Manual2Skill: Learning to Read Manuals and Acquire Robotic Skills for
Furniture Assembly Using Vision-Language Models
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Figure 1. Overview of Manual2Skill Framework. We propose Manual2Skill, which learns manipulation skills from manuals, enabling
robots to understand and execute complex manipulation tasks in a manner akin to humans. The green region showcases the input of our
pipeline: the pictures of the assembly manual and real parts. The blue region depicts our pipeline: 1) a Vision-Language Model (VLM)
generates a Hierarchical Assembly Graph, 2) a per-step pose estimation module predicts the 6D-poses of components, and 3) a motion
planning and execution module controls the robot arms to assemble the furniture autonomously.

Abstract

Humans excel at interpreting abstract instruction manuals
to perform complex manipulation tasks, which is a capabil-
ity that remains challenging for robots. We present Man-
ual2Skill, a framework that enables robots to execute com-
plex assembly tasks using high-level manual instructions.
Our approach leverages a Vision-Language Model (VLM)
to extract structured information from instructional images
and constructs hierarchical assembly graphs capturing fur-
niture parts and their relationships. For execution, a pose
estimation model predicts 6D poses of parts, and a mo-
tion planner generates executable actions. We demonstrate
the effectiveness of Manual2Skill by successfully assem-
bling several real-world IKEA furniture items, highlighting
its ability to manage long-horizon manipulation tasks with
both efficiency and precision. This work advances robot
learning from manuals and brings robots closer to human-
level understanding and execution. Project Website

1. Introduction

Humans can learn manipulation skills from instructional
images or texts, such as assembling IKEA furniture by fol-
lowing manuals. In contrast, robots typically rely on data-
intensive approaches like imitation or reinforcement learn-
ing [43, 59]. Bridging this gap remains challenging, as man-
uals use abstract diagrams designed for human understand-
ing [32, 48, 49].

Manuals encode structural information, breaking down
high-level goals into ordered subgoals. This is essential for
understanding task flow, dependencies, and spatial relation-
ships [19, 33, 38]. Prior works have leveraged sketches or
trajectories [15, 42], but are limited to simple tasks.

We propose Manual2Skill, a novel framework that en-
ables robots to learn manipulation skills directly from visual
manuals. As shown in Figure 1, our system parses manu-
als into hierarchical graphs using a vision-language model
(VLM), estimates 6D assembly poses, and generates exe-
cutable motion plans for furniture assembly.

In summary, our main contributions are as follows:


https://owensun2004.github.io/Furniture-Assembly-Web/

* We propose Manual2Skill, a generalizable framework for
robotic complex skill learning from manuals, applied to
IKEA furniture assembly.

* We introduce a hierarchical graph generation pipeline that
utilizes a VLM to extract structured information for as-
sembly tasks. Our pipeline facilitates real-world assem-
bly and extends to other assembly applications.

* We define a novel assembly pose estimation task within
the learning-from-manual framework. We predict the 6D
poses of all involved parts at each assembly step to meet
real-world assembly requirements.

* We perform extensive experiments to validate the effec-
tiveness of our proposed system and modules.

* We conduct extensive experiments validating Man-
ual2Skill on four real IKEA furniture items.

2. Problem Formulation

Given a complete set of 3D parts and its assembly man-
ual, the goal is to generate a physically feasible sequence of
robotic actions for autonomous furniture assembly. Manu-
als typically use schematic diagrams and symbols to con-
vey step-by-step instructions in a universally understand-
able format. The manual is defined as a set of IV images.
T = {I1,I5,---,In}, where each image I; illustrates a
specific assembly step (e.g., merging parts).

The furniture consists of M parts P =
{P1, Py, -+, Py}, where each part is initially dis-
connected. A subassembly is any proper subset of P
containing connected parts (for example, {P;, P2}). A
component refers to either parts or subassemblies.

Using the manual and 3D parts, the system generates an
assembly plan: each step aligns with a manual image and
specifies the involved components, their 6D poses, and re-
quired assembly actions or trajectories.

3. Technical Approach

We give an outline of our approach, for a more detailed ver-
sion, please refer to Appendix .2. We automate furniture
assembly using a Vision-Language Model (VLM) to inter-
pret IKEA-style manuals and guide robot actions. Given
a manual and a pre-assembly scene, the VLM generates a
hierarchical assembly graph showing part dependencies. A
pose estimation model then predicts 6D poses for each part
using manual images and point clouds. Finally, the system
plans and executes motions based on predicted poses and
the graph structure (Fig. 2).

3.1. VLM Guided Hierarchical Assembly Graph
Generation

The VLM takes multi-image inputs (manual pages and pre-
assembly scene) and outputs a hierarchical graph. Leaf
nodes represent parts, and parent nodes are subassemblies,

enabling structured, step-wise assembly. We give the for-
mal definition of the hierarchical graph in Appendix .13. To
build the graph, we perform two stages:

 Stage I: Part Association. The VLM labels physical parts
in the scene using sketches from the manual. Outputs
are structured as triplets {name, label, role}, aiding in-
terpretability and identifying equivalent parts

 Stage II: Step-wise Part Identification. Segmented man-
ual images help the VLM identify parts/subassemblies in
each step. Outputs are lists of (step, parts), later merged
into the hierarchical graph.

3.2. Per-step Assembly Pose Estimation

Given an assembly order, we train a cross-modal trans-
former to predict 6D poses T € SE(3) for each component
represented in the camera frame of ; using manual images
and part point clouds. The model encodes images and point
clouds with their respective encoders, fuses features via a
graph transformer [54], and regresses poses using geodesic
and Chamfer distances as loss function. The loss function
jointly considers pose prediction accuracy and point cloud
alignment, following [30, 60]. To support the training for
the pose estimation task, we create a dataset, detailed in Ap-
pendix .4.

Note that the number of components at each step is not
fixed, depending on the subassembly division of the fur-
niture. Canonical alignment via PCA ensures orientation
consistency for each component. For equivalent parts, loss
permutations resolve pose ambiguities (see Appendix .5)

3.3. Robot Assembly Action Generation

* Frame Alignment: At each assembly step, the previous
stage predicts each component’s pose in the camera frame
of the manual image. However, real-world robotic sys-
tems operate in their world frame, requiring a 6D trans-
formation between these coordinates.

* Grasping & Motion Planning: After scanning each real-
world part, we obtain the corresponding 3D meshes for
each part. We employ FoundationPose [52], and the
Segment Anything Model (SAM) [24] to obtain the ini-
tial poses of all parts in the scene. Geometry-specific
strategies handle sticks (centroid grasp) and flat parts
(edge grasp). We provide further details on these grasp-
ing methods in Appendix .10. RRT-Connect [26] plans
collision-free trajectories using scene point clouds.

* Assembly Insertion Policy: The robot arm positions
a component near its target pose. Assembly insertions
require force sensing and closed-loop control, but auto-
mated insertion is out of scope for this work. Currently,
human experts handle insertion.
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Figure 2. Framework Overview. (1) GPT-4o0 [1] is queried with manual pages to generate a sequential assembly plan, represented
as a hierarchical assembly graph. (2) The furniture components’ point clouds and corresponding manual images are processed by a
pose estimation module to predict target poses for each component. (3) The system sequentially executes the assembly by planning and
performing robotic actions based on the hierarchical assembly graph and estimated poses.

4. Experiments

4.1. Hierarchical Assembly Graph Generation

Using the IKEA-Manuals dataset [49], our VLM-based
method achieves 62% success rate in generating correct
assembly graphs (vs. 22% for SingleStep baseline as seen
in Table 1). Figure 5 shows qualitative improvements over
geometric clustering approaches.

4.2. Per-step Assembly Pose Estimation

Our cross-modal model reduces pose error by 60% com-
pared to prior work [29], achieving 0.20m Chamfer distance
(Table 2). The graph transformer architecture improves part
relationship modeling, with 86.8% part alignment accuracy.
We also provide qualitative results for each furniture cate-
gory in Figure 6.

4.3. Overall Performance Evaluation

In PyBullet simulations, our pipeline achieves 58% success
rate across 50 furniture items (vs. 30% for baseline). Fail-
ures primarily stem from VLM graph errors propagating to
pose estimation. See Table 3 for more details.

4.4. Real-world Assembly Experiments

We successfully assemble 4 IKEA items with 60-85%
completion rates (Table 4). Figure 3 shows the manual im-
ages, per-step pose estimation results, and real-world as-
sembly process of the 4 items: Flisat (Wooden Stool), Vari-
era (Iron Shelf), Sundvik (Chair), and Knagglig (Box). Fail-
ures occur due to collision-avoidance challenges in clut-
tered scenes. For detailed implementation of our real-world
experiments, please check Appendix .10.
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Figure 3. Qualitative Evaluation on real IKEA furniture items. This figure illustrates the assembly process of various IKEA furniture
items, including FLISAT, VARIERA, SUNDVIK, and KNAGGLIG, with our approach. For each item, we display the manual images,
per-step 3D parts pose estimation results, and real-world assembly outcomes.
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Figure 4. Pipeline Extension Beyond Furniture Assembly.
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4.5. Generalization to Other Assembly Tasks

Zero-shot tests on toy cars, aircraft models, and robotic
arms in Figure 4 show 100% graph generation accuracy,
demonstrating broader applicability. Manual2Skill adapts
to varied manual styles without retraining.

