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Abstract
Designing controllers for systems affected by model uncertainty can prove to be a challenge, es-
pecially when seeking the optimal compromise between the conflicting goals of identification and
control. This trade-off is explicitly taken into account in the dual control problem, for which the ex-
act solution is provided by stochastic dynamic programming. Due to its computational intractabil-
ity, we propose a sampling-based approximation for systems affected by both parametric and struc-
tural model uncertainty. The approach proposed in this paper separates the prediction horizon in a
dual and an exploitation part. The dual part is formulated as a scenario tree that actively discrimi-
nates among a set of potential models while learning unknown parameters. In the exploitation part,
achieved information is fixed for each scenario, and open-loop control sequences are computed for
the remainder of the horizon. As a result, we solve one optimization problem over a collection
of control sequences for the entire horizon, explicitly considering the knowledge gained in each
scenario, leading to a dual model predictive control formulation.
Keywords: dual control, stochastic adaptive control, nonlinear predictive control

1. Introduction

Model-based control techniques are commonly used to enable complex systems to perform chal-
lenging tasks, however, their performance strongly depends on the model accuracy. Adaptive con-
trol methods address the problem of simultaneous learning and control, avoiding the need for costly
offline (re-)identification. Classic adaptive control is typically based on a single model with para-
metric uncertainty (Åström and Wittenmark, 2008; Sastry et al., 1990). This description can be
insufficient when the effect of the uncertainty is large, and modifies the overall structure of the
model. For such structural uncertainty (Murray-Smith and Johansen, 1997; Narendra and Han,
2011), it is beneficial to highlight several operating modes that, for instance, distinguish nominal
behavior from fault conditions. In multiple-model approaches, a controller is designed to switch
online between a finite number of models representing distinct system behaviors in order to ensure
adequate control under each possible scenario. Available techniques, however, typically estimate
the current operating mode of the system, and switch between pre-defined model-based controllers,
but do not enable active learning about structural uncertainty, or consider the trade-off between sev-
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eral likely models. For a comprehensive review of multiple-model control we refer to (Heirung
et al., 2019).

Active adaptive control schemes explicitly take into account the probing effect that the control
input has on the system, and therefore the knowledge to be gained over structural or parametric
uncertainty. Excitation needed to learn the model is optimally traded-off with the control perfor-
mance when applying dual control (Feldbaum, 1961), for which the exact solution is provided by
stochastic dynamic programming (DP) (Bertsekas, 2017). Due to its computational complexity, de-
veloped techniques revert to approximations, which can be classified into two categories: explicit
and implicit approaches. Explicit techniques (Marafioti et al., 2014; Heirung et al., 2017) generally
introduce a heuristic term in the cost function that drives the input to explore. These methods are
usually computationally efficient, but require extensive expert knowledge and explore heuristically,
e.g. often the entire system is excited for identification regardless of the benefit for the specific task.
Implicit techniques (Tse and Bar-Shalom, 1973; Bayard and Eslami, 1985; Klenske and Hennig,
2016), on the other hand, are based on analytic reformulations that give a theoretically sound ap-
proximation of the original dual control problem, but are usually computationally expensive. Since
implicit methods are developed in a generic framework, they can in principle be applied to a large
class of systems, while ensuring the dual effect as an intrinsic property. We refer to (Mesbah, 2018)
for a more detailed overview of dual control.

In this paper, we develop an implicit dual control scheme, by using a sampling method based
on approximate dynamic programming (ADP), and making use of a rollout approach (Bertsekas,
2017). Samples are used to generate a scenario tree associated with an optimization problem that
provides optimal control sequences for each scenario, taking the gained knowledge explicitly into
account. This formulation gives rise to a dual stochastic model predictive control problem that
builds on ideas included in (Arcari et al., 2019b) and (Hanssen and Foss, 2015), in which similar
schemes are applied to systems linear in the uncertain parameters. In this paper, the formulation is
extended to the important case of systems with uncertainty in both the parameters and in the model
structure. The performance of the approach is shown in a simulation example of an aircraft and
compared to model predictive control (MPC) with passive adaptation.

