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Abstract
Fine-tuning pre-trained diffusion models under
limited budgets has gained great success. In par-
ticular, the recent advances that directly fine-tune
the quantized weights using Low-rank Adaptation
(LoRA) further reduces training costs. Despite
these progress, we point out that existing adapta-
tion recipes are not inference-efficient. Specifi-
cally, additional post-training quantization (PTQ)
on tuned weights is needed during deployment,
which results in noticeable performance drop
when the bit-width is low. Based on this observa-
tion, we introduce IntLoRA, which adapts quan-
tized diffusion models with integer-type low-rank
parameters, to include inference efficiency during
tuning. Specifically, IntLoRA enables pre-trained
weights to remain quantized during training, facil-
itating fine-tuning on consumer-level GPUs. Dur-
ing inference, IntLoRA weights can be seamlessly
merged into pre-trained weights to directly obtain
quantized downstream weights without PTQ. Ex-
tensive experiments show our IntLoRA achieves
significant speedup on both training and inference
without losing performance. Code is available at
https://github.com/csguoh/IntLoRA.

1. Introduction
Recently, large-scale text-to-image diffusion models (Rom-
bach et al., 2022; Saharia et al., 2022; Podell et al., 2023)
have shown promising capabilities for image generation.
Taking advantage of the strong generative prior of pre-
trained parameters, a range of downstream adaptation ap-
plications have emerged, such as subject-driven genera-
tion (Ruiz et al., 2023), style-customized generation (Sohn
et al., 2023), and controllable generation (Zhang et al.,
2023). However, fully fine-tuning large pre-trained mod-
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Figure 1: (a) The arithmetic inconsistency between the pre-
trained and adaptation weights leads to the merged weights
still in FP16. Consequently, additional PTQ is needed for
low-bit inference. (b) Our IntLoRA allows to work directly
on INT4 arithmetic, ensuring the merged weights seam-
lessly in INT4 format and streamlining the whole process.

els for downstream tasks poses challenges on consumer-
level GPUs. For instance, only loading the FP32 FLUX.1-
dev (BlackForestLabs, 2024) weights into GPUs can con-
sume over 24GB of memory, let alone subsequent fine-
tuning. Therefore, the huge fine-tuning costs hinder person-
alized diffusion model customization.

To facilitate efficient training, recent advances have intro-
duced parameter efficient fine-tuning (PEFT) (Houlsby et al.,
2019; Jia et al., 2022) techniques, such as LoRA (Hu et al.,
2021), to fine-tune a limited number of parameters. With
the reduced gradient and optimizer states, they can achieve
comparable or even better adaptation performance than fully
fine-tuning. More recently, some works (Dettmers et al.,
2024; Qin et al., 2024) have successfully married PEFT
and network quantization to allow the low-rank adaptation
directly on the quantized weights (as shown in Fig. 1(a)).
Through reducing the bit-widths, the GPU costs during fine-
tuning are further decreased.

Although the reduced training costs have facilitated user
customization, obtaining an inference-aware tuning recipe
remains an open challenge. Specifically, existing methods
predominantly employ floating-point (e.g., FP16) low-rank
parameters during training, as a result, it is inevitable to
convert the quantized pre-trained weights back to FP16 for
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Figure 2: The utilization of PTQ on the downstream merged
weights leads to severe performance degradation under low
bit-width quantization.

arithmetic consistency to merge low-rank weights into pre-
trained weights. During test-time, this pipeline necessitates
additional post-training quantization (PTQ) on the FP16
merged weights for accelerated inference, which is pipeline-
complicated and incurs significant performance drop when
the bit-width is low (see Fig. 2).

To address these challenges, a potential solution is to also
transfer the adaptation weights to integer arithmetic. In
this way, all weights during fine-tuning are in integers, thus
ensuring the merged weights naturally being quantized. De-
spite these promising properties, it is non-trivial to accu-
rately quantize the low-rank weights. For example, while
zero initializing low-rank weights are advantageous for fine-
tuning (Hu et al., 2021), it poses quantization challenges due
to substantial quantization errors from small values. Fur-
thermore, the additive form of the original LoRA forces the
pre-trained and adaptation weights to share the same quan-
tizer for seamless weight merging, which restricts available
parameter space during fine-tuning.

In this work, we propose IntLoRA, which achieves integral
low-rank parameters for both training and inference efficient
diffusion models. In detail, we introduce the Adaptation-
Quantization Separation (AQS) technique, which employs
a task-agnostic auxiliary matrix to enable quantization-
friendly low-rank parameters without disrupting the gradient
trajectory of the original LoRA. Additionally, we present
the Multiplicative Low-rank Adaptation (MLA), which re-
formulates the mathematical structure of LoRA from addi-
tion to multiplication. This remains mathematically equiv-
alent to the original but allows for independent optimiza-
tion of adaptation weights. Furthermore, we develop the
Variance Matching Control (VMC) to align the pre-trained
and auxiliary matrices. For implementation, we provide
two versions, i.e., IntLoRAMUL, and IntLoRASHIFT. The
IntLoRAMUL learns quantized low-rank parameters and can
be seamlessly merged through integer multiplication, while
IntLoRASHIFT introduces log2-quantization and operates
by bit-shifting the quantized weights for downstream adapta-
tion. We evaluate our IntLoRA on various diffusion person-
alization tasks. Extensive experiments show that IntLoRA
presents impressive efficiency and performance.

2. Related Work
Parameter-efficient fine-tuning of diffusion models. In or-
der to reduce the fine-tuning cost of large models, parameter-
efficient fine-tuning (PEFT) has recently gained great inter-
ests (Lian et al., 2022; Chavan et al., 2023; Li & Liang, 2021;
He et al., 2021; Jie & Deng, 2023). For example, prompt-
based methods (Jia et al., 2022) append learnable prompts
to modify the input space. Adapter-based methods (Houlsby
et al., 2019; Chen et al., 2022) employ additional bottleneck
structures as bypass branches for adaptation. Moreover,
LoRA (Hu et al., 2021) adopts low-rank matrices to learn
the weight updates for downstream tasks. In this work, we
mainly focus on LoRA since it has been widely applied
in diffusion model fine-tuning and can be merged into pre-
trained weights without increasing inference costs.