5. Conclusion

We present Manual2Skill, a novel framework that uses
VLMs to learn robotic manipulation skills from human
manuals. We validate our approach on IKEA furniture as-
sembly and show its applicability to broader tasks. This
work advances robots’ ability to acquire complex skills
from human instructions, opening new avenues for learning
diverse manipulations.

6. Limitation

This paper investigates acquiring complex manipulation
skills from manuals. However, limitations remain: it
primarily identifies assembly objects but misses details
like grasp points and connector locations (e.g., screws).
Incorporating a vision-language model to extract such infor-
mation could improve robotic insertion. Additionally, the
method does not address automated fastening actions reliant
on force and tactile sensing, which we leave for future work.
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Manual2Skill: Learning to Read Manuals and Acquire Robotic Skills for
Furniture Assembly Using Vision-Language Models

Supplementary Material

.1. Related Works

.1.1. Furniture Assembly

Part assembly is a long-standing challenge with extensive
research exploring how to construct a complete shape from
individual components or parts [6, 13, 20, 27, 29, 36, 45,
46, 53]. Broadly, we can categorize part assembly into ge-
ometric assembly and semantic assembly. Geometric as-
sembly relies solely on geometric cues, such as surface
shapes or edge features, to determine how parts mate to-
gether [6, 10, 37, 53]. In contrast, semantic assembly pri-
marily leverages high-level semantic information about the
parts to guide assembly process [13, 20, 27, 29, 45].

Furniture assembly is a representative semantic assembly
task, where each part has a predefined semantic role (e.g., a
chair leg or a tabletop), and the assembly process follows in-
tuitive, common-sense relationships (e.g., a chair leg must
be attached to the chair seat). Previous studies on furni-
ture assembly have tackled different aspects of the prob-
lem, including the motion planning [41], multi-robot col-
laboration [25], and assembly pose estimation [29, 30, 58].
Researchers have developed several datasets and simulation
environments to facilitate research in this domain. For ex-
ample, Liu et al. [32], Wang et al. [49] introduced IKEA fur-
niture assembly datasets containing 3D models of furniture
and structured assembly procedures derived from instruc-
tion manuals. Additionally, Lee et al. [27] and Yu et al. [58]
developed simulation environments for IKEA furniture as-
sembly, while Heo et al. [ 16] provides a reproducible bench-
mark for real-world furniture assembly. However, existing
works typically focus on specific subproblems rather than
addressing the entire assembly pipeline. In this work, we
aim to develop a comprehensive framework that learns the
sequential process of furniture assembly from manuals and
deploys it in real-world experiments.

.1.2. VLM Guided Robot Learning

Vision Language Models (VLMs) [57] have been widely
used in robotics to understand the environment [17] and
interact with humans [39]. Recent advancements high-
light VLMs’ potential to enhance robot learning by inte-
grating vision and language information, enabling robots
to perform complex tasks with greater adaptability and ef-
ficiency [18]. A potential direction is the development
of the Vision Language Action Model (VLA Model) that
can generate actions based on the vision and language in-
puts [2, 3, 23, 44]. However, training such models requires
vast amounts of data, and they struggle with long-horizon or

complex manipulation tasks. Another direction is to lever-
age VLMs to guide robot learning by providing high-level
instructions and perceptual understanding. VLLMs can assist
with task descriptions [17, 18], environment comprehen-
sion [19], task planning [47, 56, 62], and even direct robot
control [28]. Additionally, Goldberg et al. [14] demon-
strates how VLMs can assist in designing robot assembly
tasks. Building on these insights, we explore how VLMs
can interpret abstract manuals and extract structured infor-
mation to guide robotic skill learning for long-horizon ma-
nipulation tasks.

.1.3. Learning from Demonstrations

Learning from demonstration (LfD) has achieved promis-
ing results in acquiring robot manipulation skills [7, 12, 64].
For a broader review of LfD in robotic assembly, we refer
to Zhu and Hu [65]. The key idea is to learn a policy that
imitates the expert’s behavior. However, previous learn-
ing methods often require fine-grained demonstrations, like
robot trajectories [7] or videos [21, 22, 40]. Collecting these
demonstrations is often labor-intensive and may not always
be feasible. Some works propose to learn from coarse-
grained demonstrations, like the hand-drawn sketches of de-
sired scenes [42] or rough trajectory sketches [15]. These
approaches reduce dependence on expert demonstrations
and improve the practicality of LfD. However, they are
mostly limited to tabletop manipulation tasks and do not
generalize well to more complex, long-horizon assembly
problems. In this work, we aim to extend LfD beyond these
constraints by tackling a more challenging assembly task
using abstract instruction manuals.

.2. Detailed Technical Approach

Our approach automates furniture assembly by leveraging
the VLM to interpret IKEA-style manuals and guide robotic
execution. Given a visual manual and physical parts in a
pre-assembly scene, a VLM generates a hierarchical assem-
bly graph, defining which parts and subassemblies are in-
volved in each step. Next, a per-step pose estimation model
predicts 6D poses for each component using a manual im-
age and the point clouds of involved components. Finally,
for assembly execution, the estimated poses are transformed
into the robot’s world frame, and a motion planner generates
a collision-free trajectory for part mating.

This paper shows an overview of our framework in
Fig. 2. We describe the VLM-guided assembly hierarchi-
cal graph generation in Appendix .2.1, followed by per-step
assembly pose estimation in Appendix .2.5 and assembly



action generation based on component relationships in Ap-
pendix .2.8.

.2.1. VLM Guided Hierarchical Assembly Graph Gen-
eration

This section demonstrates how VLMs can interpret IKEA-
styled manuals to generate high-level assembly plans.
Given a manual and a real-world image of furniture parts
(pre-assembly scene image), a VLM predicts a hierarchi-
cal assembly graph. We show one example in Fig. 2. In
this graph, leaf nodes represent atomic parts, while non-leaf
nodes denote subassemblies. We structure the graph in mul-
tiple layers, where each layer contains nodes representing
parts or subassemblies involved in a single assembly step
(corresponding to one manual image). The directed edges
from the children to a parent node indicate that the system
assembles the parent node from all its children nodes. Ad-
ditionally, we add edges between equivalent parts, denoting
these parts are identical(e.g. four legs of a chair). Repre-
senting the assembly process as a hierarchical graph can de-
composes the assembly into sequential steps while specify-
ing necessary parts and subassemblies. We give the formal
definition of the hierarchical graph in Appendix .13. We
achieve this in two stages: Associating Manuals with Real
Parts and Identifying Parts needed in Each Image.

.2.2. VLM Capabilities and General Prompt Structure

The task is inherently complex due to the diverse nature
of input images. Manuals are typically abstract sketches,
whereas pre-assembly scene images are high-resolution
real-world images. Such diversity requires advanced visual
recognition and spatial reasoning across varied image do-
mains, which are strengths of VLMs due to their training
on extensive, internet-scale datasets. We demonstrate the
effectiveness of VLMs for this task in Appendix .3.1 and
Appendix .7.
Every VLM prompt consists of two components:

* Image Set: This includes all manual pages and the real-
world pre-assembly scene image. Unlike traditional VLM
applications in robotics [18, 23], which process a single
image, our method requires multi-image reasoning.

* Text Instructions: These instructions provide a task-
specific context, guiding the model in interpreting the im-
age set. The instructions range from simple directives
to Chain-of-Thought reasoning [51]. All instructions in-
corporate in-context learning examples, specifying the re-
quired output format—be it JSON, Python code, or natu-
ral language. This structure is essential to our multi-stage
pipeline, ensuring well-structured, interpretable outputs
that seamlessly integrate into subsequent stages.

.2.3. Stage I: Associating Real Parts with Manuals

Given the manual’s cover sketch of the assembled furniture
and the pre-assembly scene image, the VLM aims to asso-

ciate physical parts with the manual. The VLM achieves
this by predicting the roles of each physical part through se-
mantically interpreting the manual’s illustrations. This pro-
cess involves analyzing spatial, contextual, and functional
cues in the manual illustrations to enable a comprehensive
understanding of each physical part. This design mimics
human assembly cognition—people first map abstract man-
ual images to physical parts before assembling. Our method
follows CoT [51] and Least-to-Most [63] prompting, reduc-
ing cognitive load and improving accuracy. We considered
pairwise matching of parts from manuals and scene images,
but we found it impractical because the manuals do not de-
pict each part independently.

To enhance part identification, we employ Set of Marks
[55] and GroundingDINO [31] to automatically label parts
on the pre-assembly scene image with numerical indices.
The labeled scene image and manual sketch form the Im-
age Set. Text instructions consist of a brief context ex-
planation for the association task of predicting the roles of
each physical part, accompanied by in-context examples of
the output structure:

{name, label, role}

For example, in Figure 2 In Stage I Output, we describe
the chair’s seat as name: seat frame, label: [2], role: for
people sitting on a chair, the seat offers essential support
and comfort and is positioned centrally within the chair’s
frame.. Here, [2] indicates that this triplet corresponds to
the physical part labeled with index 2 in the pre-assembly
scene image. This triplet format enhances interpretability
and ensures consistency by structuring all outputs into the
same data format. We use the Image Set and Text Instruc-
tions as the input prompt for the VLM (specifically GPT-40
[1]) and query it once to generate real assignments for all
physical parts. We then use these labels as leaf nodes in the
hierarchical assembly graph.

