
Under review as a conference paper at ICLR 2023

MALIBO: META-LEARNING FOR LIKELIHOOD-FREE
BAYESIAN OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian Optimization (BO) is a popular method to optimize expensive black-
box functions. While BO typically only optimizes a single task, recent methods
exploit knowledge from related tasks to warm-start BO and improve data-efficiency.
However, these methods are either not scalable or sensitive to heterogeneous
value scales across multiple tasks. We propose a novel approach to solve these
problems by combining meta-learning with a likelihood-free acquisition function.
Specifically, our meta-learning model simultaneously learns the underlying (task-
agnostic) data distribution and a latent feature representation for individual tasks to
be used as the acquisition function inside BO. The likelihood-free approach has less
stringent assumptions about the problems compared to regression based methods
and works with any classification algorithm, making it computation efficient and
robust to different scales across tasks. Finally, we use gradient boosting as a residual
model on top to adapt to distribution drifts between new and prior tasks, which
might otherwise weaken the usefulness of the meta-learned features. Experiments
show that the meta-model learns an effective prior for warm-starting optimization
algorithms, is cheap to evaluate, and invariant under changes of scale across
different datasets.

1 INTRODUCTION

Bayesian Optimization (BO) is a widely used method to optimize expensive black-box functions
(Shahriari et al., 2016) and has been successfully applied in different fields, including automated
machine learning (ML) (Hutter et al., 2019). Given small amounts of data, traditional BO uses a
Gaussian Process (GP) surrogate model together with an acquisition function to quickly optimize
a black-box function. However, most BO techniques start from scratch for each new optimization
problem, instead of leveraging information from previous runs for similar tasks to further improve
data-efficiency.

To warm-start BO, exploiting additional task information has been explored in the context of transfer
learning (Weiss et al., 2016) and meta-learning (Vanschoren, 2018). Prior knowledge can be used
to build informed surrogate models (Schilling et al., 2016; Wistuba et al., 2018; Feurer et al.,
2018b; Perrone et al., 2018), to restrict the search space (Perrone et al., 2019), or to warm-start the
optimization with configurations that generally score well (Feurer et al., 2014; Salinas et al., 2020).

However, these approaches have three important issues:

(i) GPs scale poorly due to their cubical computational complexity (Rasmussen, 2004).
(ii) The standard BO framework requires a surrogate model with well-calibrated and tractable

predictive uncertainty, which is challenging in high-dimensional problems (Tiao et al., 2021;
Song et al., 2022).

(iii) Regression models, including GPs, struggle with different scales and noise levels across
tasks, which hurts warm-starting and optimization efficiency (Feurer et al., 2018a).

We propose a new meta-learning BO approach that can effectively transfer knowledge from re-
lated tasks and scales to large datasets. Our method is inspired by the idea of likelihood-free BO
(Bergstra et al., 2011; Tiao et al., 2021; Song et al., 2022), which replaces the surrogate model with
a meta-learned classifier that directly balances exploration and exploitation without modeling the

1

Under review as a conference paper at ICLR 2023

objective function. That way, we elegantly avoid both the scalability and the scale sensitivity issues
simultaneously. We make the following contributions:

(i) A novel probabilistic meta-learning model that uses Bayesian logistic regression and a
probabilistic approach to learn feature representations from prior tasks.

(ii) A scalable BO technique with good anytime performance that combines a meta-learning
classifier and a likelihood-free acquisition function.

(iii) Robust adaptation to new tasks by combining the meta-learned classifier with gradient
boosting to correct prediction errors and Thompson Sampling for more explorationn.

2 RELATED WORK

Meta-learning Various methods have been proposed that improve the data-efficiency of Bayesian
optimization (BO) by leveraging the information of previous observations from similar tasks. They
apply meta-learning (Vanschoren, 2018) or transfer-learning (Weiss et al., 2016) depending on the
context and have been proven effective in various applications (Andrychowicz et al., 2016; Finn et al.,
2017). We refer to Vanschoren (2018) for an in-depth overview.

One line of work adapts the initial design to warm-start BO, either by reducing the search space
(Perrone et al., 2019; Li et al., 2022) or reusing good configurations from similar tasks, where
similarity can be based on hand crafted features (Feurer et al., 2014) or learned with Neural Networks
(NNs) (Kim et al., 2017). Alternative approaches estimate the usefulness of a given configuration on
both the current and prior tasks based on heuristics (Wistuba et al., 2015) or learning-based (Volpp
et al., 2020) methods. Other approaches use transfer-learning to modify the probabilistic surrogate
model, for instance using a multi-task GP (Swersky et al., 2013; Tighineanu et al., 2022), an additive
GP model (Golovin et al., 2017; Marco et al., 2017), or weighted combinations of independent GPs
for different tasks (Schilling et al., 2016; Wistuba et al., 2018; Feurer et al., 2018a).

Several methods simultaneously learn the initial design and modify the surrogate model. Springenberg
et al. (2016) apply task-specific embeddings for BO and use a Bayesian NN as the surrogate model,
which are computationally expensive and hard to train. Perrone et al. (2018) propose Adaptive
Bayesian Linear Regression (ABLR), which uses a NN to learn a shared feature representation across
tasks with task-specific BLR layers to improve scalability and adaptability. However, both these
methods are sensitive to changes in the scale and noise level across datasets. To tackle this, Salinas
et al. (2020) propose Gaussian Copula Process Plus Prior (GC3P), which transforms the data response
values via the empirical CDF, and fits a NN across all prior tasks. This NN is used to warm-start the
optimization and predict the mean for a GP on the target task. Despite its robustness, the use of a GP
surrogate still limits its applicability on high-dimensional problems.

Our meta-learning method is closely related to Bayesian optimization with NNs and embedding
reasoning (BANNER, Berkenkamp et al. (2021)), which uses a meta-learning model based on a NN
to learn a latent representation and a task-specific BLR layer, similar to ABLR. However, the model
output is divided into a task-independent mean and a task-specific residual prediction learned by a
BLR layer. In this paper, we introduce a classifier variant of this meta-learning model and combine it
with a likelihood-free acquisition function.

Likelihood-free Bayesian Optimization Bayesian optimization does not require an explicit model
of the likelihood of the observed values (Garnett, 2022). Tree-structured Parzen Estimators (TPE,
Bergstra et al. (2011)) phrase BO as a density ratio estimation problem (Sugiyama et al., 2012)
and use the density ratio over ‘good’ and ‘bad’ configurations as an acquisition function without a
probabilistic regression model. Tiao et al. (2021) estimate the density ratio through class probability
estimation (Qin, 1998), which is equivalent to modeling the acquisition function with a binary
classifier. Likelihood-Free BO (LFBO, Song et al. (2022)) improves upon this by weighting the
observations.

Likelihood-free BO approaches address two drawbacks of traditional GP-based BO methods: the
computationally expensive inference and the lack of flexibility due to the strong assumptions of most
kernel methods. Rather than modeling the objective function, likelihood-free BO methods can use
deterministic classifiers to separate good and bad configurations resulting in scale-invariant models

2

Under review as a conference paper at ICLR 2023

and allows the application of any binary classification method (Tiao et al., 2021; Song et al., 2022).
We leverage this flexibility to create a new meta-learning classifier, which yields a scalable method
that is robust to heterogeneous scales across datasets.

3 PROBLEM STATEMENT AND BACKGROUND

In this section, we introduce our problem setting and introduce related methods.

3.1 BAYESIAN OPTIMIZATION

Bayesian optimization (BO) aims to optimize a black-box function f(x) : X → R over x ∈ X .
At each step n, BO proposes a xn obtains a noisy observation yn = f(xn) + ϵn. The proposal is
based on a probabilistic surrogate model M and all previous observations Dn−1 = {(xi, yi)}n−1

i=1 .
The models posterior prediction p(y |x,Dn−1) combined with the acquisition function α(x;Dn−1)
quantifies the utility of each input and xn = argmaxx∈X α(x;Dn−1). Typically, BO algorithms
use a Gaussian Process model and assume ϵn ∼ N (0, σ2), for some unknown but fixed variance.