Network quantization of diffusion models. Quanti-
zation (Nagel et al., 2021) is an effective technique to
speed deep-learning models and can be categorized into
quantization-aware training (QAT) (Jacob et al., 2018; Li
et al., 2024; 2022; Xu et al., 2023a) and post-training quan-
tization (PTQ) (Wang et al., 2023; Nahshan et al., 2021;
Li et al., 2021; Wei et al., 2022; Liu et al., 2023; Huang
et al., 2024a). In the context of diffusion model quantiza-
tion, existing works mainly focus on PTQ because of the
significant overhead of retraining diffusion models. For
example, PTQ4DM (Shang et al., 2023) makes the first at-
tempt to quantize diffusion models to 8 bits. After that,
Q-Diffusion (Li et al., 2023) further achieves improved per-
formance and lower bit-width. EfficientDM (He et al., 2023)
introduces LoRA to fine-tune the pre-trained model to allow
comparable performance with QAT. TFMQ-DM (Huang
et al., 2024b) proposes to quantize the time-embedding layer
individually for better performance.

Joint PEFT and quantization for efficient fine-tuning.
Benefiting from the scaling law, the pre-trained models have
become increasingly large, which makes even loading mod-
els challenging. To allow fine-tuning on consumer-level
GPUs for user customization, some work attempts to ap-
ply PEFT techniques directly on the quantized pre-trained
weights. Specifically, QLoRA (Dettmers et al., 2024) pro-
poses to quantize the LLMs before fine-tuning the LLMs
with LoRA. Despite the reduced GPU usage during train-
ing due to the import of only the quantized model, QLoRA
does not maintain quantized at inference since the quan-
tized weights need to be converted to FP16 again so as to
be merged with the LoRA weights. QA-LoRA (Xu et al.,
2023b) develops a group-wise quantization through sharing
parameters across channels but at the cost of impairing the
adaptation ability. IR-QLoRA (Qin et al., 2024) analyzes
the entropy loss of quantization from an information theory
view, but it also needs to convert the quantized weights back
to FP16 during inference.
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3. Preliminary
The LoRA (Hu et al., 2021) introduces a low-rank matrix
∆W to learn the weight increments for adapting the pre-
trained weights W ∈ RCout×Cin to downstream tasks. In
implementation, the ∆W is formulated as the matrix mul-
tiplication of two low-rank matrices A ∈ RCout×d and
B ∈ Rd×Cin , where the inner dimension d is the pre-
defined rank. During fine-tuning, the pre-trained weight W
is frozen and only the low-rank A,B are trainable. Since
d≪ min{Cin, Cout}, the number of trainable parameters
can be very small compared to full fine-tuning, thus reduc-
ing the GPU footprint of gradients and optimizer states.
The output during downstream fine-tuning is calculated as
y = Wx+λ · (AB)x, where λ is the LoRA scale to adjust
the control strength. During inference, the task-specific AB
can naturally be merged into the pre-trained weights, i.e.,
W′ = W + λ ·AB, without increasing additional costs.

Even though the LoRA can alleviate training costs through
reduced gradients and optimizer states, it still needs to
load huge FP16 pre-trained weights. Given the increas-
ing pre-trained model size, it becomes impractical to only
use LoRA to fine-tune the diffusion models on consumer-
level GPUs. To further reduce the training memory, recent
advancements (Dettmers et al., 2024; Xu et al., 2023b; Qin
et al., 2024) have introduced network quantization to allow
direct fine-tuning on the integer weights. Formally, given
a tensor X, the target bit-width b, the quantization process
can be defined as:

X̂ = s · (clip(⌊X
s
⌉+ z, 0, 2b− 1)− z) ≜ s · (Xround− z),

(1)
where ⌊·⌉ is the round function, s = max(X)−min(X)

2b−1
is the

scaling factor, and z = −⌊min(X)
s ⌉ is the zero-point.

Despite current methods allow user to train customized mod-
els under a low memory budget, they all require additional
PTQ on the fine-tuned weights for fast inference, which
leads to noticeable performance degradation when the quan-
tization bit-width is low.

4. Methodology
In this work, we aim to remove the additional PTQ of the
merged weights by introducing integer-type low-rank pa-
rameters during fine-tuning. In this way, both the AB and
W are in the same arithmetic type, thus ensuring the merged
W′ is naturally already quantized. However, several tech-
nical challenges arise when transferring LoRA to integer
arithmetic. First, the AB in the original LoRA is zero-
initialized to ensure the behavior of the model is similar to
the pre-trained one at the beginning of training. Although
helpful for fine-tuning, this initialization complicates the
quantization process. For instance, the all-zero distribution

requires a separately designed quantizer at the beginning of
tuning, since the scaling factor s = 0 leads to an infinite
X
s in Eq. (1). Second, the vanilla LoRA merges the FP16
AB and W using addition. When both AB and W are
quantized, it is essential to ensure that they share identical
quantization parameters to enable PTQ-free weight merging.
This requirement leads to constrained parameter space, thus
limiting the adaptation ability.

4.1. Integral Low-rank Adaptation

To address the above challenges, we propose IntLoRA to
operate adaptation on the integer arithmetic. The overall
pipeline is shown in Fig. 3.

Adaptation-quantization separation. The vanilla LoRA
adopts zero initialization on the adaptation parameter AB.
Although this strategy can improve performance, the all-
zero distribution is not quantization-friendly. To allow ac-
curate quantization while maintaining the correct gradient,
we propose the Adaptation-Quantization-Separation (AQS)
mechanism. The key observation is that the adaptation
requires gradients from zero-initialized weights while the
quantization does not. Therefore, we can split the adap-
tation weights into the gradient-enabled zero part and the
gradient-free nonzero part. Formally, let R be the auxiliary
matrix to serve as the nonzero part, Q be the quant-dequant
operator, then our AQS can be formulated as:

W′ = Q[W − sg(R)] + sg(R) +AB, (2)

where sg(·) denotes the stop gradient operation. Thanks
to the AQS, the AB can be zero-initialized for the same
gradient as the original LoRA, while sg(R)+AB facilitate
subsequent quantization by specifically designing the aux-
iliary matrix R as discussed in Sec. 5.4. In the following
part, we will ignore the sg(·) notation for clarity.

