
Towards A Generalist Code Embedding Model Based
On Massive Data Synthesis

Chaofan Li1,2∗ Jianlyu Chen1,3∗ Yingxia Shao2,5† Defu Lian3† Zheng Liu1,4†

1 Beijing Academy of Artificial Intelligence
2 Beijing University of Posts and Telecommunications

3 University of Science and Technoly of China
4 The Hong Kong Polytechnic University
5 Inspur Computer Technology Co., Ltd

{cfli, shaoyx}@bupt.edu.cn chenjianlv@mail.ustc.edu.cn
liandefu@ustc.edu.cn zhengliu1026@gmail.com

Abstract

Code embedding models attract increasing attention due to the widespread popu-
larity of retrieval-augmented generation (RAG) in software development. These
models are expected to capture the rich semantic relationships inherent to code,
which differ significantly from those found in text. However, existing models re-
main severely limited due to the scarcity of high-quality training data. In this work,
we introduce CodeR (Code Retrieval), a state-of-the-art embedding model for
general-purpose code retrieval. The superior performance of CodeR is built upon
CodeR-Pile, a large-scale synthetic dataset constructed under the DRU (Diversity,
Reliability, Usability) principle via a novel data synthesis pipeline. To optimize
training effectiveness, we propose Annealing, a curriculum learning strategy that
enables effective knowledge transfer across heterogeneous sources of data. We
evaluate CodeR based on 16 diverse code retrieval tasks, where it significantly
outperforms existing baselines and exhibits strong out-of-domain generalization
performance. We have publicly released our code and the well-trained model to
facilitate further research in this critical area3.

1 Introduction

Thanks to the rapid advancement of large language models (LLMs), retrieval-augmented generation
(RAG) has emerged as a promising paradigm for code development tasks, such as code completion
and bug fixing [1]. Unlike traditional generation methods that make direct responses to the input
prompts [2, 3], RAG enhances LLMs’ performance by incorporating relevant context retrieved
from internal code-bases or external knowledge sources. This additional context enables LLMs to
generate more accurate and reliable code upon user’s request. A common retrieval strategy involves
vectorizing knowledge sources using a embedding model and retrieving relevant information based
on embedding similarity [4, 5, 6, 7]. To achieve precise retrieval result, it is crucial to develop
generalist code embedding models capable of capturing a wide range of semantic relationships [8, 9].
While significant progress has been made in the text field [10], high-quality code embedding models
remain scarce due to a lack of suitable training data. In particular, most existing training datasets are
tailored for text-centric scenarios like web search [11] and question answering [12]. These scenarios

∗Equal contribution
†Corresponding authors, with Zheng Liu as the project lead.
3https://github.com/FlagOpen/FlagEmbedding/tree/master/research/BGE_Coder

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/FlagOpen/FlagEmbedding/tree/master/research/BGE_Coder

Table 1: Comparison between CodeR-Pile and two existing
datasets: CodeSearchNet (CSN) [13] and CoIR [14]. #T:
number of code retrieval tasks. #PL: number of program-
ming languages. Size: number of training samples. CoIR
(new) refers to the newly introduced data samples in CoIR
excluding those already introduced by CodeSearchNet.

Dataset Task Type #T Lan. #PL Size

CSN Text2Code 1 EN 6 1.9M

CoIR (new)
Text2Code,
Code2Code,

Hybrid
8 EN 11 307K

CodeR-Pile

Text2Code,
Code2Text,
Code2Code,

Hybrid

47 EN, CN 20 2.9M

Java8.0%

Python
9.7%

JavaScript

8.1%

PHP

8.0%Ruby

8.0%

Go
8.0%

C# 7.9%

C++
8.2%

TypeScript
3.6%

Rust

3.6%

C

3.7%

Perl

3.7%

Shell

3.6%
SQL

5.4%

Others (6)
10.6%

CodeR-Pile
47 Tasks

20 Programming Languages
English & Chinese
2.9 Million Samples

Figure 1: Programming languages distri-
bution of CodeR-Pile.

are fundamentally different from the code-related ones in terms data forms and nature of semantic
relationships, making them insufficient for code retrieval tasks.

In this paper, we introduce CodeR, a state-of-the-art code embedding model trained on a large-scale
synthetic dataset named CodeR-Pile. To enhance the quality of training data, we propose a novel
data synthesis strategy guided by the DRU principle, which emphasizes: 1) Diversity, ensuring
comprehensively coverage of a wide range of data formats and semantic relationships; 2) Reliability,
maintaining the correctness of semantic relationships; and 3) Usability, providing rich-semantic
training samples for embedding models. With this principle, we design a novel data synthesis
workflow which starts with high-level planning of task types and demonstrations, followed by the
generation of training samples for each planned task. This progressive approach enables the creation
of high-quality data that captures a wide variety of semantic relationships. Furthermore, we combine
the use of expensive proprietary LLMs for high-level planning with lightweight open-source LLMs
for training sample generation, which substantially improves the cost-effectiveness of the overall data
synthesis process. As shown in Table 1 and Figure 1, CodeR-Pile exhibits three key advantages over
existing datasets: 1) task diversity, with 4 major task types and 47 code retrieval tasks included;
2) language coverage, covering 20 popular programming languages (detailed in Appendix D) and
2 common natural languages (English, Chinese); and 3) scale, with 2.9 million training samples
generated. Note that CodeR-Pile can be readily extended for higher diversity and scale with our
open-sourced data synthesis workflow.

We integrate both text training data (which is abundant and readily available) and existing code-
retrieval data (limited but useful) for the complement of the synthetic dataset. To make effective
use of this heterogeneous data, we propose a curriculum learning strategy, called Annealing. This
strategy follows a weak-to-strong supervision paradigm, where the training process begins with data
of lower relevance and progressively shifts toward data of higher relevance. Specifically, the model is
first trained on text-only data, characterized by low relevance and low entropy. This is followed by
a mixture of text and code data, which introduces higher entropy and improved relevance. Finally,
the model is fine-tuned on code-only data, which offers the highest relevance while maintaining
low entropy. This approach enables smooth and effective knowledge transfer across different data
domains while preserving the stability of training process.

For the sake of rigorous evaluation, we perform comprehensive experiments based on 16 diverse
datasets from two popular code-retrieval benchmarks, CoIR [14] and CodeRAG [1]. We primarily use
the CoIR for in-domain evaluation, which covers 4 main categories of code-retrieval scenarios and
14 programming languages. Meanwhile, we leave CodeRAG for out-of-domain evaluation, which
contains challenging and distinct code-retrieval tasks from CoIR. Notably, the CodeR significantly
outperforms existing code-focused and general-purposes embedding models. Meanwhile, the empiri-
cal advantages becomes more pronounced for those out-of-domain and complex scenarios, which
further highlights the effectiveness of CodeR.

2

To summarize, the following contributions are made in this paper: 1) we introduce CodeR, a state-
of-the-art code embedding model, and CodeR-Pile, a large-scale synthetic dataset that serves as its
foundation; 2) we propose a novel curriculum learning strategy which enables effective utilization
of heterogeneous training data; 3) we perform comprehensive evaluations which fully demonstrate
the effectiveness of CodeR and the value of CodeR-Pile. The entire dataset and its curation pipeline
will be publicly released along with the well-trained embedding model, which will provide valuable
resources for the future progress of code retrieval and CodeRAG research.

2 Related Work

• Data Synthesis for IR. Synthetic data generation has become an increasingly popular practice in
the field of information retrieval (IR) [15, 16, 17, 18]. In recent years, synthetic data has played a
crucial role in training advanced, general-purpose retrieval models that demonstrate strong perfor-
mance across a wide range of tasks. For example, Doc2query [19] and Promptagator [20] utilize
language models to generate synthetic queries for unlabeled documents, thereby enhancing retrieval
effectiveness in tasks, like document retrieval and question answering. E5-Mistral [21] introduces a
“brainstorm” strategy, where the model autonomously generates tasks and task-relevant queries, along
with positive and negative examples, thereby enabling more efficient and robust training. Similarly,
Gecko [22] adopts a distillation-based approach for synthetic data generation, transferring knowledge
from large, versatile large language models to more compact text embedding models.

However, existing synthetic IR datasets are primary focused on textual domains and fall short in code
retrieval tasks. Moreover, current data synthesis methods are specifically designed for text-based
retrieval scenarios, which typically consider a narrow scope of task types such as document retrieval
and question answering. In contrast, code retrieval involves a diverse set of semantic matching tasks
that are unique to programming languages and software development. These distinctions highlight
the need for specialized data synthesis methods tailored to the requirements of code retrieval.

• Code Retrieval. Embedding models have made significant progress, driven by larger backbone
encoders and the expansion of training scale [4, 5, 6, 7]. Recently, these models have demonstrated
impressive performance on text-based benchmarks such as BEIR [10] and MTEB [23]. However, they
still struggle with code retrieval tasks, as highlighted by recent empirical studies [14, 1]. While code
generation has advanced through methods like CodeRL [24], which uses reinforcement learning with
pre-trained models to enhance the generation of executable code, and CodeT [25], which generates
multiple code samples and selects the best solution using test cases to boost performance, research on
code retrieval is less mature. This gap is primarily due to a mismatch between the semantic structures
of code and natural language, as well as the limited availability of training data specifically tailored
for code retrieval. To alleviate these problems, several tailored code embedding models have been
developed by different research teams. Among them, one of the most competitive is Voyage-v3 [26],
which demonstrates substantially improved performance on public benchmarks like CoIR [14] and
CodeRAG [1]. Unfortunately, both the model and its training data remain proprietary, limiting the
community to build upon its progress. Meanwhile, other open-source models like CodeBERT [27]
and GraphCodeBERT [28], as well as UniXcoder [29], Jina-v2-code [8], CodeSage-large-v2 [30]
and CodeXEmbed [9] exhibit sub-optimal performance compared to Voyage-v3 and even fall behind
some text-oriented approaches. Moreover, their training data is also not publicly released. Thus, the
creation and open release of high-quality training data has become imperative for advancing code
retrieval research.

3 Data Synthesis

Recent studies highlight the value of synthetic data for embedding models [31, 6, 5, 18]. Despite
using various strategies, these works share several high-level principles regarding the effectiveness of
synthetic data: (1) being Diverse and comprehensive, (2) introducing Reliable semantic relationships,
(3) providing Useful and non-trivial knowledge. However, these works also reveal open problems in
existing practice, e.g., directly prompting LLMs to generate training samples often results in a lack of
diversity, while smaller LLMs may struggle with instruction-following capabilities.

