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Abstract

This paper studies the performative prediction problem where a learner aims to1

minimize the expected loss with a decision-dependent data distribution. Such2

setting is motivated when outcomes can be affected by the prediction model, e.g.,3

in strategic classification. We consider a state-dependent setting where the data4

distribution evolves according to an underlying controlled Markov chain. We5

focus on stochastic derivative free optimization (DFO) where the learner is given6

access to a loss function evaluation oracle with the above Markovian data. We7

propose a two-timescale DFO(λ) algorithm that features (i) a sample accumulation8

mechanism that utilizes every observed sample to estimate the overall gradient of9

performative risk, and (ii) a two-timescale diminishing step size that balances the10

rates of DFO updates and bias reduction. Under a general non-convex optimization11

setting, we show that DFO(λ) requires O(1/ϵ3) samples (up to a log factor) to12

attain a near-stationary solution with expected squared gradient norm less than13

ϵ > 0. Numerical experiments verify our analysis.14

1 Introduction15

Consider the following stochastic optimization problem with decision-dependent data:16

min
θ∈Rd

L(θ) = EZ∼Πθ

[
ℓ(θ;Z)

]
. (1)

Notice that the decision variable θ appears in both the loss function ℓ(θ;Z) and the data distribution17

Πθ supported on Z. The overall loss function L(θ) is known as the performative risk which captures18

the distributional shift due to changes in the deployed model. This setting is motivated by the19

recent studies on performative prediction (Perdomo et al., 2020), which considers outcomes that are20

supported by the deployed model θ under training. For example, this models strategic classification21

(Hardt et al., 2016; Dong et al., 2018) in economical and financial practices such as with the training22

of loan classifier for customers who may react to the deployed model θ to maximize their gains; or23

in price promotion mechanism (Zhang et al., 2018) where customers react to prices with the aim of24

gaining a lower price; or in ride sharing business (Narang et al., 2022) with customers who adjust25

their demand according to prices set by the platform.26

The objective function L(θ) is non-convex in general due to the effects of θ on both the loss function27

and distribution. Numerous efforts have been focused on characterizing and finding the so-called28

performative stable solution which is a fixed point to the repeated risk minimization (RRM) process29

(Perdomo et al., 2020; Mendler-Dünner et al., 2020; Brown et al., 2022; Li & Wai, 2022; Roy et al.,30

2022; Drusvyatskiy & Xiao, 2022). While RRM might be a natural algorithm for scenarios when the31

learner is agnostic to the performative effects in the dynamic data distribution, the obtained solution32

maybe far from being optimal or stationary to (1).33
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On the other hand, recent works have studied performative optimal solutions that minimizes (1). This34

is challenging due to the non-convexity of L(θ) and more importantly, the absence of knowledge35

of Πθ. In fact, evaluating ∇L(θ) or its stochastic gradient estimate would require learning the36

distribution Πθ a-priori (Izzo et al., 2021). To design a tractable procedure, prior works have assumed37

structures for (1) such as approximating Πθ by Gaussian mixture (Izzo et al., 2021), Πθ depends38

linearly on θ (Narang et al., 2022), etc., combined with a two-phase algorithm that separately learns39

Πθ and optimizes θ. Other works have assumed a mixture dominance structure (Miller et al., 2021)40

on the combined effect of Πθ and ℓ(·) on L(θ), which in turn implies that L(θ) is convex. Based on41

this assumption, a derivative free optimization (DFO) algorithm was analyzed in Ray et al. (2022).42

Stochastic DFO Settings Rate

Decision-indep. O(1/ϵ2)
(Ghadimi & Lan, 2013)
Decision-depend. (Markov) O(1/ϵ3)

Table 1: Comparison of the expected conver-
gence rates (to find an ϵ-stationary point) for
DFO under various settings where DFO is
used to tackle an unstructured non-convex op-
timization problem such as (1).

This paper focuses on approximating the performa-43

tive optimal solution without relying on additional44

condition on the distribution Πθ and/or using a two-45

phase algorithm. We concentrate on stochastic DFO46

algorithms (Ghadimi & Lan, 2013) which do not in-47

volve first order information (i.e., gradient) about48

L(θ). As an advantage, these algorithms avoid the49

need for estimating Πθ. Instead, the learner is given50

access to the loss function evaluation oracle ℓ(θ;Z)51

and receive data samples from a controlled Markov52

chain. Note that the latter models the stateful and53

strategic agent setting considered in (Ray et al., 2022;54

Roy et al., 2022; Li & Wai, 2022; Brown et al., 2022).55

Such setting is motivated when the actual data distribution adapts slowly to the decision model, which56

will be announced by the learner during the (stochastic) optimization process.57

The proposed DFO (λ) algorithm features (i) a two-timescale step sizes design to control the bias-58

variance tradeoff in the derivative-free gradient estimates, and (ii) a sample accumulation mechanism59

with forgetting factor λ that aggregates every observed samples to control the amount of error in60

gradient estimates. In addition to the new algorithm design, our main findings are summarized below:61

