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ABSTRACT

Traditional supervised learning learns only enough features that are sufficient to
classify the current given classes. It may not capture all the characteristics of the
data. This is problematic for online continual learning (OCL), which learns a se-
quence of tasks incrementally, as it is a major cause for catastrophic forgetting
(CF). Although numerous OCL methods have been proposed to mitigate CF, the-
oretical understanding of the problem is limited. Recent work showed that if the
OCL learner can learn as many features as possible from the data (dubbed holistic
representations), CF can be significantly reduced. This paper shows that learning
holistic representations is insufficient and it is also necessary to learn invariant
representations because many features in the data are irrelevant or variant, and
learning them may also cause CF. This paper studies it both theoretically and em-
pirically. A novel invariant feature learning method related to causal inference
theory is proposed for online CL, which boosts online CL performance markedly.
1.

1 INTRODUCTION

A major challenge of continual learning (CL) is catastrophic forgetting (CF) (McCloskey & Cohen,
1989), which is caused by updating the parameters learned from previous tasks when learning a new
task. This paper focuses on overcoming the CF problem in the challenging online class-incremental
learning (online CIL) setting of CL. In CIL, a classifier is built for the classes learned thus far and
no task-related information (task-id) is provided in testing.2 In online CIL, the data come in a stream
and the model visits each batch of training data only once, which makes learning new knowledge and
protecting previous knowledge much harder. To mitigate CF in online CIL, many empirical replay-
based techniques (Aljundi et al., 2019a; Prabhu et al., 2020; Guo et al., 2023) have been proposed
and they mainly focus on the buffer storage management and rehearsal strategies. However, the
theoretical understanding of the problem is still very limited.

This paper is concerned with necessary conditions for feature learning in the replay-based online
CIL system. This paper proposes one necessary condition: learning and using features that are
invariant for each class to form the class representation rather than features that are present in the
input but are irrelevant to the class. This is critical for online CIL as variant features can cause
serious CF in learning the classes of subsequent tasks. We explain it in the following example: In
learning a task to classify images of apple and fish, some green background features are learned for
apple, but these features are not invariant to apple. When a new class cow in a new task needs to
be learned, these green background features are shared and may cause high logit outputs for apple
and cow, which confuse the learner. The learner then has to modify the representations to reduce
the logit value for apple, which causes CF. If the learner has learned the shape and other invariant
features of the apple, the input of cow will not activate many parameters for apple. Then, in learning
cow, changes to the parameters that are important for the apple will be limited, resulting in less CF.

This paper makes the following main contributions:

(1). It raises the theoretical and critical issue of learning invariant features for online CIL. It
is critical for online CIL and also CIL because we learn new tasks incrementally and each new

1The code is included in the submitted supplemental material.
2 The other popular CL setting is task-incremental learning, which provides the task-id for each test case.
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task represents a major distribution shift and thus non-i.i.d. As our example above demonstrates,
non-invariant features can cause serious CF for CIL and poor overall classification performances.

(2). It theoretically analyzes the invariance issue and proves that variant features can lead to higher
CF (Sec. 4).

(3). It proposes a new online CIL method called IFO (Invariant Feature learning for Online CIL)
based on experience replay to learn invariant features. IFO includes a new invariant feature learn-
ing optimization objective based on the guidance of the theoretical analysis and two approaches
with three ways to create environmental variants to enable invariant feature learning. We justify
IFO theoretically with causal inference theory (Sec. 5.4). Note that our environmental variants
are different from existing data augmentations, which aim to diversify the full images, while IFO
diversifies only the environments/backgrounds of the images (see Sec. 5.2 and Sec. 6.4).

(4). It empirically evaluates the proposed IFO in three online CIL scenarios: traditional disjoint task,
blurry task boundary, and data shift. IFO improves the online CIL performance of the replay-based
methods significantly by learning invariant feature representations. Combining IFO with another
holistic representation learning method OCM boosts the performance further by a large margin.