In our work, we create a large-scale dataset, CodeR-Pile, through a novel data synthesis pipeline,
adhering to the DRU principle and effectively collaborating large-small LLMs. As shown in Figure 2,
the data synthesis pipeline includes three stages: 1) Brainstorming: designing diverse code retrieval

3

1. Brainstorming

Text2Code Retrieval
• Web Query to Code Retrieval

• Code Contest Retrieval

• Text to SQL Retrieval

Seed Tasks

Code2Text Retrieval
• Code Summary Retrieval

Code2Code Retrieval
• Code Context Retrieval

• Similar Code Retrieval

• Code Translation Retrieval

Hybrid Retrieval
• Code Modification Retrieval

Brainstorm Prompt
Brainstorm a list of potentially

useful code retrieval tasks for the

following main task type:

{Code2Text}.

…(omitted for space)

Here are a few examples for your

reference:

- Example 1:

 Task Name: {Code Summary

Retrieval}

 Task Instruction: {Given a

piece of code, retrieve the docu-

ment string that summarizes the

code.}

…(omitted for space)

Powerful LLMs

Filter

Text2Code Retrieval (10)
• 3 seed tasks + 7 new tasks

Final Tasks

Code2Text Retrieval (10)
• Code Summary Retrieval

• Code Review Retrieval

• Code Intent Retrieval

• Code Optimization Retrieval

• Code Walkthrough Retrieval

• API Reference Retrieval

• … (4 more new tasks)

Code2Code Retrieval (18)
• 3 seed tasks + 15 new tasks

Hybrid Retrieval (9)
• 1 seed task + 8 new tasks

2. Instructing

Task Definition
Task Name:

- Code Summary Retrieval

Major Task Type:

- Code2Text

Task Instruction:

- Given a piece of code, retrieve

the document string that summa-

rizes the code.

Generation Instruction:

- Given a piece of {Python}

code, generate a summary

in {English} of the code.

Output Content:

- the generated summary in

{English}.

Annotation Instruction:

- judge whether the text

summarizes the code.

Generation Prompt
{Generation Instruction}

{Input Type}: {Input Content}

Note:

- Your output must always be a string, only containing {Output Content}

…(omitted for space)

Your output:

Annotation Prompt
Given a code retrieval task (Task), a query (Query), and a document

(Document), your mission is to {Annotation Instruction}.

Task ({Major Task Type}): {Task Instruction}

Query ({Query Type}): {query}

Document ({Doc Type}): {document}

…(omitted for space)

Your output:

3. Triplets Generation
Generation Pipeline

Github-code

Corpus

Generation Setting
Task Name: Code Summary Retrieval

Language: English

Programming Language: Python

Number of Samples: 𝑁

Generation Results
Task Name: Code Summary Retrieval

Language: English

Programming Language: Python

Triplets: {query, positive, negatives}× 𝑁′

Cleaned Code

Files

Input

Content

Generation
Prompt

Sample

Light-

weight

LLM

Annotation
Prompt Light-

weight

LLM

query

positive

label (0/1)

query

positive

× 𝑁

Pair Annotated Pair

HN-Mine

If label=1 query

positive

negatives

Triplet

Hard Negative Mining

Github-code

Corpus /

All positives

Faiss

Index

Embedder
query

positive

Embedder𝑬𝒒
𝑬𝒑

hard negatives

Input Output

TopK-PercPos (95%)

Edit

Draft

Figure 2: The data synthesis pipeline of CodeR-Pile.

tasks with large and powerful LLMs; 2) Instructing: defining generation and annotation instructions
for each task with large and powerful LLMs; and 3) Triplets Generation: Generating training sample
for each task with cost-effective LLMs. The detailed process is elaborated as follows.

Brainstorming. Instead of directly prompting LLMs to generate training samples, we first leverage
the creativeness from large-and-powerful LLMs to design diverse training tasks. In our paper, the
following four main categories are defined: 1) Text2Code; 2) Code2Text; 3) Code2Code; 4) Hybrid.
We also manually design exemplars as the demonstrates to facilitate the brainstorming process.
We make use of 4 powerful LLMs, including DeepSeek-R1 [32], GPT-4o [33], Claude-3-Opus-
20240229 [34], and Gemini-2.0-Flash-Thinking-Exp [35]. For each task type, we manually check
the brainstorming results, and filter out unqualified and duplicated results. Finally, this results in 10
tasks for Text2Code, 10 for Code2Text, 18 for Code2Code, and 9 for Hybrid. The detailed task types
and task instructions are presented in Appendix D.

Instructing. Given the complexity of each designed task, it’s still challenging to generate qualified
training samples merely from the task’s definition, especially with lightweight LLMs. Thus, we
further use GPT-4o mini to draft detailed instructions, including task-specific generation instructions,
output content requirements, and label-annotating instructions, to facilitate generation (Figure 2).
The instructions are also refined by human experts to guarantee the quality. The detailed crafted
instructions for all tasks are available in Appendix E.

Triplets Generation. We further design the generation pipeline to produce training samples (triplets)
based on the well-defined task types and instructions. The generation process is iteratively conducted

4

text-only data

existing code
retrieval data

synthetic data

retrieved
simple data

retrieved
hard data

e5

error data

correct data

judge
correctness

GPT-judged
simple data

GPT-judged
medium data

GPT-judged
hard data

judge
difficultyretrieval

text-only
data

Stage-1
CoddeR

base
model

existing code
retrieval data

synthetic
data

text-only
data

Stage-2
CodeR

GPT-judged
medium data

final
CodeR

 Training Pipeline

stage 2stage 1 stage 3

 Data process Pipeline

GPT-judged
hard data

GPT GPT

Figure 3: The training pipeline of CodeR.

through the following process. 1) Sample a code file from Github-code dataset4 w.r.t. the specified
programming language (e.g., Python). 2) Format the generation prompt based on the code-file and
crafted instructions of the specified task. 3) Prompt a lightweight LLM, Qwen2.5-Coder-32B-Instruct
[36] in our work, to generate the required output with the formatted prompt. The code-file and the
LLM’s output forms a query-positive pair for the corresponding task. 4) Format the annotation
prompt with the organized query-positive pair and the crafted instructions of the specified task. 5)
Quality control using Qwen2.5-Coder-32B-Instruct, which annotates each query-positive pair with
0/1 relevance label (1: true positive, 0: false positive). 6) Introducing 15 hard negatives for each
verified positive sample [37].

Finally, CodeR-Pile dataset covers 4 major task types, 47 code retrieval tasks, 2 natural languages
and 20 programming languages, including a total of 2,885,059 training samples. We provide concrete
examples in Appendix D and more detailed specifications in Appendix E.

4 Training Method

Our code training process incorporates heterogeneous sources: text-only data and code data. The
code data consists of existing code retrieval data and synthetic data. To make effective use of
heterogeneous data and fully enhance the model’s code retrieval capabilities, we propose a three-stage
curriculum learning strategy [38] called Annealing. As shown in Figure 3, our training procedure
follows a weak-to-strong supervision paradigm, beginning with low-relevance data and gradually
transitioning to high-relevance data until the model training is complete. This curriculum learning
strategy facilitates the transfer of knowledge from textual domains to programming languages, while
progressively enhancing the model’s ability to develop robust code retrieval capabilities.

Stage 1: Warming-up with text data. In this first stage, the base model is trained exclusively on
text-only data. This stage has the most remote relevance to code retrieval, whose main purpose is to
equip the model with fundamental semantic matching capabilities.

Stage 2: Intensive training with all data. In the second stage, the training data expands substantially
to incorporate a mixture of text and code data. This introduces the highest diversity of data and
improved relevance with code retrieval tasks. This modal-mixture training approach enables the
model to transfer smoothly from text-only to text-and-code scenarios.

Stage 3: Cooling-down with code data. In the third stage, the training process focuses exclusively
on code-only data, thereby strengthening the model’s code retrieval capabilities. To enhance the
training effectiveness, we implement the following strategies to emphasize more challenging tasks.

4https://huggingface.co/datasets/codeparrot/github-code-clean

5

https://huggingface.co/datasets/codeparrot/github-code-clean

Table 2: Results on the CoIR benchmark (NDCG@10).

Model Apps CosQA Text2SQL CSN CSN-CCR CodeTrans StackOverFlow CodeFeedBack Avg-Contest -DL QA -ST -MT

Baselines

BGE-M3 7.37 22.73 48.76 43.23 47.55 47.86 31.16 51.04 49.94 33.46 39.31
E5-Mistral-7B-Instruct 21.33 31.27 65.98 54.25 65.27 82.55 33.24 91.54 72.71 33.65 55.18
Gemini-embedding 93.75 50.24 69.96 81.06 84.69 89.53 31.47 96.71 85.33 56.28 73.90
UniXcoder 1.36 25.14 50.45 60.20 58.36 41.82 31.03 44.67 36.02 24.21 37.33
Jina-v2-code 16.32 40.95 44.18 83.95 82.72 86.61 30.46 89.35 68.95 52.11 59.56
CodeSage-large-v2 50.49 32.87 60.12 82.79 85.72 88.22 32.71 79.41 71.32 57.16 64.08
CodeXEmbed-2B (general) 74.99 36.31 59.00 73.50 85.77 86.63 33.17 90.54 81.15 53.08 67.41
CodeXEmbed-7B (general) 85.22 33.27 64.57 78.84 86.77 90.64 32.31 94.25 80.93 57.83 70.46
CodeXEmbed-2B (in-domain) 76.86 40.47 78.42 87.87 97.66 90.30 38.57 94.47 86.36 65.51 75.65
CodeXEmbed-7B (in-domain) 85.38 42.47 78.94 89.67 97.95 94.45 40.46 96.33 87.53 68.83 78.20
Voyage-Code-002 26.52 29.79 69.26 81.79 73.45 72.77 27.28 67.68 65.35 28.74 56.26
Voyage-Code-003 93.62 34.45 62.87 89.35 90.05 94.96 38.57 97.17 90.67 93.58 78.53

Ours

CodeR-1.5B + text-only data & full code data 98.08 46.72 64.35 89.53 98.30 94.38 46.13 95.35 90.56 94.38 81.77
w/ text-only data & synthetic data 55.70 37.52 57.05 76.49 92.83 91.65 33.67 93.08 82.95 80.25 70.12
w/ text-only data & existing code retrieval data 81.45 46.56 64.20 89.06 97.84 94.42 46.27 95.12 89.63 93.20 79.77

1) We utilize E5 embedding model [39] (multilingual-e5-base) to perform retrieval for each query in
the dataset. If the positive instance appears within the top-3 retrieved results, the sample is classified
as simple and excluded from the dataset. Otherwise, it is considered as a hard sample and retained.