• Under the Markovian data setting, we show in Theorem 3.1 that the DFO (λ) algorithm finds a near-62

stationary solution θ̄ with E[∥∇L(θ̄)∥2] ≤ ϵ using O(d2

ϵ3 log 1/ϵ) samples/iterations. Compared to63

prior works, our analysis does not require structural assumption on the distribution Πθ or convexity64

condition on the performative risk (Izzo et al., 2021; Miller et al., 2021; Ray et al., 2022).65

• Our analysis demonstrates the trade-off induced by the forgetting factor λ in the DFO (λ) algorithm.66

We identify the desiderata for the optimal value(s) of λ. We show that increasing λ allows to67

reduce the number of samples requited by the algorithm if the performative risk gradient has a68

small Lipschitz constant.69

For the rest of this paper, §2 describes the problem setup and the DFO (λ) algorithm, §3 presents the70

main results, §4 outlines the proofs. Finally, we provide numerical results to verify our findings in §5.71

Finally, as displayed in Table 1, we remark that stochastic DFO under decision dependent (and72

Markovian) samples has a convergence rate of O(1/ϵ3) towards an ϵ-stationary point, which is worse73

than the decision independent setting that has O(1/ϵ2) in Ghadimi & Lan (2013). We believe that74

this is a fundamental limit for DFO-type algorithms when tackling problems with decision-dependent75

sample due to the challenges in designing a low variance gradient estimator; see §4.1.76

Related Works. The idea of DFO dates back to Nemirovskiı̆ (1983), and has been extensively studied77

thereafter Flaxman et al. (2005); Agarwal et al. (2010); Nesterov & Spokoiny (2017); Ghadimi &78

Lan (2013). Results on matching lower bound were established in (Jamieson et al., 2012). While a79

similar DFO framework is adopted in the current paper for performative prediction, our algorithm is80

limited to using a special design in the gradient estimator to avoid introducing unwanted biases.81

There are only a few works considering the Markovian data setting in performative prediction. Brown82

et al. (2022) is the first paper to study the dynamic settings, where the response of agents to learner’s83

deployed classifier is modeled as a function of classifier and the current distribution of the population;84

also see (Izzo et al., 2022). On the other hand, Li & Wai (2022); Roy et al. (2022) model the85

unforgetful nature and the reliance on past experiences of single/batch agent(s) via controlled Markov86

Chain. Lastly, Ray et al. (2022) investigated the state-dependent framework where agents’ response87

may be driven to best response at a geometric rate.88
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Algorithm 1 DFO (λ) Algorithm

1: Input: Constants δ0, η0, τ0, α, β, maximum
epochs T , forgetting factor λ, loss function
ℓ (·; ·).

2: Initialization: Set initial θ0 and sample Z0.
3: for k = 0 to T − 1 do
4: δk ← δ0/(1 + k)β , ηk ← η0/(1 + k)α,

τk ← max{1, τ0 log(1 + k)}
5: Update θ

(1)
k ← θk, Z(0)

k ← Zk,
uk ∼ Unif(Sd−1)

6: for m = 1, 2, · · · , τk do
7: Deploy the model θ̌(m)

k = θ
(m)
k + δkuk

8: Draw Z
(m)
k ∼ T

θ̌
(m)
k

(Z
(m−1)
k , ·)

9: Update θ
(m)
k as

g
(m)
k = d

δk
ℓ
(
θ̌
(m)
k ;Z

(m)
k

)
uk,

θ
(m+1)
k = θ

(m)
k − ηkλ

τk−mg
(m)
k .

10: end for
11: Zk+1 ← Z

(τk)
k , θk+1 ← θ

(τk+1)
k .

12: end for
Output: Last iterate θT .

Notations: Let Rd be the d-dimensional Euclidean space equipped with inner product ⟨·, ·⟩ and89

induced norm ∥x∥ =
√
⟨x, x⟩. Let S be a (measurable) sample space, and µ, ν are two probability90

measures defined on S . Then, we use δTV (µ, ν) := supA⊂S µ(A)−ν(A) to denote the total variation91

distance between µ and ν. Denote Tθ(·, ·) as the state-dependent Markov kernel and its stationary92

distribution is Πθ(·). Let Bd and Sd−1 be the unit ball and its boundary (i.e., a unit sphere) centered93

around the origin in d-dimensional Euclidean space, respectively, and correspondingly, the ball and94

sphere of radius r > 0 are rBd and rSd−1.95

2 Problem Setup and Algorithm Design96

In this section, we develop the DFO (λ) algorithm for tackling (1) and describe the problem setup.97

Assume that L(θ) is differentiable, we focus on finding an ϵ-stationary solution, θ, which satisfies98

∥∇L(θ)∥2 ≤ ϵ. (2)

With the goal of reaching (2), there are two key challenges in our stochastic algorithm design:99

(i) to estimate the gradient ∇L(θ), and (ii) to handle the stateful setting where one cannot draw100

samples directly from the distribution Πθ. We shall discuss how the proposed DFO (λ) algorithm,101

which is summarized in Algorithm 1, tackles the above issues through utilizing two ingredients: (a)102

two-timescales step sizes, and (b) sample accumulation with the forgetting factor λ ∈ [0, 1).103

