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Abstract

African languages are not well-represented in
Natural Language Processing (NLP). The main
reason is a lack of resources for training models.
Low-resource languages, such as Amharic and
Ge’ez, cannot benefit from modern NLP meth-
ods because of the lack of high-quality datasets.
This paper presents AGE, an open-source tripar-
tite alignment of Amharic, Ge’ez, and English
parallel dataset. Additionally, we introduced a
novel, 1,000 Ge’ez-centered sentences sourced
from areas such as news and novels. Further-
more, we developed a model from a multilin-
gual pre-trained language model, which brings
12.29 and 30.66 for English-Ge’ez and Ge’ez
to English, respectively, and 9.39 and 12.29
for Amharic-Ge’ez and Ge’ez-Amharic respec-
tively.

1 Introduction

Language is fundamental to communication, with
machine translation (MT) facilitating human-
machine and human-human interactions (Abate
et al., 2019). Data availability distinguishes high-
resource from low-resource languages (Ranathunga
et al., 2021). To date, there is no publicly avail-
able MT system for Ge’ez language and it’s not
represented in commercial MT systems such as
Lesan1, Google Translate2, Microsoft Translator3,
and Yandex Translate4. It is also not included
in large-scale pre-trained multilingual models like
NLLB(Team et al., 2022), MT5(Xue et al., 2021),
ByT5(elalliance, 2022), and M2M-100(Fan et al.,
2020). This dataset aims to bridge historical lin-
guistic heritage and modern technology, advanc-
ing MT capabilities and linguistic studies while
contributing to the preservation of low-resource
languages.

1https://lesan.ai
2http://translate.google.com/
3https://www.microsoft.com/en-us/translator/
4https://translate.yandex.com

Figure 1: Data collection and pre-processing pipelines.

2 Related work

One of the major challenges in developing MT
models for Ge’ez is the lack of public data. There
were attempts to compile parallel corpora for Ge’ez
to English and Ge’ez to Amharic MT tasks, but the
development was unsatisfactory.

A recurring issue noted in these experiments
is the absence of data sharing with the public do-
main. As shown in Table 1, there is a lack of open-
sourcing data and models, a significant obstacle to
the representation of Ge’ez in NLP.

3 Creation of the dataset

We introduce our newly Ge’ez-centered parallel
dataset; AGE — Amharic, Ge’ez , English for
machine translation.

We created a novel parallel dataset with 1,000
sentence pairs, later expanding it to 17,585
Amharic-Ge’ez and 18,676 Ge’ez-English pairs
sourced from The Open Siddur Project, YouVer-
sion, Ethiopic Bible, and Awde Mehret. Due to
significant textual inconsistencies, we removed ex-
cessively disordered portions as shown in Figure
1. The dataset development involved collecting tri-
partite parallel sentences and translating some to
Ge’ez using translators and evaluators. We devel-
oped an in-house tool to streamline this process and
standardized tokens by cleaning the data, normaliz-
ing Amharic homophones, and converting English
characters to lowercase.
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Language Sentences Dataset Model Technique
Amharic, Ge’ez (Mulugeta, 2015) 12, 840 ✗ ✗ SMT
Amharic, Ge’ez (Kassa, 2018) 13,833 ✗ ✗ SMT
Amharic, Ge’ez (Abel, 2018) 976 ✗ ✗ SMT
Ge’ez, English (Abate et al., 2019) 11,663 ✓ ✗ SMT
Ge’ez, English (Getachew and Yayeh, 2023) 16,569 ✗ ✗ NMT
Amharic, Ge’ez (Tegenaw et al., 2023) 33,004 ✗ ✗ NMT
Amahric, Ge’ez (Wassie, 2023) 4,000 ✗ ✗ MNMT

Table 1: Summary of related works for Ge’ez, Sentences shows the number of sentences used during the experiment.
Dataset and Model show the availability of datasets and models in publicly accessible repositories, and Technique
shows the method used to build models.

Language pair BLEU
Amharic-Ge’ez 9.39
Ge’ez-Amharic 12.29
English-Ge’ez 12.87
Ge’ez-English 30.66

Table 2: Baseline results of NLLB-200 600M

4 Baseline Experiments

Prior research predominantly used SMT and few
employed NMT with transformers. We extended
these studies using the NLLB-200(Team et al.,
2022), a 54B parameter Mixture-of-Experts(MoE)
model, but due to computational constraints, we uti-
lized the NLLB-200 600M parameter variant. This
model, fine-tuned on our dataset split into TRAIN
(80%), DEV (10%), and TEST (10%), was trained
using HuggingFace Transformer tool(Wolf et al.,
2020) with specific parameters on Google Colab
Pro. The training parameters included a learning
rate of 5e-5, a batch size of 4 per device, a max-
imum source length, a maximum target length of
128, and a beam size of 10.

5 Results and Discussion

We adopted the NLLB-200 600M model to evalu-
ate its performance in translating Ge’ez, as shown
in Table 2, achieving BLEU scores of 9.39 and
12.26 for Amharic-Ge’ez and 30.35 and 30.66 for
Ge’ez-English. Higher scores for English transla-
tions highlight the advantages of richer linguistic
resources and extensive pre-training on English
data (Team et al., 2022). Challenges in translating
morphologically rich languages like Ge’ez were
noted (Tran et al., 2014). This study presents the
first ready-to-use Amharic, Ge’ez, English tripar-
tite dataset, which will be made open source for fur-

ther research. Future work will expand the dataset’s
quantity and diversity, incorporating more Ge’ez
data sources.
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