2) We leverage GPT-4o mini [33] for further refinement. Particularly, GPT-4o mini is prompted
to labeled the data into four categories: “error data” (the annotation is considered problematic),
“GPT-judged simple data”, “GPT-judged medium data”, and “GPT-judged hard data”. We only retain
the “GPT-judged medium data” and “GPT-judged hard data” for the last-stage’s training. The detailed
filter instructions are presented in Appendix F.

This rigorous selection process yields a training corpus consisting primarily of highly reliable and
sufficiently challenging training samples. This helps to significantly enhance the model’s capability
to handle complex code retrieval scenarios. Additionally, we further add tasks instructions for the
remaining training samples, which enables the model to establish stronger task-specific retrieval
capability [40, 21]. The contrastive learning process, the instructions, and the detailed specifications
are included in Appendix B. Besides, we provide details about training data and implementations in
Appendix C and D.

5 Experiment

5.1 Benchmarks

Our experiment leverages the 16 diverse datasets from the two popular code-retrieval benchmarks:
CoIR and CodeRAG. Note that CodeRAG has no overlap with the training data, thus offering
out-of-domain evaluation for code embedding models.

CoIR [14] is a comprehensive benchmark designed to evaluate code retrieval performance. It consists
of 10 datasets spanning 8 different retrieval tasks across 7 diverse domains. In our experiments, we
evaluate on the test sets of each dataset included in the benchmark.

CoIR-filter is a refined version of the original CoIR. The original CoIR test sets contain a substantial
number of redundant queries and duplicated corpus entries, which can undermine the reliability of
evaluation. To mitigate this issue, we apply a de-duplication process to both queries and documents,
yielding a cleaner and more trustworthy benchmark for assessing the performance.

CodeRAG [1] is a benchmark designed for evaluating retrieval-augmented code generation methods.
The benchmark encompasses both retrieval and end-to-end code generation performance. We employ
its retrieval session for experiment, which includes 6 code datasets.

5.2 Main Results

The experimental results on the CoIR is shown in Table 2. We conduct comprehensive comparisons
against a wide range of baselines, categorized as follows: 1) General-purposes embedding models:
BGE-M3 [41], E5-mistral-7B-instruct [21], and Gemini-embedding [7]. 2) Code-focused models:
UniXcoder [29], Jina-v2-code [8], CodeSage-large-v2 [30], CodeXEmbed [9], and Voyage [26].

6

Table 3: Results on the CoIR-filter benchmark (NDCG@10).

Model Apps CosQA Text2SQL CSN CSN-CCR CodeTrans StackOverFlow CodeFeedBack Avg-Contest -DL QA -ST -MT

Baselines

Jina-v2-code 16.33 73.94 62.32 83.95 82.89 86.61 64.12 89.35 71.43 52.11 68.31
CodeXEmbed-2B (general) 80.68 64.13 84.25 73.53 87.69 83.31 70.11 91.50 81.79 49.09 76.61
Voyage-code-003 93.72 64.00 94.78 89.35 94.17 94.96 71.96 97.17 93.66 93.58 88.73

Ours

CodeR-1.5B + text-only data & full code data 98.18 78.02 95.87 89.53 98.51 94.33 92.30 95.35 93.53 94.38 93.00
w/ text-only data & synthetic data 55.75 63.58 83.42 76.49 93.02 91.65 71.83 93.08 80.25 85.91 79.50
w/ text-only data & existing code retrieval data 81.65 78.38 95.34 89.13 98.09 94.56 92.42 95.11 92.69 93.45 91.08

Table 4: Results on the CodeRAG benchmark (NDCG@10).
Model HummanEval MBPP DS-1000 ODEX RepoEval SWE-bench-Lite Avg
Baselines

BGE-base 99.7 98.0 10.8 22.0 77.5 44.9 58.5
SFR-mistral-7B 100.0 99.0 19.3 37.1 83.8 62.7 67.0
Jina-v2-code 100.0 97.7 26.2 19.9 90.5 58.3 65.4
CodeSage-large-v2 100.0 96.3 16.2 14.1 84.7 39.9 58.5
CodeXEmbed-2B (general) 100.0 97.4 25.4 23.9 88.7 52.4 64.6
Voyage-code-002 100.0 99.0 33.1 26.6 94.3 29.1 63.7

Ours

CodeR-1.5B + text-only data & full code data 100.0 99.2 40.8 36.1 93.1 67.4 72.8
w/ text-only data & synthetic data 100.0 98.1 37.3 31.3 91.4 65.9 70.7
w/ text-only data & existing code retrieval data 100.0 98.9 37.2 32.5 92.2 64.6 70.9

Note that CodeXEmbed involves in two variants: one version is trained exclusively on general data
(general), while the other one incorporates CoIR in-domain training data (in-domain).

CoIR results. The key observations are presented as follows. First of all, when CodeR is trained
with the entire code data, it significantly outperforms existing general-purpose and code-focused
models, achieving state-of-the-art performance. This result basically demonstrates the effectiveness
of our training process and the value of our synthetic data. Additionally, when using the full code
data, CodeR substantially outperforms the model that is trained solely on synthetic data or existing
code retrieval data, which validates the efficacy of incorporating synthetic data to enhance model
performance. Finally, when CodeR is trained exclusively on synthetic data, it outperforms the
comparably sized CodeXEmbed-2B (general) by 2.7 points, and attains performance comparable to
CodeXEmbed-7B (general), which further validate the impact of our synthetic data.

CoIR-filter results. We identify severe duplications in several datasets of CoIR, including Apps,
CosQA, Text2SQL, CSN-CCR, CodeTrans-DL, and CodeFeedBack-ST. With the removal of all
duplications, we further evaluate the performance of CodeR on CoIR-filter against Jina-v2-code,
Codexembed-2B (general) and Voyage-code-003 (another strong baseline, CodeXEmbed, is not
included as it hasn’t released its powerful 7B model yet). The refined benchmark leads to more
reliable evaluation, and it demonstrates more significant advantage of CodeR over the baselines
(improvement over the state-of-the-art model Voyage-code-003 is increased from 3.2 to 4.3 points).

CodeRAG results. We further investigate the generalization capability of CodeR by evaluating its
out-of-domain performance using CodeRAG, with experiment results presented in Table 4 (we only
include the reported baselines in CodeRAG’s evaluation due to constraints on model availability and
evaluation expense). It can be seen that CodeR demonstrates exceptional performance on CodeRAG,
achieving a state-of-the-art average score of 72.8. Additionally, CodeR demonstrates superior
performance even when trained exclusively on synthetic data, substantially outperforming current
open-source code retrievers such as Jina-v2-code and CodeXEmbed-2B (general). Furthermore,
when trained exclusively on synthetic data, CodeR demonstrates performance comparable to training
solely on existing code retrieval data, it confirms that synthetic data provides robustness equivalent
to manually annotated data. Finally, when utilizing the full code data, CodeR outperforms models
trained on either data type individually, which indicates that the integration of synthetic data bolsters
the model’s ability to handle a wider range of code retrieval tasks.

5.3 Analysis of Synthetic Data

We perform comprehensive pilot studies on synthetic data to explore the following research questions:
1) RQ1: How does task coverage influence the retrieval performance of models on downstream

7

(a) Diverse training tasks enhance
the model’s code retrieval ability.

(b) Open-source lightweight LLMs
are sufficient for generating quality
training samples.

(c) Real-world corpus mining plays
a critical role in enhancing the data
synthesis pipeline.

Figure 4: Retrieval performance on the CoIR benchmark (NDCG@10) under different task coverage
(Figure (a), RQ1), LLMs for generation (Figure (b), RQ2), and hard negatives strategy (Figure (c),
RQ3), with detailed results provided in the Appendix H.

tasks? 2) RQ2: How do lightweight LLMs compare to powerful, proprietary LLMs in synthetic data
generation? 3) RQ3: How do mined hard negatives compare to LLM-generated hard negatives in
terms of data effectiveness? 4) RQ4: How reliable are relevance annotations generated by LLMs
during the data synthesis process?

Task Coverage (RQ1). To investigate how task coverage affect model’s retrieval performance on
downstream tasks, we directly fine-tune two models with different task coverage: 1) using all data in
4 major task types; 2) only using Text-to-Code Retrieval data. As shown in Figure 4 (a), the model
using all data in 4 major task types exhibits better retrieval performance on CoIR benchmark (65.65
→ 67.64), which indicates that more diverse task coverage is able to improve the model’s retrieval
capability in more diverse downstream tasks.

LLMs for Generation (RQ2). To evaluate how lightweight LLMs compare to powerful yet expensive
models in data generation, we select seven tasks5 and use the same input content for both Qwen2.5-
Coder-32B-Instruct and GPT-4o mini to generate training samples through our data synthesis pipeline.
We then fine-tune two models using the training samples generated by each LLM, respectively.
Figure 4 (b) shows the comparison results on the CoIR benchmark. Fine-tuning with GPT-4o
mini’s synthetic data yields only a 1.66 point improvement over using Qwen2.5-Coder-32B-Instruct’s
synthetic data. This suggests that lightweight open-source LLMs are sufficient for generating effective,
high-quality training samples based on our proposed workflow.

Hard Negatives Generation Strategy (RQ3). To assess the effectiveness of different hard negative
generation strategies, we compare our approach that mines hard negatives from a real-world corpus,
with the method proposed by E5-Mistral [31] which relies on LLM-generated hard negatives. Using
the same seven tasks as in RQ2, we prompt Qwen2.5-Coder-32B-Instruct to generate N hard negatives
for each query-positive pair, replacing the mined hard negatives with those generated by the LLM.
As shown in Figure 4 (c), fine-tuning with LLM-generated hard negatives results in significant drop
in performance on CoIR benchmark, particularly for tasks such as Apps (Code Contest Retrieval)
and CodeFeedBack-ST (Single-turn Code QA). These results highlight the crucial role of real-world
corpus mining in our data synthesis pipeline.

