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Abstract

Instruction tuning, a specialized technique to001
enhance large language model (LLM) perfor-002
mance via instruction datasets, relies heavily on003
the quality of the employed data. Existing qual-004
ity improvement methods alter instruction data005
through dataset expansion or curation. How-006
ever, the expansion method introduces the risk007
of data deficiency and redundancy, potentially008
compromising the correctness and accuracy of009
the LLM’s knowledge, while the curation ap-010
proach confines the LLM’s potential to the orig-011
inal dataset. Our aim is to surpass the original012
data quality without confronting these short-013
comings. To achieve this, we propose LIFT014
(LLM Instruction Fusion Transfer), a novel015
and versatile paradigm designed to elevate the016
instruction quality to new heights. LIFT strate-017
gically broadens data distribution to encompass018
more high-quality subspaces and eliminates re-019
dundancy, concentrating on high-quality seg-020
ments across overall data subspaces. Exper-021
imental results demonstrate that, even with a022
limited quantity of high-quality instruction data023
selected by our paradigm, LLMs not only con-024
sistently uphold robust performance across nat-025
ural language understanding and code genera-026
tion tasks but also surpass many state-of-the-art027
results, highlighting the significant improve-028
ment in instruction quality achieved by our029
paradigm.030

1 Introduction031

In recent years, Large Language Models (LLMs)032

have gained prominence for their remarkable effec-033

tiveness in natural language comprehension tasks034

(OpenAI, 2023; Yang et al., 2023; Qi et al., 2023).035

High-quality pretrained LLMs are readily available,036

facilitating their customization for versatile appli-037

cations (Wei et al., 2021; Huang et al., 2023). One038

popular fine-tuning approach, known as instruction039

tuning (Wei et al., 2022; Ouyang et al., 2022), in-040

volves fine-tuning pre-trained LLMs using datasets041

accompanied by natural language instructions. Its042

relative simplicity and affordability make it a pre- 043

ferred method for improving LLMs’ performance 044

on specific tasks. 045

The quality of current instruction datasets, 046

whether manually crafted or generated by LLMs, 047

often falls short of the desired standard. Human- 048

crafted datasets depend on human annotators to 049

generate a substantial corpus with human instruc- 050

tions, resulting in a lack of detailed context and ex- 051

planation within the instruction dataset. Addition- 052

ally, these datasets may contain vague or subjective 053

descriptions. On the other hand, LLM-generated 054

datasets utilize advanced LLMs to generate or com- 055

plete instructions and responses but lack supervi- 056

sion regarding the diversity and quality of the gen- 057

erated data. 058

The concern surrounding the quality of instruc- 059

tion datasets has prompted researchers to explore 060

methods aimed at enhancing their overall quality. 061

Current approaches to instruction quality enhance- 062

ment can be broadly categorized into two groups: 063

data expansion and data curation. Data expansion 064

methods involve leveraging advanced LLMs with 065

a suitable prompt template to generate new instruc- 066

tions and corresponding answers based on the orig- 067

inal dataset (Xu et al., 2023; Luo et al., 2023; Taori 068

et al., 2023). On the other hand, data curation meth- 069

ods entail the meticulous selection of high-quality 070

data from the original dataset, employing specific 071

quality evaluation criteria (Zhou et al., 2023; Du 072

et al., 2023). 073

However, both existing methods exhibit limita- 074

tions that hinder their ability to further enhance 075

performance. Expansion methods introduce redun- 076

dancy into the dataset (Xu et al., 2023; Luo et al., 077

2023) as the newly generated instructions typically 078

derive from the original ones. While the effec- 079

tiveness of curation methods heavily relies on the 080

quality of the original dataset, limiting the quality 081

of the curated dataset (Du et al., 2023; Li et al., 082

2023a). These limitations necessitate a reliance on 083
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specific expansion or curation strategies to achieve084

superior performance on certain benchmarks, at085

the expense of losing the ability to generalize the086

approach.087

In this paper, we delve into the distribution of088

instruction quality to address the mentioned issues.089

We posit that both current methods essentially func-090

tion as data distribution transfers: expansion en-091

ables the distribution to cover a broader range of092

data subspaces, typically characterized by higher093

quality, while curation concentrates the distribution094

on a higher-quality subset of the original dataset.095

Building on this perspective, we propose a novel096

paradigm for improving LLM instruction quality,097

termed LIFT (LLM Instruction Fusion Transfer).098

LIFT is designed to amalgamate the advantages099

of data expansion and curation, mitigating their100

shortcomings to generate a diverse and high-quality101

dataset while significantly reducing quantity. Our102

paradigm consists of two phases. Firstly, we em-103

ploy "Dataset Distribution Expansion", broadening104

the data distribution to cover more high-quality sub-105

spaces. Then, we utilize "Dataset Variety and Qual-106

ity Curation" to eliminate redundancy and densify107

the data distribution, focusing on the high-quality108

segments of overall data subspaces. The data dis-109

tribution transfer patterns of three methods are de-110

scribed in Fig.1.111
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Figure 1: Different Instruction Data Distribution Trans-
fer Patterns.

