRAI systems must implement risk management systems that identify110

known and reasonably foreseeable risks that the system may pose to health and safety111

or to fundamental rights [35, 67, Art. 9.2(a)]. Here, risks to health and safety includes112

risks to mental and social well-being as well as physical safety. [2, 31]. Meanwhile, risks113

to fundamental rights includes, among other things, the right to non-discrimination [32],114

including from biased results [3].115

Importantly, wherever these risks are identified, they should be “reasonably mitigated or116

eliminated through the development or design” of the AI system [35, Art. 9.2-3].117

Accuracy and cybersecurity: HRAI systems must be designed and developed so as to118

achieve an “appropriate level” of accuracy and cybersecurity [35, Art. 15.1]. In its Recitals,119

the AIA stresses that these appropriate levels are a function of the system’s intended purpose120

as well as the SOTA [35, Rec. 74]. When it comes to cybersecurity, the AIA specifically121

requires that HRAI systems be “resilient against attempts by unauthorised third parties to122

alter their use, outputs or performance by exploiting system vulnerabilities” [35, Art. 15(5)]123

and take technical measures to “prevent, detect, respond to, resolve and control for ... data124

poisoning” as well as “confidentiality attacks” [35, Art. 15.5].125

3.2 GPAI models126

In contrast to an AI system, a GPAI model is defined as any AI model that is “trained with127

a large amount of data using self-supervision at scale, that displays significant generality and128

is capable of competently performing a wide range of distinct tasks regardless of the way the129

model is placed on the market and that can be integrated into a variety of downstream systems130

or applications, except AI models that are used for research, development or prototyping131

activities before they are placed on the market” [35, Art. 3.63]. Some see this as being132

synonymous with “foundation model” [1]. An example of a GPAI model that might meet133

this criteria is GPT 3.5, the model powering ChatGPT [38].134

In laying out its requirements for GPAI models, the AIA again uses a risk-based approach,135

with the strictest requirements reserved for GPAI models deemed to carry systemic risk [35,136
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Art. 55]. This is defined as the risk of “having a significant impact on the [EU] market due137

to [its] reach, or due to actual or reasonably foreseeable negative effects on public health,138

safety, public security, fundamental rights, or the society as a whole, that can be propagated139

at scale across the value chain” [35, Art. 2.65; Annex III]. This status can be established140

through proxies, including performance on benchmarks and the amount of compute used141

during training [35, Art. 51]. While the AIA itself does not further elaborate on what142

constitutes systemic risk, a companion piece to the AIA posits that it covers risks related143

to: (1) cyber offense; (2) chemical, biological, radiological, and nuclear (CBRN); (3) loss of144

control; (4) automated use of models for AI research and development; (5) persuasion and145

manipulation; and (6) large-scale discrimination [36].146

Among the AIA’s requirements for GPAI models that do display systemic risk — and those147

that don’t — the following are the most relevant to our analysis:148

Copyright: All GPAI model providers must “put in place a policy to comply with Union149

law on copyright and related rights” [35, Art. 53.c]. Among other things, this policy must150

respect rightsholders’ requests, per [34, Art. 4(3)], to opt out of text and data mining (TDM)151

on their copyrighted works [35, Rec. 105, Art. 53.c].152

Systemic risk: GPAI models that display systemic risk must “mitigate” it [35, Art. 55(a-b)]153

Cybersecurity: GPAI models with systemic risk are additionally required to “ensure an154

adequate level of cybersecurity” [35, Art. 55(d)].155

4 MU for AIA compliance: a catalog156

This Section comprehensively catalogs the potential applications of MU to assist AIA157

compliance. For each, we analyze the SOTA and its ability to support the potential158

application, then identify any open questions the research community must resolve in order159

to bridge the gap between the two. In sum, we find that the potential applications of MU to160

assist AIA compliance ultimately roll up into just six separate applications (Fig. 1):161