2 RELATED WORK

Existing empirical approaches to CL can be grouped into several families. The replay approach saves
a small amount of past data and uses it to adjust the previous knowledge in learning a new task Re-
buffi et al. (2017); Wu et al. (2019); Hou et al. (2019); Chaudhry et al. (2020); Zhao et al. (2021);
Korycki & Krawczyk (2021); Sokar et al. (2021); Yan et al. (2021); Wang et al. (2022a). Pseudo-
replay generates replay samples Hu et al. (2019); Sokar et al. (2021). Using regularizations to penal-
ize changes to important parameters of previous tasks is another approach Kirkpatrick et al. (2017);
Ritter et al. (2018); Ahn et al. (2019); Yu et al. (2020); Zhang et al. (2020). Parameter-isolation
protects models of old tasks using masks and/or network expansion Ostapenko et al. (2019); von
Oswald et al. (2020); Li et al. (2019); Hung et al. (2019); Rajasegaran et al. (2020); Abati et al.
(2020); Wortsman et al. (2020); Saha et al. (2021). Zhu et al. (2021a) used data augmentations to
learn transferable features. Several papers are also based on orthogonal projection, e.g., OWM Zeng
et al. (2019), OGD Farajtabar et al. (2020) and TRGP Lin et al. (2022). LwM Dhar et al. (2019) and
RRR Ebrahimi et al. (2021) maintain the attention map of old tasks to tackle CF. They do not study
the issue of learning invariant features. Thus, their feature map may learn variant features.

Online CL methods are mainly based on replay. ER randomly samples the replay data Chaudhry
et al. (2020), MIR chooses replay data whose losses increase most Aljundi et al. (2019a), ASER uses
the Shapley value theory Shim et al. (2021), and GDumb produces class balanced replay data Prabhu
et al. (2020). GSS diversifies the gradients of the replay data Aljundi et al. (2019b). DER++ uses
knowledge distillation Buzzega et al. (2020), SCR Mai et al. (2021b),Co2L Cha et al. (2021) and
DualNet Pham et al. (2021) use self-supervised loss, and NCCL calibrates the network Yin et al.
(2021). PASS Zhu et al. (2021b) uses rotation augmentation to create pseudo-classes. Bang et al.
(2021) and Bang et al. (2022) proposed two blurry online CL settings.

Data augmentations have been used in many traditional learning and CL methods. Existing meth-
ods Buzzega et al. (2020); Pham et al. (2021); Mai et al. (2021a) use data augmentations (e.g.,
cropping, rotation, adding noise, etc) to diversify the data for better performance. They do not focus
on diversifying the environments to learn invariant representations as we do. Data augmentations
also create pseudo-classes Zhu et al. (2021a), which change the semantics of the original classes.
PAR Zhang et al. (2022) uses augmentation repeatedly to help alleviate memory overfitting.

Domain generalization (DG) learns a model with inputs from multiple given source domains (or
environments) with the same class labels and test with inputs from unseen domains. Many DG
methods leverages data augmentations or auxiliary data to expand the diversity of the source do-
mains Wang et al. (2020); Wu et al. (2020); Arjovsky et al. (2019); Rame et al. (2022); Yang et al.
(2021); Yue et al. (2019). Our training data have no identified domains and DG does not do CL.

3 PROBLEM FORMULATION AND BACKGROUND
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We consider three online CL settings. (1) disjoint tasks setting, where the system learns a sequence
of tasks one after another. Each task consists of several classes. The data for each task comes in a
stream and the learner sees the data only once. In a replay method, when a small batch of data of
the current task t arrives Dnew

t = (Xnew
t , Y new

t ) (where Xnew
t is a set of new samples and Y new

t is its
set of corresponding labels), a small batch of replay data Dbuf

t = (Xbuf
t , Y buf

t ) is sampled from the
memory buffer M and used to jointly train in one iteration. (2) blurry task setting Koh et al. (2021),
where the data of classes from previous tasks may appear again later. (3) data environment shift
setting, where the classes are fixed but the environments of classes change with time.

Our model F consists of a feature extractor fθ (where θ is the parameter set of the feature extractor)
and a classifier σϕ (where ϕ is the parameter set of the classifier). fθ extracts features from the input
x to form a high-level representation, and F (x) = σϕ(fθ(x)) outputs the logits for each class.