Most acquisition functions, including Knowledge-Gradient (Frazier et al., 2009), Predictive Entropy
Search (Hernández-Lobato et al., 2014) and Max-value Entropy Search (Wang & Jegelka, 2017) are
defined as an expected utility function U(y; τ) usually with a threshold τ that heuristically balances
exploration and exploitation. For example, the prevalent Expected Improvement (EI, Močkus (1975))
acquisition function has U(y; τ) := max(τ−y, 0) while the Probability of Improvement (PI, Kushner
(1964)) has U(y; τ) := 1(τ−y > 0). The expected utility over the posterior belief from the surrogate
model p(y |x,Dn) is given by

αU (x;Dn, τ) = Ey∼p(y |x,Dn)[U(y; τ)] =

∫
U(y; τ)p(y |x,Dn)dy, (1)

where the threshold is usually chosen as the lowest observed function value, i.e., τ = minDn yi.

3.2 LIKELIHOOD-FREE ACQUISITION FUNCTIONS

Likelihood-free acquisition functions model the belief of a candidate being promising instead of
explicitly computing the likelihood of outcomes via the model’s posterior p(y |x,DN). One of the
first likelihood-free BO algorithms, called Tree-structured Parzen Estimators (TPE, Bergstra et al.
(2011)), dismisses the surrogate for the outcomes and models the two densities ℓ(x) = p(x | y ≤
τ,Dn) and g(x) = p(x | y > τ,Dn) instead. The threshold τ relates to the γ-th quantile of the
observed y values via γ = Φ(τ) := p(y ≤ τ | Dn). The density ratio (DR) serves as the acquisition
function α: αDR(x;DN , τ) = ℓ(x)/g(x).

Tiao et al. (2021) propose to improve several aspects of TPE by directly estimating the DR rather
than solving the more challenging problem of modeling two independent densities as an intermediate
step. Their approach, dubbed BORE, rephrases the DR estimation as a binary classification problem
when using the training loss

LBORE(θ;DN , τ) = − 1

N

N∑
n=1

(kn logCθ(xn) + (1− kn) log(1− Cθ(xn))) . (2)

Here kn = 1(yn ≤ τ) represents the binary class labels estimated by the classifier Cθ with learnable
parameters θ. Specifically, they show αDR(x;DN , τ) ∝ Cθ(x).

Although Tiao et al. (2021) argue that BORE resembles EI, assigning the same label to all obser-
vations with y < τ regardless of the magnitude of improvement conforms to the definition of PI
rather than EI, and might lead to conservative optimization with little global exploration (Garnett,
2022; Song et al., 2022). In practice, EI has exhibits stronger and robuster performance than PI.
Song et al. (2022) convert the expected utility of EI into an optimization problem using a variational
representation and reformulate it as a classification problem with the following objective:

LLFBO(θ;DN , τ) = −E(x,y)∼p(x,y | DN)[max(τ − y, 0) logCθ(x) + log(1− Cθ(x))], (3)

The resulting method, dubbed Likelihood-Free Bayesian Optimization (LFBO), can be seen as a
weighted classification problem with noisy targets for only class k = 1, where the EI utility function

3

Under review as a conference paper at ICLR 2023

Figure 1: Illustration of meta-learning the acquisition function. Left: Observations (crosses) from 10
related tasks and the target task. The top performing observations (γ = 1/3) in each task are shown
in red, the rest in blue. Right: The top panel shows the approximated predictive distribution (see
Eq. (7)) while the others show Thompson samples. MALIBO successfully identifies the promising
areas, and the Thompson samples show variability in the meta-learned acquisition function.

max(τ−y, 0) weights the importance for observations below τ by their improvement. The minimizer
of Eq. (3) is shown to be equivalent to the EI acquisition function (Song et al., 2022).

4 METHODOLOGY

In this section, we introduce our MetA-learning for LIkelihood-free BO method, dubbed MALIBO.
It incorporates a probabilistic meta-learning approach derived from BANNER into the LFBO
framework. In particular, we show how to convert BANNER’s regression model into a meta-learning
classifier that warm-starts BO and combine it with gradient boosting (Friedman, 2001). This yields
good anytime performance, more flexibility in selecting the model, and better adaptation to new tasks.
We first explain the different components and then summarize our algorithm in Algorithm 1.

4.1 META-LEARNING

Meta-learning for optimization strives to extract information from previous tasks and use this to
accelerate the optimization of a new one. As all methods discussed in Section 2, we only consider the
case of identical input spaces X across all tasks, which simplifies the learning problem. Our goal
is to learn a probabilistic model for the likelihood-free acquisition function from the meta-data, as
illustrated in Fig. 1 for a one-dimensional function.

Following the approach from Berkenkamp et al. (2021) and Perrone et al. (2018), our meta-learning
classifier uses a deterministic, task-agnostic model to map the input space into a feature space,
h(x) = ϕ of a predefined dimensionality. In this feature space, we seek to find a simple model able
to classify the data on all prior tasks using a task specific adaptation. We propose to use Bayesian
logistic regression with a minor modification. In addition to the standard linear model ϕ · zt, where
zt represents prior task t in the learned feature space, and the sigmoid function σ converting the
linear model into class probabilities, we introduce a task agnostic mean function m(ϕ) that acts as a
non-linear bias. We provide an overview of our method in Fig. 2.

The meta-learning model g(·) = m(h(x)) learns a global prior for the classification problem, and the
task-specific embedding vectors zt representing the necessary adaptations. For better inference on
new tasks, we regularize the distribution of the z values during training. We follow the technique used
by Berkenkamp et al. (2021) and Saseendran et al. (2021) to bring zt close to the prior distribution
p(Z) = N (0, I), using a modified Kolmogorov-Smirnov test and the covariance to calculate the

4

Under review as a conference paper at ICLR 2023

Figure 2: Schematic representation of our meta-learning classifier. A Residual Feedfoward Network
(ResFFN) maps the input xt to a latent feature representation ϕ. From this, a global mean prediction
m(ϕ) and task-specific embedding zt are combined and translated into a class prediction via a
sigmoid function.

disparity of two distributions. The loss used for training on the meta-data reads:

Lmeta = min
g(·),z1,...,zT

1

T

T∑
t=1

LLFBO(kt; g(xt), zt) + λR({z1, . . . ,zT }; p(Z)) , (4)

where we average the contribution of all T prior-tasks and R is the regularization term outlined by
Berkenkamp et al. (2021) weighted by λ.

4.2 TASK ADAPTATION VIA BAYESIAN LOGISTIC REGRESSION

After training the meta-model, we need to adapt our predictions to each new task. Hence, we
must estimate a value for z that yields good classification results1 for the predictions C(x) =
σ(g(x) + z · h(x)). While we could greedily optimize Eq. (3) , we pursue a Bayesian approach,
Bayesian logistic regression in particular, to capture the uncertainty in the task-specific z. Especially
with few observations on the new task, using a single z vector can introduce a strong bias.

Besides stronger exploration in the early phases of optimization, the Bayesian approach allows us
to employ Thompson sampling (Thompson, 1933) for z, as shown in Fig. 1. We believe this to
be a valuable strategy for parallelization briefly explored in Appendix E. Kandasamy et al. (2018)
showed that this bypasses the sequential scheme of traditional BO, without introducing the common
computational burden of more sophisticated methods. See Garnett (2022) for more details.

Bayesian logistic regression is a simple yet powerful classification model with Bayesian treatment.
Although exact Bayesian inference is intractable, the Laplacian and probit approximation allow us
to approximate the weights’ posterior and the predictive distribution respectively while remaining
reliable and scalable (Bishop & Nasrabadi, 2006; Murphy, 2012). The Laplacian method fits a
Gaussian distribution around the maximum-a-posteriori (MAP) estimate of the weights distribution
and matches the second order derivative at the optimum.

In the first step, we obtain the MAP estimate by maximizing the posterior of our classifier C
parameterized by z. To be consistent with the regularization used during meta-training, we use a
standard, isotropic Gaussian prior for the weights: p(z) = N (z |m0,Σ0), with mean m0 = 0 and
covariance matrix Σ0 = I. Given observations DN , the log posterior likelihood w.r.t. z is given by

LMALIBO =
1

2
(z −m0)

TΣ−1
0 (z −m0) +

N∑
n=1

(kn(τ − y) logC(xn) + log(1− C(xn)) , (5)

and defines the MAP estimate of the weights via zMAP = argminz∈ZLMALIBO. As a second step
for the Laplace approximation, we compute the negative Hessian of the log posterior

Σ−1
N = −∇∇ ln p(z | DN) = Σ−1

0 +

N∑
n=1

k̂n(1− k̂n)ϕnϕ
T
n (6)

which serves as the precision matrix for the approximated posterior q(z) = N (z | zMAP,ΣN). To
finally compute the approximate predictive distribution, we need to marginalize w.r.t. p(z | DN):

C(x; g(x),DN) =

∫
p(k = 1 | g(x), z)p(z | DN)dz ≃

∫
σ(zTϕ+m(ϕ))q(z)dz (7)

1In contrast to the meta-training, we only infer z but keep the task agnostic model g(·) fixed.