Estimating∇L(θ) via Two-timescales DFO. First notice that the gradient of L(·) can be derived as104

∇L(θ) = EZ∼Πθ
[∇ℓ(θ;Z) + ℓ(θ;Z)∇θ log Πθ(Z)], (3)

As a result, constructing the stochastic estimates of ∇L(θ) typically requires knowledge of Πθ(·)105

which may not be known a-priori unless a separate estimation procedure is applied; see e.g., (Izzo106

et al., 2021). To avoid the need for direct evaluations of ∇θ log Πθ(Z), we consider an alternative107

design via zero-th order optimization (Ghadimi & Lan, 2013). The intuition comes from observing108

that with δ → 0+, L(θ + δu)− L(θ) is an approximate of the directional derivative of L along u.109

This suggests that an estimate for∇L(θ) can be constructed using the objective function values of110

ℓ(θ;Z) only.111

Inspired by the above, we aim to construct a gradient estimate by querying ℓ(·) at randomly perturbed112

points. Formally, given the current iterate θ ∈ Rd and a query radius δ > 0, we sample a vector113

u ∈ Rd uniformly from Sd−1. The zero-th order gradient estimator for L(θ) is then defined as114

gδ(θ;u, Z) :=
d

δ
ℓ(θ̌;Z)u with θ̌ := θ + δu, Z ∼ Πθ̌(·). (4)

In fact, as u is zero-mean, gδ(θ;u, Z) is an unbiased estimator for∇Lδ(θ). Here, Lδ(θ) is a smooth115

approximation of L(θ) (Flaxman et al., 2005; Nesterov & Spokoiny, 2017) defined as116

Lδ(θ) = Eu[L(θ̌)] = Eu[EZ∼Πθ̌
[ℓ(θ̌;Z)]]. (5)

Furthermore, it is known that under mild condition [cf. Assumption 3.1 to be discussed later],117

∥∇Lδ(θ)−∇L(θ)∥ = O(δ) and thus (4) is an O(δ)-biased estimate for∇L(θ).118
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We remark that the gradient estimator in (4) differs from the one used in classical works on DFO such119

as (Ghadimi & Lan, 2013). The latter takes the form of d
δ (ℓ(θ̌;Z)− ℓ(θ;Z))u. Under the setting120

of standard stochastic optimization where the sample Z is drawn independently of u and Lipschitz121

continuous ℓ(·;Z), the said estimator in (Ghadimi & Lan, 2013) is shown to have constant variance122

while it remains O(δ)-biased. Such properties cannot be transferred to (4) since Z is drawn from a123

distribution dependent on u via θ̌ = θ + δu. In this case, the two-point gradient estimator would124

become biased; see §4.1.125

However, we note that the variance of (4) would increase asO(1/δ2) when δ → 0, thus the parameter126

δ yields a bias-variance trade off in the estimator design. To remedy for the increase of variance, the127

DFO (λ) algorithm incorporates a two-timescale step size design for generating gradient estimates (δk)128

and updating models (ηk), respectively. Our design principle is such that the models are updated at a129

slower timescale to adapt to the gradient estimator with O(1/δ2) variance. Particularly, we will set130

ηk+1/δk+1 → 0 to handle the bias-variance trade off, e.g., by setting α > β in line 4 of Algorithm 1.131

Markovian Data and Sample Accumulation. We consider a setting where the sample/data distribu-132

tion observed by the DFO (λ) algorithm evolves according to a controlled Markov chain (MC). Notice133

that this describes a stateful agent(s) scenario such that the deployed models (θ) would require time134

to manifest their influence on the samples obtained; see (Li & Wai, 2022; Roy et al., 2022; Brown135

et al., 2022; Ray et al., 2022; Izzo et al., 2022).136

To describe the setting formally, we denote Tθ : Z × Z → R+ as a Markov kernel controlled by137

a deployed model θ. For a given θ, the kernel has a unique stationary distribution Πθ(·). Under138

this setting, suppose that the previous state/sample is Z, the next sample follows the distribution139

Z ′ ∼ Tθ(Z, ·) which is not necessarily the same as Πθ(·). As a consequence, the gradient estimator140

(4) is not an unbiased estimator of∇Lδ(θ) since Z ∼ Πθ̌(·) cannot be conveniently accessed.141

A common strategy in settling the above issue is to allow a burn-in phase in the algorithm as in (Ray142

et al., 2022); also commonly found in MCMC methods (Robert et al., 1999). Using the fact that Tθ143

admits the stationary distribution Πθ, if one can wait a sufficiently long time before applying the144

current sample, i.e., consider initializing with the previous sample Z(0) = Z, the procedure145

Z(m) ∼ Tθ(Z
(m−1), ·), m = 1, . . . , τ, (6)

would yield a sample Z+ = Z(τ) that admits a distribution close to Πθ provided that τ ≫ 1 is146

sufficiently large compared to the mixing time of Tθ.147

Intuitively, the procedure (6) may be inefficient as a number of samples Z(1), Z(2), . . . , Z(τ−1) will148

be completely ignored at the end of each iteration. As a remedy, the DFO (λ) algorithm incorporates149

a sample accumulation mechanism which gathers the gradient estimates generated from possibly150

non-stationary samples via a forgetting factor of λ ∈ [0, 1). Following (4), ∇L(θ) is estimated by151

g = d
δ

∑τ
m=1 λ

τ−mℓ(θ(m) + δu;Z(m))u, with Z(m) ∼ Tθ(m)+δu(Z
(m−1), ·). (7)