2. Preliminaries

2.1. Problem Formulation

We consider nonlinear dynamic systems, which are characterized by a finite set of operating modes
M = {M1, . . . ,Mnm}, e.g. corresponding to different failure cases. Each operating modeM ∈M
is associated with a prior probability p(M) of being active, and the system dynamics given mode
M are

M : xk+1 = ΦM (xk, uk)γ
M + wMk , (1)

with state xk ∈ Rnx and control input uk ∈ U ⊆ Rnu , where U defines the input constraints.
Each mode is described by a nonlinear basis function matrix ΦM : Rnx × Rnu → Rnx×nMγ with
associated uncertain parameters γM ∈ RnMγ , which we assume to be distributed according to γM ∼
N (µMγ ,Σ

M
γ ). The system is furthermore subject to additive disturbances wMk ∼ N (0,ΣM

w ), which
we consider zero mean i.i.d. for (notational) simplicity. At each time step k, we assume access to
measurements of the state xk, which are used to identify both the uncertain operating mode M and
the corresponding parameterization γM .

2



DUAL STOCHASTIC MPC

Remark 1 The structural uncertainty description through a collection of modesM is applicable to
a wide range of use cases. This includes, for instance, systems affected by parameters taking discrete
values, multimodal parameter distributions or discretizations of continuous uncertain parameters
which do not allow for an expression in the form of γ in (1).

The considered objective is to find an optimal policy that simultaneously controls the system and
identifies its operating mode and corresponding unknown parameters. For this purpose, we define a
finite-horizon cost

JN̄ (Π, x0) := E
M,γM ,

wM0 ,...,wM
N̄−1

N̄∑
k=0

lk(xk, πk(xk)), (2)

where Π = {π0(·), . . . , πN̄−1(·)} is a policy sequence that we want to optimize by minimizing (2),
N̄ is the length of the overall control task and lk : Rnx × Rnu → R is a potentially time-varying
cost function. As a result, we obtain a finite-horizon stochastic optimal control problem that can be
addressed using dynamic programming (DP), which offers the property of generating dual control
policies. In the following section we provide a DP formulation that handles both parametric and
structural uncertainty, and subsequently outline a tractable approximate DP scheme.

2.2. Stochastic DP with Parametric and Structural Model Uncertainty

In order to address the problem by DP, we provide a formulation in the context of systems with
imperfect state information (Bertsekas, 2017). We define the information vector Ik, expressing the
available information at time step k recursively given a known initial state , i.e. I0 = x0, as

Ik+1 =
[
xTk+1, u

T
k , ITk

]T
.

The information at time step k takes the function of the state in the DP recursion

J∗k (Ik) = min
πk

lk(xk, πk) + E
M,γM ,wMk

[
J∗k+1(Ik+1) | Ik

]
, k = 0, . . . , N̄ − 1 (3)

initialized at J∗
N̄

(IN̄ ) = lN̄ (xN̄ ). The expected value arising in the recursion is computed with
respect to the currently available information Ik, which means that the parameter distribution is
accordingly updated at each time step. When receiving a new state measurement xk+1, which
updates the current information vector to Ik+1, the posterior joint distribution of mode M and γM

is given by:
p(γM ,M | Ik+1) = p(γM | Ik+1,M)p(M | Ik+1),

where p(M | Ik+1) is the probability that modeM is active given the information at time step k+1,
and p(γM |Ik+1,M) is the distribution of the associated parameters. Each component is updated
via Bayesian estimation (Mesbah, 2018):

p(γM | Ik+1,M) =
p(xk+1 |uk, Ik,M, γM )p(γM | Ik,M)

p(xk+1 |uk, Ik,M)
, (4a)

p(M | Ik+1) =
p(xk+1 |uk, Ik,M)p(M | Ik)

p(xk+1 |uk, Ik)
. (4b)
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The parameter update given mode M in (4a) follows Gaussian linear regression, in which the likeli-
hood p(xk+1 |uk, Ik,M, γM ) can be computed from the corresponding Gaussian noise distribution
in (1). The normalization factor p(xk+1 |uk, Ik,M) is subsequently used to evaluate the likeli-
hood of each individual mode in (4b). For details on the Bayesian estimation procedure we refer to
Appendix A in Arcari et al. (2019a).