Multiplicative low-rank adaptation. The vanilla LoRA
employs additive form W +AB for weight merge. How-
ever, it is difficult to seamlessly fuse the quantized Ŵ and
ÂB when they are quantized by independent quantizers.
To this end, we propose Multiplicative Low-rank Adap-
tation (MLA) to rewrite the form of the original LoRA
into a quantization-friendly multiplication form. Specifi-
cally, denote the quant-dequant results as Q(W − R) =
s · (Wround − z), then the MLA can be derived as follows:

W′ = Q(W −R) +R+AB

= s · (Wround − z) +R+AB

= [s · I+ 1

Wround − z
⊙ (R+AB)]⊙ (Wround − z),

(3)
where the task-specific adaptation term is trainable and will
be quantized, and the pre-trained term is already in integer
type and is shared across tasks. I is an all-one matrix. The
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Figure 3: Before tuning, we propose the Adaptation Quantization Separation (AQS) to incorporate auxiliary matrix into
pre-trained weights and low-rank weights for zero-initialized but quantization-friendly distribution. Then, the Multiplicative
Low-rank Adaptation (MLA) is used to reformulate additive LoRA into the product of the “pre-training term” and the
“adaptation term”. At last, we introduce the Variance Matching Control (VMC) to adjust the distribution of the adaptation
term by modulating the auxiliary matrix. After tuning, we use hardware-friendly integer multiplication or bit shifting to
directly generate quantized merged weights without additional PTQ. The detailed algorithm is given in Appendix A.

operator ⊙ denotes the Hadamard product of two matrices.
The proposed MLA is mathematically equivalent to its addi-
tive counterpart, while is more quantization-friendly since
it avoids the shared quantizer of pre-trained and adaptation
weights. It is noteworthy that the adaptation term is still
in FP16 at this step, and we will detail its quantization
strategies in Sec. 4.2.

Variance matching control. One opportunity brought from
the multiplicative form in Eq. (3) is that we can apply the
log2-quantization on the adaptation term, thus allowing
more efficient bit-shifting on the pre-trained term. How-
ever, log2-quantization is notoriously more difficult than
common uniform quantization (Nagel et al., 2021) and re-
quires appropriate distribution properties, e.g., most values
concentrated around zero to allow for the utilization of as
many quantization bins as possible on the logarithmic scale.
Here, we revisit the adaptation term in Eq. (3) aiming to find
useful mathematical insights. Given the AB is orders of
magnitude smaller than R (the justification is shown in Ap-
pendix F), we approximate the adaptation term in Eq. (3) by
removing AB from it, namely,

s · I+ R

Wround − z
= s · I+ s ·R

s · (Wround − z)

≈ s · I+ s ·R
W −R

=
s ·W
W −R

.

(4)

From this derivation, it follows that the auxiliary matrix R
is crucial for controlling the distribution shape of the adapta-
tion term. Unfortunately, we find there exists a dilemma in
choosing an appropriate distribution for R. On one hand, it
is desirable for the values in R to be larger. Formally, let σR

be the variance of the element in R which is a random vari-
able, it can be derived the expectation of the adaptation term

converges to zero when σR approaches infinity, namely,

E
[

lim
σR→∞

s · I+ R

W −R

]
= E

[
lim

σR→∞

s ·W
W −R

]
= 0.

(5)
On the other hand, setting σR too large can also lead the
Q(W −R) uncorrelated to the original W, i.e, namely,

lim
σR→∞

ρ(Q(W −R),W) = lim
σR→∞

σW√
σ2
W + σ2

R

= 0,

(6)
where the ρ(·, ·) denotes the correlation coefficient. Eq. (6)
indicates that a over-large σR makes it difficult to re-
construct the original signal W through dequantizing the
Q(W −R) due to the low correlation. In short, it is impor-
tant to choose an appropriate σR to strike a balance between
quantization difficulty and information retention. We also
give the visualization of this choice dilemma in Fig. 8. To
this end, we propose the Variance Matching Control (VMC)
mechanism. Specifically, we first multiply R by the vari-
ance ratio r = σW

σR
∈ RCout for rough alignment from R

to the scale of W. After that, we introduce a scalar α as
an exponent of r, i.e., rα, to fine-grain the search for the
optimal R∗. As a result, the variance-matched auxiliary ma-
trix can be denoted as R∗ = rα ·R, and we can use this to
obtain the distribution suitable for log2-quantization. Since
rα can be shared across tasks, it is only of negligible cost.
In addition to the σR, we observe the distribution shape of
R also has an effect on performance, and we give a detailed
discussion in Sec. 5.4. It should be noted that the R can be
online generated during fine-tuning using the distribution
statistics and fixed random seed, thus avoiding the need to
store its FP16 parameters.
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Table 1: Quantitative comparison on subject-driven generation tasks. The notion “WxAy” represents the bit-widths of
weights “W” and activations “A”. The best results are bolded.

methods nbits DINO↑ CLIP-I↑ CLIP-T↑ LPIPS↓
LoRA (Hu et al., 2021) W16A16 0.4828 0.6968 0.2954 0.8076

QLoRA (Dettmers et al., 2024) W8A8 0.4153 0.6661 0.2824 0.8088
QA-LoRA (Xu et al., 2023b) W8A8 0.4156 0.6664 0.2834 0.8086
IR-QLoRA (Qin et al., 2024) W8A8 0.4070 0.6630 0.2841 0.8110
IntLoRASHIFT (Ours) W8A8 0.4353 0.6842 0.2841 0.8257
IntLoRAMUL (Ours) W8A8 0.4498 0.6882 0.2858 0.8062