At a high level, the mechanism works by assigning large weights to samples that are close to the152

end of an epoch (which are less biased). Moreover, θ(m) is simultaneously updated within the153

epoch to obtain an online algorithm that gradually improves the objective value of (1). Note that154

with λ = 0, the DFO(0) algorithm reduces into one that utilizes burn-in (6). We remark that from155

the implementation perspective for performative prediction, Algorithm 1 corresponds to a greedy156

deployment scheme (Perdomo et al., 2020) as the latest model θ(m)
k + δkuk is deployed at every157

sampling step. Line 6–10 of Algorithm 1 details the above procedure.158

Lastly, we note that recent works have analyzed stochastic algorithms that rely on a single trajectory159

of samples taken from a Markov Chain, e.g., (Sun et al., 2018; Karimi et al., 2019; Doan, 2022),160

that are based on stochastic gradient. Sun & Li (2019) considered a DFO algorithm for general161

optimization problems but the MC studied is not controlled by θ.162

3 Main Results163

This section studies the convergence of the DFO (λ) algorithm and demonstrates that the latter finds164

an ϵ-stationary solution [cf. (2)] to (1). We first state the assumptions required for our analysis:165

Assumption 3.1. (Smoothness) L(θ) is differentiable, and there exists a constant L > 0 such that166

∥∇L(θ)−∇L(θ′)∥ ≤ L ∥θ − θ′∥ , ∀θ,θ′ ∈ Rd.
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Assumption 3.2. (Bounded Loss) There exists a constant G > 0 such that167

|ℓ(θ; z)| ≤ G, ∀ θ ∈ Rd, ∀ z ∈ Z.

Assumption 3.3. (Lipschitz Distribution Map) There exists a constant L1 > 0 such that168

δTV (Πθ1
,Πθ2

) ≤ L1 ∥θ1 − θ2∥ ∀θ1,θ2 ∈ Rd.

The conditions above state that the gradient of the performative risk is Lipschitz continuous and the169

state-dependent distribution vary smoothly w.r.t. θ. Note that Assumption 3.1 is found in recent170

works such as (Izzo et al., 2021; Ray et al., 2022), and Assumption 3.2 can be found in (Izzo et al.,171

2021). Assumption 3.3 is slightly strengthened from the Wasserstein-1 distance bound in (Perdomo172

et al., 2020), and it gives better control for distribution shift in our Markovian data setting.173

Next, we consider the assumptions about the controlled Markov chain induced by Tθ:174

Assumption 3.4. (Geometric Mixing) Let {Zk}k≥0 denote a Markov Chain on the state space Z175

with transition kernel Tθ and stationary measure Πθ. There exist constants ρ ∈ [0, 1), M ≥ 0, such176

that for any k ≥ 0, z ∈ Z,177

δTV (Pθ(Zk ∈ ·|Z0 = z),Πθ) ≤Mρk.

Assumption 3.5. (Smoothness of Markov Kernel) There exists a constant L2 ≥ 0 such that178

δTV (Tθ1
(z, ·),Tθ2

(z, ·)) ≤ L2 ∥θ1 − θ2∥ , ∀θ1,θ2 ∈ Rd, z ∈ Z.

Assumption 3.4 is a standard condition on the mixing time of the Markov chain induced by Tθ;179

Assumption 3.5 imposes a smoothness condition on the Markov transition kernel Tθ with respect to180

θ. For instance, the geometric dynamically environment in Ray et al. (2022) constitutes a special181

case which satisfies the above conditions.182

Unlike (Ray et al., 2022; Izzo et al., 2021; Miller et al., 2021), we do not impose any additional183

assumption (such as mixture dominance) other than Assumption 3.3 on Πθ . As a result, (1) remains184

an ‘unstructured’ non-convex optimization problem. Our main theoretical result on the convergence185

of the DFO (λ) algorithm towards a near-stationary solution of (1) is summarized as:186

Theorem 3.1. Suppose Assumptions 3.1-3.5 hold, step size sequence {ηk}k≥1, and query radius
sequence {δk}k≥1 satisfy the following conditions,

ηk = d−2/3 · (1 + k)−2/3, δk = d1/3 · (1 + k)−1/6,

τk = max{1, 2

log 1/max{ρ, λ} log(1 + k)} ∀k ≥ 0.
(8)

Then, there exists constants t0, c5, c6, c7, such that for any T ≥ t0, the iterates {θk}k≥0 generated
by DFO (λ) satisfy the following inequality,

min
0≤k≤T

E ∥∇L(θk)∥2 ≤ 12max

{
c5(1− λ), c6,

c7
1− λ

}
d2/3

(T + 1)1/3
. (9)