We can obtain equivalent parts through these triplets.
When two physical parts share the same geometric shapes,
their triplets only differ by label. For example, in Figure 2
Stage I Output, {name: side frame, label: [0], role:...} and
{name: side frame, label: [1], role:...}—these two parts
are considered equivalent. Understanding equivalent part
relationships is crucial for downstream modules, as demon-
strated by our ablation experiments(see Appendix .6).

.2.4. Stage 1I: Identify Involved Parts in Each Step

This stage focuses on identifying the particular parts and
subassemblies involved in each manual page. The VLM
achieves this by reasoning through the illustrated assembly
steps, using the triplets and the labeled pre-assembly scene
from the previous stage as supporting hints.

In practice, we observe that irrelevant elements in the
manual (e.g., nails, human figures) can distract the VLM.
Following [49], we manually crop the illustrated parts and
subassemblies in each manual step to focus the VLM’s at-



tention (Figure 2 Stage II Image Set), significantly improv-
ing performance (see Ablation Study for details). Automat-
ing Region-of-Interest (ROI) detection remains an open
problem beyond the scope of this work and is left for fu-
ture research.

The manual pages, combined with the labeled pre-
assembly scene from the previous stage, form the Image
Set. The Text Instructions use a Chain-of-Thought prompt
to guide the VLM in identifying parts and subassemblies
step by step and includes in-context examples that clarify
the structured output format: a pair consisting of (Step N,
Labeled Parts Involved). The bottom left output of Figure 2
provides an example of this format. Together, the Image
Set and Text Instructions compose the input prompt for
GPT-40, which generates pairs for all assembly steps using
a single query.

As shown in Fig. 2, the system outputs nested lists. We
then transform these lists, along with the equivalent parts,
into a hierarchical graph. Using this assembly graph, we
traverse all non-leaf nodes and explore various assembly or-
ders. Formally, a feasible assembly order is an ordered set
of non-leaf nodes, ensuring that a parent node appears only
after all its child nodes. A key advantage of the hierarchical
graph representation is its flexibility—since the assembly
sequence is not unique, it allows for parallel assembly or
strategic sequencing.

.2.5. Per-step Assembly Pose Estimation

Given an assembly order, we train a model to estimate the
poses of components (parts or subassemblies) at each step
of the assembly process. At each step, the model inputs the
manual image and the point clouds of the involved compo-
nents, predicting their target poses to ensure proper align-
ment. To support this task, we construct a dataset for se-
quential pose estimation. For a detailed description, see Ap-
pendix .4.

Given each component’s point cloud (obtained from real-
world scans or our dataset), we first center it by translating
its centroid to the origin. Next, we apply Principal Compo-
nent Analysis (PCA) to identify the dominant object axes,
which define a canonical coordinate frame. The most dom-
inant axes serve as the reference frame, ensuring a shape-
driven and consistent orientation that remains independent
of arbitrary coordinate systems.

The dataset we create provides manual images, point
clouds, and target poses for each component in the camera
frame of the corresponding manual image(following [29]).
For an assembly step depicted in the manual image Z;, the
inputs to our model include: (1) the manual image Z;; (2)
the point clouds of all involved components. The output is
the target pose 7' € SE(3) for each component represented
in the camera frame of ;.

.2.6. Model Architecture

Note that the number of components at each step is not
fixed, depending on the subassembly division of the fur-
niture. Our pose estimation model consists of four parts:
an image encoder &y, a point cloud encoder £p, a cross-
modality fusion module ¢, and a pose regressor R.

We first feed the manual image [ into the image encoder
to get an image feature map F';.

Fr=¢&(I) )]

Then, we feed the point clouds into the point cloud encoder
to get the point cloud feature for each component.

{F;} =&p({P}y) 2)

In order to fuse the multi-modality information from the
manual image and the point cloud features, we leverage a
GNN [54] to update the information for each component.
We consider the manual image feature and component-wise
point cloud features as nodes in a complete graph, employ-
ing a GNN to update the information for each node.

/I7 {F;} = gG(FU {FJ}) 3)

where F7, {F’; } are updated image and point cloud features.
Finally, we feed the updated point cloud features as in-
put into the pose regressor to get the target pose for each
component.
T; = R(F)) “)
.2.7. Loss Function

t jointly considers pose prediction accuracy and point cloud
alignment, following [30, 60]. The first term penalizes er-
rors in the predicted SE(3) transformation, while the sec-
ond measures the distance between predicted and ground
truth point clouds. To account for interchangeable compo-
nents, we compute the loss across all possible permutations
of equivalent parts and select the minimum loss as the final
training objective. We provide further details on the loss
formulation and training strategy in Appendix .5.

.2.8. Robot Assembly Action Generation
.2.9. Align Predicted Poses with the World Frame

At each assembly step, the previous stage predicts each
component’s pose in the camera frame of the manual im-
age. However, real-world robotic systems operate in their
world frame, requiring a 6D transformation between these
coordinates. Consider two components, A and B. The pre-
dicted target poses in the camera frame are denoted as T
and i 77, Meanwhile, our system can collect the current 6D
pose of part A in the world frame, represented as V' 7,. To
align I ’f; to VT, we compute the 6D transformation ma-
trix }/:/7', which maps the camera frame to the world frame.

V=TT, 5)



Using the same transformation }’:’T, we compute the assem-
bled target pose of part B (and all remaining components)
in the world frame.

W = VT, (6)

This transformation accurately maps predicted poses from
the manual image frame to the robot’s world frame, ensur-
ing precise assembly execution.

.2.10. Assembly Execution

Once our system determines the target poses of each com-
ponent in the world frame for the current assembly step, it
grasps each component and generates the required action
sequences for assembly.

Part Grasping After scanning each real-world part, we
obtain the corresponding 3D meshes for each part. We
employ FoundationPose [52], and the Segment Anything
Model (SAM) [24] to obtain the initial poses of all parts
in the scene.

Given the pose and shape of each part, we design heuris-
tic grasping methods tailored to the geometry of individ-
ual components. While general grasping algorithms such as
GraspNet [11] are viable, grasping is beyond the scope of
this work. Instead, we employ heuristic grasping strategies
specifically designed for structured components in assem-
bly tasks. For stick-shaped components, we grasp the cen-
troid of the object after identifying its longest axis for stabil-
ity. For flat and thin-shaped components, we use fixtures or
staging platforms to securely position the object, allowing
the robot to grasp along the thin boundary for improved sta-
bility. We provide further details on these grasping methods
in Appendix .10.

Part Assembly Trajectory Once the robot arm grasps a
component, it finds a feasible, collision-free path to prede-
fined robot poses (anchor poses). At these poses, the 6D
pose of the grasped component is recalculated in the world
frame, leveraging the FoundationPose [52] and the Seg-
ment Anything Model (SAM)[24]. The system then plans a
collision-free trajectory to the component’s target pose. We
use RRT-Connect [26] as our motion planning algorithm.
All collision objects in the scene are represented as point
clouds and fed into the planner. Once the planner finds a
collision-free path, the robot moves along the planned tra-
jectory.

Assembly Insertion Policy Once the robot arm moves a
component near its target pose, the assembly insertion pro-
cess begins. Assembly insertions are contact-rich tasks that
require multi-modal sensing (e.g., force sensors and closed-
loop control) to ensure precise alignment and secure con-

nections. However, developing closed-loop assembly inser-
tion skills is beyond the scope of this work and will be ad-
dressed in future research. In our current approach, human
experts manually perform the insertion action.

.3. Detailed Experiments Description

In this section, we perform a series of experiments aimed at

addressing the following questions.

* QI: Can our proposed hierarchical assembly graph gen-
eration module effectively extract structured information
from manuals? (see Appendix .3.1)

* Q2: Can the per-step pose estimation be applicable to dif-
ferent categories of furniture and outperform previous set-
tings? (see Appendix .3.2)

* Q3: How effective is the proposed framework in the as-
sembly of furniture with manual guidance? (see Ap-
pendix .3.3)

* Q4: Can this pipeline be applied to real-world scenar-
ios?(see Appendix .3.4)

* Q5: Can this pipeline be extended to other assembly
tasks? (see Section 4.5)

* Q6: How should we determine and evaluate the key de-
sign choices of each module? (ablation experiments,
see Appendices .6 and .8)

In addition, we have included a comprehensive set of

prompts utilized in the VLM-guided hierarchical graph gen-

eration process in Appendix .14

.3.1. Hierarchical Assembly Graph Generation

In this section, we evaluate the performance of our VLM-
guided hierarchical assembly graph generation approach.
Specifically, we assess Stage II: Identifying Parts in Each
Image using the IKEA-Manuals dataset [49]. We pro-
vide the rationale for excluding Stage I evaluation in Ap-
pendix .11.

Table 1. Assembly Plan Generation Results.