5

Under review as a conference paper at ICLR 2023

Algorithm 1: MALIBO: Meta-learning for likelihood-free Bayesian optimization
Meta-learning:

Input: Meta-datasets Dmeta
t for tasks t = 1, . . . , T , proportion γ ∈ (0, 1)

1 Generate binary class labels for meta-data using γ: 1(y ≤ τ), where τ = Φ−1(γ)

2 Learn the meta-learning model C(·;Dmeta) by optimizing Lmeta (Eq. (4))
Bayesian optimization with Meta-learning:

Input: Fixed meta-learned model g(·)
3 Obtain the first best guess x0 from the meta-learned model D = {(x0, f(x0) + ϵ)}
4 For the gradient boosting variant, use C(·)← GB(C(·)) as the classifier
5 while Has budget do
6 Estimate zMAP by optimizing LMALIBO (Eq. (5)) w.r.t. z
7 Update precision matrix Σ−1

n (Eq. (6))
8 if Thompson sampling then
9 Sample ẑ ∼ MVN(zMAP,Σ)

10 x∗ = argmaxx∈X C(x; ẑ, g(x),D)
11 else
12 x∗ = argmaxx∈X C(x; g(x),D) with probit approximation (Eq. (25))
13 D ← D ∪ {(x∗, f(x∗) + ϵ)}

Although no closed form solution for the integral in Eq. (7) is available due to the logistic activation,
we can evaluate the predictions with probit approximation, which makes use of the similarity of the
sigmoid function and the probit function. See Appendix B for further details.

4.3 GRADIENT BOOSTING AS A RESIDUAL PREDICTION MODEL

While the learned feature representation warm-starts the optimization, the model gains more knowl-
edge about the new task with growing data and needs to adapt. Eventually, the accuracy of C(x) will
saturate, as the parametric model has only limited flexibility and is ultimately limited by the amound
and the quality of the meta-data. We expect a suboptimal classification performance especially in
cases of little meta-data or when a large discrepancy between the training data and the meta-data
distribution exists2. More in depth studies are shown in Appendix D.2.

To counteract this, we propose to combine our method with gradient boosting (GB) (Friedman, 2001).
In every iteration, after updating the Bayesian logistic regression model, we train a gradient boosting
model (regression trees) on Dn without leveraging any meta-learned features and use our classifier as
the first one in the ensemble. This way, GB only corrects where our meta-model is inaccurate and
allows for fine-tuning and better convergence.

5 EXPERIMENTS

In this section, we describe the experiments conducted to empirically evaluate our method. For
the choice of problems, we focus on automated machine learning (AutoML), i. e. hyperparameter
optimization (HPO) and neural architecture search (NAS). Besides that, we evaluate our methods on
synthetic functions to show the robustness against multiplicative noise. Throughout all benchmarks,
we show that MALIBO clearly improves upon LFBO’s performance.

We compare our method against state-of-the-art baselines across all problems. We picked random
search (Bergstra & Bengio, 2012), the gradient boosting variants of BORE (Tiao et al., 2021) and
LFBO (Song et al., 2022) and BO with GPs as baselines without meta-learning and chose ABLR
(Perrone et al., 2018), RGPE (Feurer et al., 2018a) and GC3P (Salinas et al., 2020) as representative
algorithms with a meta-learning component. Additionally, we consider the performance of our
method without any additional components (MALIBO), with gradient boosting (MALIBO (GB)),
with Thompson sampling (MALIBO (TS)), and with both (MALIBO (GB-TS)).

2A large missmatch between traning and test data can arise here when the xn all cluster around an optimum
after many iterations, but the meta-data consisted of IID points on all tasks.

6

Under review as a conference paper at ICLR 2023

(a) Protein (b) Parkinsons

(c) Slice (d) Naval

Figure 3: Immediate regret for different BO algorithms on the HPOBench neural network tuning
problems (D = 9) for 4 datasets. The optimization objective in this benchmark is the validation loss.

We use immediate regret to quantitatively measure performance of different methods, which by
definition is the absolute error between the global minimum and the lowest function value obtained
so far. For all benchmarks, we report the results by mean and standard error across 100 random runs.

We implemented ABLR, RGPE and MALIBO in PyTorch (Paszke et al., 2019), and used scikit-
learn (Pedregosa et al., 2011) for gradient boosting. As the meta-learning model for MALIBO, we
considered a 4-layer, 64-unit residual feedforward network ResFFN-4-64. For more details we refer
to Appendix G. For GC3P, we used the authors’ open source implementation3. The algorithm samples
five candidates from a meta-learned NN model before building a task-specific Copula process while
BORE and LFBO sample 10 random configurations for gathering global information from the target
task before training a model. Thanks to the meta-learned acquisition function, MALIBO starts the
optimization at the point with highest acquisition function value. For all likelihood-free BO methods
the required hyperparameter γ, we set γ = 1/3, following Tiao et al. (2021) and Song et al. (2022).

Neural network tuning (HPOBench) This benchmark represents a joint NAS and HPO for a
two-layer feed-forward regression network on four popular UCI datasets (Dua & Graff, 2017).
The search space is 9 dimensional and available as a tabular benchmark (Klein & Hutter, 2019;
Eggensperger et al., 2021) with a total of 62,208 unique configurations. The optimization objective
in this benchmark is the validation mean squared error after training with the corresponding network
configuration (see Appendix H.1 for more details). As meta-data for each dataset, we randomly
sampled 512 configurations from each of the remaining three. Fig. 3 shows the strong warm-starting
performance of all MALIBO variants. For the protein and Slice dataset, MALIBO (TS-GB) exhibits
the best final performance. For Parkinsons and Naval, the problem characteristics seem to favour the
most basic MALIBO variant. GC3P performs very competitively often being the best method once
the Copula process is fitted, but its final performance is usually matched or surpassed by BORE and
LFBO. For all datasets, ABLR performs poorly, presumably due to the small number of prior-tasks
and the fact that the meta-training seems to overfit to the meta-data in the first BO iterations. The GP
based methods barely outperform RS, indicating that GPs fail to model the loss landscape.

Neural architecture search (NASBench201) NASBench201 (Dong & Yang, 2020) considers
designing a neural cell with 6 discrete parameters totaling 15, 625 unique architectures, evaluated
on CIFAR-10, CIFAR-100 (Krizhevsky, 2009) and ImageNet-16 (Chrabaszcz et al., 2017). The

3https://github.com/geoalgo/A-Quantile-based-Approach-for-Hyperparameter-Transfer-Learning

7

https://github.com/geoalgo/A-Quantile-based-Approach-for-Hyperparameter-Transfer-Learning

Under review as a conference paper at ICLR 2023

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet-16

Figure 4: Immediate regret for different BO algorithms on the NASBench201 neural architecture
search problems (D = 6) on 3 datasets. We optimize the validation accuracy for this benchmark.

optimization objective is validation accuracy after training the corresponding network architecture.
We refer to Appendix H.3 for more details. We randomly sampled 512 configurations from each of
two other datasets for meta-training. From the results shown in Fig. 4, we see that our methods start
again with the lowest average regrets, and the gradient boosting variants converge the fastest compared
to all baselines across all datasets. The graphs show that Thompson sampling (TS) varaints shows
slightly slower convergence in the beginning, but they can outperform their non-TS counterparts.
GC3P remains a strong competitor, but seems to converge prematurely. ABLR again suffers from
few prior-tasks, and the other GP based methods struggle again with the loss surface.