Remark 2 For long run times N̄ , the formulation above leads to convergence of both the operating
mode and parameter estimate to absolute certainty, due to the accumulated information. This results
in a loss of adaptability, which can be undesired e.g. for fault detection. Convergence can be
avoided, for instance, by introducing process noise on the parameter γM and switching between
modes according to a Markov process, resulting in increased complexity of the estimation in (4), see
e.g. (Maybeck, 1979). As a computationally efficient alternative, we heuristically cap the probability
of each mode, as well as the variance of the parameter estimate.

While DP provides the exact solution to the dual control problem in the case of both parametric
and structural model uncertainty, it is generally tractable only for very small problems (Klenske and
Hennig, 2016). We provide a tractable approximate approach based on (Arcari et al., 2019b), which
we extend to the case of both continuous parameters and structural uncertainty.

3. Dual Stochastic MPC

The proposed formulation is based on a receding horizon implementation of an approximate dy-
namic programming (ADP) strategy. We repeatedly solve an approximation of problem (2) over
a shortened horizon N � N̄ , and apply the first computed control input, i.e. using receding
horizon control. To approximate the receding horizon problem, we furthermore use a rollout ap-
proach (Bertsekas, 2017), and truncate the prediction horizon of length N to L < N . The control
sequence associated with the truncated part of the horizon of length N − L is optimized in open-
loop, as in model predictive control, and defines a suboptimal cost-to-go J̃L(IL). The first part of
the horizon of length L, is solved by approximating the DP recursion (3) using a sampling-based
approach. The expected values arising at each DP iteration in (3) are generally not available in
closed form, even if the Bayesian updates in (4) can be evaluated exactly, e.g. with self-conjugate
distributions (Klenske and Hennig, 2016). For this reason, in Arcari et al. (2019b), expected values
are evaluated as averages over parameter and noise samples. We use a similar idea for handling the
case of both continuous parameters and structural model uncertainty, such that it preserves the dual
properties of the DP policy. In the following subsections, we outline the sampling approach used for
approximating DP along the first L steps of the prediction horizon, which we refer to as dual part,
and we discuss the cost-to-go J̃L(IL) that is solved in the exploitation part, covering the remaining
part of the horizon of length N − L.

3.1. Dual Part

The dual part approximates (3) by computing the expected values as averages over samples of
the noise w and of the parameter γ, weighted by the probability of each mode M . This in-
duces an associated scenario tree depicted in Figure 1, in which each state node xjkk , denoted by
a black circle, generates together with its corresponding input ujkk an associated subtree, where
jk = 1, . . . , (Nsnm)k, k = 0, . . . , L. In each node, at every time step, there are two stages of
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Figure 1: Scenario tree for L = 2: The dual part starts at a given initial condition and evolves,
under a given input sequence, according to the nm = 2 operating modes M1,M2, and
the Ns = 2 noise w and parameter γ samples. The exploitation part further predicts the
trajectory using the current parameter and mode distribution for steps k = 2, . . . , N − 1.

branching. The first considers each potential mode M , while in the second, Ns noise and parameter
samples are realized, generating in total Ns × nm leaf nodes. This procedure is repeated iteratively
along a horizon of length L, resulting in the following update for each state sample

x
jk+1

k+1 = ΦM (x
P (jk+1)
k , u

P (jk+1)
k )γ

jk+1

k + w
jk+1

k , jk+1 = 1, . . . , (Nsnm)k+1 (5)

where the index jk+1 refers to the samples at stage k + 1, and P (·) indicates the parent function.
The sampled state realizations obtained from (5) are used to construct the information vector Ijkk

associated with each node. The dual effect is obtained by using (4) to compute both the distribution
of γ, i.e. p(γM | Ijkk ,M), from which we generate the parameter samples, as well as the probability
of each mode p(M | Ijkk ), which is used to weigh the cost when averaging over all nodes of a time
step. The expected values in (3) are therefore substituted with weighted averages over these samples,
which allows for unnesting the minimizations arising in the DP recursion, and optimizing over all
the control input sequences in the tree at the same time, as was first proposed for handling parametric
uncertainty in Arcari et al. (2019b). Therefore, while the DP recursion is not explicitly carried
out, the input associated with each subtree is optimized while simultaneously considering future
observations, and reacting to the corresponding sampled disturbance realizations, hence providing
dual control. The optimization problem for the dual part is given by