Reliability of Annotation (RQ4). To evaluate the annotation accuracy provided by LLMs during data
generation, we first randomly sample 10 annotated query-positive pairs for each label (0 and 1) within
a given task. These pairs are then reviewed by human experts with the assistance of powerful LLMs6.
We conduct this evaluation using the generated data from the seven tasks in RQ2, and also annotate
query-positive pairs generated by GPT-4o mini for comparison. As shown in Table 5, for pairs
annotated as label = 1 (i.e., pairs included in the our dataset), Qwen2.5-Coder-32B-Instruct achieves
an annotation accuracy of 93%, outperforming GPT-4o mini. This demonstrates the reliability of

5Text2Code: Web Query to Code Retrieval, Code Contest Retrieval, Text to SQL Retrieval. Code2Text: Code
Summary Retrieval. Code2Code: Code Context Retrieval, Similar Code Retrieval, Code Translation Retrieval.

6We utilize DeepSeek-R1, GPT-4o, and Claude 3.7 Sonnet to assist human experts in annotating the provided
query-positive pairs.

8

Table 5: Annotation accuracy of Qwen2.5-Coder-32B-Instruct and GPT-4o mini in data generation,
with Qwen2.5-Coder-32B-Instruct demonstrating superior annotation accuracy for positive data pairs
while maintaining stringent filtering criteria to ensure higher-quality datasets.

Task (→) Web Query to Code Contest Text to SQL Code Summary Similar Code Code Trans- AvgCode Retrieval Retrieval Retrieval Retrieval Retrieval lation Retrieval
Annotated Label = 1

Qwen2.5-Coder-32B-Instruct 90% (9/10) 100% (10/10) 100% (10/10) 100% (10/10) 100% (10/10) 70% (7/10) 93% (56/60)
GPT-4o mini 100% (10/10) 80% (8/10) 80% (8/10) 100% (10/10) 100% (10/10) 70% (7/10) 88% (53/60)

Annotated Label = 0

Qwen2.5-Coder-32B-Instruct 40% (4/10) 60% (6/10) 30% (3/10) 10% (1/10) 20% (2/10) 70% (7/10) 38% (23/60)
GPT-4o mini 70% (7/10) 80% (8/10) 70% (7/10) 33% (2/6) 80% (8/10) 90% (9/10) 73% (41/56)

Table 6: Abalation studies based on the CoIR benchmark (NDCG@10).

Model Apps CosQA Text2SQL CSN CSN-CCR CodeTrans StackOverFlow CodeFeedBack Avg-Contest -DL QA -ST -MT

w/ text-only data & synthetic data

CodeR-1.5B 55.70 37.52 57.05 76.49 92.83 91.65 33.67 93.08 82.95 80.25 70.12

Stage-1 15.17 33.15 57.82 68.15 84.14 87.00 33.72 93.32 81.14 77.53 63.14
Stage-2 53.28 36.35 54.87 75.24 92.43 90.81 33.66 92.58 79.96 82.07 69.13
Stage-3 55.70 37.52 57.05 76.49 92.83 91.65 33.67 93.08 82.95 80.25 70.12

w/o Annealing 49.59 36.21 58.78 73.08 89.72 90.03 34.14 92.81 82.97 77.60 68.49
w/o text-only data 54.20 33.57 51.39 78.85 93.20 87.85 35.36 93.00 81.47 80.05 68.89

w/o GPT filtering 53.53 36.00 54.58 74.88 91.99 91.06 33.64 92.63 81.84 79.58 68.97
w/o E5 and GPT filtering 53.53 35.17 54.11 72.97 92.37 89.76 33.38 91.97 81.38 77.92 68.25

training samples generated by our data synthesis pipeline. However, for pairs annotated as label =
0 (i.e., pairs excluded from the final dataset), Qwen2.5-Coder-32B-Instruct’s annotation accuracy
drops to 38%, which is lower than GPT-4o mini. This indicates that the data filtering criteria under
Qwen2.5-Coder-32B-Instruct are more stringent, further ensuring the quality of the data. Although
these strict filtering criteria may result in some positive samples being filtered out, they ensure that
negative samples are effectively discarded, guaranteeing that the retained data are truly high-quality
and accurate.

5.4 Analysis of Training Process

Performance Gain of Each Stage. We evaluate the effectiveness of our training approach by analyz-
ing the performance improvements of CodeR across each stage (Table 6). The results show consistent
performance gains throughout the training process. Notably, the most significant improvement occurs
during the second stage, which integrates all three data sources. This highlights the effectiveness of
knowledge transfer from heterogeneous data to the code retrieval task.

Effectiveness of Annealing. We conduct a detailed analysis of Annealing using the following
comparison methods: 1) w/o Annealing, which trains the model directly on mixed data from all three
stages. 2) w/o text-only data, which removes text-only data and training with only code data in a
two-stage process.

The experimental result is presented in Table 6. As observed, training with Annealing leads to
significant improvements over direct mixed-data training, underscoring the importance of the three-
stage training strategy. By following a weak-to-strong supervision paradigm, the model develops
enhanced code retrieval capabilities, allowing it to better tackle complex code retrieval tasks.

Additionally, removing text-only data results in a notable performance drop, indicating that incor-
porating textual information is a critical component of code training. This textual data facilitates
knowledge transfer that improves overall code retrieval performance.

Impact of Filtering Strategy. We investigate the impact of data filtering strategies in the third stage
of Annealing by comparing our approach with the following methods: 1) w/o GPT filtering: using
only the retrieved hard negatives for three-stage training. 2) w/o E5 and GPT filtering: using the
original code data without any filtering for three-stage training.

The experimental results, as shown in Table 6, indicate that incorporating GPT filtering effectively
improves the quality of training data, leading to enhanced retrieval performance. In contrast, training

9

directly on the unfiltered code dataset results in a significant decline in performance. This suggests
that the original dataset contains low-quality data, and since the model has already acquired strong
code retrieval capabilities, further training on the unfiltered data can hardly contribute to performance
improvements.

6 Conclusion

In this paper, we present CodeR, a state-of-the-art embedding model designed for general-purpose
code retrieval. CodeR’s superior performance is built upon CodeR-Pile, a massive synthetic dataset
generated through our innovative data synthesis workflow. To effectively leverage the heterogeneous
training data, we propose a novel curriculum learning method called Annealing, which progres-
sively trains the model using a weak-to-strong supervision strategy. Comprehensive experiments on
CoIR and CodeRAG benchmarks demonstrate CodeR’s significant advantage over existing models,
highlighting the value of our training data and the effectiveness of our training approach.

7 Discussion on Limitations

While CodeR has made remarkable advancements in code retrieval, there remain several opportunities
for further improvement. First, although CodeR currently supports code retrieval in both Chinese
and English, expanding its capacity to cover additional languages would enhance its versatility.
Additionally, while the existing 1.5B-scale model achieves impressive performance, developing
models at varying scales could better accommodate diverse application scenarios. Finally, the
synthetic data we have created holds potential to support the development of re-ranking models. We
plan to explore these directions in our future research.

8 Acknowledgments

The work was supported by grants from the National Key R&D Program of China Grant No.
2023YFF0725103, the National Natural Science Foundation of China (No. U24A20253), the
National Natural Science Foundation of China (Nos. 62272054, 62192784), Beijing Nova Program
(No. 20230484319, 20250484968), State Key Laboratory of Multimedia Information Processing
Open Fund (No. SKLMIP-KF-2025-07) and Shandong Key Laboratory of Advanced Computing.

References
[1] Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu, Frank F Xu, Yiqing Xie, Graham Neubig,

and Daniel Fried. Coderag-bench: Can retrieval augment code generation? arXiv preprint
arXiv:2406.14497, 2024.

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[3] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, 2022.

[4] Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih Yavuz.
Sfr-embedding-mistral:enhance text retrieval with transfer learning. Salesforce AI Research
Blog, 2024. URL https://www.salesforce.com/blog/sfr-embedding/.

[5] Chaofan Li, MingHao Qin, Shitao Xiao, Jianlyu Chen, Kun Luo, Yingxia Shao, Defu Lian, and
Zheng Liu. Making text embedders few-shot learners. arXiv preprint arXiv:2409.15700, 2024.

[6] Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan
Catanzaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist
embedding models. arXiv preprint arXiv:2405.17428, 2024.

10

https://www.salesforce.com/blog/sfr-embedding/

[7] Jinhyuk Lee, Feiyang Chen, Sahil Dua, Daniel Cer, Madhuri Shanbhogue, Iftekhar Naim,
Gustavo Hernández Ábrego, Zhe Li, Kaifeng Chen, Henrique Schechter Vera, et al. Gemini
embedding: Generalizable embeddings from gemini. arXiv preprint arXiv:2503.07891, 2025.

[8] Michael Günther, Jackmin Ong, Isabelle Mohr, Alaeddine Abdessalem, Tanguy Abel, Moham-
mad Kalim Akram, Susana Guzman, Georgios Mastrapas, Saba Sturua, Bo Wang, et al. Jina
embeddings 2: 8192-token general-purpose text embeddings for long documents. arXiv preprint
arXiv:2310.19923, 2023.

[9] Ye Liu, Rui Meng, Shafiq Joty, Silvio Savarese, Caiming Xiong, Yingbo Zhou, and Semih
Yavuz. Codexembed: A generalist embedding model family for multiligual and multi-task code
retrieval. arXiv preprint arXiv:2411.12644, 2024.

[10] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. Beir:
A heterogenous benchmark for zero-shot evaluation of information retrieval models. arXiv
preprint arXiv:2104.08663, 2021.

[11] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. Ms marco: A human-generated machine reading comprehension dataset. 2016.

[12] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

[13] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

[14] Xiangyang Li, Kuicai Dong, Yi Quan Lee, Wei Xia, Hao Zhang, Xinyi Dai, Yasheng Wang, and
Ruiming Tang. Coir: A comprehensive benchmark for code information retrieval models. arXiv
preprint arXiv:2407.02883, 2024.

[15] Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and Rodrigo Nogueira. Inpars: Unsupervised
dataset generation for information retrieval. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 2387–2392,
2022.

[16] Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna Gurevych. Gpl: Generative pseudo
labeling for unsupervised domain adaptation of dense retrieval. arXiv preprint arXiv:2112.07577,
2021.

[17] Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language
models. arXiv preprint arXiv:2303.07678, 2023.

[18] Nandan Thakur, Jianmo Ni, Gustavo Hernández Ábrego, John Wieting, Jimmy Lin, and Daniel
Cer. Leveraging llms for synthesizing training data across many languages in multilingual dense
retrieval. arXiv preprint arXiv:2311.05800, 2023.

[19] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. Document expansion by query
prediction. arXiv preprint arXiv:1904.08375, 2019.