ML algorithms tuning (MLBench) We picked 5 algorithms (SVM, LogReg, XGBoost, Random-
Forest and MLP) from the ML benchmark suite provided by Eggensperger et al. (2021) evaluated on
20 OpenML tasks (Vanschoren et al., 2014), except for MLP with only 8 tasks. The search spaces
dimensions range from 2 (SVM) to 5 (MLP) with the validation error as the objective. We refer to
Appendix H.2 for more details. For meta-data, we randomly sampled 128 configurations from each
task except the current target one (which changed across repetitions). As seen in Fig. 5, all MALIBO
variants continue to demonstrate strong warm-starting performance and similar performance on all
benchmarks, except for RandomForest, where gradient boosting variants are better. ABLR finally
shows its potential with more meta-tasks and is competitive on some benchmarks, but fails to converge
on most of them. The warm-starting of GC3P fluctuates from on-par with MALIBO (SVM, LogReg)
to essentially random guesses (MLP, XGBoost). RGPE demonstrates quick adaptation, but the GP
seems to limit convergences again.

(a) MLP (b) RandomForest (c) XGBoost

(d) SVM (e) LogReg

Figure 5: Immediate regret for different BO algorithms on the HPOBench hyperparamter tuning
problems for 5 different machine learning algorithms. We specifically optimize the (1− accuracy)
for this benchmark.

8

Under review as a conference paper at ICLR 2023

(a) Branin (ϵ = 0.0) (b) Branin (ϵ = 0.1) (c) Branin (ϵ = 1.0)

Figure 6: Immediate regret for different BO algorithms on Branin function ensembles (D = 2) with
different levels of multiplicative noise.

Robustness against different noise level To test the robustness of our method against different
noise levels in the data, we use synthetic function ensembles introduced by Berkenkamp et al. (2021)
with multiplicative noise. We focus on the Branin function ensemble (Dixon, 1978), which is a
two-dimensional problem with 3 local minima. Their location and the global minimum varies across
different functions in the ensemble. See Appendix H.6 for more details.

To avoid biasing this experiment towards a single method, we decided to use a heteroscedastic noise
that is incompatible with any assumptions about the noise of any method. In particular, this violates
the GP methods’ and ABLR’s assumption of homoscedastic, Gaussian noise. GC3P makes a similar
assumption, but after the nonlinear transformation applied to the y-values, which does not translate
to a well-known noise model. BORE, LFBO and by extension all MALIBO variants, make no
explicit noise assumptions, but will optimize for the best mean. We choose a multiplicative noise, i.e.
y = f(x) · (1 + ϵ · n), where n ∼ N (0, 1). To test the robustness, we evaluate ϵ ∈ {0, 0.1, 1.0}. The
noise corrupts observations with large values more, while having a smaller effect on lower function
values. For meta-training, we randomly sampled 128 noisy observations from 256 functions in the
ensemble. We show our results in Fig. 6, where we can see across all magnitudes of multiplicative
noise, our method still learns a meaningful prior for the optimization. As the noise level increases, the
performaces of all methods degrade, with ABLR and GC3P performing worst for the largest noise.
The GP based methods, especially RGPE do well on such smooth functions and handle the noise
surprisingly well. In comparison, BORE, LFBO and MALIBO show the least performance losses
with growing noise on a function ensemble where GP methods excel.

6 CONCLUSION

We introduced Meta-learning for Likelihood-free BO (MALIBO), a novel meta-learning optimiza-
tion algorithm that is computationally efficient and robust to varying scales of the observations and
heterogeneous noise. By directly modeling the acquisition function from observations, the method
makes fewer assumptions about the data and noise distributions. Coupled with meta-learning, it
leverages information from prior tasks for more sample efficiency. To ensure adaption to new tasks,
possibly different from prior ones, we incorporate our model into gradient boosting, transitioning
from a meta-learning driven model towards a specialized one on the current task. Empirical re-
sults demonstrate superior performance on both HPO and NAS benchmarks, as well as synthetic
benchmarks with heteroscedastic noise.

Despite the promising experimental results, some limitations of the method should be noted. As
discussed by Tiao et al. (2021), the threshold parameter τ in likelihood-free BO algorithms, which
controls the exploitation and exploration trade-off, should be treated more carefully. One might
consider probabilistic treatment for this hyperparameter. We also observed over-confident predictions
in our experiments, for example the Forrester ensemble in Appendix F, where not all runs find the
true optimum. This is especially important for problems with more complicated loss landscapes, but
mitigation strategies exist.

Directions for future work include extensions to parallel BO with Thompson sampling (Kandasamy
et al., 2018), multi-fidelity optimization for HPO problems (Falkner et al., 2018), multi-objective
optimization (Hernandez-Lobato et al., 2016), BO with automatic stopping (Makarova et al., 2022)
and Bayesian deep active learning (Gal et al., 2017).

9

Under review as a conference paper at ICLR 2023

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gómez Colmenarejo, Matthew W. Hoffman, David Pfau,
Tom Schaul, Brendan Shillingford, and Nando de Freitas. Learning to learn by gradient descent
by gradient descent. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’16, pp. 3988–3996. Curran Associates Inc., 2016.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. J. Mach.
Learn. Res., 13(null):281–305, 2012.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter op-
timization. In Advances in Neural Information Processing Systems, volume 24. Curran Associates,
Inc., 2011.

Felix Berkenkamp, Anna Eivazi, Lukas Grossberger, Kathrin Skubch, Jonathan Spitz, Christian
Daniel, and Stefan Falkner. Probabilistic meta-learning for bayesian optimization, 2021.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning. Springer,
2006.

Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for
bound constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the cifar datasets, 2017.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learn-
ing by exponential linear units (elus). In 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, 2016.

Laurence Charles Ward Dixon. The global optimization problem. an introduction. Toward global
optimization, 2:1–15, 1978.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations, 2020.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Katharina Eggensperger, Philipp Müller, Neeratyoy Mallik, Matthias Feurer, Rene Sass, Aaron
Klein, Noor Awad, Marius Lindauer, and Frank Hutter. HPOBench: A collection of reproducible
multi-fidelity benchmark problems for HPO. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter opti-
mization at scale. In Proceedings of the 35th International Conference on Machine Learning, pp.
1436–1445, 2018.

Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. Using meta-learning to initialize
bayesian optimization of hyperparameters. In Proceedings of the 2014 International Conference
on Meta-Learning and Algorithm Selection - Volume 1201, MLAS’14, pp. 3–10, Aachen, DEU,
2014. CEUR-WS.org.

Matthias Feurer, Benjamin Letham, and Eytan Bakshy. Scalable meta-learning for bayesian opti-
mization using ranking-weighted gaussian process ensembles. In ICML 2018 AutoML Workshop,
2018a.

Matthias Feurer, Benjamin Letham, Frank Hutter, and Eytan Bakshy. Practical transfer learning for
bayesian optimization, 2018b.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 1126–1135. PMLR, 06–11 Aug
2017.

10

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Under review as a conference paper at ICLR 2023

Peter Frazier, Warren Powell, and Savas Dayanik. The knowledge-gradient policy for correlated
normal beliefs. INFORMS journal on Computing, 21(4):599–613, 2009.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189 – 1232, 2001.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian active learning with image data. In
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 1183–1192. PMLR, 2017.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2022.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D. Sculley.
Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’17, pp. 1487–1495.
Association for Computing Machinery, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Daniel Hernandez-Lobato, Jose Hernandez-Lobato, Amar Shah, and Ryan Adams. Predictive
entropy search for multi-objective bayesian optimization. In Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pp.
1492–1501. PMLR, 20–22 Jun 2016.

José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive entropy
search for efficient global optimization of black-box functions. Advances in neural information
processing systems, 27, 2014.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated Machine Learning: Methods,
Systems, Challenges. Springer Publishing Company, Incorporated, 2019.

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabas Poczos. Parallelised
bayesian optimisation via thompson sampling. In Amos Storkey and Fernando Perez-Cruz (eds.),
Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics,
volume 84 of Proceedings of Machine Learning Research, pp. 133–142. PMLR, 2018.

Jungtaek Kim, Saehoon Kim, and Seungjin Choi. Learning to warm-start bayesian hyperparameter
optimization, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

Aaron Klein and Frank Hutter. Tabular benchmarks for joint architecture and hyperparameter
optimization, 2019.

Alex Krizhevsky. Learning multiple layers of features from tiny images. pp. 32–33, 2009.

H. J. Kushner. A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in
the Presence of Noise. Journal of Basic Engineering, 86(1):97–106, 03 1964.