QLoRA (Dettmers et al., 2024) W4A8 0.2136 0.6134 0.2510 0.8201
QA-LoRA (Xu et al., 2023b) W4A8 0.4127 0.6897 0.2700 0.8281
IR-QLoRA (Qin et al., 2024) W4A8 0.3722 0.6719 0.2707 0.8186
IntLoRASHIFT (Ours) W4A8 0.4039 0.6716 0.2709 0.8187
IntLoRAMUL (Ours) W4A8 0.4242 0.6913 0.2710 0.8181

4.2. Implementation of IntLoRA

Benefiting from the quantization-friendly weight distribu-
tion, we can implement our IntLoRA with two variants
according to different quantizers on the adaptation term.
The first variant employs the uniform affine quantizer on
the adaptation term, thus enabling weight merge through
integer-type multiplication. The second variant introduces
the more hardware-friendly log2 quantizer to achieve down-
stream adaptation by bit-shifting the quantized pre-trained
weights. More details are given below.

Integer multiplication form. We employ uniform affine
quantization on the adaptation term, with the scaling factor
and zero-point denoted as s̄ and z̄, and the quantized results
as Uround, then our IntLoRAMUL can be formalized as:

W′ = s̄ · (Uround − z̄)⊙ (Wround − z). (7)

Bit-shifting form. Denote the adaptation term in Eq. (3) as
V for clarity, we first compute the bit shift value as follows:

shift = clip(⌊− log2 |V|⌉, 0, 2b − 1). (8)

Then the weight adaptation with IntLoRASHIFT can be rep-
resented as:

W′ = sign(V)⊙ 2−shift ⊙ (Wround − z)

= sign(V)⊙ [(Wround − z)≫ shift]

=
1

2N
⊙ sign(V)⊙ [(Wround − z)≪ (N − shift)],

(9)
where sign(V) ∈ {−1, 1} and N = 2b − 1. Since the
direct right-shifting on Wround − z may lead to truncation
error, we thus use N − shift with a scaling factor 1

2N
to

equivalently convert to the left-shifting for error reduction.

5. Experiments
5.1. Experimental Setup

Datasets. We evaluate on multiple adaptation tasks, includ-
ing subject-driven generation (Ruiz et al., 2023), control-
lable generation (Zhang et al., 2023), and style-customized
image generation (Sohn et al., 2023). For the subject-driven
generation, we use a subset which contains 15 text-subject
pairs from the Dreambooth (Ruiz et al., 2023) dataset, for
fast training and evaluation. For controllable generation, we
consider three sub-tasks, i.e, Segmentation map to Image
(S2I) on ADE20K dataset (Zhou et al., 2017), Landmark to
Face (L2F) on CelebA-HQ dataset (Karras, 2017), and the
Canny edge to Image (C2I) on the COCO dataset (Lin et al.,
2014). For the style-customized generation, we employ the
StyleDrop (Sohn et al., 2023) dataset, which includes 18
style images, and we use 6 text prompts for each style to
generate images with style similar to the style image and
content aligned with the text prompt.

Implementation details. We employ the StableDiffu-
sionV1.5 (Rombach et al., 2022) as the pre-trained backbone
for subject-driven generation and controllable generation.
We further employ larger SDXL (Podell et al., 2023) as the
pre-trained model in the style-customized generation. We
use uniform quantization (Nagel et al., 2021) to quantize
the weights per-channel and activations per-tensor. Since
previous methods mainly focus on efficient training, with
the tuned weights still in FP16, to make a fair comparison,
we apply additional PTQ on the merged weights for efficient
inference. As for the training of the quantized adaptation
term, we use the Straight Through Estimator (STE) to al-
low back-propagation. For the proposed variance matching
control, we employ the ratio of the maxima of the sampled
distributions as a fast estimator for the variance. Due to the
page limit, we provide more details in Appendix C.
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Figure 4: Qualitative comparison on subject-driven generation tasks. More results are provided in Appendix H.

5.2. Main Results

Subject driven generation. Tab. 1 gives the results of
weight-activation quantization on subject-driven generation
task. It can be seen that the proposed method consistently
outperforms other competitors under different bit-widths.
For instance, the IntLoRAMUL suppresses the IR-QLoRA
by even 0.0428 DINO score on the W8A8 setup. Notably,
the QLoRA and IR-QLoRA baselines, which use additional
PTQ on the merged weights, suffer a significant perfor-
mance drop under the W4A8 setup. In contrast, even the
challenging log2-quantization of our IntLoRASHIFT works
well under W4A8. We also give qualitative visualization in
Fig. 4, where one can see that our IntLoRA can facilitate
subject-faithful and photo-realistic image generation.

Controllable image generation. The results of controllable
image generation are shown in Tab. 2. One can see that our
IntLoRA continues to outperform existing strong baselines,
e.g., our IntLoRAMUL outperforms the IR-QLoRA by 4.96
FID on the 4-bit S2I setting. And it can be seen that QLoRA
struggles to produce meaningful results at low 4 bit-width.
We also give a qualitative comparison in Fig. 5, and it can
be seen that the images generated by the IntLoRA-tuned
model are well-matched with the control signals.

Style customized generation. The results of the style cus-
tomized generation task are shown in Fig. 6. It can be seen
that our IntLoRA achieves a favorable balance between style
images and text prompts, whereas some existing approaches
fail. For instance, in the third row, both the QALoRA and
IR-QLoRA methods directly copy the original style image
under the text prompt “The letter ‘G’ in [V] style”.