[20] Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo Ni, Jing Lu, Anton Bakalov, Kelvin Guu,
Keith B Hall, and Ming-Wei Chang. Promptagator: Few-shot dense retrieval from 8 examples.
arXiv preprint arXiv:2209.11755, 2022.

[21] Chaofan Li, Zheng Liu, Shitao Xiao, and Yingxia Shao. Making large language models a better
foundation for dense retrieval. arXiv preprint arXiv:2312.15503, 2023.

[22] Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R Cole, Kai Hui,
Michael Boratko, Rajvi Kapadia, Wen Ding, et al. Gecko: Versatile text embeddings distilled
from large language models. arXiv preprint arXiv:2403.20327, 2024.

11

[23] Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text
embedding benchmark. arXiv preprint arXiv:2210.07316, 2022.

[24] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi.
Coderl: Mastering code generation through pretrained models and deep reinforcement learning.
Advances in Neural Information Processing Systems, 35:21314–21328, 2022.

[25] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022.

[26] voyage-code-3: more accurate code retrieval with lower dimensional, quantized embeddings.
2024. URL https://blog.voyageai.com/2024/12/04/voyage-code-3.

[27] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,
Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and
natural languages. arXiv preprint arXiv:2002.08155, 2020.

[28] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with
data flow. arXiv preprint arXiv:2009.08366, 2020.

[29] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified
cross-modal pre-training for code representation. arXiv preprint arXiv:2203.03850, 2022.

[30] Dejiao Zhang, Wasi Ahmad, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei
Ma, and Bing Xiang. Code representation learning at scale. arXiv preprint arXiv:2402.01935,
2024.

[31] Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei.
Improving text embeddings with large language models. arXiv preprint arXiv:2401.00368,
2023.

[32] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[33] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[34] Claude 3 model family. 2024. URL https://www.anthropic.com/news/
claude-3-family.

[35] Gemini 2.5 flash. 2025. URL https://deepmind.google/technologies/gemini/
flash/.

[36] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jia-
jun Zhang, Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint
arXiv:2409.12186, 2024.

[37] Gabriel de Souza P Moreira, Radek Osmulski, Mengyao Xu, Ronay Ak, Benedikt Schifferer,
and Even Oldridge. Nv-retriever: Improving text embedding models with effective hard-negative
mining. arXiv preprint arXiv:2407.15831, 2024.

[38] Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu,
Lifu Tang, Xiaowei Lv, et al. Light-r1: Curriculum sft, dpo and rl for long cot from scratch and
beyond. arXiv preprint arXiv:2503.10460, 2025.

[39] Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei.
Multilingual e5 text embeddings: A technical report. arXiv preprint arXiv:2402.05672, 2024.

[40] Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen, Gautier Izacard, Sebastian Riedel,
Hannaneh Hajishirzi, and Wen-tau Yih. Task-aware retrieval with instructions. arXiv preprint
arXiv:2211.09260, 2022.

12

https://blog.voyageai.com/2024/12/04/voyage-code-3
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://deepmind.google/technologies/gemini/flash/
https://deepmind.google/technologies/gemini/flash/

[41] Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-
embedding: Multi-lingual, multi-functionality, multi-granularity text embeddings through
self-knowledge distillation. arXiv preprint arXiv:2402.03216, 2024.

[42] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
arXiv preprint arXiv:2112.09118, 2021.

[43] Chaofan Li, Zheng Liu, Shitao Xiao, Yingxia Shao, and Defu Lian. Llama2vec: Unsupervised
adaptation of large language models for dense retrieval. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
3490–3500, 2024.

[44] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1
(2):3, 2022.

13

A Overview of Appendix
• Appendix B: Instruction Tuning.
• Appendix C: Experiment Setup.
• Appendix D: Details on CodeR-Pile Dataset.
• Appendix E: Details on Data Synthesis Pipeline.
• Appendix F: Details on Data Process Pipeline.
• Appendix G: Evaluation Instructions.
• Appendix H: Details for the Analysis of Synthetic Data.

B Instruction Tuning

Given a task definition t and a query q, we construct an instructed query using the following
formulation:

qinst = ⟨instruct⟩ {t} ⟨query⟩ {q} (1)

For encoding purposes, we append an [EOS] token to each instructed query qinst and document d.
The respective embeddings (hqinst

, hd) are extracted from the hidden states corresponding to the
[EOS] token in the final layer of the model.

During training, we use the standard InfoNCE [42] contrastive loss function:

L = − log
exp(sim(qinst,d

+))

exp(sim(qinst,d+)) +
∑

d−∈D− exp(sim(qinst,d−))
(2)

where d+ represents a relevant document, and D− denotes the collection of irrelevant documents that
serve as negative examples. The similarity function sim(qinst, d) quantifies the degree of matching
between the instructed query qinst and the document d. Here we employ a temperature-scaled cosine
similarity function defined as:

sim(qinst,d) =
1

τ
cos(hqinst ,hd) (3)

In this formulation, τ is a temperature hyperparameter that controls the sharpness of the distribution,
which we fix at 0.02 throughout the training process.

C Experiment Setup

C.1 Training Dataset

We utilize two distinct datasets for training: text-only data and code data. The code data is structured
into two subsets: existing code retrieval data and synthetic data.

• For the text-only data, we incorporate retrieval datasets and STS datasets from the BGE
training set [5, 41].

• For the existing code retrieval data, we adopt the CoIR training datasets from their original
source [14].

C.2 Implementation Details

CodeR is initialized Qwen-2.5-Coder-1.5B [36] as its base model. Throughout the training procedure,
we set the maximum sequence length of 512 tokens for both queries and passages. Following previous
works [31, 43], we utilize Low-Rank Adaptation (LoRA) [44] with a rank of 32 and an alpha of 64.
During the first and second training stages, we employ a learning rate of 1×10−4. For the third stage,
we decrease the learning rate to 1× 10−5 to facilitate finer gradient updates and enhance convergence
precision. The model is trained for 5 days with 8 × A800 GPUs.

C.3 Artifacts

The model and dataset release information is available at https://github.com/FlagOpen/
FlagEmbedding.

14

https://github.com/FlagOpen/FlagEmbedding
https://github.com/FlagOpen/FlagEmbedding

Table 7: Task names and task instructions for all 47 code retrieval tasks in CodeR-Pile. In the task
instruction of Code Translation Retrieval, “{src_code_language}” and “{tgt_code_language}” refer
to the source programming language and the target programming language, respectively.

Task Name Task Instruction

Text2Code Retrieval (10)

Web Query to Code Retrieval Given a web search query, retrieve relevant code that can help answer the query.
Code Contest Retrieval Given a code contest problem description, retrieve relevant code that can help solve the problem.
Text to SQL Retrieval Given a question in text, retrieve SQL queries that are appropriate responses to the question.
Error Message to Code Retrieval Given an error message encountered during coding, retrieve relevant code that can help resolve the error.
Code Explanation to Implementation Retrieval Given a textual explanation of code functionality, retrieve the corresponding code implementation.
API Usage Description to Code Retrieval Given a usage description of an API or library, retrieve code examples demonstrating the usage.
Bug Description to Code Retrieval Given a description of a software bug or unexpected behavior, retrieve relevant code that can help address the issue.
Pseudocode to Code Retrieval Given a pseudocode description of a procedure, retrieve code implementations of the procedure.
Programming Tutorial Query to Code Example Retrieval Given a query related to a programming tutorial or learning material, retrieve code examples that are relevant to the query.
Algorithm Description to Code Retrieval Given a textual description of an algorithm, retrieve code implementations of the described algorithm.

Code2Text Retrieval (10)

Code Summary Retrieval Given a piece of code, retrieve the document string that summarizes the code.
Code Review Retrieval Given a piece of code, retrieve the review that explains its role.
Code Intent Retrieval Given a piece of code, retrieve the developer’s intent or purpose described in a commit message or design document.
Code Optimization Retrieval Given a piece of code, retrieve optimization suggestions or performance analysis reports.
Tutorial Retrieval Given a piece of code, retrieve tutorials or how-to guides that demonstrate how to use or implement similar code.
Code Issue Discussion Retrieval Given a piece of code, retrieve discussions or issue reports related to the code, such as bug reports or feature requests.

API Reference Retrieval Given a piece of code that uses specific APIs or libraries, retrieve the relevant API reference documentation for those APIs
or libraries.

Code Walkthrough Retrieval Given a piece of code, retrieve a step-by-step walkthrough or detailed explanation of the code’s logic and execution flow.
Code Error Explanation Retrieval Given a piece of code, retrieve the document that explains potential errors or exceptions that may arise from the code.
Code to Requirement Retrieval Given a piece of code, retrieve the software requirement or user story it fulfills.

Code2Code Retrieval (18)

Code Context Retrieval Given a piece of code segment, retrieve the code segment that is the latter part of the code.
Similar Code Retrieval Given a piece of code, retrieve code that is semantically equivalent to the input code.
Code Translation Retrieval Given a piece of {src_code_language} code, retrieve {tgt_code_language} code that is semantically equivalent to the input code.
Code Refinement Retrieval Given a piece of code, retrieve a refined version of the code.
Secure Code Retrieval Given a piece of code, retrieve a version of the code with enhanced security measures or vulnerability fixes.

Code Version Update Retrieval Given a piece of code in an older language version, retrieve code updated to comply with the syntax or features of a newer
language version.

Code Example Retrieval Given a code library or API, retrieve example code snippets that demonstrate how to use the library or API.

Code Dependency Retrieval Given a piece of code, retrieve all the code segments that the input code depends on, including libraries, functions, and
variables

Code Pattern Retrieval Given a piece of code, retrieve other code segments that follow the same design pattern or structure.
Code History Retrieval Given a piece of code, retrieve previous versions or iterations of the code to understand its development history
Code Integration Retrieval Given a piece of code, retrieve code that demonstrates how to integrate the input code with other systems or components.
Optimized Code Retrieval Given a piece of code, retrieve an optimized version of the code that improves performance, readability, or efficiency.
Code Simplification Retrieval Given a complex piece of code, retrieve a simplified version of the code that is easier to understand and maintain.
Code Modularization Retrieval Given a piece of code, retrieve a modularized version of the code that breaks it down into smaller, reusable components.
Code Augmentation Retrieval Given a piece of code, retrieve code that implements additional functionality while preserving the original behavior.
Error Handling Retrieval Given a piece of code, retrieve code that incorporates error-checking or exception-handling mechanisms relevant to the code.
Code Documentation Retrieval Given a piece of code, retrieve code with inline comments or documentation explaining its functionality.