• Accuracy: Improve accuracy per EU [35, Arts. 9, 15];162

• Bias: Mitigate bias per EU [35, Arts. 9, 55];163

• Privacy Attack: Mitigate confidentiality attacks per EU [35, Arts. 9, 15, 55]);164

• Data Poisoning: Mitigate data poisoning per EU [35, Arts. 15]);165

• GenAI risk: Mitigate other risks of generative outputs per EU [35, Arts. 9, 55]);166

• Copyright: Aid compliance with copyright laws, per EU [35, Art. 53])167

Risk Categories

Prohibited

Systemic Risk

No Systemic Risk

Risk Categories

Prohibited

High Risk

Low Risk

Medium Risk

- Accuracy (Arts. 9, 15)
- Bias (Art. 9)
- Confidentiality Attacks (Art. 9, 15)
- Data Poisoning (Art. 15)
- Risks of Generative Model Outputs (Art. 9)

- Bias (Art. 55)
- Confidentiality Attacks (Art. 55)
- Data Poisoning (Art. 55)
- Risks of Generative Model Outputs (Art. 55)

HRAI Systems GPAI Models

- Copyright (Art. 53)

Figure 1: AIA Uses Cases for Machine Unlearning.
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4.1 Accuracy168

Two AIA provisions may compel HRAI systems providers towards higher levels of accuracy.169

a), HRAI systems must achieve a level of accuracy appropriate to their intended use and the170

SOTA [35, Art. 15.1; Rec. 74]. b) , HRAI systems’ risk management must include measures171

to mitigate/eliminate risks to health and safety [35, Art. 9], which could stem from low172

accuracy in domains like medicine [65, 64, 58]. MU can boost accuracy by removing the173

problematic data from the model.174

The accuracy use case should not require privacy guarantees on the unlearned data [45].175

Because the goal is strictly to boost accuracy to the level deemed appropriate [35, Art. 15]176

or until the overall residual risk to health and safety posed by the inaccuracy is judged to be177

”acceptable” [35, Art. 9]. In measuring that, AI providers will presumably account for any178

inadvertent, counteracting degradation in accuracy caused by the MU itself [72, 10, 121].179

Current SOTA MU theoretically offer paths towards improving model accuracy by forgetting180

mislabeled [45, 107, 12, 15, 52], out-of-date and outlier training data points [69, 122, 121, 71],181

or, potentially, removing noise from medical data [96, 28]. The largest hurdle for this use182

case might be identifying all of the data points that are leading to inaccuracy (e.g., the183

mislabeled examples), which can be difficult [46]. It may be good enough to identify only a184

subset of these examples — so long as accuracy is boosted to levels deemed ”appropriate”185

in light of the intended purpose as well as the SOTA [35, Art. 15.1; Rec. 74]. MU based186

on subset forget sets have shown success in boosting accuracy. However, other studies have187

suggested that you need all of polluted data, not just some of this, or it might backfire [46].188

It is also important to note that evaluating unlearning success is application dependent.189

And, that, approximate unlearning should not be expected to yield higher accuracy than190

exact retraining without the low-quality data.191

Key Points: (i) Multiple AIA requirements may benefit from MU. (ii) Theoretical guarantees
may not be needed. (iii) Evaluation measure is application-dependent.

192

Open Problems: (i) Lack of reliable methods for identifying problematic data to unlearn.
(ii) Lack of controllability over trade-offs

193

4.2 Bias194

Providers of both HRAI systems and GPAI models with systemic risk must mitigate certain195

types of model bias. The former must take measures to mitigate or eliminate risks to196

fundamental rights, which includes the right to non-discrimination [35, Arts. 9]). The latter197

must take steps to mitigate their models’ systemic risk [35, Art. 55], which includes the risk198

of large-scale discrimination [36]. Bias can occur because unrepresentative or incomplete199

data prevent the model from perform fairly on different groups or, in the case of generative200

models, cause it to produce stereotyped or otherwise discriminatory outputs [39]. In all cases,201

MU can ostensibly help forget the data points or training data patterns causing the bias202