187

We have defined the following quantities and constants:188

c5 = 2G, c6 =
max{L2, G2(1− β)}

1− 2β
, c7 =

LG2

2β − α+ 1
, (10)

with α = 2
3 , β = 1

6 . Observe the following corollary on the iteration complexity of DFO (λ) algorithm:189

Corollary 3.1. (ϵ-stationarity) Suppose that the Assumptions of Theorem 3.1 hold. Fix any ϵ > 0,190

the condition min0≤k≤T−1 E ∥∇L(θk)∥2 ≤ ϵ holds whenever191

T ≥
(
12max

{
c5(1− λ), c6,

c7
1−λ

})3
d2

ϵ3 . (11)

In the corollary above, the lower bound on T is expressed in terms of the number of epochs that192

Algorithm 1 needs to achieve the target accuracy. Consequently, the total number of samples required193

(i.e., the number of inner iterations taken in Line 6–9 of Algorithm 1 across all epochs) is:194

Sϵ =
∑T

k=1 τk = O
(

d2

ϵ3 log(1/ϵ)
)
. (12)
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We remark that due to the decision-dependent properties of the samples, the DFO (λ) algorithm195

exhibits a worse sampling complexity (12) than prior works in stochastic DFO algorithm, e.g.,196

(Ghadimi & Lan, 2013) which shows a rate of O(d/ϵ2) on non-convex smooth objective functions.197

In particular, the adopted one-point gradient estimator in (4) admits a variance that can only be198

controlled by a time varying δ; see the discussions in §4.1.199

Achieving the desired convergence rate requires setting ηk = Θ(k−2/3), δk = Θ(k−1/6), i.e.,200

yielding a two-timescale step sizes design with ηk/δk → 0. Notice that the influence of forgetting201

factor λ are reflected in the constant factor of (9). Particularly, if c5 > c7 and c5 ≥ c6, the optimal202

choice is λ = 1−
√

c7
c5

, otherwise the optimal choice is λ ∈ [0, 1− c7/c6]. Informally, this indicates203

that when the performative risk is smoother (i.e. its gradient has a small Lipschitz constant), a large λ204

can speed up the convergence of the algorithm; otherwise a smaller λ is preferable.205

4 Proof Outline of Main Results206

This section outlines the key steps in proving Theorem 3.1. Notice that analyzing the DFO (λ)207

algorithm is challenging due to the two-timescales step sizes and Markov chain samples with time208

varying kernel. Our analysis departs significantly from prior works such as (Ray et al., 2022; Izzo209

et al., 2021; Brown et al., 2022; Li & Wai, 2022) to handle the challenges above.210

Let Fk = σ(θ0, Z
(m)
s , us, 0 ≤ s ≤ k, 0 ≤ m ≤ τk) be the filtration. Our first step is to exploit the211

smoothness of L(θ) to bound the squared norms of gradient. Observe that:212

Lemma 4.1. (Decomposition) Under Assumption 3.1, it holds that213

t∑
k=0

E ∥∇L(θk)∥2 ≤ I1(t) + I2(t) + I3(t) + I4(t), (13)

for any t ≥ 1, where214

I1(t) :=
∑t

k=1
1−λ
ηk

(E [L(θk)]− E [L(θk+1)])

I2(t) := −
∑t

k=1 E
〈
∇L(θk)

∣∣(1− λ)
∑τk

m=1 λ
τk−m ·

(
g
(m)
k − EZ∼Πθ̌k

[gδk(θk;uk, Z)]
)〉

I3(t) := −
∑t

k=1 E
〈
∇L(θk)

∣∣(1− λ) (
∑τk

m=1 λ
τk−m∇Lδk(θk))−∇L(θk)

〉
I4(t) :=

L(1−λ)
2

∑t
k=1 ηkE

∥∥∥∑τk
m=1 λ

τk−mg
(m)
k

∥∥∥2
The lemma is achieved through the standard descent lemma implied by Assumption 3.1 and decom-215

posing the upper bound on ||∇L(θk)||2 into respectful terms; see the proof in Appendix A. Among216

the terms on the right hand side of (13), we note that I1(t), I3(t) and I4(t) arises directly from217

Assumption 3.1, while I2(t) comes from bounding the noise terms due to Markovian data.218

We bound the four components in Lemma 4.1 as follows. For simplicity, we denote A(t) :=219
1

1+t

∑t
k=0 E ∥∇L(θk)∥

2. Among the four terms, we highlight that the main challenge lies on220

obtaining a tight bound for I2(t). Observe that221

I2(t) ≤ (1− λ)E

[
t∑

k=0

∥∇L(θk)∥ ·
∥∥∥∥ τk∑

m=1

λτk−m∆k,m

∥∥∥∥
]

(14)

where ∆k,m
def
=EFk−1[g

(m)
k −EZ∼Πθ̌k

gk(θk;uk, Z)]. There are two sources of bias in ∆k,m: one is222

the noise induced by drifting of decision variable in every epoch, the other is the bias that depends223

on the mixing time of Markov kernel. To control these biases, we are inspired by the proof of (Wu224

et al., 2020, Theorem 4.7) to introduce a reference Markov chain Z̃
(ℓ)
k , ℓ = 0, ..., τk, whose decision225

variables remains fixed for a period of length τk and is initialized with Z̃
(0)
k = Z