Table 2: Quantitative comparison of FID↓ score on control-
lable image generation.

methods 8-bitwidth 4-bitwidth
S2I L2F C2I S2I L2F C2I

LoRA(FP16) 31.39 37.50 16.05 31.39 37.50 16.05

QLoRA 31.09 38.88 15.34 71.75 117.37 62.49
QALoRA 31.32 38.88 15.34 31.51 43.09 16.73
IR-QLoRA 31.81 36.30 15.70 35.83 39.63 18.30
IntLoRASHIFT 31.38 34.46 15.76 32.85 35.06 17.65
IntLoRAMUL 31.08 37.52 15.26 30.87 33.62 16.32

5.3. Efficiency Comparison

We compare the training and inference efficiency of our
IntLoRA against other baselines in Tab. 3. As for training,
both IntLoRA and QLoRA only need to load quantized pre-
trained weights, which is more memory efficient compared
to the vanilla LoRA fine-tuning. As a result, our IntLoRA
and QLoRA have similar training speeds and memory costs.
However, for the inference phase, our IntLoRA can naturally
obtain the quantized merged weights without additional
PTQ, thus streamlining the adaptation pipeline and avoiding
potential performance degradation under low bit-width. In
short, compared with existing methods which only focus
on training efficiency, our IntLoRA presents a both training
and inference efficient paradigm.

5.4. Ablation Studies

Ablation on the smoothing factor. As discussed in Sec. 4.1,
there is a dilemma in choosing an appropriate σR. For
example, setting it too large can lead to information loss

6
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Table 3: Comparison of training and inference efficiency with other methods. We fine-tuning the StableDiffusionV1.5 model
on the Dreambooth task. The training speed is tested on one NVIDIA RTX 3090 GPU.

method nbits Training Stage Inference Stage
training speed model size PTQ CLIP-I↑ CLIP-T↑

LoRA (Hu et al., 2021) W32A32 0.68s/img 7700MB ✔ 0.6968 0.2954

QLoRA (Dettmers et al., 2024) W8A8 0.85s/img 1925MB ✔ 0.6661 0.2824
IntLoRASHIFT (Ours) W8A8 0.84s/img 1925MB ✘ 0.6842 0.2841
IntLoRAMUL (Ours) W8A8 0.87s/img 1925MB ✘ 0.6882 0.2858

QLoRA (Dettmers et al., 2024) W4A8 0.85s/img 963.1MB ✔ 0.6134 0.2510
IntLoRASHIFT (Ours) W4A8 0.84s/img 963.1MB ✘ 0.6716 0.2709
IntLoRAMUL (Ours) W4A8 0.87s/img 963.1MB ✘ 0.6913 0.2710
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Figure 5: Qualitative comparison on controllable generation tasks. More results are provided in Appendix H.

of the original weights, while a too-small one results in a
large quantization error. To this end, we introduce rα in
the proposed VMC as the hyperparameter to search for the
task-oriented variance. We give the downstream task perfor-
mance with varying α in Fig. 7. It can be seen that setting
σR slightly smaller than σW can obtain better performance,
indicating that the information loss has a greater impact than
the quantization error. In the implementation, we chose a
moderate smoothing factor α = 1.5 for the trade-off.

Distribution selection for auxiliary matrix. In this work,
the auxiliary matrix R plays a crucial role in both AQS
and VMC. Therefore, the distribution shape of R can poten-
tially influence the performance. To this end, we investigate
different distribution shapes of R through ablation exper-
iments and give the results in Tab. 4. It can be seen that
the Laplace distribution performs better than other options
on most metrics. This is because a light-tailed distribution,
such as Laplace, clusters most samples around zero, which
facilitates smaller errors for log2-quantization. Therefore,

Table 4: Ablation on different distribution shape choices of
the auxiliary matrix.

settings DINO↑ CLIP-I↑ CLIP-T↑ LPIPS↓
Guassian 0.4135 0.6756 0.2492 0.8179
Cauchy 0.1367 0.5617 0.1870 0.8067
StudentT 0.2935 0.6420 0.2487 0.8048
Laplace 0.4492 0.6980 0.2588 0.8110

the light-tailed distribution performs empirically better than
its heavy-tailed counterparts.

6. Further Discussion
Results on NLP tasks. In addition to fine-tuning diffusion
models for image generation, we further validate the effec-
tiveness of the NLP tasks. Specifically, we fine-tune the
Llama3-8B model (Dubey et al., 2024) and use the Meta-
MathQA dataset (Yu et al., 2023) for training and GSM8K
dataset (Cobbe et al., 2021) for testing. The comparison

7
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LoRA-FP QLoRA QA-LoRA IR-QLoRA OursStyle Images

Figure 6: Qualitative comparison on style-customized generation. The text prompt is “A friendly robot in [V] style”, “A
panda eating bamboo in [V] style”, and “The letter ‘G’ in [V] style”, respectively. “Ours” denotes the IntLoRASHIFT. More
results are provided in Appendix H.
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Figure 7: The normalized performance under different α.

results are shown in Tab. 5. It can be seen that our Int-
LoRA maintains stable performance when transferring to
natural language. For example, IntLoRAMUL outperforms
QLoRA by 0.17% QA accuracy under 8-bit quantization,
demonstrating the generalization of our IntLoRA.

Difference from EfficientDM. EfficientDM (He et al.,
2023) employs QAT-like LoRA fine-tuning on the FP16
diffusion weights for network quantization. Despite it
is inference-efficient as it can directly produce quantized
merged weights, we would like to point out that it is not
training-efficient. Specifically, EfficientDM requires load
FP16 pre-trained weights at the training stage, which is
unacceptable for fine-tuning large-size models on consumer-
level GPUs. By contrast, our IntLoRA is both training and
inference efficient. Moreover, we also explore our IntLoRA
on the diffusion quantization task. The results are shown
in Tab. 6. It can be seen that our IntLoRAMUL achieves even
better performance than the EfficientDM. It should be noted
that our IntLoRA only needs to load the quantized weights
during calibration instead of the floating-point weights in
EfficientDM, thus reducing the training memory cost.

Table 5: Comparison on the natural language task of mathe-
matical answering. More qualitative results in Appendix H.