Library Adaptation Retrieval Given a piece of code using one library or framework, retrieve code that achieves the same functionality using a different
library or framework.

Hybrid Retrieval (9)

Code Modification Retrieval Given a code snippet and a natural language description of desired modifications, retrieve relevant code that implements the
requested modifications.

Code Bug Fix Example Retrieval Given a code snippet containing a bug and a natural language description of the bug or error, retrieve code snippets that
demonstrate solutions or fixes for similar bugs or errors.

Code Refactoring Pattern Retrieval Given a code snippet that could be improved and a natural language description of desired refactoring goals or patterns,
retrieve code snippets that exemplify similar refactoring techniques or patterns.

Code Style Guideline Example Retrieval Given a code snippet and a natural language query describing a desired coding style or best practice, retrieve code snippets
that adhere to the specified style guidelines or best practices.

Code Migration Retrieval Given a code snippet and a natural language description of a specific migration requirement, retrieve code snippets that
demonstrate how to migrate the code to meet the requirement.

Code Optimization Hybrid Retrieval Given a code snippet and a natural language request for specific optimization, retrieve relevant code that implements the
requested optimization.

Code Comparison Retrieval Given two code snippets and a natural language query about their differences or similarities, retrieve relevant documents that
explain the differences or similarities.

Code Best Practices Retrieval Given a code snippet and a natural language query about coding best practices, retrieve relevant documents including
guidelines, design patterns, or recommendations that can help improve the quality of the code.

Security Vulnerability Fix Retrieval Given a code snippet and a text description of a security concern, retrieve secure code alternatives that address the security
vulnerability.

D Details on CodeR-Pile Dataset

D.1 Specifications

Table 7 presents task names and task instructions for all 47 code retrieval tasks in CodeR-Pile. We
also provide descriptive statistics of CodeR-Pile in Table 8.

D.2 Supported Programming Languages

CodeR-Pile consists of the following 20 programming languages: Java, Python, JavaScript, PHP,
Ruby, Go, C#, C++, TypeScript, Rust, C, Perl, Shell, SQL, Visual Basic, Powershell, Batchfile,
Fortran, Haskell, and Lua.

15

Table 8: Descriptive statistics of CodeR-Pile. #Tasks: number of tasks. #Samples: number of training
samples. One sample consists of a query, a positive document and a list of negative documents. Avg
Q Len: average number of tokens per query. Avg D Len: average number of tokens per document.
GPT-4o’s tokenizer is used to count tokens.

Task Type #Tasks Language #Samples Avg Q Len Avg D Len

Text2Code Retrieval 10 English 353,801 89 212
Chinese 351,268 144 215

Code2Text Retrieval 10 English 457,032 250 200
Chinese 363,367 234 287

Code2Code Retrieval 18 English 741,294 227 226

Hybrid Retrieval 9 English 309,499 281 213
Chinese 308,798 286 223

Total 47 - 2,885,059 217 225

Table 9: Prompt template for brainstorming tasks. For the placeholders, {Task Name of Example i}
and {Task Instruction of Example i} refer to the task name and task instruction of the i-th seed task,
which are available in Table 7.

Brainstorm a list of potentially useful code retrieval tasks for the following major task type: {Major Task Type}.

Note:
- For each task, you should generate the task name and the corresponding task instruction.
- In the task instruction, you should specify what the query is, and what the desired documents are.
- Each task should cover a wide range of queries, and should not be too specific.

Here are a few examples for your reference:
- Example 1:

Task Name: {Task Name of Example 1}
Task Instruction: {Task Instruction of Example 1}

- Example 2:
Task Name: {Task Name of Example 2}
Task Instruction: {Task Instruction of Example 2}

(More examples · · ·)

Your output should always be a list of JSON objects only, with about 10 elements. Each element should be a JSON object,
containing the following fields:
- "task_name": the name of the task.
- "task_instruction": the instruction of the task.

Your output should start with "[" and end with "]". Remember do not explain your output or output anything else.

Your output:

E Details on Data Synthesis Pipeline

Brainstorming Tasks. The prompt template for brainstorming tasks is presented in Table 9. We
select 7 tasks from the three major task types introduced by CoIR [14] as the seed tasks: 1) Text2Code:
Web Query to Code Retrieval, Code Contest Retrieval, Text to SQL Retrieval; 2) Code2Text: Code
Summary Retrieval; 3) Code2Code: Code Context Retrieval. We found that the two original hybrid
retrieval tasks in CoIR, Single-turn Code QA and Multi-turn Code QA, are too broad in scope.
Therefore, we design a new hybrid retrieval task, Code Modification Retrieval, and use it as the seed
task to help LLMs brainstorm additional tasks.

Query-Positive Pair Generation. The prompt template for generating query-positive pairs is
presented in Table 10. After generation, the input content and the LLM’s output are organized into
a query-positive pair based on the task requirements. For example, if the task is Code Summary
Retrieval, then the input content is treated as the query, and the LLM’s output serves as the positive.
If the task is Text to SQL Retrieval, then the input content (SQL code) serves as the positive, and the
LLM’s output (text query) corresponds to the query.

16

Table 10: Prompt template for generating query-positive pairs. “{Generation Instruction}” ∈ Table 12.
“{Output Content}” ∈ Table 13.

{Generation Instruction}

{Input Type}:
“‘
{Input Content}
”’

Note:
- Your output must always be a string, only containing {Output Content}.
- Your output should be independent of the given code, which means that it should not containing the pronouns such as "it", "this", "that",
"the given", "the provided", etc.

Remember do not explain your output or output anything else.

Your output:

Table 11: Prompt template for annotating query-positive pairs. For placeholders, “{Major Task Type}”
∈ {Text2Code, Code2Text, Code2Code, Hybrid}, “{Annotation Instruction}” ∈ Table 14, “{Task
Instruction}” ∈ Table 7, “{Query Type} and {Doc Type}” ∈ Table 15.

Given a code retrieval task (Task), a query (Query), and a document (Document), your mission is to {Annotation Instruction}.

Task ({Major Task Type}): {Task Instruction}

Query ({Query Type}):
“‘
{query}
”’

Document ({Doc Type}):
“‘
{document}
”’

Your output must be one of the following options:
- 0: The query or document does not match the major task type ({Major Task Type}).
- 1: The query and document match the major task type ({Major Task Type}). The judgment is: Yes.
- 2: The query and document match the major task type ({Major Task Type}). The judgment is: No.

Do not explain your answer in the output. Your output must be a single number (0 or 1 or 2).

Your output:

Query-Positive Pair Annotation. The prompt template annotation is presented in Table 11. If the
response from LLM is “1”, then the final label is also 1 (true positive). If the response is not “1”, then
the final label is 0 (false positive).

Hard Negatives Mining. We use Topk-PercPos [37] with a 95% margin to mine 15 hard negatives
for each query-positive pair.

Comparison with E5-Mistral’s Approach. Compared with the data synthesis approach proposed
by E5-Mistral [31], our data synthesis method differs in three main aspects: 1) The synthesis of
query-positive pair and the mining of hard negatives both exploit the real-world corpus, which not
only closely aligns with real-world scenarios, but also significantly reduces the generation cost. 2)
The design of human-checked tasks, human-edited instructions, and annotated query-positive pairs
enhances the reliability of CodeR-Pile. 3) The combined use of powerful yet expensive LLMs and
lightweight open-source LLMs substantially improves the cost-effectiveness of CodeR-Pile’s overall
synthesis process.

17

Table 12: Generation instructions for all 47 code retrieval tasks in CodeR-Pile, used in the generation
prompt. “{code_language}”, “{src_code_language}”, “{tgt_code_language}” ∈ {Java, Python,
JavaScript, PHP, Ruby, Go, C#, C++, TypeScript, Rust, C, Perl, Shell, SQL, Visual Basic, Powershell,
Batchfile, Fortran, Haskell, Lua}. “{language}” ∈ {English, Chinese}.

Task Name Generation Instruction

Text2Code Retrieval (10)

Web Query to Code Retrieval Given a piece of {code_language} code, generate a web query in {language} that can be solved by the code.
Code Contest Retrieval Given a piece of {code_language} code, generate a code contest description in {language} that can be solved by the code.
Text to SQL Retrieval Given a piece of {code_language} code, generate a text query in {language} for which the code is the appropriate response.
Error Message to Code Retrieval Given a piece of {code_language} code, generate a possible error message in {language} that can be resolved by the code.
Code Explanation to Implementation Retrieval Given a piece of {code_language} code, generate a textual explanation in {language} of the code functionality.

API Usage Description to Code Retrieval Given a piece of {code_language} code, generate a usage description of an API or library in {language} that can be demonstrated
by the code as an example.

Bug Description to Code Retrieval 1. Given a piece of {code_language} code, modify some details of the code to introduce one or more bugs.
2. Given a piece of {code_language} code with one or more bugs, generate a description of the bugs in {language}.

Pseudocode to Code Retrieval Given a piece of {code_language} code, generate a pseudocode in {language} that describes the code functionality.

Programming Tutorial Query to Code Example Retrieval Given a piece of {code_language} code, generate a programming tutorial query in {language} that can be answered by the code as
an example.

Algorithm Description to Code Retrieval Given a piece of {code_language} code, generate an algorithm description in {language} that can be implemented by the code.

Code2Text Retrieval (10)

Code Summary Retrieval Given a piece of {code_language} code, generate a summary in {language} of the code.
Code Review Retrieval Given a piece of {code_language} code, generate a review in {language} that explains its role.

Code Intent Retrieval Given a piece of {code_language} code, generate a developer’s intent or purpose described in a commit message or design
document in {language}.

Code Optimization Retrieval Given a piece of {code_language} code, generate code optimization suggestions or performance analysis reports in {language}.

Tutorial Retrieval Given a piece of {code_language} code, generate tutorials or how-to guides that demonstrate how to use or implement similar
code in {language}.

Code Issue Discussion Retrieval
1. Given a piece of {code_language} code, generate a version with some bugs.
2. Given a piece of {code_language} code, generate a discussion of the code’s issues or bugs in {language}, such as bug reports
or feature requests.

API Reference Retrieval Given a piece of {code_language} code, generate the relevant API reference documentation in {language} that can be used to
understand the code.

Code Walkthrough Retrieval Given a piece of {code_language} code, generate a step-by-step walkthrough or detailed explanation of the code’s logic and
execution flow in {language}.