To validate the effectiveness of LIFT, we em-112

ploy the finally curated instructions for fine-tuning113

open-source LLMs. Through extensive experi-114

ments evaluating the performance of these fine-115

tuned LLMs in both natural language understand-116

ing (NLU) tasks and code generation tasks, the117

results consistently demonstrate that LLMs achieve118

robust SOTA or nearly-SOTA performance even119

with a limited quantity of high-quality instruction120

data. Furthermore, they even outperform models121

trained on larger datasets on certain benchmarks.122

To summarize, our main contribution are: 123

• We propose a highly effective and versatile 124

paradigm, LIFT, which challenges the conven- 125

tional single-mode enhancement for instruc- 126

tion datasets. LIFT rethinks data quality by 127

focusing on data distribution transfer. It aims 128

to elevate the quality of the instruction dataset 129

to new heights, overcoming redundancy and 130

quality limitations present in current methods. 131

• Throughout the expansion and curation phases 132

of the paradigm, we prioritize both variety and 133

quality as essential goals for quality enhance- 134

ment. Unlike existing works that concentrate 135

on only one stage, we posit that considering 136

these characteristics at both stages is crucial 137

for incorporating more high-quality data. 138

• Our extensive experiments demonstrate that 139

with a significantly reduced quantity of high- 140

quality instructions selected by our paradigm, 141

LLMs consistently achieve SOTA perfor- 142

mance on many NLU tasks and code genera- 143

tion tasks. This provides valuable insights, 144

suggesting that a selective approach based 145

on the principles of data distribution trans- 146

fer is not only more effective but also cost- 147

effective compared to the indiscriminate feed- 148

ing of large volumes of data. 149

2 Related Works 150

The current methods for enhancing instruction qual- 151

ity can be broadly categorized into two types based 152

on how data is manipulated: dataset expansion and 153

curation. 154

2.1 Instruction Dataset Expansion 155

The original instruction dataset often consists of 156

concise and straightforward prompts, yielding sim- 157

plistic responses with limited semantic informa- 158

tion. To address this limitation, researchers have 159

proposed using LLMs to expand these original in- 160

structions to introduce more high-quality data. Al- 161

paca (Taori et al., 2023) suggested adopting the 162

self-instruct method, utilizing ChatGPT to generate 163

data for fine-tuning. Vicuna (Chiang et al., 2023) 164

employed data collected from ShareGPT.com, a 165

platform where users share their conversations with 166

ChatGPT, for fine-tuning their models. WizardLM 167

(Xu et al., 2023) and WizardCoder (Luo et al., 168
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2023) introduced the Evol-Instruct method, involv-169