Method Precision Recall F1 Score Success Rate
SingleStep 0.220 0.220 0.220 0.220
GeoCluster  0.197 0.201 0.196 0.080
Ours 0.690 0.680 0.684 0.620

Experiment Setup. The IKEA-Manuals dataset [49] in-
cludes 102 furniture items, each with IKEA manuals, 3D
parts, and assembly plans represented as trees in nested
lists. We load each item’s 3D parts into Blender and ren-
der an image of the pre-assembly scene. Moreover, we split
the 102 furniture items into two sets. The first set consists
of 50 furniture items with six or fewer parts, and the second
set contains 52 furniture items with seven or more parts.
We observe that current VLMs can effectively deal with
the first set, and a significant portion of real-world furniture
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Figure 5. Qualitative results. Our method significantly outper-
forms the baselines. SingleStep fails on moderately complex furni-
ture, while GeoCluster generates physically impossible subassem-
blies (highlighted in red). In contrast, our approach closely aligns
with the ground truth.

also contains fewer than seven parts (as seen in real-world
experiments). Here, we report the results of the first set.
Please refer to Appendices .7 and .14 for complete results
and prompts. This rendered image, along with the manual,
is processed by the VLM through the stages outlined in Ap-
pendix .2.1 to generate a hierarchical assembly graph. Since
we represent our graph as a nested list, we align our nota-
tion with the assembly tree notation used in IKEA-Manuals
[49]. In this subsection, we refer to our generated assembly
graph as the predicted tree.

Evaluation Metrics. We use the same metrics as IKEA-
Manuals [49], which include precision, recall, and F1 score
to compare predicted and ground-truth nodes of the assem-
bly tree. For detailed descriptions of these metrics, we refer
readers to [49].

The Matching criterion for each node is defined as fol-
lows: We consider a predicted non-leaf node correct only
if its set of leaf and non-leaf child nodes exactly matches
that of the corresponding ground-truth node(With consid-
eration of equivalent parts). In other words, the predicted
node must have the same children as its ground-truth coun-
terpart. We compute precision, recall, and F1 scores based
on this criterion.

The Success Rate criterion measures the proportion of
the predicted tree that exactly matches the ground-truth tree.
We consider a predicted tree exactly matched if all its non-
leaf nodes satisfy the Matching criterion.

Baselines. We compare our VLM-based method against
two heuristic approaches introduced in IKEA-Manuals [49].

 SingleStep predicts a flat, one-level tree with a single par-
ent node and n leaf nodes.
* GeoCluster employs a pre-trained DGCNN [50] to iter-

atively group furniture parts with similar geometric fea-
tures into a single assembly step. Compared to Sin-
gleStep, it generates deeper trees with more parent nodes
and multiple hierarchical levels.

Results. As shown in Table 1, quantitative results
demonstrate that both baseline methods face challenges in
generating accurate assembly trees under the Matching and
Assembly criterion. In contrast, our VLM-guided method
achieves significantly superior performance, with a suc-
cess rate of 62%. These findings underscore the robust
generalization capabilities when guided by well-structured
prompts. Figure 5 provides qualitative results for two fur-
niture items, illustrating the advantages of our approach in
greater detail. With the ongoing development of more ad-
vanced VLMs, we expect further enhancements in assembly
planning accuracy. Please refer to Appendix .8 for ablation
results.

.3.2. Per-step Assembly Pose Estimation

Data Preparation. We select three categories of furni-
ture items from PartNet [34]: chair, table, and lamp. For
each category, we select 100 furniture items and generate
10 parts selection and subassembly division for each piece
of furniture. To generate the assembly manual images, we
render diagrammatic images of parts at 20 random camera
poses using Blender’s Freestyle functionality. We provide
more details about it in Appendix .4. In general, we gen-
erate 12,000 training and 5,200 testing data pieces for each
category.

Training Details. For the Image Encoder &£;, we se-
lected the encoder component of DeepLabV3+, which in-
cludes MobileNet V2 as the backbone and the atrous spa-
tial pyramid pooling (ASPP) module. We made this choice
because DeepLabV3+ leverages atrous convolutions on the
basis of Auto Encoder, enabling the model to capture multi-
scale structures and spatial information effectively [4, 5].
It generates a multi-channel feature map from the image I,
and we use mean-max pool [61] to derive a global vector
F; € R?56 from the feature map. For the Point Clouds En-
coder £p, we use the encoder part of PointNet++ [35]. For
each part and subassembly, we extract a part-wise feature
F; € R?56, For the GNN &g, we use a three-layer graph
transformer [8]. The pose regressor R is a three-layer MLP.
We provide more details of the mean-max pool for the im-
age feature and our training hyperparameter setting in Ap-
pendix .5.

Baselines. We evaluate the performance of our method
on our proposed per-step assembly pose estimation dataset.
We compare our method with two baselines:

* Lietal. [29] proposed a pipeline for single image guided
3D object pose estimation.

* Mean-Max Pool is a variant of our method, replacing
GNN with a mean-max pool trick, similar to our ap-



Table 2. Qualitative Results of Pose Estimation.

GDJ RMSE] CDh | PAT
Method Chair Lamp Table Chair Lamp Table Chair Lamp Table Chair Lamp Table
Lietal. [29] 1.847 1.865 1.894 0.247 0.278 0.318 0.243 0396 0.519 0.268 0.121 0.055
Mean-Max Pool 0.434 1.118 1.059 0.087 0.187 0.200 0.046 0.229 0.280 0.457 0.199 0.107
Ours 0.202 0.826 0953 0.042 0.153 0.172 0.027 0.189 0.276 0.868 0.240 0.184
Ground Truth  Lietal. Mean-MaxPool  Ours

proach of obtaining a one-dimensional vector from a
multi-channel feature map, with details in Appendix .5.

Evaluation Metrics. We adopt comprehensive evalua-
tion metrics to assess the performance of our method and
baselines.
¢ Geodesic Distance (GD), which measures the shortest

path distance on the unit sphere between the predicted and
ground-truth rotations.

* Root Mean Squared Error (RMSE), which measures the
Euclidean distance between the predicted and ground-
truth poses.

¢ Chamfer Distance (CD), which calculates the holistic dis-
tance between the predicted and the ground-truth point
clouds.

e Part Accuracy (PA), which computes the Chamfer Dis-
tance between the predicted and the ground truth point
clouds; if the distance is smaller than 0.01m, we count
this part as “correctly placed”.

Results. As shown in Table 2, our method outperforms
Lietal. [29] and the mean-max pool variant in all evaluation
metrics and on three furniture categories. We attribute this
to the effectiveness of our multi-modal feature fusion and
GNN in capturing the spatial relationships between parts.
We also provide qualitative results for each furniture cate-
gory in Figure 6.

Ablation. To assess the impact of equivalent parts,
guided image, and per-step data about subassemblies, we
perform ablation studies on these components. We present
the details and results in Appendix .6.

.3.3. Overall Performance Evaluation

We evaluate the overall performance of our method by as-
sembling furniture models in a simulation environment.
We implement the evaluation process in the PyBullet [9]
simulation environment and test the entire pipeline. We
source all test furniture models from the IKEA-Manuals
dataset [49]. Given these manuals along with 3D parts,
we generate the pre-assembly scene images as described
in .2.8, and our pipeline generates the hierarchical graphs.
Then, we traverse the hierarchical graph to determine the as-
sembly order. Following this sequence and the predicted 6D
poses of each component, we implement RRT-Connect [26]
in simulation to plan feasible motion paths for the 3D parts
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Figure 6. Qualitative results on three furniture categories. We
observe better pose predictions than baselines.

and subassemblies, ensuring they move towards their target
poses. Note that, in this experiment, we focus on object-
centric motion planning and omit robotic execution in our
framework.

Baselines. As the first to propose a comprehensive
pipeline for furniture assembly, there is no direct baseline
for comparison. So we design a baseline method that uses
previous work [29] to estimate the poses of all parts, with
the guidance of an image of the fully assembled furniture,
and adopt a heuristic order to assemble all parts. Specifi-
cally, given the predicted poses of all parts, we can calculate
the distance between each pair of parts. The heuristic order
is defined as follows: starting from a random part, we find
the nearest part to it and assemble it, then successively find
the nearest part to the assembled parts until we assemble all
parts.

Evaluation Metrics. We adopt the assembly success
rate as the evaluation metric and define the following sit-
uations as a failure: 1) A part is placed at a pose that is too
far from the ground truth pose. 2) A part collides with other
parts when moving to the estimated pose. In other words,
the RRT-Connect algorithm [26] finds no feasible path when
mating it with other parts. 3) We place a part that is not near
any other components, causing it to suspend in midair after
each assembly step.

Results. We evaluate the overall performance on 50 fur-



Table 3. Success Rate on 4 Furniture Categories(?)

(ACR) as the evaluation criterion and calculate it as follows:

N

Method Bench Chair Table Misc Average ACR = %Z Ssj @)
— Stotal

Lietal. [29]+Heuristic  0.00 039 0.11 000 030 g=1 7

Ours 0.67 0.61 044 050 0.58 where N is the total number of trials, S; is the number of

niture items from the IKEA-Manual dataset [49], each con-
sisting of fewer than seven parts. These items fall into four
categories (Bench, Chair, Table, Misc), and we report the
success rate for each in Table 3.

Our system successfully assembles 29 out of 50 furni-
ture pieces, whereas the baseline method assembles only
15. Our framework achieves a success rate of 58 %, demon-
strating the effectiveness of our proposed framework. The
most common failure occurs when the VLM fails to gen-
erate a fully accurate assembly graph, leading to misalign-
ment between the point cloud and the instruction manual
images used for pose estimation.

Figure 7. Real-World Setup. We use two UFactory xArm6 for
assembly and a RealSense D435 camera for pose estimation.