(0)
k :226

Z̃
(0)
k

θ̌k−→ Z̃
(1)
k

θ̌k−→ Z̃
(2)
k

θ̌k−→ Z̃
(3)
k · · ·

θ̌k−→ Z̃
(τk)
k (15)

and we recall that the actual chain in the algorithm evolves as227

Z
(0)
k

θ̌
(0)
k+1−−−→ Z

(1)
k

θ̌
(1)
k+1−−−→ Z

(2)
k · · ·

θ̌
(τk−1)

k+1−−−−−→ Z
(τk)
k . (16)
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With the help of the reference chain, we decompose ∆k,m into228

∆k,m = EFk−1

[
d

δk

(
E[ℓ(θ̌(m)

k ;Z
(m)
k )|θ̌(m)

k , Z
(0)
k ]− E

Z̃
(m)
k

[ℓ(θ̌
(m)
k ; Z̃

(m)
k )|θ̌(m)

k , Z̃
(0)
k ]
)
uk

]
+ EFk−1

[
d

δk

(
E
Z̃

(m)
k

[ℓ(θ̌
(m)
k ; Z̃

(m)
k )|θ̌(m)

k , Z̃
(0)
k ]− EZ∼Πθ̌k

[ℓ(θ̌
(m)
k ;Z)|θ̌(m)

k ]
)
uk

]
+ EFk−1

d

δk
EZ∼Πθ̌k

[
ℓ(θ̌

(m)
k ;Z)− ℓ(θ̌k;Z)|θ̌(m)

k , θ̌k

]
uk := A1 +A2 +A3

We remark that A1 reflects the drift of (16) from initial sample Z
(0)
k driven by varying θ̌

(m)
k , A2229

captures the statistical discrepancy between above two Markov chains (16) and (15) at same step m,230

and A3 captures the drifting gap between θ̌k and θ̌
(m)
k . Applying Assumption 3.3, A1 and A2 can be231

upper bounded with the smoothness and geometric mixing property of Markov kernel. In addition,232

A3 can be upper bounded using Lipschitz condition on (stationary) distribution map Πθ . Finally, the233

forgetting factor λ helps to control ∥θ̌(·)
k − θ̌k∥ to be at the same order of a single update. Therefore,234

∥∆k,m∥ can be controlled by an upper bound relying on λ, ρ, L.235

The following lemma summarizes the above results as well as the bounds on the other terms:236

Lemma 4.2. Under Assumption 3.2, 3.3, 3.4 and 3.5, with ηt+1 = η0(1+ t)−α, δt+1 = δ0(1+ t)−β237

and α ∈ (0, 1), β ∈ (0, 1
2 ). Suppose that 0 < 2α− 4β < 1 and238

τk ≥
1

log 1/max{ρ, λ}

(
log(1 + k) + max{log δ0

d
, 0}
)
.

Then, it holds that239

I2(t) ≤
c2d

5/2

(1− λ)2
A(t) 1

2 (1 + t)1−(α−2β), ∀ t ≥ max{t1, t2} (17)

I1(t) ≤ c1(1− λ)(1 + t)α, I3(t) ≤ c3A(t)
1
2 (1 + t)1−β , I4(t) ≤

c4d
2

1− λ
(1 + t)1−(α−2β), (18)

where t1, t2 are defined in (25), (26), and c1, c2, c3, c4 are constants defined as follows:240

c1 := 2G/η0, c2 :=
η0
δ20

6 · (L1G
2 + L2G

2 +
√
LG3/2)√

1− 2α+ 4β
,

c3 :=
2√

1− 2β
max{Lδ0, G

√
1− β}, c4 :=

η0
δ20
· LG2

2β − α+ 1
.

See Appendix B for the proof. We comment that the bound for I4(t) cannot be improved. As a241

concrete example, consider the constant function ℓ(θ; z) = c ̸= 0 for all z ∈ Z, it can be shown that242

∥g(m)
k ∥2 = c2 and consequently I4(t) = Ω(ηk/δ

2
k) = Ω(t1−(α−2β)), which matches (18). Finally,243

plugging Lemma 4.2 into Lemma 4.1 gives:244

A(t) ≤ c1(1− λ)

(1 + t)1−α
+

c2d
5/2

(1− λ)2
A(t) 1

2

(1 + t)α−2β
+ c3

A(t) 1
2

(1 + t)β
+ c4

d2

1− λ

1

(1 + t)α−2β
. (19)

Since A(t) ≥ 0, the above is a quadratic inequality that implies the following bound:245

Lemma 4.3. Under Assumption 3.1–3.5, with the step sizes ηt+1 = η0(1 + t)−α, δt+1 = δ0(1 +246

t)−β , τk ≥ 1
log 1/max{ρ,λ}

(
log(1 + k) + max{log δ0

d , 0}
)
, η0 = d−2/3, δ0 = d1/3, α ∈ (0, 1),247

β ∈ (0, 1
2 ). If 2α− 4β < 1, then there exists a constant t0 such that the iterates {θk}k≥0 satisfies248

1

1 + T

T∑
k=0

E ∥∇L(θk)∥2 ≤ 12max{c5(1− λ), c6,
c7

1− λ
}d2/3T−min{2β,1−α,α−2β}, ∀ T ≥ t0.