4 THEORETICAL ANALYSIS OF INVARIANT REPRESENTATION LEARNING

In this section, we prove that learning invariant class representation is necessary for online CIL and
also for general CIL. Our proof follows the data generation mechanism framework of the previous
invariant feature learning works Arjovsky et al. (2019); Zhou et al. (2022). First, we formally de-
scribe the class learning in one task: In learning task t, we use xZt

c to denote the input of class c of the
task t from the environment variable Zt. xZt

c is the concatenation of invariant features xinv
c ∈ Rdinv,c

(generated by Yt), variant features xvar
zt ∈ Rdvar (generated by Zt), and random features xr ∈ Rdr

(random noise following a sub-Gaussian distribution with zero mean and bounded variance), i.e.,
xZt
c = [xinv

c , xvar
zt , x

r] ∈ Rd. To learn the mapping relation between xZt
c and class c, we train a

linear model F (·; θ, ϕ) with the cross-entropy loss Lce(F (xZt
c ; θ, ϕ)). Following the linear model

assumption, the output F (xZt
c ; θ, ϕ) for class c is:

F (xZt
c ; θ, ϕc) = (θ ◦ xZt

c )Tϕc + b (1)

where ϕc ∈ Rd is the classifier weights for class c and d is the input dimension. The parameter of
feature extractor θ turns into a binary vector θ ∈ {0, 1}d×1 performing feature selection here and b
is the bias and ◦ is the element-wise product.

Next, we formally describe the learning of new tasks in online CIL and the forgetting of previous
classes: When the next task t+1 arrives, the class distribution changes and we denote the input of a
new class c′ in task t+1 as xZt+1

c′ . The linear model learns the prediction of class c′ based on x
Zt+1

c′ .
For the previous class c, we define its forgetting after learning the new class c′ as:

H(c, c′) = E
x
Zt
c

[−log(
eF (x

Zt
c ;θt+1,ϕc,t+1)

eF (x
Zt
c ;θt+1,ϕc,t+1) + ...+ eF (x

Zt
c ;θt+1,ϕc′,t+1)

)− (−log(
eF (x

Zt
c ;θt,ϕc,t)

eF (x
Zt
c ;θt,ϕc,t) + ...

))]

(2)
where xZt

c is an input sampled from class c’s distribution. The first term on the right is the expected
CE loss on class c’s distribution after training task t + 1 that includes class c′. The second term
is the expected CE loss on class c’s distribution after the training of task t that includes class c but
before learning task t+ 1. ‘...’ is the sum of the terms for the logits of other classes. {θt, ϕc,t} and
{θt+1, ϕc,t+1} are the parameters after training task t and task t+ 1, respectively.

Now we assume that (i) the model has converged to an optimal point after training task t. (ii)
There exists an ideal CL algorithm that protects all important weights related to previous classes
when learning task t + 1 like that in (Kim et al., 2022) using masks. We will show that the class
representation involving variant features has higher forgetting even with the two ideal conditions.

When the environment variable Zt reappear in task t+1 (i.e., xvar
zt are in the input of new task data),

there exists three different situations and corresponding conclusions: (1) if the model F only uses
invariant features of class c to form class representation (θt assigns 0 to xvar

zt ), then we have H(c, c′)
is independent of whether F uses variant features in the class c′’s representation or not. (2) If the
model F uses both invariant features and variant features of class c to form class representation,
then H(c, c′) is affected by whether F uses variant features to form the class c′’s representation.
We denote the forgetting of class c for the cases without using variant features and with using
variant features to form the class c′’s representation as H(c, c′) and H(c, c′) respectively. We have
H(c, c′) > H(c, c′). (3) If the model F only uses variant features to form class c’s representation,
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then H(c, c′) is affected by whether F uses variant features to form the class c′’s representation. We
have similar conclusions as (2). The proof is given in Appendix A.

Based on the analysis of three situations, we know that using variant features in the class represen-
tation can have the risk of causing higher forgetting when a class from some future tasks also uses
the same variant features to form part of its class representation. In contrast, methods using only
invariant features for class representations avoid this risk. Our findings show that learning variant
features for class representation in a straightforward linear scenario risks increased forgetting, let
alone in complex non-linear deep networks.