.3.4. Real-world Assembly Experiments

To evaluate the feasibility and performance of our pipeline,
we conducted experiments in the real world using four
IKEA furniture items: Flisat (Wooden Stool), Variera (Iron
Shelf), Sundvik (Chair), and Knagglig (Box). Figure 7 il-
lustrates our real-world experiment setup. We show the
manual images, per-step pose estimation results, and real-
world assembly process in Figure 3. We also attach videos
of the real-world assembly process in the supplementary
material. For detailed implementation of our real-world ex-
periments, please check Appendix .10. We evaluated all the
assembly tasks with target poses provided by three differ-
ent methods: Ground truth Pose, Mean-Max Pool (see Ap-
pendix .3.2), and our proposed approach. The Ground truth
Pose method uses the ground truth poses for each part to as-
semble the furniture. We use the Average Completion Rate

steps completed in trial j, and Sy, denotes the total number
of steps in the task.

We perform each task over 10 trials with varying initial
3D part poses. We present the results in Table 4, showing
that our method outperforms the baseline and achieves a
high success rate in real-world assembly tasks.

These findings underscore the practicality and effective-
ness of our approach for real-world implementation. The
primary failure mode arises from planning limitations, par-
ticularly in handling complex obstacles. Failures occur
when the RRT-Connect algorithm cannot find a feasible tra-
jectory when the planned path results in collisions with the
robotic arm or surrounding objects or due to suboptimal
grasping poses. To improve robustness in real-world sce-
narios, we plan to develop a low-level policy for adaptive
motion refinements—a topic we leave for future work.

Table 4. Real World Success Rate (1) over 10 trials.

Method FLISAT VARIERA SUNDVIK KNAGGLIG
Oracle Pose 72.5 85.0 80.0 90.0
Mean-Max Pool 52.5 61.7 40.0 70.0
Ours 60.0 80.0 68.0 85.0

We design Manual2Skill as a generalizable framework
capable of handling diverse assembly tasks with manual in-
structions. To assess its versatility, we evaluate the VLM-
guided hierarchical graph generation method across three
distinct assembly tasks, each varying in complexity and ap-
plication domain. These include: (1) Assembling a Toy
Car Axle (a low-complexity task with standardized com-
ponents, representing consumer product assembly), (2) As-
sembling an Aircraft Model (a medium-complexity task,
representing consumer product assembly), and (3) Assem-
bling a Robotic Arm (a high-complexity task involving
non-standardized components, representing research & pro-
totyping assembly).

For the toy car axle and aircraft model, we sourced
3D parts from [46] and reconstructed pre-assembly scene
images using Blender. We manually crafted the manuals
in their signature style, with each page depicting a sin-
gle assembly step through abstract illustrations. For the
robotic arm assembly, we used the Zortrax robotic arm [66],
which includes pre-existing 3D parts and a structured man-
ual. These inputs were then processed through the VLM-
guided hierarchical graph generation pipeline (described in
Sec. .3.1), yielding assembly graphs as shown in Figure 4.
This zero-shot generalization achieves a success rate of



100% over five trials per task. The generated graphs align
with ground-truth assembly sequences, confirming the gen-
eralization of our VLM-guided hierarchical graph genera-
tion across diverse manual-based assembly tasks and high-
lighting its potential for broader applications.

4. Per-step Assembly Pose Estimation Dataset

We build a dataset for our proposed manual guided per-step
assembly pose estimation task. Each data piece is a tuple
(I;,{P};,{T};,R;), where I; is the manual image, {P};
is the point clouds of all the components involved in the
assembly step, {1'}; is the target poses for each component,
and R; is the spatial and geometric relationship between
components.

=i

Figure 8. Manual images of our proposed dataset. There are vari-
ations in furniture shapes, subassemblies, and camera views.

Instruction manuals in the real world come in a wide va-
riety. To cover as many scenarios as we might encounter
in real-life situations, we considered three possible varia-
tions of instruction manuals when constructing the dataset,
as shown in Figure 8. Our dataset encompasses a variety of
furniture shapes. For each piece of furniture, we randomly
selected some connected parts to form different subassem-
blies. Meanwhile, for each subassembly, there are multi-
ple possible camera perspectives for taking manual photos.
This definition enables our dataset to cover various manuals
that we might encounter in real-world scenarios.

Formally, for furniture consisting of M parts, we ran-
domly select m connected parts to form a subassem-
bly. Denoted as Pyp = {Pi, P, -+, Pp}, here each
P; is a atomic part. Then, we randomly group the m
atomic parts into n components while keeping all parts
within the same group are connected, denoted as Py, =
{{Pi1, - Piar }, - {Pn1s* Pna, } }, where each «; rep-
resents the number of atomic parts in ¢-th component, and
thus ). o; = m. We sample the point cloud for each com-
ponent to consist of the point cloud of the data piece. We
can also take photos of the subassembly from different per-
spectives.

We also provide annotations for equivalent parts in the
auxiliary information. In this paper, we propose new tech-
niques to leverage the auxiliary information for each assem-
bly step, which significantly enhances the precision and ro-
bustness of our pose estimation model.

.5. Pose Estimation Implementation

.5.1. Loss Functions for Pose Estimation

Rotation Geodesic Loss: In 3D pose prediction tasks,
we commonly use the rotation geodesic loss to measure the
distance between two rotations [53]. Formally, given the
ground truth rotation matrix R € SO(3) and the predicted
rotation R € SO(3), the rotation geodesic loss is defined

as:
THy
tr(RTR) 1) ®

Lot = arccos < 5

where tr(-) denotes the trace of a matrix and R7 is the trans-
pose of R.

Translation MSE Loss: Following [29], we use the
mean squared error (MSE) loss to measure the distance be-
tween the ground truth translation ¢ and the predicted trans-
lation :

£trans = ||t - E||2 )

Chamfer Distance Loss: This loss function minimizes
the holistic distance between each point in the predicted
and ground truth point clouds. Given the ground truth
point cloud S; = RP + t and the predicted point cloud
Sy = RP + t, it is defined as:

1 . 5 1 . 9

Loran = 75 mgl min [z =y} + o g;z min [ly—alf3

(10)

where 57 is the point cloud after applying the ground truth

6D pose transformation, and .S, is the point cloud after ap-
plying the predicted 6D pose transformation.

Pointcloud MSE Loss: We supervise the predicted ro-
tation by applying it to the point of the component and use
the MSE loss to measure the distance between the rotated
point and the ground truth point:

Ly = ||RP — RP|| (11)

Equivalent Parts: Given a set of components, we might
encounter geometrically equivalent parts that we must as-
semble in different locations. Inspired by [60], we group
these geometrically equivalent components and add an extra
loss term to ensure we assemble them in different locations.
For each group of equivalent components, we apply the pre-
dicted transformation to the point cloud of each component
and then compute the Chamfer distance (CD) between the
transformed point clouds. For all pairs (ji, j2) within the



same group, we compute the Chamfer distance between the
transformed point clouds P;, and P;,, encouraging the dis-
tance to be large:

Eequiv = - Z Z CD(pjl,PjQ) (12)

group (j1,j2)

Finally, we define the overall loss function as a weighted
sum of the above loss terms:

Etotal = )\1£r0t + >\2£lrans + AS‘Ccham + )\4£pc + )\5Eequiv
(13)
where /\1 = 1, )\2 = 1, )\3 = 1, )\4 = 20, )\5 =0.1.

.5.2. Mean-Max Pool

The core mechanic of the mean-max pool is to obtain the
mean and maximum values along one dimension R of a
set of vectors or matrices with the same dimensions and
concatenate them into a one-dimensional vector in R2% to
obtain a global feature. For one-dimensional vectors, we
take the mean and maximum values along the sequence
length dimension. For two-dimensional matrices, we take
the mean and maximum values along the height x width
dimensions:

Fyioba1 = [avg; max] € R2F (14)

In the setting of our work, we set F' to 128.

We use this trick twice in this work. One instance is
when we obtain a one-dimensional vector with a channel
dimension from a multi-channel feature map, thus obtaining
a one-dimensional feature vector for the image. In this case,
we can express the mean-max pool as follows:

C,H,W
X = (XCJL;w)c:l,h:l,w:l

H W
1
avg = (777 > D Xenw)ly €RC (15)

h=1w=1
max = (Izlax chh_yw)le e R¢
W

Where X is the multi-channel feature map of image I;
with dimensions channels(C') x height(H) x width(W),
avg and max denote one-dimensional vectors of length
channels. Thus, Fgope of the multi-channel feature map
is a C-dimensional vector.

The other instance is when we compare the baseline. To
aggregate point cloud features on a per-part basis and obtain
a one-dimensional global feature for the shape, we express
the mean-max pool in the following form:

1 M
avg=— Y F; eR”
M ; (16)

max = mgX{Fj} € RF

Here, we let M denote the number of parts in a shape.
For each part in this baseline, we concatenate the one-
dimensional image feature Fy, the global point cloud fea-
ture Fyjopq1 (both obtained by mean-max pool), and the
part-wise point cloud feature F; to form a one-dimensional
cross-modality feature. We then use this feature as input for
the pose regressor MLP.

.5.3. Hyperparameters in Training of Pose Estimation

We train our pose estimation model on a single NVIDIA
A100 40GB GPU with a batch size of 32. Each experiment
runs for 800 epochs (approximately 46 hours). We set the
learning rate to 1e — 5 and employ a 10-epoch linear warm-
up phase. Afterward, we use a cosine annealing schedule
to decay the learning rate. We also set the weight decay to
le — 7. The optimizer configuration for each component of
the model is as shown in Table 5.