Optimizing the step size exponents α, β in the above concludes the proof of Theorem 3.1.249
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4.1 Discussions250

We conclude by discussing two alternative zero-th order gradient estimators to (4), and argue that251

they do not improve over the sample complexity in the proposed DFO (λ) algorithm. We study:252

g2pt−I :=
d
δ [ℓ (θ + δu;Z)− ℓ(θ;Z)]u, g2pt−II :=

d
δ [ℓ (θ + δu;Z1)− ℓ(θ;Z2)]u, (20)

where u ∼ Unif(Sd−1). For ease of illustration, we assume that the samples Z,Z1, Z2 are drawn253

directly from the stationary distributions Z ∼ Πθ+δu, Z1 ∼ Πθ+δu, Z2 ∼ Πθ.254

We recall from §2 that the estimator g2pt−I is a finite difference approximation of the directional255

derivative of objective function along the randomized direction u1, as proposed in Nesterov &256

Spokoiny (2017); Ghadimi & Lan (2013). For non-convex stochastic optimization with decision257

independent sample distribution, i.e., Πθ ≡ Π̄ for all θ, the DFO algorithm based on g2pt−I is258

known to admit an optimal sample complexity of O(1/ϵ2) (Jamieson et al., 2012). Note that259

Eu∼Unif(Sd−1),Z∼Π̄[ℓ(θ;Z)u] = 0. However, in the case of decision-dependent sample distribution260

as in (1), g2pt−I would become a biased estimator since the sample Z is drawn from Πθ+δu which261

depends on u. The DFO algorithm based on g2pt−I may not converge to a stationary solution of (1).262

A remedy to handle the above issues is to consider the estimator g2pt−II which utilizes two samples263

Z1, Z2, each independently drawn at a different decision variable, to form the gradient estimate. In264

fact, it can be shown that E[g2pt−II] = ∇Lδ(θ) yields an unbiased gradient estimator. However, due265

to the decoupled random samples Z1, Z2, we have266

E ∥g2pt−II∥2 = E
[
(ℓ (θ + δu;Z1)− ℓ(θ;Z1) + ℓ(θ;Z1)− ℓ(θ;Z2))

2
] d2
δ2

(a)

≥ E
[
3

4
(ℓ(θ;Z1)− ℓ(θ;Z2))

2 − 3 (ℓ (θ + δu;Z1)− ℓ(θ;Z1))
2

]
d2

δ2

=
3

2
Var[ℓ(θ;Z)]

d2

δ2
− 3E

[
(ℓ (θ + δu;Z1)− ℓ(θ;Z1))

2
] d2
δ2

(b)

≥ 3

2

σ2d2

δ2
− 3µ2d2 = Ω(1/δ2).

where in (a) we use the fact that (x + y)2 ≥ 3
4x

2 − 3y2, in (b) we assume Var[ℓ(θ;Z)] :=267

E (ℓ(θ;Z)− L(θ))2 ≥ σ2 > 0 and ℓ(θ; z) is µ-Lipschitz in θ. As such, this two-point gradi-268

ent estimator does not reduce the variance when compared with the estimator in (4). Note that a269

two-sample estimator also incurs additional sampling overhead in the scenario of Markovian samples.270

5 Numerical Experiments271

We examine the efficacy of the DFO (λ) algorithm on a few toy examples by comparing DFO (λ) with272

a simple stochastic gradient descent scheme with greedy deployment. Unless otherwise specified, we273

use the step size choices in (8) for DFO (λ). All experiments are conducted on a server with an Intel274

Xeon 6318 CPU using Python 3.7. To measure performance, we record the gradient norm ∥∇L(θ)∥275

and estimate its expected value using at least 8 trials.276

1-Dimensional Case: Quadratic Loss. The first example considers a scalar quadratic loss function277

ℓ : R × R → R defined by ℓ(θ; z) = 1
12zθ(3θ

2 − 8θ − 48). To simulate the controlled Markov278

chain scenario, the samples are generated dynamically according to an auto-regressive (AR) process279

Zt+1 = (1− γ)Zt + γZ̄t+1 with Z̄t+1 ∼ N (θ, (2−γ)
γ σ2) with parameter γ ∈ (0, 1). Note that the280

stationary distribution of the AR process is Πθ = N (θ, σ2). As such, the performative risk function281

in this case is L(θ) = EZ∼Πθ
[ℓ(θ;Z)] = θ2

12 (θ
2 − 8θ − 48), which is quartic in θ. Note that L(θ)282

is not convex in θ and the set of stationary solution is {θ : ∇L(θ) = 0} = {4, 0,−2}, among which283

the optimal solution is θPO = argminθ L(θ) = 4.284

In our experiments below, we initialize all the algorithms are initialized by θ0 = 6. In Figure 1 (left),285

we compare the norms of the gradient for performative risk with pure DFO (no burn-in), the DFO(λ)286

algorithm, and stochastic gradient descent with greedy deployment scheme (SGD-GD) against the287

number of samples observed by the algorithms. We first observe from Figure 1 (left) that pure288