[95, 71, 101, 68, 15, 132]. An important limiting factor on this use case is that training data203

that is not there to begin with cannot be forgotten; if the bias is due to a data deficit, MU204

will not help. Because the goal here is to reduce or eradicate bias, success should ultimately205

be measured using traditional bias metrics like the difference in performance on various206

subgroups [25] or, in the case of generative models, the propensity for biased outputs as207

measured with benchmarks [93].208

Current SOTA Model debiasing has a longer history than MU. [125], . Recently, both exact209

[54]) and approximate [19, 91, 54]) MU solutions have been offered to mitigate model biases.210

In the debiasing literature, solutions include pre-processing, in-processing, and post-processing211

methods [86]. MU, can mainly be considered as a post-processing method. However, it is212

difficult to draw a separating line between debiasing and MU methods. MU works usually213

re-use some of the evaluation metrics in the debiasing literature, however, how to evaluate214

bias is, generally, considered an “open problem” [99]. In order to preserve accuracy by not215

forgetting data points holistically, [120] use MU to forget only those the features that lead216

to bias.217
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Key Points: (i) MU may aid compliance with multiple bias-related AIA requirements. (ii)
MU is only subtractive and never additive, limiting its application to this use case. (iii)
De-biasing solutions are not limited to MU

218

Open Problems (i) Lack of methods for identifying bias counterfactuals. (i) Lack of
controllability over trade-offs. (iii) Difficulty of guaranteeing full unlearning of biases, due to
generalization.

219

4.3 Confidentiality attacks220

The AIA requires providers of both HRAI systems and GPAI models with systemic risk to221

resolve and control for confidentiality attacks. Providers of HRAI systems must ensure their222

systems achieve an “appropriate level” of cybersecurity given the intended use and the SOTA,223

including by taking technical measures to prevent, detect, respond to, resolve and control224

for confidentiality attacks [35, Art. 15.5; Rec. 74]. Meanwhile, providers of GPAI models225

with systemic risk must ensure those models reflect “an adequate level of cybersecurity”226

[35, Art. 55.d], which presumably also includes defending against confidentiality attacks.227

While the AIA does not define confidentiality attacks, we take them to include any attacks,228

including data reconstruction and membership inference attacks, that cause a model to reveal229

confidential details about its training such as data points or membership [112, 21]. This may230

include confidential training data memorized by generative models Cooper et al. [24], Gu231

et al. [50], Łucki et al. [132]. Where such attacks occur — or where there is reason to think232

they might — MU can ostensibly help defend against them by forgetting the confidential233

information vulnerable to attack [60, 71, 13, 17, 122, 99, 5].For this use case, the measure234

of success should be whether confidentiality attacks succeed in the wake of the MU [49],235

though use case-specific metrics have been developed Maini et al. [84]. When it comes to this236

use case, there are, importantly, other viable options for protecting against confidentiality237

attacks, including training with DP [114, 66].238

Current SOTA. Multiple MU techniques have been proposed to mitigate confidentiality239

attacks (or the related problem of inadvertent model leakage of personal data) [26, 4, 81, 16,240

115, 11, 10, 9]. As is, applying MU to this use case can carry sizable trade-offs. For example,241

unlearning some data points for the sake of protecting them from recovery by attackers can242

jeopardize the privacy of other data points that neighbor the unlearned ones Carlini et al.243

[13] or even increase the risk of membership inference attacks that recover the unlearned244

data points Chen et al. [18], Barez et al. [5], Kurmanji et al. [70]. Differently, approximate245

unlearning, when used to delete particular data points, can carry a bias trade-off [126, 92]246

and an accuracy trade-off that rises as more data is forgotten [48, 84]. It is also important to247

note that current MU methods usually fail on new emergent attacks that are devised with248

new assumptions [129, 62].249

Key Points (i) MU may aid compliance with multiple confidentiality attack-related AIA
requirements. (ii) Due to attack diversity, success should be measured on case-by-case basis.
(iii) DP is a strong alternative to MU for this use case.