Methods LoRA QLoRA QA-LoRA OursSHIFT OursMUL

nbits W16A16 W8A8 W8A8 W8A8 W8A8
accuracy 64.24% 64.06% 63.53% 64.10% 64.23%

Table 6: Comparison with EfficientDM on W4A4 diffusion
model quantization. We evaluate on the ImageNet 256×256
image generation, and train with ddim step=20 on LDM-4
model with 500 training epochs.

methods IS↑ FID↓ sFID↓ precision↑
EfficientDM 178.20 13.42 26.67 0.70
OursSHIFT 116.50 20.20 26.79 0.63
OursMUL 199.20 10.43 24.02 0.79

7. Conclusion
We propose IntLoRA, which employs integer-type low-
rank parameters, to remove the additional PTQ on the
merged weights. Specifically, we introduce the quantization-
adaptation separation to allow the coexistence of zero-
initialized gradient and quantization-friendly distribution.
We further develop the multiplicative low-rank adaptation to
achieve a decoupled quantizer of pre-trained and adaptation
weights, accompanied by the variance matching control to
adjust the variance for accurate adaptation control. Benefit-
ing from these elegant designs, we provide two variants of
IntLoRA, which either use int-multiplication or bit-shifting
to adapt the quantized pre-trained models. Through trans-
ferring the adaptation weights to the integer arithmetic, our
IntLoRA demonstrates its effectiveness across different pre-
trained models and various downstream tasks, while exhibit-
ing impressive both training and inference efficiency.
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A. Summery of IntLoRA Algorithm
Before tuning, we pre-process the pre-trained weights in Algo. 1, followed by the forward process of IntLoRAMUL and
IntLoRASHIFT in Algo. 2 and Algo. 3, respectively.

Algorithm 1 The weight pre-process of the linear layer in IntLoRA

Input: Pre-trained wight W ∈ RCout×Cin , auxiliary matrix R ∈ RCout×Cin , smooth factor α ∈ R
Output: Quantitzed pre-trained weights Wround, scaling factor sround, zero point zround
sigma R← variance estimation of R
sigma W← variance estimation of W
r = (sigma W / sigma R)α

Rstar = r * R
Wprocess = W −Rstar

Wround, sround, zround ← uniform quantizer(Wprocess)

Algorithm 2 The forward process of the linear layer in IntLoRAMUL

Input: Pre-processed quantized weights Wround, scaling factor sround, zero point zround, auxiliary matrix Rstar ∈
RCout×Cin , LoRA parameters A ∈ RCout×d, B ∈ RCout×d, input tensor x ∈ RCin×L

Output: Output tensor y ∈ RCout×L

Wadapt = sround · I+ 1
Wround−zround

⊙ (Rstar +AB)

WINT
adapt, sadapt, zadapt ← uniform quantizer(Wadapt)

xINT, sx ← act quantizer(x)
Wmerge = (WINT

adapt − zadapt)⊙ (Wround − zround)
y = sxsroundWmergex

INT

Algorithm 3 The forward process of the linear layer in IntLoRASHIFT

Input: Pre-processed quantized weights Wround, scaling factor sround, zero point zround, auxiliary matrix Rstar ∈
RCout×Cin , LoRA parameters A ∈ RCout×d, B ∈ RCout×d, input tensor x ∈ RCin×L, desired bit-width b, pre-defined
max bit-width number N = 32
Output: Output tensor y ∈ RCout×L

Wadapt = sround · I+ 1
Wround−zround

⊙ (Rstar +AB)

shift = clip(⌊− log2 |Wadapt|⌉, 0, 2b − 1)
Wmerge =

1
2N
⊙ sign(Wadapt)⊙ [(Wround − z)≪ (N − shift)]

xINT, sx ← act quantizer(x)
y = sxWmergex

INT

B. Distribution Visualization of σR

In Sec. 4.2, we have theoretically pointed out that there is a choice dilemma for σR. Here we elaborate on its effect through
distribution visualization. Specifically, we remove the VMC and use a scaling scalar to generate a too-large or too-small
auxiliary variance, followed by the log2 quantization on the adaptation term. The results are shown in Fig. 8. On the
one hand, setting σR too large can lead to a low correlation ρ(W,W −R), which makes it hard to reconstruct W from
W −R using estimator W ≈ Q(W −R) +R. On the other hand, a too small σR prevents the expectation of adaptation
term converging to zero, causing few log bins to be used. In experiments, we find that the training of both settings fails
to converge. By contrast, the proposed VMC can precisely control σR to allow most values of the adaptation term to be
zero-neighbored, facilitating more challenging log2 quantization. Moreover, it should be noted that the too-small σR can
also be regarded as an approximation of direct quantization on the zero-initialized AB, and thus the experimental results
also justify the AQS for zero-initialized AB.
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Figure 8: The distribution visualization using Kernel Density Estimate (KDE) on different weight tensors. Left: the KDE
plot of pre-trained weights and estimated weights under different σR. Right: the KDE plot of the adaptation term and the
log2 bins usage with different σR.
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Figure 9: Ablation experiments of different LoRA ranks.

C. More Implementation Details
For the subject-driven generation, we use the AdamW optimizer with a weight decay of 1e-2 and fine-tune the query, key,
value, and output projection layer. The learning rate is set to 6e-5. The batch size is set to 1, and the number of training
steps is 400. The rank of the LoRA is set to 4. We adopt the prior preservation strategy as Dreambooth (Ruiz et al., 2023) to
generate 200 class images. For the controllable generation, we fine-tune the model for 11 epochs for Canny-to-Image tasks
and 20 epochs for Landmark-to-Face and Segmentation-to-Image tasks. The learning rate is set to 1e-5 using the AdamW
optimizer. The LoRA rank is set to 4. The batch size is set to 8 and the image resolution is 512× 512 for all three tasks. For
the style-customized generation, we fine-tune the pre-trained model using the AdamW optimizer with a learning rate of
5e-5. Since it involves a larger SDXL, we chose a relatively large LoRA rank of 64 for all compared methods, since there is
only one style image as well as the larger pre-trained parameters. We fine-tune for 500 steps with batch size 1. Similar
to StyleDrop (Sohn et al., 2023), we only use one image as the style image and find it works well. The style images and
text prompts for evaluation are given in Appendix H. The variance ratio in the variance matching control is surrogated as
the value range ratio, i.e., r = max{|max(W)|,|min(W)|}

min{|max(R)|,|min(R)|} . We append the trainable low-rank parameters on the Query, Key,
Value, and Out projection, in the attention layers (Vaswani et al., 2017) and keep all other layers frozen and quantized. The
rank of LoRA is set to 4 for subject-driven generation and controllable generation, and 64 for style-customized generation.