Yang Li, Yu Shen, Huaijun Jiang, Tianyi Bai, Wentao Zhang, Ce Zhang, and Bin Cui. Transfer
learning based search space design for hyperparameter tuning. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22, pp. 967–977, 2022.

Anastasia Makarova, Huibin Shen, Valerio Perrone, Aaron Klein, Jean Baptiste Faddoul, Andreas
Krause, Matthias Seeger, and Cedric Archambeau. Automatic termination for hyperparameter
optimization. In First Conference on Automated Machine Learning (Main Track), 2022.

Alonso Marco, Felix Berkenkamp, Philipp Hennig, Angela P. Schoellig, Andreas Krause, Stefan
Schaal, and Sebastian Trimpe. Virtual vs. real: Trading off simulations and physical experiments
in reinforcement learning with bayesian optimization. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1557–1563. IEEE Press, 2017.

11

Under review as a conference paper at ICLR 2023

J. Močkus. On bayesian methods for seeking the extremum. In Optimization Techniques IFIP
Technical Conference Novosibirsk, July 1–7, 1974, pp. 400–404. Springer Berlin Heidelberg, 1975.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

XuanLong Nguyen, Martin J. Wainwright, and Michael I. Jordan. Estimating divergence functionals
and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory,
56(11):5847–5861, nov 2010.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, and Cedric Archambeau. Scalable hyper-
parameter transfer learning. In Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

Valerio Perrone, Huibin Shen, Matthias Seeger, Cédric Archambeau, and Rodolphe Jenatton. Learning
search spaces for bayesian optimization: Another view of hyperparameter transfer learning. In
Proceedings of the 33rd International Conference on Neural Information Processing Systems.
Curran Associates Inc., 2019.

Jing Qin. Inferences for case-control and semiparametric two-sample density ratio models. Biometrika,
85(3):619–630, 1998.

Carl Edward Rasmussen. Gaussian Processes in Machine Learning. Springer Berlin Heidelberg,
2004.

David Salinas, Huibin Shen, and Valerio Perrone. A quantile-based approach for hyperparameter
transfer learning. In Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 8438–8448. PMLR, 2020.

Amrutha Saseendran, Kathrin Skubch, Stefan Falkner, and Margret Keuper. Shape your space: A
gaussian mixture regularization approach to deterministic autoencoders. In Advances in Neural
Information Processing Systems, volume 34, pp. 7319–7332. Curran Associates, Inc., 2021.

Nicolas Schilling, Martin Wistuba, and Lars Schmidt-Thieme. Scalable hyperparameter optimization
with products of gaussian process experts. In ECML/PKDD, 2016.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2016.

András Sobester, Alexander Forrester, and Andy Keane. Engineering design via surrogate modelling:
a practical guide. John Wiley & Sons, 2008.

Jiaming Song, Lantao Yu, Willie Neiswanger, and Stefano Ermon. A general recipe for likelihood-free
Bayesian optimization. In Proceedings of the 39th International Conference on Machine Learning,
volume 162, pp. 20384–20404. PMLR, 2022.

Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian optimization
with robust bayesian neural networks. In Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc., 2016.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density Ratio Estimation in Machine
Learning. Cambridge University Press, 2012.

12

Under review as a conference paper at ICLR 2023

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. In C.J.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.), Advances in Neural
Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

William R. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Louis C Tiao, Aaron Klein, Matthias W Seeger, Edwin V. Bonilla, Cedric Archambeau, and Fabio
Ramos. Bore: Bayesian optimization by density-ratio estimation. In Proceedings of the 38th
International Conference on Machine Learning, volume 139, pp. 10289–10300. PMLR, 2021.

Petru Tighineanu, Kathrin Skubch, Paul Baireuther, Attila Reiss, Felix Berkenkamp, and Julia
Vinogradska. Transfer learning with gaussian processes for bayesian optimization. In Proceedings
of The 25th International Conference on Artificial Intelligence and Statistics, volume 151 of
Proceedings of Machine Learning Research, pp. 6152–6181, 2022.

Joaquin Vanschoren. Meta-learning: A survey, 2018.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked science in
machine learning. SIGKDD Explor. Newsl., 15(2):49–60, jun 2014.

Michael Volpp, Lukas P. Fröhlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank Hutter, and
Christian Daniel. Meta-learning acquisition functions for transfer learning in bayesian optimization.
In International Conference on Learning Representations, 2020.

Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient bayesian optimization. In
International Conference on Machine Learning, pp. 3627–3635. PMLR, 2017.

Karl R. Weiss, Taghi M. Khoshgoftaar, and Dingding Wang. A survey of transfer learning. J. Big
Data, 3:9, 2016.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Learning hyperparameter optimization
initializations. In 2015 IEEE International Conference on Data Science and Advanced Analytics
(DSAA), pp. 1–10, 2015.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Scalable gaussian process-based
transfer surrogates for hyperparameter optimization. Mach. Learn., 107(1):43–78, 2018.

13

Under review as a conference paper at ICLR 2023

A LIKELIHOOD-FREE ACQUISITION FUNCTION

For completeness, we provide the proofs and derivations from Bergstra et al. (2011), Tiao et al.
(2021), and Song et al. (2022). Recall from Eq. (1) that the expected utility function is defined as
the expectation of the improvement utility function U(y; τ) over the posterior predictive distribution
p(y |x,Dn). For the specific expected improvement (EI) acquisition function, where the utility
function is U(y; τ) := max(τ − y, 0), the function reads:

α(x;Dn, τ) := Ep(y |x,Dn) =

∫ ∞

−∞
U(y; τ)p(y |x,Dn)dy

=

∫ ∞

τ

(τ − y)p(y |x,Dn)dy

=
1

p(x | Dn)

∫ ∞

τ

(τ − y)p(x | y,Dn)p(y | DN)dy,

(8)

We follow the prove from Bergstra et al. (2011) and Tiao et al. (2021) and consider ℓ(x) = p(x | y ≤
τ,Dn) and g(x) = p(x | y > τ,Dn). The denominator of the above equation can then be written as:

p(x | Dn) =

∫ ∞

−∞
p(x | y,Dn)p(y | Dn)dy

= ℓ(x)

∫ τ

−∞
p(y | Dn)dy + g(x)

∫ ∞

τ

p(y | Dn)dy

= γℓ(x) + (1− γ)g(x),

(9)

where γ := Φ(τ) = p(y ≤ τ | Dn). The numerator can be evaluated as:∫ ∞

τ

max(τ − y, 0)p(x | y,Dn)p(y | DN)dy = ℓ(x)

∫ ∞

τ

max(τ − y, 0)p(y | Dn)dy (10)

= ℓ(x)τ

∫ ∞

τ

p(y | Dn)dy − ℓ(x)

∫ ∞

τ

yp(y | Dn)dy

(11)

= γτℓ(x)− ℓ(x)

∫ ∞

τ

yp(y | Dn)dy (12)

= K · ℓ(x), (13)

where K = γτ −
∫∞
τ

yp(y | Dn)dy. Therefore the EI acquisition function is equivalent to the
γ-relative density ratio up to a constant K,

α(x;DN , τ)︸ ︷︷ ︸
expected improvement

∝ ℓ(x)

γℓ(x) + (1− γ)g(x)︸ ︷︷ ︸
density ratio

(14)

Intuitively, one can think of the configuration x whose corresponding y ≤ τ as good configurations,
and the those with y > τ are bad configurations. Then the density ratio can be interpreted as the ratio
between the model’s belief on that configuration being a good and a bad configuration.

For Tree-structured Parzen Estimators (TPE, Bergstra et al. (2011)), they first select the γ as hyperpa-
rameter and estimate this density ratio by explicitly modelling ℓ(x) and g(x) using kernel density
estimation. As for BORE by Tiao et al. (2021), they model the density ratio by class probability,
where ℓ(x) = p(x | k = 1) and g = p(x | k = 0).

Song et al. (2022) proof that density ratio acquisition function is not always equivalent to EI. Bergstra
et al. (2011) and Tiao et al. (2021) claims that Eq. (10) hold true, which is ℓ(x) times a value
independent of x. Bergstra et al. (2011) assumes ℓ(x) is independent of y once y ≤ τ and therefore
we can take ℓ(x) directly out of the integral.