ing the evolution of existing instruction data to170

generate more diverse and complex data.171

2.2 Instruction Dataset Curation172

One challenge in the instruction tuning process173

arises from the observation that fine-tuning with174

larger expanded instruction datasets does not al-175

ways guarantee better results, yet demanding more176

computational resources. To address this, some re-177

searchers have focused on filtering out low-quality178

data during the fine-tuning stage. LIMA (Zhou179

et al., 2023) demonstrates that fine-tuning a robust180

pre-trained language model on 1000 high-quality,181

human-curated examples can yield remarkable and182

competitive results. Instruction Mining (Cao et al.,183

2023) introduces a linear rule for selecting high-184

quality instruction data, eliminating the need for hu-185

man annotation. Du et al. (2023) present a model-186

oriented data selection (MoDS) approach, which187

selects instruction data based on new criteria con-188

sidering three aspects: quality, coverage, and ne-189

cessity. Li et al. (2023a) introduce a self-guided190

methodology for LLMs to autonomously discern191

and select cherry-picked samples from vast open-192

source datasets, effectively minimizing manual cu-193

ration and potential costs.194

3 LLM Instruction Fusion Transfer195

3.1 Data Distribution Transfer196

Current methods for enhancing instruction quality,197

either through data expansion or curation, do en-198

hance the original dataset to some extent. However,199

the effectiveness of these methods is constrained by200

inherent limitations. To scrutinize these limitations201

and explore innovative approaches to break from202

conventional enhancement modes, we propose a203

novel perspective for rethinking instruction data204

quality: data distribution transfer.205

3.1.1 Rethinking Existing Methods from Data206

Distribution Perspective207

Our hypothesis is that, during the process of en-208

hancing instruction quality, there is a transfer of209

data distribution from the original dataset to the210

final enhanced dataset. This transfer increases the211

quantity or proportion of high-quality data. In212

data expansion, generating high-quality instruc-213

tions based on the original ones effectively ex-214

tends the coverage of the high-quality data sub-215

space within the original data distribution, thereby216

increasing the quantity of high-quality data in the 217

final distribution. On the other hand, in data cura- 218

tion, by using carefully designed quality evaluation 219

metrics, low-quality components are removed from 220

the final distribution, directing the distribution to 221

concentrate on high-quality data and increasing its 222

proportion in the final distribution. 223

From this perspective, we can delve into the ori- 224

gin of limitations in these processes. For expansion, 225

the areas around the original instructions may con- 226

tain similar ones, leading to redundancy in the final 227

distribution. Moreover, low-quality instructions 228

and those derived from them persist in the final dis- 229

tribution, maintaining a proportion similar to the 230

original dataset. On the other hand, curation se- 231

lects a portion of high-quality instructions from the 232

original dataset, resulting in a decrease in the total 233

number of high-quality instructions. If the origi- 234

nal dataset has a limited number of high-quality 235

instructions, the quality of the curated dataset will 236

significantly decrease. 237

3.1.2 Fusing Expansion and Curation 238

Analyzing the data distribution transfer patterns 239

of expansion and curation, we propose that their 240

integration can effectively address their individual 241

limitations. Data expansion broadens subspaces, 242

enabling the curation method to explore beyond 243

the original distribution. Conversely, data curation 244

assists in identifying duplicates and low-quality 245

items from the expansion, contributing to a more 246

concentrated and refined distribution. 247

Building on these insights, we introduce a novel 248

paradigm called LIFT (LLM Instruction Fusion 249

Transfer). Comprising two phases, this paradigm 250

orchestrates the distribution of instruction data as 251

follows: in the "Dataset Distribution Expansion" 252

phase, we broaden the data distribution to encom- 253

pass more diverse and high-quality subspaces, ac- 254

knowledging the presence of duplications at this 255

stage. Subsequently, in the "Dataset Variety and 256

Quality Curation" phase, we systematically elim- 257

inate redundancy and low-quality elements, cre- 258

ating a densified distribution for the final curated 259

dataset. In contrast to the existing works, which 260

require intricate strategies to focus on the original 261

dataset, our paradigm offers a versatile perspective 262

to surpass the limitations of the original dataset’s 263

quality. These two phases are intricately connected, 264

ensuring a smooth transfer of data from the original 265

dataset to the final curated dataset. 266
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3.2 Paradigm LIFT267

As described in Fig.2, our paradigm LIFT follows268

a two-stage structure. In both stages, we value the269

diversity and quality as the crucial criterion and270

we believe the "Dataset Distribution Expansion"271

and "Dataset Variety and Quality Curation" equally272

contribute to the quality enhancement.273
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Figure 2: Instruction Dataset Curation Paradigm LIFT

3.2.1 Dataset Distribution Expansion274

The goal of dataset distribution expansion is to275

encompass a more diverse and high-quality range276

of data within the distribution, while ensuring a277

certain distance from the original instructions. To278

achieve this, it is crucial to employ carefully de-279

signed instruction-generation prompts. Drawing280

inspiration from the instruction rewrite method pro-281

posed by Xu et al. (2023) and Luo et al. (2023), our282

approach focuses on generating diverse and intri-283

cate instructions. We guide GPT to act as a prompt284

re-writer, generating challenging instructions based285

on specified generation rules. For further details, re-286

fer to Appx.A. We iterate this process for k rounds,287

merging the expanded datasets with the original288

dataset to create the final expanded dataset. We289

also compare the quality of the original and ex-290

panded dataset in Appx. B.291

3.2.2 Dataset Variety and Quality Curation292

An effective curation method ought to eliminate du-293

plicated or low-quality instructions from the orig-294

inal dataset, while preserving representative and295

high-quality ones. To meet this criterion, curation296

should be approached with meticulous attention to297

both variety and quality.298

Variety Curation. Current variety curation typi-299

cally involves clustering methods such as k-means300

or spectral clustering (Du et al., 2023; Wei et al.,301

2023) . We argue that this approach may lack gener-302

alizability and be less effective when dealing with303

new datasets. This is because these methods re- 304

quire prior knowledge of the number of clusters, 305

and choosing cluster numbers that are either too 306

large or too small may reduce their effectiveness in 307

selecting representatives. 308

Our variety curation method take another route, 309

as depicted in Fig.3. Initially, GPT generates em- 310

beddings with 1536 dimensions for each item, we 311

aim to reduce the embedding dimension and de- 312

vise a method to represent data differentiation. We 313

achieve this by calculating the covariance matrix 314

of the given features and performing eigenvalue 315

decomposition on the covariance matrix to obtain 316

eigenvalues and eigenvectors. We then choose the 317

top k eigenvectors corresponding to the largest k 318

eigenvalues, where k is the target reduced dimen- 319

sion. 320

This procedure aids us in analyzing the distribu- 321

tion of data in orthogonal space. To simultaneously 322

maintain data diversity while utilizing fewer data 323

cases, we perform balanced sampling of the data 324

in orthogonal space. Starting from each eigenvec- 325

tor and guided by the corresponding eigenvalues. 326

We sample more data from significant eigenvec- 327

tors than those less significant ones. This approach 328

ensures that while reducing data cases, the distribu- 329

tion of data embeddings remains rational, thereby 330

preserving data diversity. 331

Quality Curation. Following variety curation is 332

the quality curation phase, where we discern high- 333

quality instruction data. Rating instruction quality 334

is challenging due to the lack of official quantita- 335

tive metrics. Employing professional annotators 336

for scoring is impractical due to dataset size and 337

costs. Therefore, we use GPT as an instruction 338

scorer, generating GPT quality scores across four 339

dimensions: accuracy, explanation, clarity, and dif- 340

ficulty, with proportions based on their contribu- 341

tions to overall quality. The guiding template for 342

GPT scores is in Appx.C. 343

To address the problem that GPT consistently as- 344

signs high scores to all instructions, we implement 345

the following steps for more differentiated scores: 346

first we instruct GPT to provide a comprehensive 347

rationale along with a score yields more reasonable 348

results. Mandating GPT to articulate its reason- 349

ing offers an additional self-checking opportunity. 350

Secondly, we present manually scored examples 351

as guidelines. Offering three examples with scores 352

representing poor, average, and high quality helps 353

GPT recognize low-quality data and understand 354
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Figure 3: Variety Curation with Dimension Reduction and Row Variances