Code Error Explanation Retrieval Given a piece of {code_language} code, generate a detailed explanation of the errors or exceptions that may arise from the code
in {language}.

Code to Requirement Retrieval Given a piece of {code_language} code, generate a software requirement or user story it fulfills in {language}.

Code2Code Retrieval (18)

Code Context Retrieval Given a piece of {code_language} code, generate a piece of code that is the latter part of the input code.
Similar Code Retrieval Given a piece of {code_language} code, generate a piece of {code_language} code that is semantically equivalent to the input code.

Code Translation Retrieval Given a piece of {src_code_language} code, generate a piece of {tgt_code_language} code that is semantically equivalent to the
input code.

Code Refinement Retrieval Given a piece of {code_language} code, generate a refined version of the code.
Secure Code Retrieval Given a piece of {code_language} code, generate a a version of the code with enhanced security measures or vulnerability fixes.

Code Version Update Retrieval 1. Given a piece of {code_language} code, generate a lower-level version of the code.
2. Given a piece of {code_language} code, update it with the syntax or features of a newer language version.

Code Example Retrieval Given a piece of {code_language} code, generate a piece of {code_language} code that is a good example of the code’s usage.

Code Dependency Retrieval Given a piece of {code_language} code, generate the code segments that the input code depends on, including libraries, functions,
and variables.

Code Pattern Retrieval Given a piece of {code_language} code, generate a piece of {code_language} code that follows the same design pattern or structure.
Code History Retrieval Given a piece of {code_language} code, generate a piece of {code_language} code that is a historical version or iteration of the code.

Code Integration Retrieval Given a piece of {code_language} code, generate a piece of {code_language} code that integrates the input code with other systems
or components.

Optimized Code Retrieval Given a piece of {code_language} code, generate an optimized version of the code that improves performance, readability, or
efficiency.

Code Simplification Retrieval Given a piece of {code_language} code, generate a simplified version of the code that is easier to understand and maintain.

Code Modularization Retrieval Given a piece of {code_language} code, generate a modularized version of the code that breaks it down into smaller, reusable
components.

Code Augmentation Retrieval Given a piece of {code_language} code, generate a piece of code that implements additional functionality while preserving the
original behavior.

Error Handling Retrieval Given a piece of {code_language} code, generate a piece of code that incorporates error-checking or exception-handling mechanisms
relevant to the input code.

Code Documentation Retrieval Given a piece of {code_language} code, generate a piece of code with inline comments or documentation explaining its functionality.

Library Adaptation Retrieval Given a piece of {code_language} code, generate a piece of code that achieves the same functionality using a different library or
framework.

Hybrid Retrieval (9)

Code Modification Retrieval

1. Given a piece of input code and a piece of output code, generate the differences in {language} between the input code and
output code.
2. Given the differences in {language} between a piece of input code and a piece of output code, generate a code modification
instruction in {language} that uses only the information from the differences to transform the input code into the output code.

Code Bug Fix Example Retrieval

1. Given a piece of {code_language} code, generate a buggy version of the code and a description in {language} of the bug or
error.
2. Given a piece of {code_language} code and a natural language description of the bug or error, generate a piece of
{code_language} code that demonstrates a solution or fix for the bug or error.

Code Refactoring Pattern Retrieval
1. Given a piece of {code_language} code, generate a description of the desired refactoring goals or patterns in {language}.
2. Given a piece of {code_language} code and a natural language description of the desired refactoring goals or patterns,
generate a piece of {code_language} code that exemplifies similar refactoring techniques or patterns.

Code Style Guideline Example Retrieval

1. Given a piece of {code_language} code, generate a query describing a desired coding style or best practice to improve it in
{language}.
2. Given a piece of {code_language} code and a natural language query describing the desired style guidelines or best
practices, generate a piece of {code_language} code that adheres to the specified style guidelines or best practices.

Code Migration Retrieval
1. Given a piece of {code_language} code, generate a specific migration requirement in {language} based on the code.
2. Given a piece of {code_language} code and a natural language description of a specific migration requirement, generate a
piece of {code_language} code that meets the migration requirement.

Code Optimization Hybrid Retrieval
1. Given a piece of {code_language} code, generate a question in {language} that requests a specific optimization for the code.
2. Given a piece of {code_language} code and a natural language request in {language} for specific optimization, generate a piece
of output code that implements the requested optimization.

Code Comparison Retrieval
1. Given a piece of input code and a piece of output code, generate a question in {language} about their differences or similarities.
2. Given a piece of input code and a piece of output code, and a natural language question in {language} about their differences or
similarities, generate a response that answer the question.

Code Best Practices Retrieval
1. Given a piece of {code_language} code, generate a question in {language} about coding best practices related to the code.
2. Given a piece of {code_language} code and a natural language question in {language} about coding best practices related to the
code, generate a response including guidelines, design patterns, or recommendations that can help improve the quality of the code.

Security Vulnerability Fix Retrieval
1. Given a piece of {code_language} code, generate a text description in {language} of a possible security concern in the code.
2. Given a piece of {code_language} code and a text description in {language} of a security concern, generate secure code
alternatives that address the vulnerability.

18

Table 13: Output contents of generation for all 47 code retrieval tasks in CodeR-Pile, used in the gener-
ation prompt. For placeholders, “{code_language}”, “{src_code_language}”, “{tgt_code_language}”
∈ {Java, Python, JavaScript, PHP, Ruby, Go, C#, C++, TypeScript, Rust, C, Perl, Shell, SQL, Visual
Basic, Powershell, Batchfile, Fortran, Haskell, Lua}, “{language}” ∈ {English, Chinese}.

Task Name Output Content

Text2Code Retrieval (10)

Web Query to Code Retrieval the generated web query in {language}
Code Contest Retrieval the generated code contest description in {language}
Text to SQL Retrieval the generated text query in {language}
Error Message to Code Retrieval the generated error message in {language}
Code Explanation to Implementation Retrieval the generated explanation in {language}
API Usage Description to Code Retrieval the generated API or library usage description in {language}

Bug Description to Code Retrieval 1. the modified code with one or more bugs
2. the generated bug description in {language}

Pseudocode to Code Retrieval the generated pseudocode in {language}
Programming Tutorial Query to Code Example Retrieval the generated programming tutorial query in {language}
Algorithm Description to Code Retrieval the generated algorithm description in {language}

Code2Text Retrieval (10)

Code Summary Retrieval the generated summary in {language}
Code Review Retrieval the generated review in {language}
Code Intent Retrieval the generated intent in {language}
Code Optimization Retrieval the generated optimization suggestions or performance analysis reports in {language}
Tutorial Retrieval the generated tutorial in {language}

Code Issue Discussion Retrieval 1. the generated buggy code
2. the generated error explanation in {language}

API Reference Retrieval the generated API reference documentation in {language}
Code Walkthrough Retrieval the generated walkthrough in {language}
Code Error Explanation Retrieval the generated error explanation in {language}
Code to Requirement Retrieval the generated requirement in {language}

Code2Code Retrieval (18)

Code Context Retrieval the generated piece of {code_language} code
Similar Code Retrieval the generated piece of {code_language} code
Code Translation Retrieval the generated piece of {tgt_code_language} code
Code Refinement Retrieval the generated piece of {code_language} code
Secure Code Retrieval the generated piece of {code_language} code

Code Version Update Retrieval 1. the generated piece of {code_language} code
2. the generated piece of {code_language} code

Code Example Retrieval the generated piece of {code_language} code
Code Dependency Retrieval the generated piece of {code_language} code
Code Pattern Retrieval the generated piece of {code_language} code
Code History Retrieval the generated piece of {code_language} code
Code Integration Retrieval the generated piece of {code_language} code
Optimized Code Retrieval the generated piece of {code_language} code
Code Simplification Retrieval the generated piece of {code_language} code
Code Modularization Retrieval the generated piece of {code_language} code
Code Augmentation Retrieval the generated piece of {code_language} code
Error Handling Retrieval the generated piece of {code_language} code
Code Documentation Retrieval the generated piece of {code_language} code
Library Adaptation Retrieval the generated piece of {code_language} code

Hybrid Retrieval (9)

Code Modification Retrieval 1. the generated differences in {language} between the input code and output code
2. the generated modification instruction in {language}

Code Bug Fix Example Retrieval 1. the generated buggy version of the code and a description in {language} of the bug or error
2. the generated piece of {code_language} code

Code Refactoring Pattern Retrieval 1. the generated description of the desired refactoring goals or patterns in {language}
2. the generated piece of {code_language} code

Code Style Guideline Example Retrieval 1. the generated query describing a desired coding style or best practice to improve it in {language}
2. the generated piece of {code_language} code

Code Migration Retrieval 1. the generated specific migration requirement in {language}
2. the generated piece of {code_language} code

Code Optimization Hybrid Retrieval 1. the generated question in {language} that requests a specific optimization for the code
2. the generated piece of {code_language} code

Code Comparison Retrieval 1. the generated question in {language} about their differences or similarities
2. the generated response in {language}

Code Best Practices Retrieval 1. the generated question in {language} about coding best practices related to the code
2. the generated response in {language}

Security Vulnerability Fix Retrieval 1. the generated text description in {language} of a possible security concern in the code
2. the generated piece of {code_language} code

19

Table 14: Annotation instructions for all 47 code retrieval tasks in CodeR-Pile, used in the annotation
prompt.