Table 5. Optimizer Corresponding to Each Component

Component Optimizer
Image Encoder RMSprop
Pointcloud Encoder ~ AdamW

GNN AdamW
Pose Regressor RMSprop

.6. Pose Estimation Ablation Studies

To evaluate the effectiveness of each component in our
pipeline, we conduct an ablation study on the chair cat-
egory. We show the quantitative results in Table 6 and
the qualitative results in Figure 9. First, we remove the
image input and only use the point cloud input to predict
the pose. The performance drops significantly, indicating
that the image input is crucial for pose estimation. Sec-
ond, we remove the permutation mechanism for equivalent
parts(Equation (12)). As shown in the visualizations, the
model fails to distinguish between equivalent parts, placing
two legs in similar positions.

Table 6. Pose Estimation Ablations.

Method GD|/ RMSE| CDJ] PA?T
w/o Image 1.797 0.234 0.227 0.138
w/o Permutations 0.252 0.051 0.029 0.783
Ours 0.202 0.042 0.027 0.868

Previous works usually train and predict only fully as-
sembled shapes. In contrast, our pose estimation dataset
includes per-step data (z.e., subassemblies). We conduct an
ablation study comparing two settings:

* w/o Per-step: Training and testing on a dataset of fully
assembled shapes.



Ground Truth w/o Image w/o Permutations Ours

Figure 9. Qualitative Results of Ablations. We observe salient
performance drops in ablated settings.

* Per-step: Training on a dataset with per-step data and test-
ing on fully assembled shapes.

Table 7. w/o Per-step vs. Per-step

Method GD), RMSE| CD| PA}

w/o Per-step 0.233 0.046 0.015 0.753
Per-step (Ours) 0.064 0.016 0.004 0.983

As shown in Table 7, adding per-step data improves as-
sembly prediction accuracy, demonstrating that per-step in-
ference enhances robot assembly performance.

.7. Complete VLM Plan Generation Results

We provide the complete analysis for VLM plan generation.
In addition to the results for all 50 furniture items with six or
fewer parts, shown in the main paper, we include results for
all 52 furniture items with seven or more parts (denoted as
< 7 Parts) and the complete dataset of 102 furniture items
spanning all part counts (denoted as All Parts) in Table 8.
Furthermore, we categorized the full set of 102 furniture
items in greater detail, with Hard Matching results for indi-
vidual part counts ranging from 2 to 16 parts, as shown in
Table 9. For detailed descriptions of Simple Matching and
Hard Matching, we refer readers to [49].

For the GeoCluster baseline, we could not replicate the
exact results shown in the IKEA-Manuals dataset [49].
Thus, we used the scores from our experiments for the <
6 Parts and > 7 Parts categories while retaining the original
scores from the dataset [49] for the All Parts category.

To obtain our scores, we repeatedly ran the experiment
5 times using the same input and a temperature of 0. We
repeated sampling to account for slight variations in GPT-
40’s [1] outputs, even when we set the temperature to O,
and to capture the range of possible outcomes. This ap-
proach provides a better estimate of the model’s true perfor-
mance. When taking the maximum between precision, re-
call, and F1, the average score for < 6 parts on Hard Match-
ing is 63.7%, the worst score is 57.2%, and the best score
is 69.0%. Since the average and best scores are similar, we
choose to report the best score in all of our tables related to
Assembly Plan Generation.

To compare the trees generated by GPT-4o0 [1] with the
ground truth trees in the dataset, we accounted for equiva-

lence relationships among parts, which can result in multi-
ple valid ground truth trees. For instance, if parts 1 and 2
are equivalent and [[1, 3], 2] is a valid tree, then so is [[2, 3],
1]. Since the dataset does not account for this isomorphism
of trees, we manually defined all equivalent parts for each
of the 102 furniture items. We then permuted the predicted
tree using the equivalent parts, comparing each permutation
to the ground truth and selecting the highest score. For fur-
niture with 13 or more parts (6 items), we performed manual
verification due to the computational cost of permutations.
Overall, by employing this permutation method to evaluate
predicted trees, we managed to increase our scores overall
metrics by around 5%. To ensure fairness, we also applied
this permutation over the two baselines but saw no effects.

As shown in Table 8, tasks with > 7 parts experience a
significant drop in performance—Hard Matching achieves
a maximum of 13.36%, compared to 69.0% for tasks with
< 6 parts—indicating that the model’s performance de-
clines as the number of parts increases. This decrease is
likely driven by increased task complexity and occlusion in
manual drawings as the number of furniture parts grows,
causing GPT-40 [1] to misinterpret out-of-distribution im-
ages and fail in the plan generation stage. As noted in [49],
SingleStep always outputs the root node and selects all other
nodes as its children, achieving perfect precision in Sim-
ple Matching for all cases. Beyond this, our GPT-40-based
method outperforms both baselines across all categories in
Table 8, which highlights the effectiveness of VLMs in in-
terpreting manuals and designing reliable hierarchical as-
sembly graphs.

Similarly, in Table 9, our method has a significant advan-
tage over the two baselines in all numbers of parts. Mask
Seg is an additional method we evaluated, which overlays
segmentation masks from the IKEA-Manuals dataset [49]
onto manual pages (prompt 3.a Appendix .14), improving
part identification, image clarity, and comprehension of as-
sembly steps. Although Mask Seg slightly outperforms the
original version without mask segmentations, we chose the
latter for all reported tables. Otherwise, such masks are
costly in real-world scenarios. Overall, the trend observed
in Table 8 persists here, with higher scores for furniture
with fewer parts and lower scores as the number of parts
increases.

.8. Assembly Graph Generation Ablation Studies

We present the effectiveness of our VLM plan generation
pipeline, emphasizing the critical role of cropped manual
pages as input. The manual pages’ visuals, detailing parts
and subassemblies for each step, directly influence GPT-
40’s output. Thus, we prioritize this content and ablate the
strategy of inputting cropped pages. For furniture requiring
N assembly steps, instead of providing /N cropped manual
pages corresponding to each step, we input the entire man-



Table 8. VLM Assembly Plan Generation Results

Simple Matching (All Parts)

Hard Matching (All Parts)

Simple Matching (> 7 Parts)

Hard Matching (> 7 Parts)

Method PrecisioRecall  Fl1 PrecisioRecall  F1 PrecisioRecall  F1 PrecisioRecall  Fl1
SingleStep  100.00 35.77 48.64 10.78 10.78 10.78 100.00 21.96 35.09 0.00 0.00 0.00
GeoCluster 44.90 48.46 43.53 16.54 1650 16.30 31.99 28.88 29.66 7.31 6.91 6.92
Ours 58.11 5598 56.84 40.63 3994 40.22 33.72 3195 32.65 13.36 1296 13.11
Table 9. Performance Across Different Numbers of Parts

Number of Parts 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SingleStep 100 50 12.50 31.58 0 0 0 0 0 0 0 0 0 0 0
GeoCluster 100 25 1042 14.04 21.76 1440 699 1500 4.17 222 0 16.67 0 0 0
Ours (Mask Seg) 100 100  75.00 72.81 56.08 29.64 24.17 19.05 16.67 9.63 3.33 3750 0.00 0.00 0.00
Ours 100 100 72.92 78.51 45.59 25.24 13.05 16.67 27.78 0 933 6.25 0.00 0.00 0.00

Furniture Count 2 4 8 19 17 14

10 3 4 9 5 2 1 2

1

ual consisting of M > N pages. As shown in Table 10,
this ”no-crop” method leads to 7% accuracy drops in the
Simple Matching category and 25% in the more important
Hard Matching category. The decrease is likely due to irrel-
evant details in full manual pages, such as the nails, people,
and speech bubbles in prompt 2.a), which divert GPT-40’s
focus from the critical furniture parts for each step. Overall,
Table 10 underscores the importance of cropping manual
pages to simplify the input and direct GPT-40’s attention to
the most relevant details.

Table 10. Assembly Plan Generation Ablation Results on Furniture
with < 6 Parts

Simple Matching ‘ Hard Matching
Method Precision Recall F1 Score‘PreCision Recall F1 Score
Ours (no crop)  69.13  81.13  73.05 4237 4550 4345
Ours 83.47 80.97 81.99 69.00 68.00 68.41

9. Failure Cases Analysis

We highlight failure cases of VLMs using GPT-40 in Fig-
ure 10 for plan generation of complex furniture. Figure 10
demonstrates that while GPT-40 surpasses previous base-
lines in assembly planning, it struggles with complex struc-
tures, often producing entirely incorrect results.

.10. Real-World Experiment Details

This section provides the details of the real-world experi-
ment.

.10.1. Pose Estimation in the Real World

We utilize FoundationPose [52] to evaluate the 6D pose and
point cloud of components in the real-world scene. First, a
mobile app, ARCode, is used to scan the mesh of all atomic
parts of the furniture. During each step of the assembly pro-
cess, the mesh—along with the RGB and depth images and
an object mask—is input into the FoundationPose model,
which then generates the precise 6D pose and point cloud
of the component within the scene. This information is cru-
cial for subsequent tasks, including camera pose alignment,
grasping, and collision-free planning.