250

Open Problems (i) Difficulty of providing formal guarantees of attack susceptibility. (ii)
Difficulty of applying MU to new, emergent attacks. (iii) Identifying, localizing, and measuring
memorization of confidential data.

251

4.4 Data poisoning252

In data poisoning, specially-crafted data points are injected into a training set to alter (e.g.,253

degrade or bias) model behavior to the attacker’s benefit [8]. Backdoor attacks are a type254

of data poisoning where the injected data points create “triggers” the attacker can exploit255

during inference [76]. The AIA obligates the providers of both HRAI systems and GPAI256

model with systemic risk to address such attacks. HRAI system providers must ensure their257

systems achieve an “appropriate level” of cybersecurity, including via technical measures to258

“prevent, detect, respond to, resolve and control for” data poisoning attacks [35, Art. 15(5)].259

Providers of GPAI models with systemic risk, meanwhile, must “ensure an adequate level260
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of cybersecurity” in their models [35, Art. 55.d], which presumably also includes defenses261

against data poisoning. Where it is known that data poisoning has (or could) occur, MU262

may help remove the effects of the poisoned data points on the model and, thus, help satisfy263

these requirements [121, 80, 11, 12, 104]. When it comes to measuring success for this use264

case, because the “primary goal is to unlearn the adverse effect due to the manipulated data,”265

the ideal benchmark would seem to be whether those adverse effects — be they vulnerability266

to backdoor triggers, bias, or lower accuracy — are eliminated or reduced [46]. For example,267

Goel et al. [46] measure MU efficacy based on whether proper accuracy on backdoor triggers268

is restored.269

Current SOTA Though some work has demonstrated MU can succeed for this use case270

[116, 102] other works question the effectiveness of using MU to address data poisoning or271

backdoor attacks specifically [51, 109, 94, 122]). As always, identifying the full forget set272

(here, the poisoned samples) remains challenging [46]. Some methods, moreover, can have273

a significant accuracy trade-off on this use case [94]. Such trade-offs can be particularly274

difficult as poisoned data overlaps with the clean data and, in most cases, they are even275

visually indistinguishable from each other.276

Key Points (i) MU may aid compliance with several data poisoning-related AIA requirements.
(ii) A proper benchmark should measure the elimination of adverse effects.

277

Open Problems (i) Finding contaminated data at scale is challenging. (ii) Unlearning the
backdoor pattern without hurting unaffected data is challenging. (iii) Current MU methods
mostly fail on data poisoning use case.

278

4.5 Other risks of generative outputs279

Generative outputs may pose risks to health, safety, and human rights or pose systemic risk280

that providers of HRAI systems and GPAI models, respectively, must mitigate. For example,281

HRAI systems’ risk management systems must strive to mitigate or eliminate risks the282

system poses to health, safety, and fundamental rights [35, Art. 9]. Generative outputs may283

pose risks to health and safety, e.g., by issuing bad medical advice [118, 55]), and may pose284

risks to the fundamental right of non-discrimination, e.g., by producing stereotyping outputs285

[88]. For GPAI models with systemic risk, providers of such models must mitigate that risk286

[35, Art. 55], which could be brought on by generative model outputs that display offensive287

cyber capabilities, knowledge of CBRN, and more [36, 89]. In all these cases, MU may help288

mitigate the non-compliant outputs by unlearning the data points or even the concepts in289

the training set that are causing them [132, 24]. Computationally, it may offer advantages290

even as compared to other popular alignment techniques like reinforcement learning [123].291

Measuring success for this use case should arguably be “context dependent” [123]. That is,292

the best way to measure the MU’s efficacy is to benchmark the exact behavior that we desire293

to repair [123]. This could utilize existing benchmarks unrelated to MU [5]. Differently, [74]294

propose a benchmark for measuring MU of CBRN knowledge and approaches that examine295

the model parameters for remnants of the unlearned concepts have also been proposed [61].296