how to appropriately score it.355

We also incorporate A positively correlated map-356

ping function derives a lengthwise semantic score357

based on instruction data’s length. Combining GPT358

quality score and lengthwise semantic score pro-359

duces the final quality score. High-quality scores360

compose the final quality-curated dataset, as illus-361

trated in Fig.4. Appx.D presents total quality score362

distributions.363

4 Experiments364

To validate the effectiveness of our paradigm, we365

apply our method to two extensively studied tasks:366

Natural Language Understanding (NLU) tasks and367

Code Generation tasks, where we conduct compre-368

hensive experiments to evaluate the performance369

of our paradigm.370

4.1 Experiments Setup371

4.1.1 Basic Foundation Models and Base372

Datasets373

We adopt distinct foundation models and base374

dataset configurations for the two tasks under con-375

sideration. In NLU tasks, we employ founda-376

tion models Mistral 7B (Jiang et al., 2023) and377

LLaMA2 7B (Touvron et al., 2023b), known for378

their exceptional performance relative to other 7B379

models and ability to surpass larger models in spe-380

cific benchmarks. Our base dataset for NLU tasks381

is the Open Platypus dataset (Lee et al., 2023), com-382

prising 25k curated examples focused on enhancing383

LLMs’ STEM and logic knowledge. While in the384

realm of code generation tasks, we harness the ca-385

pabilities of StarCoder 15B (Li et al., 2023b) and386

CodeLLaMA (Rozière et al., 2023), both widely-387

utilized code LLMs trained on a diverse array of388

programming-related sources. Our base dataset,389

Code Alpaca (Chaudhary, 2023), consists of 20k390

instruction-following code instances for fine-tuning 391

Code LLMs. 392

We employ both GPT-3.5 and GPT-4 as assis- 393

tants for expansion and quality curation due to our 394

paradigm’s flexibility in selecting an assistant. For 395

comprehensive implementation details pertaining 396

to instruction tuning in both tasks, please refer to 397

Appx. E. 398

4.2 Benchmarks and Metrics 399

We have chosen six widely-recognized benchmarks 400

spanning both tasks. In the domain of NLU tasks, 401

we have incorporated HellaSwag, ARC Challenge, 402

TruthfulQA, and MMLU. For code generation 403

tasks, our selection encompasses HumanEval and 404

MBPP. Detailed information about these bench- 405

marks is provided in Appx. F.1. 406

For NLU tasks, we adopt accuracy as the metric, 407

aligning with the methodology embraced by other 408

researchers. This metric is calculated as the number 409

of correct questions divided by the total number of 410

questions. 411

In code generation tasks, our metric of choice is 412

pass@k, defined in the same manner as by Chen 413

et al. (2021). The formula for calculating pass@k 414

is presented as: 415

pass@k := Eproblems[1−
C(n− c, k)

C(n, k)
] 416

Here, n represents the number of generated an- 417

swers for each question, and c denotes the number 418

of correct answers for each question. In our ex- 419

periments, we specifically choose pass@1 as the 420

designated metric. 421

4.3 Experiment Results 422

To validate the effectiveness of our paradigm, we 423

conduct comparisons between models fine-tuned 424
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on LIFT’s final curated dataset and other SOTA pre-425