DFO and SGD-GD methods do not converge to a stationary point to L(θ) even after more samples289

1Note that in Nesterov & Spokoiny (2017); Ghadimi & Lan (2013), the random vector u is drawn from a
Gaussian distribution.
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Figure 1: (left) One Dimension Quadratic Minimization problem with samples generated by AR
distribution model where regressive parameter γ = 0.5. (middle) Markovian Pricing Problem with
d = 5 dimension. (right) Linear Regression problem based on AR distribution model (γ = 0.5).

are observed. On the other hand, DFO (λ) converges to a stationary point of L(θ) at the rate of290

∥∇L(θ)∥2 = O(1/S0.36), matching Theorem 3.1 that predicts a rate of O(1/S1/3), where S is the291

total number of samples observed.292

Besides, we observe that with large λ = 0.75, DFO (λ) converges at a faster rate at the beginning (i.e.,293

transient phase), but the convergence rate slows down at the steady phase (e.g., when no. of samples294

observed is greater than 106) compared to running the same algorithm with smaller λ.295

Higher Dimension Case: Markovian Pricing. The second example examines a multi-dimensional296

(d = 5) pricing problem similar to (Izzo et al., 2021, Sec. 5.2). The decision variable θ ∈ R5 denotes297

the prices of d = 5 goods and κ is a drifting parameter for the prices. Our goal is to maximize the298

average revenue EZ∼Πθ
[ℓ(θ;Z)] with ℓ(θ; z) = −⟨θ | z⟩, where Πθ ≡ N (µ0 − κθ, σ2I) is the299

unique stationary distribution of the Markov process (i.e., an AR process)300

Zt+1 = (1− γ)Zt + γZ̄t+1 with Z̄t+1 ∼ N (µ0 − κθ, 2−γ
γ σ2I).

Note that in this case, the performative optimal solution is θPO = argminθ L(θ) = µ0/(2κ).301

We set γ = 0.5, σ = 5, drifting parameter κ = 0.5, initial mean of non-shifted distribution302

µ0 = [−2, 2,−2, 2,−2]⊤. All the algorithms are initialized by θ0 = [2,−2, 2,−2, 2]⊤. We simulate303

the convergence behavior for different algorithms in Figure 1 (middle). Observe that the differences304

between the DFO (λ) algorithms with different λ becomes less significant than Figure 1 (left).305

Markovian Performative Regression. The last example considers the linear regression problem306

in (Nagaraj et al., 2020) which is a prototype problem for studying stochastic optimization with307

Markovian data (e.g., reinforcement learning). Unlike the previous examples, this problem involves a308

pair of correlated r.v.s that follows a decision-dependent joint distribution. We adopt a setting similar309

to the regression example in (Izzo et al., 2021), where (X,Y ) ∼ Πθ with X ∼ N (0, σ2
1I), Y |X ∼310

N
(
⟨β(θ) |X⟩ , σ2

2

)
, β(θ) = a0 + a1θ. The loss function is ℓ(θ;x, y) = (⟨x |θ⟩ − y)2 + µ

2 ∥θ∥
2.311

In this case, the performative risk is:312

L(θ) = EΠθ
[ℓ(θ;X,Y )] = (σ2

1a
2
1− 2σ2

1a1+σ2
1 +

µ
2 ) ∥θ∥

2− 2σ2
1(1−a1)θ

⊤a0+σ2
1 ∥a0∥2+σ2

2 ,

For simplicity, we assume σ2
1(1 − a1) = σ2

1a
2
1 − 2σ2

1a1 + σ2
1 + µ/2, from which we can deduce313

θPO = a0. In this experiment, we consider Markovian samples (X̃t, Ỹt)
T
t=1 drawn from an AR314

process:315

(X̃t, Ỹt) = (1− γ)(X̃t−1, Ỹt−1) + γ(Xt, Yt),

Xt ∼ N (0, 2−γ
γ σ2

1I ), Yt|Xt ∼ N (⟨Xt |β(θt−1)⟩ , 2−γ
γ σ2

2),

for any t ≥ 1. We set d = 5, a0 = [−1, 1,−1, 1,−1]⊤, a1 = 0.5, σ2
1 = σ2

2 = 1, regu-316

larization parameter µ = 0.5, mixing parameter γ = 0.1. The algorithms are initialized with317

θ0 = [1,−1, 1,−1, 1]⊤. Figure 1 (right) shows the result of the simulation. Similar to the previous318

examples, we observe that pure DFO and SGD fail to find a stationary solution to L(θ). Meanwhile,319

DFO (λ) converges to a stationary solution after a reasonable number of samples are observed.320

Conclusions. We have described a derivative-free optimization approach for finding a stationary321

point of the performative risk function. In particular, we consider a non-i.i.d. data setting with322

samples generated from a controlled Markov chain and propose a two-timescale step sizes approach323

in constructing the gradient estimator. The proposed DFO (λ) algorithm is shown to converge to a324

stationary point of the performative risk function at the rate of O(1/T 1/3).325
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