Current SOTA Multiple works use MU to curb undesirable generative model outputs297

[27, 124, 117, 41]. However, the task is difficult, without agreed-upon best practices [24].298

Broad concepts like non-discrimination tend to go beyond individual data points, to latent299

information which is not easily embodied as a discrete forget set [24, 77]. Even if data points300

that are intrinsically harmful (e.g., the molecular structure of a bioweapon) are removed,301

models may still assemble dangerous outputs from latent information in the rest of the302

dataset [24, 111]. Trying to remove that latent knowledge can risk model utility [24]. As303

a separate but related issue, AI systems in these scenarios may be dual-use, where the304

appropriateness of outputs depends on downstream context; this, too, makes identifying305

the forget set difficult and increases the likelihood of a utility trade-off as the model forgets306

desirable knowledge alongside undesirable knowledge [24, 105, 99]. All of these issues, in307

turn, make it difficult if not impossible to specify formal guarantees on the MU [77].308
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Key Points (i) MU may aid compliance with several AIA requirements related to generative
outputs.

309

Open Problems (i) Defining the forget set when what we seek to forget is conceptual. (ii)
Difficulty of guaranteeing full unlearning of unwanted behaviors, due to generalization. (iii)
Mitigating the forgetting of useful knowledge alongside undesirable knowledge.

310

4.6 Copyright311

All GPAI model providers must have a policy for complying with EU copyright law [35, Art.312

53.c]. Among other things, this policy must honor the TDM opt-outs of rightsholders [35,313

Art. 53.c; Rec. 105], which is often a feature of AI training [100, 53]. When it comes to AI314

and copyright law, a distinction is sometimes made between the “input” (training) phase315

and the “output” (inference) phase of the AI life cycle [100, 98]. At this point in time, the316

primary compliance risk during the input phase seems to be that an AI training set could317

include data points that violate TDM opt-outs. When this happens, we assume that using318

MU to remove the opt-out data points from the trained model does not cure the violation,319

since the violation occurred at the moment the opt-out data was used for training. That said,320

MU may still represent a valuable component of a copyright-compliance policy by helping321

prevent, at the “output” phase, further violations of copyright law when the opt-out data322

points — or any other copyright-protected data points in the training set — are reproduced323

to some degree in model outputs [100]. This is a real risk with generative models, which324

often memorize training data [23, 14]. When MU is applied to this use case, we may measure325

success by tracking how likely the model is to generate works that are sufficiently similar to326

the copyrighted works. For example, we might rely on existing benchmarks that measure327

the tendency of models to produce copyrighted materials [78, 20]. Differently, Ma et al. [82]328

produce a benchmark for the success of MU in the copyright context.329

Current SOTA Wu et al. [119] unlearn copyrighted works from diffusion models. At first330

glance, exact MU would seem to provide a guarantee that copyrighted works in the training331

set will not be reproduced in outputs [77]. But the fact is that retraining from scratch without332

the copyrighted data may not be a bulletproof solution for preventing copyright infringement333

in outputs because substantially similar representations of copyrighted “expressions” (e.g.,334

images of characters like Spiderman) could still appear in outputs based on how the model335

generalizes from the latent information extracted from the rest of the training set Cooper336

et al. [24]. For the same reason, approximate unlearning aimed at removing the influence of337

the copyright data points on the model, on top of being hard to prove [77], also cannot ensure338

that copyrights are not infringed by outputs. In general, the SOTA of approximate unlearning339

has been deemed “insufficient” for the copyright use case, which may be why practitioners340

currently lean towards pre- and post-processing tools like prompting and moderation to bring341

AI into compliance with these laws [77, 106]. [29] “unlearn” copyrighted materials in LLM342

pre-training datasets by identifying and removing specific weight updates in the model’s343

parameters that correspond to copyrighted content, evaluating their method by measuring344

the similarities between the model’s outputs and the original content. The task of measuring345

whether substantially similar outputs are being produced is quite challenging [24].346

Key Points (i) MU does not help with TDM opt-out violations; the damage is already done.
(ii) MU may, however, help with downstream copyright violations in outputs. (iii) To avoid
malicious unlearning, TDM opt-outs will have to be verified.