trained LLMs as well as instruction-tuned LLMs426

across both tasks. The details of the selected mod-427

els for comparison are provided in Appx. F.2.428

4.3.1 NLU Tasks429

Tab.1 presents the NLU task comparison results.430

Notably, our final 7B instruction-tuned Mistral431

model consistently outperforms other 7B models432

on all benchmarks. Comparing with 13B models,433

our 7B model even outperforms in all benchmarks434

except TruthfulQA. With only 7 billion parameters435

and 15k instructions, significantly fewer than other436

instruction-tuned models, our model achieves the437

highest average benchmark score at 0.656.438

4.3.2 Code Generation Tasks439

As illustrated in Table 2, our paradigm’s fine-tuned440

model consistently outperforms most models in441

code generation tasks. Although our fine-tuned442

CodeLLaMA model trails the current state-of-the-443

art 15B model, WizardCoder, by approximately444

2% on both benchmarks, it is noteworthy that our445

paradigm utilizes only about one-eighth of the in-446

struction data employed by WizardCoder. Con-447

sidering the disparity in the size of the instruction448

dataset, our paradigm demonstrates robust perfor-449

mance, highlighting its capability to achieve per-450

formance levels close to the state-of-the-art with a451

significantly smaller amount of data.452

We also compared our paradigm’s final curated453

dataset with a randomly selected dataset of the454

same size in both tasks. The results demonstrate455

that merely reducing the dataset quantity, without456

accounting for the diversity and quality in the per-457

spective of data distribution, does not lead to per-458

formance improvement. These experiments affirm459

our paradigm’s versatile effectiveness in NLU and 460

code generation tasks. The paradigm excels in gen- 461

erating diverse, high-quality data, leveraging it in 462

the instruction-tuning process to achieve SOTA or 463

near-SOTA performance. 464

4.4 Paradigm Ablation Experiments Results 465

Our paradigm ablation experiment begins with the 466

original base dataset serving as the input for LIFT. 467

Subsequently, we generate the expanded dataset, 468

variety-curated dataset, and the quality-curated 469

dataset. These datasets are then utilized for fine- 470

tuning the basic foundation models. We assess the 471

benchmark performance of these models to vali- 472

date the effectiveness of each component of our 473

paradigm. Besides the paradigm ablation experi- 474

ments discussed here, we also provide the compo- 475

nent ablation results in Appx. G. 476

4.4.1 NLU Tasks 477

Tab.3 presents our paradigm experiment results on 478

four NLU benchmarks. For data expansion, we 479

iteratively perform the expansion step 3 times, re- 480

sulting in a 100k size instruction dataset. 481

The table results affirm our paradigm’s effective- 482

ness in NLU. Despite a reduction in size by 10k 483

instances compared to the original dataset, our fi- 484

nal curated dataset maintains robust performance, 485

showing improvements ranging from nearly 2% to 486

4% on each benchmark. Furthermore, we observe 487

a consistent improvement in model performance on 488

both benchmarks after each step of the paradigm. 489

This implies that the instruction’s quality is steadily 490

increasing at each stage. 491

It’s crucial to note that the Open Platypus (Lee 492

et al., 2023) dataset for NLU tasks is already care- 493

fully curated. The results for this dataset under- 494
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Table 1: LLMs Performance Comparison in NLU Tasks

Model Data Size HellaSwag ARC TruthfulQA MMLU
LLaMA-7B

Pretrained

0.778 0.509 0.343 0.357
LLaMA-13B 0.809 0.561 0.395 0.476
LLaMA2-7B 0.771 0.432 0.333 0.444
LLaMA2-13B 0.807 0.488 0.419 0.556
Mistral-7B 0.823 0.602 0.426 0.627
Vicuna-7B 70k conv. 0.775 0.537 0.489 0.456
Vicuna-13B 70k conv. 0.801 0.530 0.518 0.513
WizardLM-7B 70k inst. 0.771 0.516 0.447 0.427
WizardLM-13B 70k inst. 0.777 0.572 0.505 0.523
Platypus2-13B 25k inst. 0.826 0.613 0.449 0.567
Camel-Platypus2-13B 25k inst. 0.836 0.608 0.496 0.565
Stable-Platypus2-13B 25k inst. 0.822 0.627 0.525 0.583
LLaMA2-7B Fine-tuned 15k inst. 0.786 0.545 0.347 0.574
Mistral-7B Fine-tuned 15k inst. 0.820 0.607 0.438 0.625
LLaMA2-7B w/ LIFT(GPT-3.5) 15k inst. 0.794 0.566 0.443 0.607
Mistral-7B w/ LIFT(GPT-3.5) 15k inst. 0.839 0.613 0.485 0.644
LLaMA2-7B w/ LIFT(GPT-4) 15k inst. 0.802 0.576 0.456 0.612
Mistral-7B w/ LIFT(GPT-4) 15k inst. 0.843 0.644 0.491 0.645

Table 2: LLMs Performance Comparison in Code Gen-
eration Tasks (pass@1)

Model Data Size HumanEval MBPP
CodeT5+

-*
0.309 -

CodeLLaMA 0.360 0.470
StarCoder 0.336 0.436
InstructCodeT5+ 20k 0.350 -
WizardCoder 78k 0.573 0.518
StarCoder Fine-tuned 10k 0.381 0.431
CodeLLaMA Fine-tuned 10k 0.393 0.465
StarCoder w/ LIFT(GPT-3.5) 10k 0.546 0.491
CodeLLaMA w/ LIFT(GPT-3.5) 10k 0.549 0.493
StarCoder w/ LIFT(GPT-4) 10k 0.550 0.495
CodeLLaMA w/ LIFT(GPT-4) 10k 0.551 0.498
* Pretrained models

score that our paradigm is effective not only for495

LLM-generated datasets but also in elevating the496

quality of already high-quality datasets, contribut-497

ing to improved fine-tuned model performance498

while reducing the dataset size.499

4.4.2 Code Generation Tasks500

Tab.4 provides an overview of the paradigm exper-501

iments conducted on code generation tasks. For502

data expansion, we repeatedly perform the expan-503

sion step 2 times, resulting in a 60k size instruction504

dataset.505

The table illustrates our paradigm leads to a sig-506

nificant enhancement in the performance of the507

fine-tuned model across both benchmarks. Notably,508

our final curated dataset, although roughly half the509

size of the original dataset, outperforms the lat-510

ter by nearly 15% on the HumanEval and 3% on 511

the MBPP. The observed pattern of performance 512

improvement in NLU tasks also extends to code 513

generation tasks, where each step contributes to 514

enhancing data quality. This further underscores 515

that each component of our paradigm plays a vital 516

role in elevating the overall instruction quality. 517

5 Discussions 518

5.1 Composition of The Final Curated Dataset 519

We take a step further to analyze the composition 520

of the final curated dataset, unraveling the origins 521

of diverse and high-quality instruction items. Fig.5 522

presents the source proportions of the final curated 523

dataset for NLU and code generation tasks, yield- 524

ing several noteworthy conclusions. 525

For LLM-generated instruction datasets like 526

Code Alpaca, only a small proportion of the final 527

dataset emanates from the original dataset (Fig.5b). 528

The majority of high-quality data is derived from 529

our paradigm’s first step—the expanded dataset. 530

This emphasizes our paradigm’s significant role in 531

generating and covering a diverse and high-quality 532

dataset, especially for datasets without meticulous 533

curation. 534

In contrast, for a curated and high-quality in- 535

struction dataset like Open Platypus, the portion of 536

the original dataset in the final dataset increases 537

(Fig.5a). The proportions of the final curated 538
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Table 3: Paradigm Ablation Experiment Results in NLU Tasks (Foundation Model: Mistral)