J̃0(I1
0 ) := min

u0,...,uL−1

p̄j0 l0(x1
0, u

1
0)+

1

Ns

Nsnm∑
j1=1

p̄j1 l1(xj11 , u
j1
1 )+· · ·+ 1

NL
s

(Nsnm)L∑
jL=1

p̄jL J̃L(IjLL ), (6)

where uk = {u1
k, . . . , u

(Nsnm)k

k } refers to the collection of inputs for each stage of the problem,
and ujkk ∈ U . The weight p̄jk , assigned to each node, can be recursively obtained using the mode
probability

p̄jk+1
= p(M |IP (jk+1)

k )p̄P (jk+1), k = 0, . . . , L− 1 (7)
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with p̄j0 = 1. Details about the derivation of (6) can be found in Appendix B in Arcari et al. (2019a).

3.2. Exploitation Part

In the exploitation part, we formulate the approximate cost-to-go J̃L(IjLL ) for each scenario, by fix-
ing the information collected until step L. Therefore, the current probability of each operating mode
and its associated parameter distribution remain constant along each scenario in the exploitation
part. Optimizing over these branches corresponds to solving a non-dual stochastic MPC problem

J̃L(IjLL ) = min
u
jL
L ,...,u

jL
N−1

J̃L(IjLL , ujLL:N−1),

J̃L(IjLL , ujLL:N−1) =

nm∑
m=1

p(Mm|IP (jL+1)
L )

(
EγM |M,wML ,...,wMN−1

[
lL(x

P (jL+1)
L , u

P (jL+1)
L )+

+

N−1∑
k=L+1

lk(x
jL+1

k , u
jL+1

k ) + lN (x
jL+1

N ) | IP (jL+1)
L

])
(8)

where the expected value with respect to the current mode probability, given the information at
parent node P (jL+1) with jL+1 = 1, . . . , nm(Nsnm)L, is formulated explicitly. When the cost
function is chosen to be either quadratic or linear, there exist analytic reformulations of the expected
value in (8) with respect to the first two moments of the predicted state. A common approach
consists in considering only mean information, and is generally referred to as certainty equivalence
control, for which we consider (1) evaluated at the state and parameter mean

µ
jL+1
xL+1 = ΦM (x

P (jL+1)
L , u

P (jL+1)
L )µ

P (jL+1)
γL (9a)

µ
jL+1
xk+1 = ΦM (µ

jL+1
xk , u

jL+1

k )µ
P (jL+1)
γL , k = L+ 1, . . . , N − 1 (9b)

where µP (jL+1)
γL is fixed at the value obtained at the last dual step L, and for parent node P (jL+1).

A derivation of the model propagation in terms of state mean and variance information, using a
first-order Taylor approximation of the dynamics around the state mean, is provided in Appendix C
in Arcari et al. (2019a).

3.3. Final Dual MPC Problem

The overall approximate dual control formulation provides a setup in which the two subproblems,
namely the dual and exploitation part, can be merged into one optimization problem that optimizes
over control sequences along the whole prediction horizon of length N , and which can be solved in
a receding horizon fashion:

min
u0, . . . ,uN−1

L−1∑
k=0

1

(Ns)k

(Nsnm)k∑
jk=1

p̄jk lk(x
jk
k , u

jk
k ) +

1

(Ns)L

(Nsnm)L∑
jL=1

p̄jL J̃L(IjLL , ujLL:N−1)

s.t. (5) k = 0, . . . , L− 1,

γjkk drawn from P(γM |M, Ijkk ) k = 0, . . . , L− 1,

(7) k = 0, . . . , L− 1,

(9) k = L, . . . , N − 1,

ujkk ∈ U k = 0, . . . , N − 1

(10)
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Parameter samples γjkk are generated online as affine transformations of samples from a standard
normal distribution, using exact mean and covariance provided by (4a), and can be drawn before
optimization, such that standard solvers for gradient-based optimization can be used.

Remark 3 The formulation of problem (10) offers the possibility to use deferred dual steps, i.e.
inserting dual steps after a number of exploitation steps. This is useful for instance when the system
requires several time steps to achieve good excitation, such that identification later in the prediction
can be significantly more informative.