.10.2. Camera Frame Alignment

After we get the estimated target pose, we first use the PCA
mentioned before to canonize them. To accurately map
these target poses to the real world, we need to align the
camera frame in the manual page image, denoted as F,,,,
with the real-world camera frame, denoted as P,,,, for each
step 7. This section will introduce how we calculate the 6D
transformation matrix 7,,,, between these two frames.

To achieve this, we designate a stable part of the scene
as a base in the world frame using the VLM and utilize
FoundationPose to extract the point cloud of this part. We
then canonicalize the point cloud using the same PCA algo-
rithm, ensuring that the relative 6D pose of the same compo-
nent remains consistent. We denote the canonical base pose
in the real world as Pp,, which remains static during this
step. From the model’s predictions, we can also determine
the pose of the same part used as the base in the manual,
denoted as Pp, . We denote the transformation matrix be-
tween these two frames as T,,,. Using this transformation



Visual Inputs

@ Step 1: Parts Involved: 8, 9, 10 m
Step 2: Parts Involved: 4, Subassembly from Step 1
Step 3: Parts Involved: 0, Subassembly from Step 2
Step 4: Parts Involved: 5, 6, Subassembly from Step 3
Step 5: Parts Involved: 1, 2, Subassembly from Step 4
Step 6: Parts Involved: 3, 7, Subassembly from Step 5

Ground Truth
Step 1: Parts Involved: 1,10,7,8,2

Step 2: Parts Involved: 9, Subassembly from Step 1
Step 3: Parts Involved: 0, Subassembly from Step 2
Step 4: Parts Involved: 6, Subassembly from Step 3
Step 5: Parts Involved: 3, 4, Subassembly from Step 4
Step 6: Parts Involved: 5, Subassembly from Step 5

Figure 10. The input consists of the scene image, the corresponding assembly steps from the manual, and the text instruction from prompt

3.b). Clearly, GPT-40’s response is wrong and unreliable.

matrix, we map the target pose in the manual frame, Pr,_, to
the corresponding target pose in the real-world frame, Pr,,
for subsequent motion planning. We compute the transfor-
mation as follows:

Tow = P, Pg

We then calculate the target pose in the real-world frame
using:

PTw = mePTm

As illustrated in Figure 11, the stool example clearly
demonstrates the process of aligning poses between the
manual and real-world frames, ensuring a consistent and re-
liable foundation for motion planning.

.10.3. Heuristic Grasping Policy

For general grasping tasks, pre-trained models such as
GraspNet[11] are commonly used to generate grasping
poses. However, in the case of furniture assembly, where
components are often large and flat, we need to grasp spe-
cific parts of the object that are suitable for subsequent as-
sembly. This requirement poses challenges for GraspNet,
as it does not always estimate the best pose for the sub-
sequent action. To address this, in addition to GraspNet,

Real-world Assembly

Figure 11. This figure shows the transformation between the es-
timated pose and the real-world frame; we designate the board of
the stool as a base and map the four legs of the stool to the real
world

we utilize the poses generated by FoundationPose and con-
sider the shapes of the furniture components in corner cases.
These shapes are categorized into two types, as shown in
Figure 12:

Stick-Shaped Components: For stick-shaped furniture
parts, such as stool legs, we select the center of the point
cloud as the grasping position. We define the grasping pose
as a top-down approach.



Figure 12. This figure shows the grasping policies for different
shapes in our setting; the left one is for stick-shaped, and the right
one is for flat, thin-shaped.

Flat and thin-Shaped Components: We first estimate
the pose of flat and thin, board-shaped furniture parts using
a bounding box. Based on this estimate, we determine the
grasping pose by aligning it with the bounding box’s ori-
entation. The grasping position is set approximately 3 cm
below the top surface.

.11. Rationale for Excluding Performance Eval-
uation of Stage I in Hierarchical Assembly
Graph Generation

Stage I, Associating Real Parts with Manuals, focuses on
associating real parts with the manual. Still, since the
IKEA manual lacks isolated images of individual parts, di-
rect quantitative evaluation is challenging. Instead, Stage II
implicitly reflects the quality of these associations by out-
putting the indices of identified real parts. Therefore, we
report Stage II results as an intermediate measure of how ef-
fectively our approach aligns manual images with real com-
ponents.

.12. Justification for Hierarchical Assembly Graph

Using a hierarchical structure to represent assembly steps
provides several advantages over simple linear data struc-
tures or unstructured step-by-step plans in plain text.

» Hierarchical structures align naturally with the assembly
process where multiple parts and subassemblies combine
into larger subassemblies.

 Lists or text plans struggle to store geometric and spa-
tial relationships between each part or subassembly of the
step, which is crucial in real assembly tasks.

* The hierarchical graph clearly shows the dependencies
between steps, revealing which steps you can perform in
parallel and which ones you must complete before pro-
ceeding to others. So, it provides flexibility for parallel
construction or strategic sequencing.

.13. Formal Definition of Hierachial Assembly
Graph

Inspired by Mo et al. [33], we represent the assembly pro-
cess as a hierarchical graph S = (P, H, R). A set of nodes
P represents the parts or subassemblies in the assembly pro-
cess. A structure (H, R) describes how these nodes are as-
sembled and related to each other. The structure consists of
two edge sets: H describes the assembly relationship be-
tween nodes, and R represents the geometric and spatial
relationship between nodes.

Node. Each node v € P is an atomic part or a subassem-
bly, consisting of a non-empty subset of parts p(v) C P.
The root node vy represents the fully assembled furniture,
with p(vy) = P. A non-root, non-leaf node v; represents
a subassembly with p(v;) as a non-empty and proper subset
of P. All leaf nodes v; represent atomic parts, containing
exactly one element from P. Additionally, each non-leaf
node corresponds to a manual image I that describes how
to merge smaller parts and subassemblies to form the node.

Assembly relationship. We formulate the assembly pro-
cess as a tree, with all atomic parts serving as leaf nodes.
The atomic parts are then recursively combined into sub-
assemblies, forming non-leaf nodes until they reach the root
node, which represents the fully assembled furniture. The
directed edges from a child node to its parent node indicate
the assembly relationship. The edge set H includes directed
edges from a child node to its parent node, indicating the as-
sembly relationship. For a non-leaf node v;, denote its child
nodes as C;, the following properties hold:

(a) Yv; € C;, p(v;) is a non-empty subset of P
(b) All children nodes contain distinct elements

p(vj)mp(vk) :(Z),V’Uj,’l)k 607,7.7#k (17)

(c) The union of all child subsets equals p(v;):

U p)) =p(v) (18)

v;€C;

Equivalence relationship. In addition to the assembly
process’s hierarchical decomposition, we also consider the
equivalence relationship between nodes. We label two parts
equivalent if they share a similar shape and can be used
interchangeably in the assembly process. We represent this
relationship with undirected edges R; in child nodes C; of
node v;. Anedge {v,, vy} € R; appears between two nodes
v € Cy, vy € P, if the shape represented by v, and vy
are geometric equivalent and thus can be changed during
assembly. Note that v, is not constrained as a child of v;
since any two nodes could be equivalent, regardless of their
hierarchical positions.

The assembly structure is a hierarchical graph, where the
nodes represent parts or subassemblies, and the edges rep-
resent the assembly and equivalence relationships. We con-



sider this structured representation to be a more informa-
tive and interpretable way to formulate the assembly pro-
cess than a flat list of parts.

.14. Prompts

We offer a comprehensive set of prompts utilized in the
VLM-guided hierarchical graph generation process. The
process involves four distinct prompts, divided into two
stages. The first two prompts, which are slight variations
of each other, are used in Stage I: Associating Real Parts
with Manuals. The remaining two prompts, also slight vari-
ations of each other, are employed in Stage II: Identifying
Involved Parts in Each Step.

1. The first prompt is part of Stage I, and it initializes the

JSON file’s structure and consists of two sections:

* l.a): Image Set: An image of the scene with furniture
parts labeled using GroundingDINO [31], alongside
an image of the corresponding manual’s front page.

e 1.b) Text Instructions: A few sentences explaining
the JSON file generation, supported by an example of
the desired structure via in-context learning.

This prompt is passed into GPT-40 to generate a JSON

file with the name and label for each part.

2. The second prompt belongs in Stage I as well, and it pop-
ulates the JSON file with detailed descriptions of roles.

It includes:

e 2.a): Image Set: Images of all manual pages (replac-
ing the front page) to provide context about the func-
tion of each part and the scene image from the first
prompt.

e 2.b): Text Instructions: a simple text instruction ex-
plaining the context and output.

We combine the JSON output from the first prompt with

the second prompt, then query GPT-40 to generate the

populated JSON file.
3. The third prompt is a part of Section II, and it generates

a step-by-step assembly plan using:

* 3.a): Image Set: The scene image and cropped man-
ual pages highlight relevant parts and subassemblies,
helping GPT-40 focus on key details. The cropped
images also have a highlighted black number on the
left, indicating the current assembly step. Our ablation
studies demonstrate the effectiveness of these cropped
images.

¢ 3.b): Text Instructions: A text instruction combining
chain-of-thought and in-context learning to describe
the assembly plan generation process and guide the
VLM. The JSON file from Step 2 is concatenated with
the third prompt as input, guiding GPT-40 to produce
the final text-based assembly plan.

4. Section IT includes the fourth prompt, which converts the
text-based plan into a traversable tree structure for action
sequencing in robotic assembly. We achieve this conver-

sion using a simple text input with in-context learning
examples.