Task Name Annotation Instruction

Text2Code Retrieval (10)

Web Query to Code Retrieval judge whether the code can help answer the web search query
Code Contest Retrieval judge whether the code can help solve the code contest problem
Text to SQL Retrieval judge whether the code is an appropriate response to the text query
Error Message to Code Retrieval judge whether the code can help resolve the error message
Code Explanation to Implementation Retrieval judge whether the code implements the functionality described in the explanation
API Usage Description to Code Retrieval judge whether the code demonstrates the usage description of the API or library
Bug Description to Code Retrieval judge whether the code can help address the described bug
Pseudocode to Code Retrieval judge whether the code implements the procedure described in the pseudocode
Programming Tutorial Query to Code Example Retrieval judge whether the code can answer the programming tutorial query
Algorithm Description to Code Retrieval judge whether the code implements the algorithm described in the text

Code2Text Retrieval (10)

Code Summary Retrieval judge whether the text summarizes the code
Code Review Retrieval judge whether the review explains the role of the code
Code Intent Retrieval judge whether the text describes the intent of the code
Code Optimization Retrieval judge whether the text provides optimization suggestions or performance analysis reports for the code
Tutorial Retrieval judge whether the text is a tutorial or how-to guide that demonstrates how to use or implement similar code
Code Issue Discussion Retrieval judge whether the text is a discussion or issue report related to the code
API Reference Retrieval judge whether the text is an API reference documentation for the APIs or libraries used in the code
Code Walkthrough Retrieval judge whether the text is a step-by-step walkthrough or detailed explanation of the code’s logic and execution flow
Code Error Explanation Retrieval judge whether the text describes potential errors or exceptions that may arise from the code
Code to Requirement Retrieval judge whether the text is a software requirement or user story that the code fulfills

Code2Code Retrieval (18)

Code Context Retrieval judge whether the output code is the latter part of the input code
Similar Code Retrieval judge whether the output code is semantically equivalent to the input code
Code Translation Retrieval judge whether the output code is semantically equivalent to the input code
Code Refinement Retrieval judge whether the output code is a refined version of the input code

Secure Code Retrieval judge whether the output code is the version with enhanced security measures or vulnerability fixes compared to the
input code

Code Version Update Retrieval judge whether the output code is the version updated to comply with the syntax or features of a newer language ver-
sion compared to the input code

Code Example Retrieval judge whether the output code is the example code snippets that demonstrate how to use the library or API in the
input code

Code Dependency Retrieval judge whether the output code is the code segments that the input code depends on, including libraries, functions,
and variables.

Code Pattern Retrieval judge whether the output code follows the same design pattern or structure as the input code

Code History Retrieval judge whether the output code is the historical version or iteration of the input code, and can help understand its
development history.

Code Integration Retrieval judge whether the output code demonstrates how to integrate the input code with other systems or components.
Optimized Code Retrieval judge whether the output code is an optimized version of the input code
Code Simplification Retrieval judge whether the output code is a simplified version of the input code
Code Modularization Retrieval judge whether the output code is a modularized version of the input code

Code Augmentation Retrieval judge whether the output code implements additional functionality while preserving the original behavior of the
input code

Error Handling Retrieval judge whether the output code incorporates error-checking or exception-handling mechanisms relevant to the
input code

Code Documentation Retrieval judge whether the output code contains inline comments or documentation explaining the functionality of the
input code

Library Adaptation Retrieval judge whether the output code achieves the same functionality using a different library or framework as the
input code

Hybrid Retrieval (9)

Code Modification Retrieval judge whether the output code implements the requested modification described in the query
Code Bug Fix Example Retrieval judge whether the output code fixes the bug or error described in the query.
Code Refactoring Pattern Retrieval judge whether the output code exemplifies similar refactoring techniques or patterns described in the query
Code Style Guideline Example Retrieval judge whether the output code adheres to the specified style guidelines or best practices described in the query
Code Migration Retrieval judge whether the output code meets the migration requirement described in the query
Code Optimization Hybrid Retrieval judge whether the output code implements the requested optimization described in the query
Code Comparison Retrieval judge whether the response can answer the question described in the query
Code Best Practices Retrieval judge whether the response can answer the question described in the query
Security Vulnerability Fix Retrieval judge whether the output code addresses the security vulnerability described in the query

20

Table 15: Query types and document types for all 47 code retrieval tasks in CodeR-Pile, used in the
annotation prompt.

Task Name Query Type Doc Type

Text2Code Retrieval (10)

Web Query to Code Retrieval the web search query the code
Code Contest Retrieval the code contest problem the code
Text to SQL Retrieval the text query the code
Error Message to Code Retrieval the error message the code
Code Explanation to Implementation Retrieval the explanation the code
API Usage Description to Code Retrieval the API or library usage description the code
Bug Description to Code Retrieval the bug description the code
Pseudocode to Code Retrieval the pseudocode the code
Programming Tutorial Query to Code Example Retrieval the programming tutorial query the code
Algorithm Description to Code Retrieval the algorithm description the code

Code2Text Retrieval (10)

Code Summary Retrieval the code the text
Code Review Retrieval the code the review
Code Intent Retrieval the code the text
Code Optimization Retrieval the code the text
Tutorial Retrieval the code the text
Code Issue Discussion Retrieval the code the text
API Reference Retrieval the code the text
Code Walkthrough Retrieval the code the text
Code Error Explanation Retrieval the code the text
Code to Requirement Retrieval the code the text

Code2Code Retrieval (18)

Code Context Retrieval the input code the output code
Similar Code Retrieval the input code the output code
Code Translation Retrieval the input code the output code
Code Refinement Retrieval the input code the output code
Secure Code Retrieval the input code the output code
Code Version Update Retrieval the input code the output code
Code Example Retrieval the input code the output code
Code Dependency Retrieval the input code the output code
Code Pattern Retrieval the input code the output code
Code History Retrieval the input code the output code
Code Integration Retrieval the input code the output code
Optimized Code Retrieval the input code the output code
Code Simplification Retrieval the input code the output code
Code Modularization Retrieval the input code the output code
Code Augmentation Retrieval the input code the output code
Error Handling Retrieval the input code the output code
Code Documentation Retrieval the input code the output code
Library Adaptation Retrieval the input code the output code

Hybrid Retrieval (9)

Code Modification Retrieval the query the output code
Code Bug Fix Example Retrieval the query the output code
Code Refactoring Pattern Retrieval the query the output code
Code Style Guideline Example Retrieval the query the output code
Code Migration Retrieval the query the output code
Code Optimization Hybrid Retrieval the query the output code
Code Comparison Retrieval the query the response
Code Best Practices Retrieval the query the response
Security Vulnerability Fix Retrieval the query the output code

21

F Details on Data Process Pipeline

The prompt template for filtering query-positive pairs in the training data process phase is presented
in Table 16.

Table 16: Prompt template for GPT filtering query-positive pairs. “{Task Instruction}” ∈ Table 7.
You are provided with a task, a query, and a document. Based on the task, determine whether the document can respond to the query.

Your response should be one of the following, along with an explanation:
- "Yes, simple" - If the document contains sufficient information to fully and directly respond to the query in a straightforward manner.
- "Yes, medium" - If the document contains sufficient information to fully and directly respond to the query, but the explanation or reasoning
requires moderate effort.
- "Yes, hard" - If the document contains sufficient information to fully and directly respond to the query, but the explanation or reasoning
requires significant effort or complexity.
- "No" - If the document does not contain any relevant information to respond to the query.

Task:
{Task Instruction}

Query:
{query}

Document:
{document}

Your output:

G Evaluation Instructions

Table 17 presents the instructions utilized in our evaluation of each task.

Table 17: Instructions for the evaluation process on the CoIR and CodeRAG benchmarks.

Task Name Instruction Template

CoIR

Apps Given a code contest problem description, retrieve relevant code that can help solve the problem.
CosQA Given a web search query, retrieve relevant code that can help answer the query.
Text2SQL Given a question in text, retrieve SQL queries that are appropriate responses to the question.
CSN Given a piece of code, retrieve the document string that summarizes the code.
CSN-CCR Given a piece of code segment, retrieve the code segment that is the latter part of the code.
CodeTrans-DL Given a piece of code, retrieve code that is semantically equivalent to the input code.
CodeTrans-Contest Given a piece of Python code, retrieve C++ code that is semantically equivalent to the input code.

StackOverFlow-QA Given a question that consists of a mix of text and code snippets, retrieve relevant answers that also consist of a mix of text and
code snippets, and can help answer the question.

CodeFeedBack-ST Given a question that consists of a mix of text and code snippets, retrieve relevant answers that also consist of a mix of text and
code snippets, and can help answer the question.

CodeFeedBack-MT Given a multi-turn conversation history that consists of a mix of text and code snippets, retrieve relevant answers that also consist
of a mix of text and code snippets, and can help answer the question.

CodeRAG

HummanEval Given a question that consists of a mix of text and code snippets, retrieve relevant answers that also consist of a mix of text and
code snippets, and can help answer the question.

MBPP Given a textual explanation of code functionality, retrieve the corresponding code implementation.

DS-1000 Given a question that consists of a mix of text and code snippets, retrieve relevant answers that also consist of a mix of text and
code snippets, and can help answer the question.

ODEX Given a question, retrieve relevant answers that also consist of a mix of text and code snippets, and can help answer the question.
RepoEval Given a piece of code segment, retrieve the code segment that is the latter part of the code.

SWE-bench-Lite Given a code snippet containing a bug and a natural language description of the bug or error, retrieve code snippets that demons-
trate solutions or fixes for similar bugs or errors (the desired documents).

22

H Details for the Analysis of Synthetic Data

Table 18: Retrieval performance on the CoIR benchmark (NDCG@10) under different task coverage
(RQ1), LLMs for generation (RQ2), and hard negatives strategy (RQ3).

Model Apps CosQA Text2SQL CSN CSN-CCR CodeTrans StackOverFlow CodeFeedBack Avg-Contest -DL QA -ST -MT

Task Coverage

all data in 4 major task types 53.18 32.39 47.38 73.76 92.96 87.43 35.36 92.73 81.25 80.00 67.64
only Text-to-Code Retrieval data 49.72 35.62 57.93 64.74 80.21 89.78 34.45 88.20 80.96 74.92 65.65

LLMs for Generation, using only 7 tasks

Qwen2.5-Coder-32B-Instruct 44.55 28.52 60.01 70.19 91.51 87.80 32.83 90.65 80.98 85.86 67.29
GPT-4o mini 50.01 32.78 61.03 72.37 92.48 89.99 35.63 90.95 82.22 82.02 68.95

Hard Negatives Generation Strategy, using only 7 tasks

mine hard negatives 44.55 28.52 60.01 70.19 91.51 87.80 32.83 90.65 80.98 85.86 67.29
generate 7 hard negatives 17.46 21.33 43.46 68.18 91.84 84.61 35.63 81.97 49.52 70.02 56.40
generate 1 hard negatives 21.25 25.13 44.57 70.50 90.06 88.62 34.90 86.91 59.17 72.66 59.38

23

	Introduction
	Related Work
	Data Synthesis
	Training Method
	Experiment
	Benchmarks
	Main Results
	Analysis of Synthetic Data
	Analysis of Training Process

	Conclusion
	Discussion on Limitations
	Acknowledgments
	Overview of Appendix
	Instruction Tuning
	Experiment Setup
	Training Dataset
	Implementation Details
	Artifacts

	Details on CodeR-Pile Dataset
	Specifications
	Supported Programming Languages

	Details on Data Synthesis Pipeline
	Details on Data Process Pipeline
	Evaluation Instructions
	Details for the Analysis of Synthetic Data