5 LEARNING INVARIANT FEATURES

In this section, we first present a general invariant feature learning optimization objective based
on the above analysis. Then we propose environment augmentations to achieve our optimization
objective in online CIL. We deploy our objective with augmentations into the basic experience replay
approach and call the proposed technique IFO (Invariant Feature learning for Online CL). We justify
that our method is the approximation of the Interventional Empirical Risk in online CIL.

5.1 INVARIANT FEATURE LEARNING OPTIMIZATION OBJECTIVE

Based on the above analysis in Sec. 4, our learning goal for the over-parameterized linear model to
learn one class c in task t is (1) minF Lce(F (xZt

c ; θ, ϕ)) (well-trained model for classifying class
c) while (2) maintaining θ∗ = [1dinv,c , 0dvar , 0dr ] (only using invariant features to form the class
representation). When we consider the more general case (e.g., a non-linear model and every class
in task t), the latter goal (2) turns into P (Zt|fθ(xZt)) = P (Zt) (the representation of each input x
of the class is independent of the environment variable).

To satisfy the second goal, we propose a new alignment loss here. Assume that we have a training
environment set Zt in the training data which has multiple different environments z and we can
control the environments in Zt. The alignment loss forces the representations of the images with the
same class label but sampled from different environments in the new data batch Dnew

t to be close:

Lalign(D
new
t ) =

∑
x

∑
x′ I(y = y′ ∧ z ̸= z′) · L(fθ(x), fθ(x′))∑

x

∑
x′ I(y = y′ ∧ z ̸= z′)

(3)

where y/y′ is the label of x/x′, and z/z′ is the environment that x/x′ sampled from. L(·, ·) com-
putes the cosine distance between the two representations and I is the indicator function. So the
learned representation does not have any information to infer the environment variable. Then our
invariant feature learning objective that considers (1) and (2) turns into:

LIFO(D
new
t ) = Lce(D

new
t ) + Lalign(D

new
t ) (4)

5.2 ENVIRONMENT AUGMENTATION BASED ON PRIOR KNOWLEDGE: METHOD I

The above section leaves an unsolved problem: How can one generate multiple different environ-
ments z in online CIL? It’s notoriously hard to automatically (i) identify all variant features in natural
images and (ii) to adjust them to create different environments. Thus, in this section, we propose
two simple environmental augmentations based on prior knowledge as the first attempt: (1) color
change, which changes the color of the non-object part of the image as we know that the color of
the non-object part usually does not contain the core invariant features of a class, and (2) edge ex-
pansion, which expands an image with the non-object edge part of another image as we know that
the non-object edge part of an image is usually irrelevant to the classification task and can be treated
as containing variant features. Note that we do not assume that the object of the class is centered in
the image and these augmentations need to modify the environment while preserving the semantic
meaning of the class. We introduce the details of the augmentations below.

(1). Color Augmentation for the Non-object Part. For an input image x, (1) we calculate the
class activation map (CAM) Zhou et al. (2016) of x that identifies the regions of x attended to by
a classifier. We set a mask of the object in x as M(x) = CAM(x) > α, where α is an importance
threshold. (2) We then create another image x′ by randomly reordering the RGB channels of the
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Figure 1: (a): Illustration for data augmentation Augcolor. (b): Illustration of data augmentation
Augexpand. (c): Illustration of the proposed invariant feature learning. (1) we first sample a new
data batch Dnew

t and replay buffer data batch Dbuf
t . (2) We create environment-augmented images

from different environments. Then we combine them with the original data batch to construct the
augmented data batches Dnew,aug

t and Dbuf,aug
t . (3) We calculate the Lce loss of the augmented data

batches and the Lalign loss by using their hidden representations.

original image x, and (3) sample an λ value from the Beta distribution. The generation of the
augmented image x̂ is:

x̂ = (1−M(x)) · (λ · x+ (1− λ) · x′) +M(x) · x (5)

In this augmentation, the original class semantic feature (e.g., shape) is protected by the object mask
M(x) and the color of the non-object part varies with different orders of the RGB channels and
λ. We denote this augmentation as Augcolor(x, s), where s means that we repeat the augmentation
s times to create s different augmented images. In section 6.4, we demonstrate that augmenting
without the mask already yields strong results, and using the mask further improves the result.