D. Additional Ablation Experiments
Ablation on the LoRA rank. The low-rank d in LoRA is a trade-off between performance and efficiency. A larger rank
improves the adaptation ability by training more parameters but comes with larger training and storage costs, and vice versa.
Here, we give the impact of different rank setups on performance in Fig. 9. One can see that the performance generally
improves as we increase the rank, but the rate of growth varies. For instance, the increased speed from rank=4 to rank=8
increases inferior to the one from rank=2 to rank=4. Moreover, increasing the rank to 16 can generally obtain better results
than its lower counterpart. In practice, considering the trade-off between performance and efficiency, we select a moderate
rate rank=4.
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Figure 12: The distribution visualization of the original weights W, the auxiliary matrix R, and the learned low-rank
weights AB.
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Figure 10: The effects of VMC for
IntLoRAMUL.

The effects of variance matching control for IntLoRAMUL. In this
work, we propose the variance matching control to adjust the variance
of R, so that allows the log2-quantization of the adaptation term to obtain
the IntLoRASHIFT. In other words, the VMC is primarily introduced for
IntLoRASHIFT. Despite we also apply the VMC to IntLoRAMUL, given
the IntLoRAMUL does not require such strict constraints on the distribution
shape of the adaptation term, it is interesting to investigate the influence of
variance matching control on the performance of IntLoRAMUL. To this end,
we adjust the smoothing factor α to adjust the strength of the VMC, e.g.,
setting α to zero can lead to the removal of the VMC. The results of the
IntLoRAMUL under different VMC scales are shown in Fig. 10. As one can see, despite the VMC being initially proposed
for the log2-quantization, the well-structured distribution also facilitates uniform quantization. For example, when we set the
α approaching zero, i.e., the VMC is close to being removed, and the performance of IntLoRAMUL appears similar pattern
as the IntLoRASHIFT, which suffers a significant performance drop. Moreover, the performance gains gradually converge
when the α > 1.5. In short, the VMC can not only allow the log2-quantization to work but also improve the performance of
the uniform quantization.

Distribution shape for auxiliary matrix. In Sec. 5.4, we provided different symmetric distributions including Gaussian,
StudentT, Laplace, and Cauchy. Fig. 11 gives the results of sampling from different distributions. The Laplace distribution
possesses light tails, and the shape of the distribution is convex, i.e., f ′′(x) > 0, x ̸= 0. This unique property makes it easy
to control the value of the adaptation term to produce distributions that are friendly to log2 quantization, i.e., most samples
are clustered around the zero to use as many bins as possible. This analysis is also verified by the experiments in Tab. 4,
which shows that the Laplace distribution achieves the best performance.

E. Impacts from the Auxiliary Matrix
In Eq. (2) of the proposed AQS, we introduce an additional auxiliary matrix R to the original pre-trained weight W0

to achieve adaptation-quantization separation. However, this extra R potentially introduces outliers and thus causes
quantization error for W. Here, we point out that since the proposed VMC can control the range of R through the variance
scaling factor r = σW/σR, the introduction of R in the AQS is ensured not result in additional outliers. For validation, we
also give the distribution visualization of the original W and the VMC re-scaled R in Fig. 12. It can be seen that the range
of R is effectively controlled within the range of W, thus effectively avoiding the detrimental effect of additional outliers.
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F. Justification for the Value Orders

The channel-wise distribution of variance ratio 

0.050 0.075 0.1000.125 0.150 0.1750.200 0.225
0.0

2.5

5.0

10.0

12.5

15.0

17.5

7.5

Figure 13: The value distribution of the
channel-wise variance ratio r

A key assumption in the derivation for VMC is that the learned values of
low-rank parameters AB are orders of magnitude smaller than the auxiliary
matrix R. Based on this assumption we ignore AB as an approxima-
tion. Here, we give the specific evidence for this approximation. Specif-
ically, we visualize the weights of the trained AB and the distribution of
R, as shown in Fig. 12. It can be seen the range of AB is constrained to
[−0.0004, 0.0004], while the range of R is [−0.08, 008]. Therefore, the ex-
perimental visualization above confirms the soundness of our approximation.
Since the AB in LoRA is zero-initialized, it tends to be distributed around
zero with learned small values aiming to not disturb the pre-training weights
too much.

G. Limitation and Future Works
Although the proposed IntLoRA can effectively improve the efficiency of diffusion model fine-tuning by allowing the
adaptation parameters also on the integer arithmetic, the proposed framework can be further improved in the following
aspects. First, although the trainable low-rank weights are quantized with STE, these quantized weights are still in FP16
type during tuning to enable accurate gradient updates. Therefore, it is promising to specifically design integer-type
propagation. Despite this seems challenging, it can further reduce the training cost and accelerate the adaptation process.
Second, although we introduce a feasible way that uses hyperparameter search of the smoothing factor α to find a compatible
σR as well as the appropriate distribution shape of R, it can be more elegant if we can use advanced mathematical analysis
techniques, such as functional analysis, to find the statistical properties a suitable R should satisfy. Third, this work mainly
focuses on the efficient acceleration of LoRA due to its prevalence among the PEFT techniques. Applications to other PEFT
methods for hardware-efficient adaptation could be interesting future work.

H. Additional Visualization Results
• Fig. 14 gives more samples on the subject-driven generation tasks.

• In Fig. 15, we give more samples of the segmentation-to-image tasks.

• In Fig. 16, we give more samples of the face landmark-to-face image tasks.

• In Fig. 17, we give more samples of the canny edge-to-image tasks.

• Fig. 18 provides more samples of the results of the style-accustomed generation.

• In Fig. 19, we give the style images and the text prompts used for evaluation on the style customized generation tasks.