Dataset Type Dataset Size HellaSwag ARC Challenge TruthfulQA MMLU
Base Platypus Dataset 25k 0.828 0.615 0.445 0.626
Data Expansion 100k 0.833 0.624 0.447 0.631
Variety Compress 20k 0.840 0.633 0.456 0.642
Quality Compress 15k 0.843 0.644 0.491 0.645

Table 4: Paradigm Ablation Experiment Results
(Pass@1) in Code Generation Tasks (Foundation Model:
Code LLaMA)

Dataset Type Size HumanEval MBPP
Base Dataset 20k 0.410 0.467
Data Expansion 60k 0.535 0.488
Variety Curation 12k 0.542 0.490
Quality Curation 10k 0.551 0.498

dataset in NLU tasks reveal an almost equal distri-539

bution among the four sub-datasets, demonstrating540

that even for an initially high-quality dataset, our541

paradigm also excels in generating and selecting542

numerous high-quality data points based on the543

original dataset.544

These conclusions affirm that the bulk of the final545

dataset primarily comprises data from the expanded546

dataset. While proportions of original dataset data547

contributing to the final dataset may vary based on548

the original dataset’s quality, our paradigm consis-549

tently showcases its ability to extract high-quality550

segments from the original dataset and augment551

them with diverse and high-quality data subspaces.552

5.2 Limitations and Future Works553

The main limitation of our paradigm lies in the554

subjectivity of our quality evaluation process, as555

it heavily relies on GPT quality evaluation. De-556

spite we carefully design some criteria, additional557

statistical analysis beyond the length factor could558

also enhance the precision of high-quality data se-559

lection. Future work will involve integrating more560

comprehensive metrics to provide a more nuanced561

assessment of instruction quality.562

6 Conclusions563

This paper presents a novel paradigm, LIFT, that564

departs from the traditional single-mode quality en-565

hancement approach for instruction datasets, opting566

for a fresh perspective on data quality through data567

distribution transfer. By combining the strengths of568

data expansion and curation while mitigating their569

(a) Source of the final curated 15k dataset in NLU tasks

(b) Source of the final curated 10k dataset in code generation
tasks

Figure 5: Composition of The Final Curated Dataset

limitations, LIFT significantly enhances elevate the 570

quality of the instruction dataset to new heights. Ex- 571

tensive experimental results demonstrate that our 572

fine-tuned models consistently attain either SOTA 573

or nearly SOTA performance in both NLU and 574

code generation. These experiments underscore 575

the paradigm’s versatile effectiveness, showcasing 576

its capacity to encompass and select diverse and 577

high-quality data. The integration of the curated 578

data into the instruction-tuning process empowers 579

LLMs to achieve superior performance across vari- 580

ous tasks and benchmarks. 581
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A GPT Prompt Templates For Data810