4. Simulation Example

The following example demonstrates the developed dual MPC (DMPC) for the problem of control-
ling an aircraft to a desired altitude, with a reference change of 50 m. The nominal operating mode
of the system follows the continuous-time linearized longitudinal dynamics of the Cessna Citation
aircraft in (Maciejowski, 2002). The state of the system xk describes the evolution of the angle
of attack, the pitch angle, the pitch rate and the altitude. The input uk corresponds to the elevator
angle, and is constrained to lie between±0.2 rad. As a simulation scenario, we consider the case in
which a fault occurs to the actuator some time before the reference change, leading to a decrease in
gain of 75%. We identify two operating modes of the system withM1 being nominal andM2 being
the fault mode, each with a corresponding uncertain parameter γM describing the actuator gain

M : xk+1 = Axk + γMBuk + wk, M ∈ {M1,M2}

where A,B are the discretized system matrices using a sampling time Ts = 0.2 s. We assume
that γ2 is subject to larger uncertainty than γ1, as it is hard to know a priori how much loss in
gain has occurred. For this reason we choose the prior distribution for each parameter as γ1 ∼
N (0.95, (0.03)2) and γ2 ∼ N (0.4, (0.1)2). Both modes are subject to additive process noise
wk ∼ N (0,Σw), with Σw = diag([(0.01)2, (0.01)2, (0.1)2, (0.01)2]). Compared with the use of a
unimodal parameter distribution with a single mode, explicitly considering a failure case provides
faster model identification, as shown for instance in (Boskovic and Mehra, 1999). We generate a
DMPC with dual lookahead L = 1, nm = 2 operating modes, and Ns = 2 noise and parameter
realizations, which result in Ns × nm = 4 scenarios, and the overall prediction horizon is N = 20.
The cost function is quadratic, and the corresponding weights on state and input are chosen as
Q = diag([0, 0, 0, 1]) and R = 1000 respectively. We compare the DMPC with a non-dual, passive
adaptive controller, referred to as CEMPC. This is based on a certainty equivalence approach, i.e.
a deterministic receding horizon controller that computes open-loop sequences, and in which the
probability of the operating mode and the underlying distribution of the associated unknown param-
eter are updated in closed-loop following (4). Figure 2 shows the performance of both controllers
for the specified task, where the first dashed line refers to the fault occurring at time step k = 20,
and the second dashed-dotted line corresponds to the reference change at time step k = 60. For
DMPC, the elevator input (top right) explores aggressively as soon as the reference change enters
the prediction horizon at time step k = 40, and displays goal-oriented control, i.e. fast identifi-
cation of a fault ensuring adequate performance by initiating the pitching maneuver early. On the
other hand, the non-dual CEMPC input does not excite the system sufficiently in advance, causing
input saturation and late response to the reference change. Suboptimality of this behavior is quan-
tified in terms of the closed-loop cost averaged over 200 noise realizations as JDMPC = 52.5 and
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Figure 2: Altitude reference change. Each plot depicts the DMPC (in red) and CEMPC (in blue)
performance averaged over 200 noise realizations, for which the median is highlighted in
bold. The shaded area around the median is bounded by the 5 and 95 percent quantiles.
Top left: altitude state trajectory. Top right: elevator input. Bottom left: nominal mode
probability. Bottom right: parameter mean for both modes.

JCEMPC = 62.65. The probability of the nominal mode (bottom left) in the DMPC shifts in one
time step at k = 40 to p(M1) = 0.05, which corresponds to the chosen lower bound (cf. Remark 2).
The DMPC bimodal distribution defined by the two parameters γ1 and γ2 starts to adapt due to in-
troduced excitement at k = 40 towards the true parameter γ2 = 0.25, associated with the fault
mode active at the reference change. Convergence of µ1

γ slows down as the aircraft approaches the
reference since input excitation decreases, i.e. further identification is no longer needed. Similarly,
the estimate for γ2 stagnates due to little excitation, but would eventually converge to 0.25. The
DMPC controller therefore provides rapid identification of the fault condition, and of the specific
loss of the actuator gain.

5. Conclusion

We have presented an approximate dual MPC approach for active learning and control of systems
affected by parametric and structural uncertainty. The formulation is based on a scenario tree ap-
proach, constructed by sampling the noise and the unknown parameters associated to each operating
mode of the system. The aircraft control example illustrates faster identification of the active mode
and of the unknown parameters, while ensuring a smooth maneuver towards the desired altitude.
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