Nevertheless, p(x | y ≤ τ,Dn) is still dependent on y even if y ≤ τ , because it is a conditional
probability condition on y. They confused with depending on y and depending on y ≤ τ , where these

14

Under review as a conference paper at ICLR 2023

two statements are different and mean differently. By just satisfying the condition y ≤ τ , it does not
necessarily mean that it become independent on y. From the definition of conditional probability:

p(x | y ≤ τ,Dn) =

∫ τ

−∞ p(x, y | Dn)dy∫ τ

−∞ p(y | Dn)dy
̸= p(x | y,Dn), (15)

they are not equivalent. Intuitively, to understand this, is for example, the probability of the configu-
ration x still depends on the its corresponding value y even though y < τ . Another interpretation
for this would be, density ratio acquisition function would treat all (x, y) pairs above it with equal
importance, because it does not depend on y any more if y ≤ τ according to the independence
assumption. In fact, expected improvement weighted the importance of (x, y) pairs by how much y
is lower than τ .

To tackle this issue, Song et al. (2022) propose to estimate the density ratio via variational f-divergence
estimation (Nguyen et al., 2010). They provide a variational representation for the expected utility
function at any point x, provided the samples from some distribution p(y |x), which can replace the
integration with a variational objective function:

Ep(y|x)[U(y; τ)] = argmax
s∈[0,∞)

Ep(y|x)[U(y; τ)f ′(s)− f∗(f ′(s))], (16)

where the utility function U is non-negative, and f : [0,∞) → R is a strictly convex function, and f∗

is the convex conjugate of f . This acquisition function does not model distributions with probability
but only samples from the observations Dn.

They consider their acquisition function αLFBO = ŜDn,τ
(x), and state that the acquisition function

can be written as:

ŜDn,τ
(x) = argmaxEDn

[U(y; τ)f ′(S(x))− f∗(f ′(S(x))]. (17)

This means by optimizing a variaitional objective in the search space X , we can recover an expected
utility acquisition function over x, which makes LLFBO equivalent to expected utility acquisition
function. For practical purpose, they choose a specific convex funciton f : f(r) = r log r

r+1+log 1
r+1

for all r > 0. For their acquisition function αLFBO they consider:

αLFBO(x;Dn, τ) = ĈDn,τ (x)/(1− ĈDn,τ (x)), (18)

where ĈDn,τ is the maximizer of some objecetive over C : X → (0, 1). By applying this f and
Eq. (18) to Eq. (17), the objective for maximization objective C become:

E(x,y)∼p(x,y | DN)[U(y; τ) logC(x) + log(1− C(x))]. (19)

15

Under review as a conference paper at ICLR 2023

B PROBIT APPROXIMATION

Let’s set a = zTϕ+m(ϕ), and the distribution of a would be a Gaussian N (a |µa, σa), where µa

and σa are respectively:

µa = E[a] =
∫

p(a)a da =

∫
q(z)(zTϕ+m(ϕ)) dz = zT

MAPϕ+m(ϕ) (20)

σ2
a = var[a] =

∫
p(a){a2 − E[a]2} da

=

∫
q(z){(zTϕ+m(ϕ))2 − (mT

Nϕ+m(ϕ))2} dz

= ϕTΣNϕ

(21)

Thus our approximation to the predictive distribution becomes:

p(k = 1 | g(x),DN) =

∫
σ(a)N (a |µa, σ

2
a) da (22)

To evaluate the integral in Eq. (22), we can obtain a good approximation by making use of the close
similarity between the logistic sigmoid function σ(a) and the probit function, which is given by the
cumulative distribution of the standard Gaussian Φ(a) =

∫ a

−∞ N (θ | 0, 1) dθ:∫
Φ(λa)N (a |µ, σ2) da = Φ

(
µ

(λ−2 + σ2)1/2

)
(23)

We apply the approximation σ(a) ≃ Φ(λa) to the probit functions appearing on both sides of the
equation: ∫

σ(a)N (a |µ, σ2) da ≃ σ((1 + πσ2/8)−1/2µ) (24)

Therefore we obtain predictive distribution in the form:

p(k = 1 | g(x),DN) ≃ σ((1 + πσ2
a/8)

−1/2µa) (25)

where µa is Eq. (20) and σ2
a is Eq. (21).

16

Under review as a conference paper at ICLR 2023

C RUNTIME ANALYSIS

The experiments in Section 5 show the performance over optimization steps. To be complementary,
we demonstrate the same results from a different perspective, namely, we report the immediate regrets
as a function of estimated wall-clock time. To obtain the realistic wall-clock time, we accumulate the
time to optimize for corresponding BO methods and the recorded runtime for configurations in the
benchmarks. Notice that, all the methods run for the same number of steps in an experiment.

As the results are shown in Figs. 7–9, MALIBO and its variants attain the best warm-starting
performance across all benchmarks and constantly achieve the lowest regrets with the same amount
of time. LFBO and BORE are two competitive methods in terms of end performance, but both
need quite some time to catch up the regrets of MALIBO and its variants. GC3P is the method with
closest time performance as MALIBO in most of the benchmarks. However, their performance is
not as stable as MALIBO, especially for NASBench201 and some of the MLBench problems, where
the meta-learning fail to warm-start the optimization. Similarly, the meta-learning of RGPE and
ABLR do not deliver any advantage over the non-meta-learning baselines and thus end up with close
performance as normal GP.

To further investigate the time efficiency of MALIBO, we illustrates the runtime of the optimization
algorithms for each step in Fig. 10. The runtime for MALIBO and its variants is the fastest among
all the meta-learning methods, while only slightly slower than the non-meta-learning likelihood-free
methods, namely BORE and LFBO. Due to the increasing amount of observations, the runtime of
almost all the methods grow over iterations, especially for RGPE and GP, where the growths are the
most significant. Although ABLR and GC3P are around a order of magnitude slower than MALIBO
at the beginning, but their runtimes remain stable over steps.

(a) Protein (b) Parkinsons

(c) Slice (d) Naval

Figure 7: Immediate regrets of different BO algorithms on the HPOBench neural network tuning
problem. Each algorithm runs for 500 iterations and we show the corresponding estimated wall-clock
time on the x axis in log scale.

17

Under review as a conference paper at ICLR 2023

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet-16

Figure 8: Immediate regrets of different BO algorithms on the NASBench201 neural network
architecture search problem. Each algorithm runs for 200 iterations and we show the corresponding
estimated wall-clock time on the x axis in log scale.

(a) MLP (b) RandomForest (c) XGBoost

(d) SVM (e) LogReg

Figure 9: Immediate regrets of different BO algorithms on the HPOBench hyperparameter tuning for
machine learning algorithms. Each algorithm runs for 72 iterations and we show the corresponding
estimated wall-clock time on the x axis in log scale.

(a) HPOBench Slice (b) MLBench MLP

Figure 10: Runtime of different BO algorithms over optimization steps. We show the typical results
for two benchmarks and plot the medial inter-quantiles to remove outliers.

18

Under review as a conference paper at ICLR 2023

D ABLATION STUDIES

We conduct ablation studies to show how the different components of MALIBO help for the
optimization. To be specific, we first demonstrate the meta-learned features representation for two
different function in Appendix D.1 to provide an intuitive visualization for the expressiveness of
our meta-learning model. To answer the questions of what components and how they help the
optimization, we show the experiments of MALIBO and its variants running on 4 different synthetic
function benchmarks without any meta-learning in Appendix D.2.

D.1 LATENT FEATURE ANALYSIS

We show how our meta-learning model learns a feature representation from meta-data. The latent
features ϕ can be considered as basis functions and are supposed to represent the structure of the
meta-data distribution. With the properly learned features ϕ, the mean layer and the task embedding
layer z can combine them to obtain a function with similar structure to the meta-data while matching
the shape of target function.

In order to learn a effective feature representation, one should capture both the local and global
structure of the function. Therefore, we select two types of function to study the effectiveness of
features learning for MALIBO: i) Forrester functions (Sobester et al., 2008) with two very likely
positions for the global optimum, which has rich local structure. ii) quadratic functions, where the
functions share a certain global shape, but the optima could be located anywhere in the search space.
For more details on the synthetic functions and the generation of meta-data, we refer to Appendix F.

The results for these two synthetic functions are shown in Fig. 11 and Fig. 12 respectively. On one
hand, we can see that in Fig. 11 the features learned by MALIBO has either maximum or minimum
around the two likely optima, which means the model successfully infers the local structure from
the meta-data. On the other hand, Fig. 12 shows that, even without a clear location of optima, the
features still learns the shape of quadratic functions.