Expansion811

SYSTEM MESSAGE:812

I want you act as a professional prompt813

refinement specialist.814

USER PROMPTS:815

Your task is to transform a provided816

prompt into a more intricate version817

utilizing a structured data format,818

introducing complexity to challenge819

well-known AI systems. However, ensure820

that the revised prompt remains821

reasonable, comprehensible, and capable822

of being understood and addressed by823

humans.824

You can enhance the complexity through825

various methods, including but not826

limited to:827

(1) The depth and breadth of the inquiry828

can be increased.829

(2) Replace general concepts with more830

specific concepts.831

(3) If original problem can be solved832

with just a few simple thinking processes,833

you can rewrite it to explicitly request834

multiple-step reasoning.835

836

#Instruction#837

{Instruction}838

#Input#839

{Input}840

B Assessment of Original and Expanded841

Dateset Quality842

Assessing quality distribution in instruction843

datasets is challenging, with no widely accepted844

tool for this quantification. Our method is compar-845

ative evaluation: randomly selecting a data case846

from the original dataset, we pair it with one of its847

augmented counterparts and shuffle the order. Vol-848

unteers evaluate the pair across three dimensions:849

clarity, complexity, and explanation, selecting the850

better one for each dimension. We then calculate851

the proportions of volunteer selections for both852

original and augmented datasets. See the Fig. 6853

below for specific metrics.854

C GPT Quality Score Template855

SYSTEM MESSAGE:856

We would like to request your feedback857

on the performance of an AI assistant.858

Figure 6: Quality Assessments of the Original and Ex-
panded datasets

The assistant provides outputs for 859

instruction and input (if any). 860

USER PROMPTS: 861

Please score the response to the 862

instruction and input according to the 863

following criteria. 864

The maximum score is 100 points, and it 865

consists of 4 parts: 866

1. Clarity (15 points): Assign a score 867

based on how effectively the instruction 868

conveys the problem. High-quality, clear 869

questions score higher. 870

2. Difficulty (25 points): Rate the 871

complexity of the instruction's problem. 872

Higher difficulty should receive a higher 873

score. 874

3. Explanations (25 points): Assess if the 875

response includes detailed explanations 876

alongside any code provided. The more 877

comprehensive the explanation, the higher 878

the score. 879

4. Accuracy (35 points): Score the 880

response based on the accuracy and 881

correctness of the solution to the 882

instruction's problem. Higher accuracy 883

should receive a higher score. 884

Here's some examples and socres you can 885

follow: 886

### Example 1: 887

### Instruction: {EXAMPLE INSTRUCTION 1} 888

### Response: {EXAMPLE OUTPUT 1} 889

### Score for Example 1: {SCORE 1} 890

### Example 2: 891

### Instruction: {EXAMPLE INSTRUCTION 2} 892

### Input: {EXAMPLE INPUT 2} 893

### Response: {EXAMPLE OUTPUT 2} 894

### Score for Example 2: {SCORE 2} 895
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### Example 3:896

### Instruction: {EXAMPLE INSTRUCTION 3}897

### Response: {EXAMPLE OUTPUT 3}898

### Score for Example 3: {SCORE 3}899

900

Please score the upcoming Instruction,901

Input and Response based on these examples902

across four dimensions, and then add the903

four scores together to get the total904

score. Try to avoid getting a full score905

as much as possible.906

Please first output a single line907

containing the total score number only.908

In the subsequent line, please provide909

a comprehensive explanation of your910

evaluation, avoiding any potential bias.911

### Instruction:912

{INSTRUCTION}913

### Input:914

{INPUT}915

### Response:916

{OUTPUT}917

D Quality Score Distribution918

We have gathered the quality scores for the variety919

curated dataset following our paradigm, both in920

NLU and code generation tasks. The score distri-921

butions are depicted in Fig.7. Notably, the quality922

scores exhibit an approximately normal distribu-923

tion within the score interval of 60 to 100 for both924

tasks. This observation validates the effectiveness925

of our scoring strategies in discerning low-quality926

data. It should be noted that the minor bumps near927

0 stem from connection errors or OpenAI API call-928

ing ratio constraints, resulting in GPT scores of 0929

for certain instructions.930

E Experiments Implementation Details931

For both foundation models, we conduct training932

on Azure Machine Learning Studio’s cluster 1, uti-933

lizing 4 nodes, each equipped with 8 V100 GPUs934

featuring DeepSpeed Zero-3 (Rajbhandari et al.,935

2019) offload. Specifically, during the fine-tuning936

of Mistral 7B, we employ LoRA (Hu et al., 2021).937

This strategy is chosen for its ability to ensure a938

more steady convergence of loss, resulting in better939

performance. The detailed fine-tuning arguments940

are outlined in Tab.5.941

1https://ml.azure.com/

(a) Quality Score Distribution in NLU Tasks (20k Data)

(b) Quality Score Distribution in Code Generation Tasks (12k
Data)

Figure 7: Quality Score Distribution

F Benchmarks and Compared LLMs 942

F.1 Benchmarks 943

Large language model benchmarks serve as stan- 944

dardized tests to evaluate how well models under- 945

stand, generate, and manipulate human-like lan- 946

guage (Lu et al., 2021; Chen et al., 2021). Below 947

is an introduction to these chosen benchmarks: 948

• HellaSwag (Zellers et al., 2019). HellaSwag 949

is a challenge dataset containing 70k multiple- 950

choice questions for evaluating commonsense 951

Natural Language Inference (NLI). While its 952

questions may be trivial for humans (>95% 953

accuracy), they pose a challenge for state-of- 954

the-art models. 955

• ARC Challenge (Clark et al., 2018). The 956

AI2’s Reasoning Challenge (ARC) dataset is 957

a multiple-choice question-answering dataset 958

containing questions from science exams rang- 959

ing from grade 3 to grade 9. It is split into two 960
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Table 5: Fine-tuning Arguments for StarCoder 15B and
Mistral 7B

Arguments StarCoder Mistral
model_max_length 1024 2048
batch_size 8 8
num_epoch 3 3
learning_rate 2e-5 2e-5
fp16 True True
lora_r - 16
lora_alpha - 32
lora_dropout - 0.05