347

Open Problems (i) Difficulty in identifying copyright-infringing works in a dataset. (ii)
Difficulty of verifying whether model output owes to copyrighted data or generalization. (iii)
Localizing and measuring memorization of copyrighted data is itself an open problem.

348

5 Discussion349

MU might offer potential solutions for some of AIA compliance requirements, but it is not350

a silver bullet. Throughout this work, we have balanced enthusiasm for MU’s capabilities351
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with a clear-eyed view of its limitations. A recurring challenge across use cases—such as352

accuracy, bias, and confidentiality—is the difficulty of identifying and isolating harmful or353

low-quality data. In modern AI models, such information is often encoded in distributed354

representations, making precise removal difficult and risking forgetting useful knowledge.355

In many cases, the target of unlearning (e.g., a fact or concept) lacks a discrete representation.356

Still, recent work in generative models shows promise: concept editing in diffusion models357

[59], data attribution [113], and inversion-based techniques [42] all offer ways to trace and358

remove implicit or emergent representations. Another important challenge is verification359

[108]. Approximate MU methods currently offer limited guarantees, complicating auditing.360

Going forward, we advocate for the development of formal forgetting guarantees that can361

underpin regulator-endorsed standards.362

While some applications—like correcting mislabeled data to improve accuracy [69]—are363

feasible with today’s methods, others (e.g., bias mitigation or copyright control) face steeper364

barriers. In some cases, MU may be an unnecessarily complex solution relative to alternatives.365

However, overlaps between applications (e.g., boosting both fairness and accuracy) suggest366

that well-designed MU interventions could serve multiple regulatory goals simultaneously.367

6 Conclusion368

There are still sizable challenges that must be cleared before MU will be a viable tool for369

assisting compliance with the AIA (and, by extension, since AI regulations tend to feature370

recurring principles [37, 30], other AI regulations). To realize MU’s potential for these use371

cases, AI researchers should help solve the open technical problems logged by this paper.372

Among other things, this includes work on identifying forget set data points, on resolving373

the privacy and performance trade-offs of MU, and on resolving the particular challenges to374

these use cases that generative model outputs present. Working collaboratively, we can all375

help unlock MU’s potential to assist compliance with AI regulation and, by extension, help376

safeguard the important social values these regulations encode.377

7 Related works378

The arguments against using MU as a tool for compliance with the AIA or other AI379

regulation would likely point to its shortcomings, trade-offs, and risks as well as the viable380

substitutes for MU in these scenarios. Some recent works, for example, broadly question381

whether MU can really achieve its goals, especially in the generative domain [24, 5, 131, 106].382

Other works scrutinize MU’s trade-offs around performance, privacy, security, and cost383

[121, 13, 127, 68, 131, 40]. These factors could reasonably make alternative methods, training384

with DP, or post-training alignment tuning more appealing for the AI regulation use cases385

highlighted in this paper Łucki et al. [132], Cooper et al. [24].386

These alternative approaches come with their own limitations. For instance, while some387

may consider DP [63] as a strong alternative to MU, several caveats deserve attention.388

First, DP mechanisms often struggle to balance tight privacy guarantees with acceptable389

model utility [103]. This trade-off becomes especially pronounced in high-utility applications.390

Second, unlike traditional privacy settings where protection is applied uniformly across all391

data points, MU typically targets a specific subset of data—the so-called “forget set.” In392

large-scale training corpora that combine individually identifiable data with more publicly393

available content, applying DP globally may offer overly broad protections that are both394

inefficient and unnecessary [47]. Third, there are use cases where DP is not sufficient or395

optimal. For instance, if the objective is to remove a harmful or undesired behavior from a396

generative model (e.g., misinformation, bias, or offensive content), a DP-trained model may397

still require explicit MU interventions to mitigate such behaviors.398
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