Figure 11: Left: Forrester functions with two very likely optima as target function and related-tasks.
The learned acquisition function is shown below. Right: Meta-learned latent features from related-
tasks. The latent features show the model successfully infer the location of two optima, resulting in a
acquisition with two modes around the same locations.

19

Under review as a conference paper at ICLR 2023

Figure 12: Left: Quadratic functions with varying optima as target function and related-tasks. The
learned acquisition function is shown below. Right: Meta-learned latent features from related-tasks.
The latent features show the model can learn the global structure shared across all the meta-data, even
though there is no clear position for optima.

20

Under review as a conference paper at ICLR 2023

D.2 EFFECTS OF GRADIENT BOOSTING AND THOMPSON SAMPLING

The vanilla MALIBO uses Bayesian logistic regression for task adaptation, which leverages the
meta-learned feature. However, the performance depends heavily on the quality of the data and the
latent features learned from the data. In practice, the amount and the quality of the data are often not
guaranteed. We introduce gradient boosting as a residual model to safeguard the optimization when
little meta-data or a large discrepancy between the training data and the meta-data distribution exists.
Further, we apply Thompson sampling to encourage exploration, which enables MALIBO to collect
more information about the target function by exploring the search space efficiently. To show the
usefulness of these components in MALIBO, we remove the effects of meta-learning by optimizing
the target synthetic functions without any meta-training, and therefore the experiments will focus
only on the effects on the gradient boosting and Thompson sampling.

We use four synthetic benchmarks for the experiments, namely quadratic, Forrester, Branin and
Hartmann3 functions. We refer to Appendix F for more details of the synthetic functions. As the
results shown in Fig. 13, the MALIBO (GB) variant consistently demonstrate better performance
than the vanilla MALIBO except in Forrester, where the non-meta-learning MALIBO can easily
stuck in one local optima. This indicates that, when there is little meta-data, gradient boosting
can help the model to converge toward a lower regret and the Bayesian logistic regression fail to
optimize. For MALIBO (TS), the results show the model achieve lower immediate regrets than
vanilla MALIBO across all the benchmark, because it encourages the exploration in the search space.
However, due to the fact that Thompson sampling improve only exploration, for example Branin
and Hartmann3 function, the MALIBO (GB) outperforms the MALIBO (GB) variant. Last but
not least, the results in experiments show that, by combing the exploitation of gradient boosting and
exploration of Thompson sampling, MALIBO (GB-TS) achieves the best performance across all
benchmarks.

(a) Quadratic (b) Forrester

(c) Branin (d) Hartmann3

Figure 13: Results of MALIBO and its variants on four synthetic function benchmarks without
meta-training. We report the standard error of immediate regrets over 100 runs.

21

Under review as a conference paper at ICLR 2023

E STEP-THROUGH VISUALIZATION

For illustration purposes, we provide step-through visualizations on a Forrester and a quadratic func-
tion. For details of the synthetic functions, we refer to Appendix H.5 and Appendix H.4 respectively.
We use the same meta-trained model for the visualizations as the one used in Appendix D.1 for the
corresponding problem.

We demonstrate the advantage of using Thompson sampling in two parts. First, by showing the
MALIBO (TS) variant optimize functions sequentially, which is in correspondence to normal BO
pipeline, we can see how the algorithm explore the space efficiently. The illustrations are demonstrated
in Fig. 14 and Fig. 15. Thereafter, we show two toy examples of synchronous parallel BO (Kandasamy
et al., 2018) using MALIBO (TS) on the same functions. To be specific, we use three Thompson
samples as acquisition functions in each iteration, and evaluates the three proposed points for the
next optimization step. We demonstrate that, MALIBO (TS) can be easily extended to parallel BO
with the help of Thompson sampling.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Iteration 4 (e) Iteration 5 (f) Iteration 6

Figure 14: Sequential Thompson sampling with MALIBO optimizing a Forrester function. We
show the mean prediction together with the Thompson samples of the acquisition function in the
lower part of each sub-figure. At the first iteration, MALIBO (TS) picks the point with highest mean
prediction of the acquisition function, which is already close to the global optimum. Thereafter, it
chooses the point according to the maximum prediction of the Thompson sample, where it explored
another location of interest on the left-hand side. After the second step, the model believes that the
promising region is on the right-hand side and start exploiting that region, where the true optimum
locates. Notice that, almost all the Thompson samples remain the shape close to the mean prediction
of acquisition function, which means it will explore the search space according to the current belief
rather than simply random samples.

22

Under review as a conference paper at ICLR 2023

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Iteration 4 (e) Iteration 5 (f) Iteration 6

Figure 15: Sequential Thompson sampling with MALIBO optimizing a quadratic function. We
show the mean prediction together with the Thompson samples of the acquisition function in the
lower part of each sub-figure. Since the meta-data of quadratic functions do not have a distinctive
promising region but only sharing a similar global structure, the first point MALIBO (TS) picks is
not informative for the problem. However, after exploring the search space with Thompson samples
of the acquisition function, MALIBO (TS) gradually forms a belief that the optimum locates around
x = −0.25. Notice that, even though the meta-learned acquisition function is not informative about
the location of the optimum, but the shape of the mean prediction and the Thompson samples of the
acquisition function remain similar to a quadratic function over iterations, which conforms the global
features learned from the meta-data as shown in Fig. 12.

23

Under review as a conference paper at ICLR 2023

(a) Batch iteration 1 (b) Batch iteration 2 (c) Batch iteration 3

(d) Batch iteration 4 (e) Batch iteration 5 (f) Batch iteration 6

Figure 16: Synchronous parallel Thompson sampling using MALIBO (TS) to optimize a Forrester
function. Every iteration we draw three samples as acquisition functions and utilize the resulting
query points as observations for the next optimization step. In the first iteration, MALIBO (TS)
already acquires three observations which covers both the likely positions for the optimum thanks
to the parallelism. Subsequently, MALIBO (TS) exploits more often around the area where the
true optimum locates than exploring the other area of interest. At the last iteration, all of the three
Thompson samples have already been skew toward the right-hand side, which shows MALIBO (TS)
converges to the correct region.

24

Under review as a conference paper at ICLR 2023

(a) Batch iteration 1 (b) Batch iteration 2 (c) Batch iteration 3

(d) Batch iteration 4 (e) Batch iteration 5 (f) Iteration 6

Figure 17: Synchronous parallel Thompson sampling using MALIBO (TS) to optimize a quadratic
function. Every iteration we draw three samples as acquisition functions and utilize the resulting
query points as observations for the next optimization step. The exploration from the Thompson
sampling helps to discover the boundary of the promising region, i.e. the observations y ≤ τ (blue
crosses), in fewer iterations and the range of promising region keep reducing as more unfavorable
points close to the true optimum were acquired.

25

Under review as a conference paper at ICLR 2023

F ADDITIONAL BENCHMARKS

In this section we show more results for experiments with multiplicative noise as in Section 5. With
the settings remaining the same, we perform our experiments on Forester (Sobester et al., 2008) and
Hartmann3 (Dixon, 1978) function ensembles. We refer to Appendices H.5 and H.7 respectively for
more details.

Forrester function ensemble For meta-training in Forester ensemble experiment, we randomly
sampled noisy 32 observations in 64 prior-tasks. The results is shown in Fig. 18. MALIBO and
its variants keep showing strong warm-starting performance and stay robust to noise compared to
other methods. However, all the likelihood-free BO methods, namely LFBO, MALIBO and its
variants, seem to stuck in local minimum in some runs, resulting in almost no improvement over the
optimization process. The performance of all MALIBO variants is on-par with GC3P in all cases.
Although most of the GP-based methods, namely GP, RGPE and ABLR, all outperform the other
likelihood-free based methods, however after increasing the noise level, their performances degrade
significantly.

(a) Forrester (ϵ = 0.0) (b) Forrester (ϵ = 0.1) (c) Forrester (ϵ = 1.0)

Figure 18: Immediate regret for different BO algorithms on Forrester function ensembles (D = 1)
with different levels of multiplicative noise.