partitions: Easy and Challenge. The Chal-961

lenge partition consists of 25k questions that962

require reasoning.963

• TruthfulQA (Lin et al., 2022). TruthfulQA964

is a benchmark designed to measure whether965

a language model is truthful in generating an-966

swers to questions. The benchmark comprises967

817 questions spanning 38 categories. Ques-968

tions are crafted so that some humans might969

answer falsely due to false beliefs or miscon-970

ceptions.971

• MMLU (Hendrycks et al., 2020). MMLU972

(Massive Multitask Language Understanding)973

is a new benchmark intended to measure974

knowledge acquired during pretraining. It975

evaluates models exclusively in zero-shot and976

few-shot settings, making it more challenging977

and akin to human evaluation. The bench-978

mark covers 57 subjects across STEM, hu-979

manities, social sciences, and more, ranging980

in difficulty from elementary to advanced pro-981

fessional levels, testing both world knowledge982

and problem-solving ability.983

• HumanEval (Chen et al., 2021). HumanEval984

is utilized to gauge functional correctness in985

synthesizing programs from docstrings. Com-986

prising 164 original programming problems, it987

assesses language comprehension, algorithms,988

and simple mathematics.989

• MBPP (Austin et al., 2021). The MBPP990

(Mostly Basic Python Problems) dataset con-991

sists of around 1,000 crowd-sourced Python992

programming problems. These are designed993

to be solvable by entry-level programmers,994

covering programming fundamentals and stan-995

dard library functionality. In our experiments,996

to align with others, we select 400 questions. 997

F.2 Compared LLMs 998

The selected models for comparison in NLU tasks 999

include: 1000

• LLaMA (Touvron et al., 2023a). LLaMA is 1001

a collection of foundation language models 1002

trained on trillions of tokens from publicly 1003

available datasets. 1004

• LLaMA2 (Touvron et al., 2023b). Llama 2 is 1005

an updated version of Llama, trained on a new 1006

mix of publicly available data. It increased the 1007

size of the pretraining corpus by 40%, doubled 1008

the context length of the model, and adopted 1009

grouped-query attention in training. 1010

• Mistral (Jiang et al., 2023). Mistral is a 1011

state-of-the-art 7B foundational model, fast- 1012

deployed, easily customizable, and supports 1013

English and code with an 8k context length. 1014

It’s also one of the foundation models in our 1015

paradigm experiments. 1016

• Vicuna (Chiang et al., 2023). Vicuna is an 1017

open-source chatbot trained by fine-tuning 1018

LLaMA on 70K user-shared conversations 1019

collected from the ShareGPT website. 1020

• WizardLM (Xu et al., 2023). WizardLM is 1021

instruction fine-tuned on LLaMA with 70k 1022

instruction data generated through the Evol- 1023

Instruct strategy. 1024

• Platypus (Lee et al., 2023). Platypus is a fam- 1025

ily of fine-tuned and merged LLMs achiev- 1026

ing strong performance. It uses Open Platy- 1027

pus as its instruction dataset and applies the 1028

LoRA strategy to train adaptors that can be 1029

merged into different foundation models, cre- 1030

ating many variant models. 1031

The selected models for comparison in code gen- 1032

eration tasks include: 1033

• CodeT5+ & InstructionCodeT5+ (Wang 1034

et al., 2023). CodeT5+ is a new family of 1035

open code LLMs with an encoder-decoder ar- 1036

chitecture trained on various pretraining tasks. 1037

InstructionCodeT5+ is further fine-tuned on 1038

the Code Alpaca dataset. 1039
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Table 6: Component Ablation Experiment Results in NLU Tasks (Foundation Model: Mistral)

Component Type HellaSwag ARC Challenge TruthfulQA MMLU
Original Dataset (25k) 0.828 0.615 0.445 0.626
Expansion Only (100k) 0.833 0.624 0.447 0.630
Curation Only (15k) 0.830 0.621 0.443 0.623
Paradigm LIFT (15k) 0.843 0.644 0.491 0.645

Table 7: Component Ablation Experiment Results
(Pass@1) in Code Generation Tasks (Foundation Model:
Code LLaMA)

Component Type HumanEval MBPP
Original Dataset (20k) 0.410 0.467
Expansion Only (60k) 0.535 0.488
Curation Only (10k) 0.475 0.480
Paradigm LIFT (10k) 0.551 0.498

• Code LLaMA (Rozière et al., 2023). Code1040

Llama is a code-specialized version of Llama21041

(Touvron et al., 2023b) trained on code-1042

specific datasets.1043

• StarCoder (Li et al., 2023b). StarCoder is1044

a widely-used large code language model1045

trained on diverse sources, including 80+ pro-1046

gramming languages, Git commits, GitHub1047

issues, and Jupyter notebooks. It’s also one of1048

the foundation models in our paradigm exper-1049

iments.1050

• WizardCoder (Luo et al., 2023). Wizard-1051

Coder is instruction fine-tuned on StarCoder1052

with 78k instruction data generated through1053

the application of Code Evol-Instruct.1054

G Component Ablation Experiments1055

Tab. 6 and 7 are the component ablation result for1056

NLU tasks and code generation tasks, demonstrat-1057

ing the impact of each component in our methodol-1058

ogy.1059

H GPU Hours and Carbon Emission1060

By compressing the size of the instruction dataset,1061

we aim to reduce the GPU hours required for in-1062

struction tuning, contributing to a subsequent de-1063

crease in carbon emissions. Tab.8 illustrates the1064

impact of different dataset sizes on GPU hours1065

and CO2 emissions. We consider three datasets1066

for each task: the original dataset, the expanded1067

dataset after the first step of our paradigm, and the1068

final curated dataset. GPU hours are calculated1069

Table 8: Analysis of GPU hours and Carbon Emission
with different dataset size. GPU hours in the table are
measured in hour, CO2 emission is in kg CO2 eq.

Dataset Size GPU Hours CO2 Emission
NLU Tasks
Original 25k 40.24 3.62
Expanded 100k 149.76 13.48
Curated 15k 23.71 2.13
Code Generation Tasks
Original 20k 50.82 4.58
Expanded 60k 185.6 16.7
Curated 10k 31.6 2.84

under the same settings of training epoch and batch 1070

size, while carbon emissions are computed using 1071

an online machine learning CO2 calculator2. 1072

The table shows a substantial reduction in GPU 1073

hours and lower carbon emissions when fine-tuning 1074

with the final curated dataset. Specifically, com- 1075

pared to the original dataset, we observe a 36.8% 1076

and 41.1% reduction in GPU hours for code genera- 1077

tion and NLU tasks, respectively. This comparison 1078

demonstrates that our paradigm not only acceler- 1079

ates fine-tuning but also promotes environmental 1080

sustainability while maintaining robust high perfor- 1081

mance. 1082

2https://mlco2.github.io/impact/#co2eq
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