• In Appendix H.1, we give some case studies of the mathematical question-answering task using the fine-tuned
Llama3-8B model.
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"a [V] with a city in the background"

"a [V] on the beach"

"a [V] in a chef outfit"

"a [V] with a mountain in the background"

"a [V] in a purple wizard outfit"

QLoRA QA-LoRA IR-QLoRASubject Images

QLoRA QA-LoRA IR-QLoRA Ours-MULSubject Images

"a [V] wearing a rainbow scarf"

QLoRA QA-LoRA IR-QLoRASubject Images QLoRA QA-LoRA IR-QLoRASubject Images

Ours-SHIFT

Ours-SHIFTOurs-MUL

Ours-MUL Ours-SHIFT

Figure 14: More qualitative comparison results on subject-driven generation.
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QLoRA QA-LoRA IR-QLoRA OursControlOrigin

Figure 15: More qualitative comparison results on segmentation to image task. The ‘Ours’ denotes the IntLoRASHIFT.
Zoom in for better effects.
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QLoRA QA-LoRA IR-QLoRA OursControlOrigin

Figure 16: More qualitative comparison results on landmark to face task. The ‘Ours’ denotes the IntLoRASHIFT. Zoom in
for better effects.
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QLoRA QA-LoRA IR-QLoRA OursControlOrigin

Figure 17: More qualitative comparison results on canny to image task. The ‘Ours’ denotes the IntLoRASHIFT. Zoom in for
better effects.
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LoRA-FP QLoRA QALoRA IR-QLoRA OursStyle Image

“A man riding a snow board in [V] style”

“A friendly robot in [V] style"

“The Golden Gate bridge in [V] style”

“A friendly robot in [V] style"

“A man riding a snow board in [V] style”

“The letter 'G' in [V] style”

Figure 18: More qualitative comparison results on style-accustomed generation. The ‘Ours’ denotes the IntLoRASHIFT.
Zoom in for better effects.
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Figure 19: The style images used for training on the style-customized generation task. The text prompts are “A friendly
robot in [V] style”, “A fluffy baby sloth with a knitted hat trying to figure out a laptop in [V] style”, “A panda eating bamboo
in [V] style”, “The Golden Gate bridge in [V] style”, “A man riding a snowboard in [V] style”, “The letter ‘G’ in [V] style”.
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H.1. Cases of mathematical question answering.

Case Study 1

Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her
friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck egg. How
much in dollars does she make every day at the farmers’ market? (Ground-truth answer is 18)

LoRA-FP Answer: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning, so she has 16 - 3
= 13 eggs left. She bakes muffins for her friends every day with four eggs, so she has 13 - 4 = 9 eggs left. She sells
the remainder at the farmers’ market daily for $2 per fresh duck egg, so she makes 9 * $2 = $18. Therefore, Janet
makes $18 every day at the farmers’ market. The answer is 18.

QLoRA Answer: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning, so she has 16 - 3 =
13 eggs left. She bakes muffins for her friends every day with four eggs, so she has 13 - 4 = 9 eggs left. She sells the
remainder at the farmers’ market daily for $2 per fresh duck egg, so she makes 9 * $2 = $18. Therefore, Janet makes
$18 every day at the farmers’ market. The answer is: 18

QA-LoRA Answer: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning, so she has 16 - 3
= 13 eggs left. She bakes muffins for her friends every day with four, so she has 13 - 4 = 9 eggs left. She sells the
remainder at the farmers’ market daily for $2 per fresh duck egg, so she makes 9 * $2 = $18. Therefore, Janet makes
$18 every day at the farmers’ market. The answer is: 18

QA-LoRA Answer: Janet lays 16 eggs per day. She eats three for breakfast, so she has 16 - 3 = 13 eggs left. She
bakes muffins with four eggs, so she has 13 - 4 = 9 eggs left. She sells the remainder at the farmers’ market for $2
per egg, so she makes 9 * $2 = $18. Therefore, Janet makes $18 every day at the farmers’ market. The answer is: 18

Our Answer: Janet lays 16 eggs per day. She eats three for breakfast, so she has 16 - 3 = 13 eggs left. She bakes
muffins with four eggs, so she has 13 - 4 = 9 eggs left. She sells the remainder at the farmers’ market for $2 per fresh
duck egg, so she makes 9 * $2 = $18. Therefore, Janet makes $18 every day at the farmers’ market. The answer is:
18.
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Case Study 2

Question: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?
(Ground-truth answer is 3)

LoRA-FP Answer: We know that the robe takes 2 bolts of blue fiber. To find the amount of white fiber, we can use
the ratio of blue fiber to white fiber, which is 2:1. So, the amount of white fiber is half of the blue fiber, which is 2/2
= 1 bolt. Therefore, the total number of bolts needed is 2 + 1 = 3 bolts. The answer is 3.

QLoRA Answer: The robe takes 2 bolts of blue fiber. To find the amount of white fiber, we can use the ratio of 1:2.
Since the ratio is 1:2, we can set up the equation 1/2 * 2 = x, where x represents the amount of white fiber. Solving
for x, we get x = 1. Therefore, the robe takes 2 bolts of blue fiber and 1 bolt of white fiber. In total, the robe takes 2
+ 1 = 3 bolts of fiber. The answer is: 3

QA-LoRA Answer:The robe takes 2 bolts of blue fiber. The robe takes half that much white fiber, which is 2/2 = 1
bolt of white fiber. So, in total, the robe takes 2 bolts of blue fiber + 1 bolt of white fiber = 3 bolts of fiber. Therefore,
the robe takes 3 bolts of fiber in total. The answer is: 3

IR-QLoRA Answer: The robe takes 2 bolts of blue fiber. The robe takes half that much white fiber, which is 2/2
= 1 bolt of white fiber. So, the robe takes 2 bolts of blue fiber + 1 bolt of white fiber = 3 bolts in total. The answer is: 3

Our Answer: If a robe takes 2 bolts of blue fiber, then it takes 2/2 = 1 bolt of white fiber. So, the total number of
bolts needed is 2 bolts of blue fiber + 1 bolt of white fiber = 3 bolts in total. The answer is: 3.
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