Hartmann3 function ensemble We randomly sampled noisy 512 observations in 256 prior-tasks
in the Hartmann3 ensemble experiment. The results is shown in Fig. 19. All MALIBO variants
shows the strongest meta-learning performance in all settings, and the gradient boosting variants
report the lowest regrets together with ABLR in noise-free function. All MALIBO variants remain
robust to noise, especially the vanilla MALIBO. The GP-based method, although they have strong
performance in the noise-free case, especially RGPE, but they degrade significantly after the noise
level increased.

(a) Hartmann3 (ϵ = 0.0) (b) Hartmann3 (ϵ = 0.1) (c) Hartmann3 (ϵ = 1.0)

Figure 19: Immediate regret for different BO algorithms on Hartmann3 function ensembles (D = 3)
with different levels of multiplicative noise.

26

Under review as a conference paper at ICLR 2023

G EXPERIMENTAL DETAILS

Consider a Residual Feed Forward Network (ResFFN) (He et al., 2016) architecture ResFFN-4-64,
which contains 4 residual feedforward layers with 64 units. We use ResFFN-4-64 to learn the latent
feature representation, with 4 hidden layers, each with 64 units. For the mean layer m(·) and task
embedding layer z, we use a fully connected layer with 50 units for each. We use ELU (Clevert et al.,
2016) as activation function for our problem following Tiao et al. (2021).

During meta-training, we optimize the weights with ADAM (Kingma & Ba, 2015) using batch size
of B = 256, and polynomial decay for learning rate, with the initial learning rate lrinitial = 10−3,
end learning rate lrfinal = 2−4 and the exponent set to 2. The model is trained for 2048 epochs
with early stopping. We set the regularization factor λ = 0.1 in Eq. (4) and follow the approach
in (Berkenkamp et al., 2021) to estimate the weights for modified Kolmogorov-Smirnov test and
covariance regularization. In task adaptation, we optimize the task embedding with L-BFGS (Byrd
et al., 1995).

For the gradient boosting applied to BORE, LFBO and MALIBO, we use the implementation in
scikit-learn (Pedregosa et al., 2011) with default settings. The only difference is that we use the
meta-learned MALIBO classifier as the initial estimator for gradient boosting variants of MALIBO.

27

Under review as a conference paper at ICLR 2023

H DETAILS OF BENCHMARKS

H.1 HPOBENCH

The hyperparameters for HPOBench and their ranges are demonstrated in Table 1. All hyparameters
are discrete and there are in total 66,208 possible combinations. More details can be found in Klein
& Hutter (2019).

Table 1: Configuration spaces for HPOBench

Hyperparameter Range

Initial LR { 5× 10−4, 1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2, 1× 10−1 }
LR Schedule { cosine, fixed }
Batch size { 23, 24, 25, 26 }
Layer 1 Width { 24, 25, 26, 27, 28, 29 }

Activation { relu, tanh }
Dropout rate { 0.0, 0.3, 0.6 }

Layer 2 Width { 24, 25, 26, 27, 28, 29 }
Activation { relu, tanh }
Dropout rate { 0.0, 0.3, 0.6 }

H.2 ML ALGORITHMS IN HPOBENCH

The hyperparameters for machine learning (ML) algortihms in HPOBench (Eggensperger et al., 2021)
and their ranges are summarized in Table 2. More details can be found in Eggensperger et al. (2021).

Table 2: Configuration spaces for ML algorithms in HPOBench

Benchmark Hyperparameter type Log Range

SVM C float ✓ [2−10, 210]
gamma float ✓ [2−10, 210]

LogReg alpha float ✓ [1e−5, 1.0]
eta0 float ✓ [1e−5, 1.0]

XGBoost colsample bytree float ✗ [0.1, 1.0]
eta float ✓ [2−10, 1.0]
max depth int ✓ [1, 50]
reg lambda float ✓ [2−10, 2−10]

RandomForest max depth int ✓ [1, 50]
max features float ✗ [0.0, 1.0]
min samples leaf int ✗ [1, 2]
min samples split int ✓ [2, 128]

MLP alpha float ✓ [1.0e−8, 1.0]
batch size int ✓ [4, 256]
depth int ✗ [1, 3]
learning rate init float ✓ [1.0e−5, 1.0]
width int ✓ [16, 1024]

H.3 NASBENCH201

The hyperparameters for NASBench201 and their ranges are summarized in Table 3. All hyparameters
are discrete and there are in total 15,625 possible combinations. More details can be found in Dong
& Yang (2020).

28

Under review as a conference paper at ICLR 2023

Table 3: Configuration spaces for NASBench201

Hyperparameter Range

ARC 0 { none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3 }
ARC 1 { none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3 }
ARC 2 { none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3 }
ARC 3 { none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3 }
ARC 4 { none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3 }
ARC 5 { none, skip-connect, conv-1× 1, conv-3× 3, avg-pool-3× 3 }

H.4 THE QUADRATIC ENSEMBLE

The function for the quadratic ensemble is defined as:
f(x, a, b, c) = (a · (x− b))2 − c x ∈ [0, 1] (26)

To form the ensemble, we choose the distribution for the parameters as:
a ∼ U(0.5, 1.5) b ∼ U(−0.9, 0.9) c ∼ U(−1, 1) (27)

This distribution of parameters ensures that the search space contains the minimum of the quadratic
function at x∗ = b with f(x∗) = c. The location of the optimum has a broad distribution over
the function space, which is intended to highlight algorithms that learn the global structure of the
ensemble rather than restricting on some small regions of interest.

H.5 THE FORRESTER ENSEMBLE

The original Forrester function (Sobester et al., 2008) is defined following:

f(x, a, b, c) = a · (6x− 2)2 ˙sin(12x− 4) + b(x− 0.5)− c x ∈ [0, 1] (28)
The function has one local and one global minimum, and a zero-gradient inflection point in the
domain x ∈ [0, 1]. To form the ensemble, we choose the distribution for the parameters as:

a ∼ U(0.2, 3) b ∼ U(−5, 15) c ∼ U(−5, 5) (29)
Let τ = {a, b, c} and p(τ) is a three dimensional uniform distribution. The ranges are chosen around
the usually used fixed values for the parameters, namely a = 0.5, b = 10, c = −5.

H.6 THE BRANIN ENSEMBLE

The function for the Branin ensemble is the following:
f(x, a, b, c) = a(x2 − bx2

1 + cx1 − r) + s(1− t) cos(x1) + s x1 ∈ [−5, 10], x2 ∈ [0, 15] (30)
The distribution for the parameters are chosen as:

a ∼ U(0.5, 1.5) b ∼ U(0.1, 0.15) c ∼ U(1.0, 2.0)
r ∼ U(5.0, 7, 0) s ∼ U(8.0, 12.0) t ∼ U(0.03, 0.05) (31)

Let τ = {a, b, c, r, s, t} and p(τ) is a six dimensional uniform distribution. The ranges are chosen
around the usually used fixed values for the parameters, namely a = 1, b = 5.1/(4π2), c = 5/π,
r = 6, s = 10 and t = 1/(8π).

H.7 THE HARTMANN3 ENSEMBLE

The function for Hartmann3 (Dixon, 1978) ensemble reads:

f(x, α1, α2, α3, α4) = −
4∑

i=1

αi exp

−
3∑

j=1

Ai,j(xj − Pi,j)
2

 x ∈ [0, 1]

A =

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

 P = 10−4 ·

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

(32)

29

Under review as a conference paper at ICLR 2023

To form the ensemble, we choose the distribution for the parameters as:

α1 ∼ U(0.0, 2.0) α2 ∼ U(0.0, 2.0) α3 ∼ U(2.0, 4.0) α4 ∼ U(2.0, 4.0) (33)

Let τ = {α1, α2, α3, α4} and p(τ) is a four dimensional uniform distribution.

30

	Introduction
	Related Work
	Problem Statement and Background
	Bayesian Optimization
	Likelihood-free Acquisition Functions

	Methodology
	Meta-learning
	Task adaptation via Bayesian logistic regression
	Gradient boosting as a residual prediction model

	Experiments
	Conclusion
	redLikelihood-free Acquisition function
	Probit approximation
	redRuntime analysis
	redAblation studies
	Latent feature analysis
	Effects of gradient boosting and Thompson sampling

	redStep-through visualization
	Additional benchmarks
	Experimental details
	Details of benchmarks
	HPOBench
	ML algorithms in HPOBench
	NASBench201
	The Quadratic Ensemble
	The Forrester Ensemble
	The Branin Ensemble
	The Hartmann3 Ensemble