APPLARO

1.b) Text Instructions for JSON File Generation

Input is one image, which is a top view of all the parts of one piece of furniture, each has a number, and another
image, which is the first page of the setup manual

You should list all the parts in the image, determine their number and name (short description of the part), and show
your result in JSON format.

Following is an example. Note that your output should only contain the JSON code without any explanation.

HHHEHEHEA example start #HHHHEHERHE
[

{

”name”: “’seat frame,”

“number’: [0]

2

{

“name”: “side leg,”

“number”’: [1]

”name”’: "side le,”
“number”: [2]

}9

“name”: “support b,” ”
“number’: [3]

]
HHEHAARAAE example end #HHEHEHHAHE




2.a) Image Set for JSON File Refinement

APPLARO

2.b) Text Instructions for JSON File Refinement

You are a robot assistant responsible for assembling IKEA furniture.

Your inputs include {A}: an rbg image of the scene consisting of furniture parts labeled with white numbers on a
black background, {B}: a JSON file that describes the image’s objects and labels, and {C}: a set of IKEA setup
manual pages.

Please note that you will only construct the piece of furniture that the manual describes.

You can ignore nails and other tools in the manual and only focus on the furniture parts that exist in {A}: the rbg
scene image.

First, you are ONLY responsible for identifying the relevant materials that will be required to assemble the furniture
in the image. Output a table of selected materials, with their labeled numbers and a brief explanation of why they
are selected and how they are related to items on the setup manual. The table format should be JSON, and it should
be really similar to {B}, but with an additional explanation section for each selected material and its labeled number.
Hint: Usually, in 99.999% of cases, the number of selected materials equals the number of labeled furniture parts.
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3.b) Text Instructions for Step-By-Step Plan Generation

You are a robot assistant responsible for assembling IKEA furniture. You will be responsible for creating a detailed
step-by-step plan for assembling the furniture.

For your input, you will receive a set of images, which represent a few pages of the setup manual containing the
setup instructions for the furniture. On the left of each page, there is a rectangular section with a white background
and a big, black, bolded number. This number indicates the current assembly step. On each page, we segment the
furniture with different colors (the three most common are red, green, and purple, though sometimes other colors are
used). The purpose of using these colors is to help you clearly identify which furniture parts are involved in each
assembly step.

You will also receive an rbg image of the scene consisting of furniture parts labeled with white numbers on a black
background and a JSON-formatted table that describes the RGB image’s objects and labels.

Your new task is to carefully describe every step according to the manual. Each colored segmented furniture part
should correspond to one step. Your planned steps should only describe what and how segmented furniture parts are
involved; don’t worry about nails and other minor tools for now. Your focus should only be on the colored segmented
furniture parts. Be as specific as possible in your description.

Let’s think step by step: (1) count the total number of colored, segmented furniture parts. (Hint: This equals the total
number of pages in the manual, with each page identified by a big, bold black number on the left.) The total number
of colored, segmented furniture parts will be your total number of steps. (2) for each step, focus on one colored,
segmented furniture part at a time. Describe only the furniture parts involved in that step. (3) We repeat step 2 for
each remaining step until we have described all the steps. So, if there is only one page of the setup manual overlayed
with mask segmentations, then there is only one step. If there are ten pages of the setup manual overlayed with mask
segmentations, then there are ten steps.

Here is an example of a fully constructed plan for your reference only. It has nothing to do with the current plan:

HHHEHEHEHE assistant example start ##HHHHEHEH

We have five input images, but one image shows furniture parts lying on a floor that we label with marks (white
numbers on a black square background). Therefore, we have only four pages of the setup manual overlaid with mask
segmentations. Thus, there are four total steps.

### Step 1:

- **Parts Needed:** Backrest Frame (1), Seat Cushion (5)

- **[nstructions: **

- **Align Frame and Seat:** Connect the backrest frame (1) next to the seat cushion (5) as shown in the segmented
manual.

### Step 2:

- **Parts Needed:** Subassembly from Step 1, Side Leg Frame (2)

- **Instructions: **

- **Position Leg Frame:** Link the first side leg frame (2) with the assembled seat and backrest combo from Step 1.

### Step 3:

- **Parts Needed:** Subassembly from Step 2, Support Beam (3), Support Beam (4), Side Leg Frame (6)

- **Instructions: **

- **Connect Support Beams:** Attach support beams (3), (4), and the second side leg frame (6) between the
assembled frame and leg structure from Step 2.

HHHHEHEHEHE assistant example end ##HEHEHH

Now it is your turn to generate a detailed step-by-step plan; here is the JSON formatted table:




4) Prompt for Converting Text-Formatted Plan to Tree

You are a robot assistant responsible for assembling IKEA furnitures.
Your new task is to convert a step-by-step furniture assembly instruction plan from text format into a tree format.

The tree represents the stage of the furniture assembly, with lower-level nodes representing the initial and beginning
stages and the upper level representing the concluding and finished stages of the furniture assembly.

We treat each end node (leaf) of the tree as an atomic furniture part that we cannot further decompose. As you move
up the tree, each parent node will represent two or more child nodes combined. Finally, the root node will be the
completed furniture.

You should clearly describe how every node is connected.

We output the tree strictly as a nested list of integers without any additional comments or text.

4) (Continued) In-Context Learning Examples for Text-Formatted Plan to Tree Prompt

EXAMPLE INPUT 1:
Here’s a step-by-step assembly plan for the furniture using the provided parts:

### Step 1: Assemble Backrest and Seat

- **Parts Needed:** Backrest Frame (1), Seat Cushion (5)

- **Instructions: **

- Place the Backrest Frame (1) and Seat Cushion (5) adjacent as shown in their respective colors (red and green).
- Ensure the backrest is upright and securely attached to the seat.

### Step 2: Attach Side Leg Frame

- **Parts Needed: ** Side Leg Frame (2) and subassembly from Step 1

- **Instructions: **

- Position the Side Leg Frame (2) on one side of the assembled backrest and seat structure.

### Step 3: Attach Side Leg Frame Again

- **Parts Needed:** Side Leg Frame (7) and subassembly from Step 2

- **Instructions: **

- Position the Side Leg Frame (7) on the other side of the assembled backrest and seat structure.

### Step 4: Connect Support Beams

- **Parts Needed:** Support Beams (3, 4) and subassembly from Step 3

- **Instructions: **

- Attach Support Beams (3, 4) to the inside of the Side Leg Frame, as depicted.

Check the entire assembly for any loose parts and re-tighten as necessary. The chair should now be fully assembled
and ready for use.

EXAMPLE OUTPUT 1:
”’python
[[[[1,5],2],7],3,4]

999




4) (Continued) In-Context Learning Examples for Text-Formatted Plan to Tree Prompt

EXAMPLE INPUT 2:

### Step 1: Connect Support Beams and Leg Frame

**Parts Involved: ** Support Beams (0 and 3), Leg Frame (4)

- **Instructions:** Position the leg frame (4) horizontally on the floor. Align the support beams (0 and 1) vertically
to connect with the leg frame. Ensure that each beam is fitted securely into the designated slots on the frame.

### Step 2: Attach Backrest Slats

**Parts Involved:** Backrest Slats (2) and subassembly from Step 1

- **Instructions: ** Insert the backrest slats (2) into the slots on the leg frame. Ensure that the slats are facing outward
and securely fitted to provide back support.

### Step 3: Connect Seat Cushion

**Parts Involved: ** Seat Cushion (1) and subassembly from Step 2

- **Instructions:** Place the seat cushion (1) on top of the assembled frame. Align the cushion with the edges of the
frame for balance and comfort.

EXAMPLE OUTPUT 2:
”’python
[[00,3,4],2],1]

999

EXAMPLE INPUT 3:

### Step 1: Connect Support Beams and Leg Frame

**Parts Involved:** Support Beams (7, 11, 6), Leg Frame (5)

- **Instructions:** Position the leg frame (5) horizontally on the floor. Align the support beams (7, 11, 6) vertically
to connect with the leg frame. Ensure that each beam is fitted securely into the designated slots on the frame.

### Step 2: Attach Backrest Slats

**Parts Involved: ** Backrest Slats (1, 10) and subassembly from Step 1

- **Instructions:** Insert the backrest slats (1, 10) into the slots on the leg frame. Ensure that the slats are facing
outward and securely fitted to provide back support.

### Step 3: Connect Seat Cushion

**Parts Involved: ** Seat Cushion (3) and subassembly from Step 2

- **Instructions:** Place the seat cushion (3) on top of the assembled frame. Align the cushion with the edges of the
frame for balance and comfort.

### Step 4: Connect Support Beams and Leg Frames

**Parts Involved: ** Support Beams (8, 4), Leg Frames (2, 9)

- **Instructions: ** Position the leg frame (2, 9) horizontally on the floor. Align the support beams (8, 4) vertically
to connect with the leg frame.

### Step 5: Connect Support Beams and Leg Frames
**Parts Involved: ** Subassembly from Step 4 and subassembly from Step 3
- **Instructions: ** Connect the two subassemblies together

### Step 6: Connect Support Beams and Leg Frames
**Parts Involved:** Leg frame (0) and subassembly from Step 5
- **Instructions: ** Connect the final leg frame with the previous subassembly

EXAMPLE OUTPUT 3:
”’python
[([[8,4,2,9][[[711,6,5],1,10],31]0]

999

YOUR REAL INPUT:
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