(2). Edge Expansion Augmentation. In this augmentation, we expand x by extracting the edge of
another image x′ and using it to expand x. Note that the element in the original edge and center of x
is unchanged. Specifically, for input x of size n, (1) we resize x to r1 · n where r1 is the resize rate.
We call this resized image resize(x, r1 · n), which maintains the original class semantic features.
(2) We randomly sample an image x′′ from the batch Xbuf

t

⋃
Xnew

t and replace the object part of
x′′ (M(x′′) · x′′) with resize(x, r1 · n). We use M(x′′) to identify the location of the object part
rather than assume that it is in the center. If resize(x, r1 · n) can not cover the whole object part of
x′′, we sample an image again. We denote this augmentation as Augexpand(x). We illustrate the two
augmentations in Figure 1 (a) and (b).

5.3 ENVIRONMENT AUGMENTATION VIA CLUSTERING THE REPLAY DATA: METHOD II

This section, propose the second environmental augmentation method based on the property of the
online CIL setting. In online CIL, earlier training data batches of a task may have very different
environments from the subsequent training data batches. The shift of environments in one task
means previous training batches can be utilized to augment the environments of the newest training
batch. However, the model cannot revisit previous batches. So we use the stored data for the current
task in the replay buffer as it is updated continuously. Specifically, (1) for each class of the current
task, we use the k-means method to cluster the representations of the data of the class in the buffer
into k clusters (pseudo environments). (If the number of stored samples for a new class is smaller
than k, we do not cluster this class’s data. (2) For each image x in Dnew

t , we collect the clusters
that have the same class as x and calculate the cosine distance of fθ(x) and each cluster’s prototype.
(3) We search the cluster that has the minimum distance to fθ(x) and view x as a sample from the
environment of this cluster. (4) We sample one data sample xp per cluster from the other clusters of
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the same class and view xp as the sample from another environment. If the number of stored samples
for the class of x is smaller than k, we choose the same class’s stored data sample that has the
maximum representation cosine distance to x as xp. (5) We use xp as x′′ in the above augmentation
Augexpand(x) to create more environments and denote Augexpand(x) using xp as Augpexpand(x). This
method augments new data x with k − 1 previously seen but different environments of the same
class via replaying the current task’s data, i.e., training it makes the model learn an invariant class
representation that generalizes well for the same class’s data points sampled from different times.

5.4 PUT EVERYTHING TOGETHER

After augmenting each image x in the new data batch, we combine all augmented images with the
original images to construct the augmented new data batch Dnew,aug

t . We then calculate the invariant
loss LIFO(D

new,aug
t ). The replay data also needs to learn invariant representations as well to avoid

over-fitting the few samples in the buffer. So we also augment the replay data batch as Dbuf,aug
t and

calculate LIFO(D
buf,aug
t ). The final invariant loss for the IFO method (Figure 1 (c)) is:

LIFO(D
new,aug
t ) + LIFO(D

buf,aug
t ) = Lce(D

new,aug
t ) + Lalign(D

new,aug
t ) + Lce(D

buf,aug
t ) + Lalign(D

buf,aug
t ) (6)

Relationship with Causal Inference. Learning invariant features naturally follows the causal in-
ference theory because invariant features are the real causes for the class. In the causal inference
theory, Jung et al. (2020) showed that we need to replace the observational distribution P (Yt|Xt)
with the interventional distribution P (Yt|do(Xt)) in Empirical Risk Minimization (ERM) for learn-
ing causal features, where do(X) removes the environmental effects from the prediction of Y .
Then Wang et al. (2022b) proposed the Interventional Empirical Risk to learn casual features that
are invariant to the ideal environment variable Z that includes all possible environments:

R̂Z(Dt) = Ex∼P (Xt),y∼P (Yt|do(Xt))Lce(F (x), y)

=
∑
y

∑
x

∑
z∈Z

Lce(F (x), y)P (y|F (x), z)P (z)P (F (x)) (7)

where z is a sample environment from the ideal environment set Z and Dt is a data batch of task
t (e.g., new data batch or replay data batch). Optimizing this loss is thus equivalent to learning
invariant features as variant features from different environments are filtered out by do(X).

We prove here that with the guarantee of optimizing the alignment loss Lalign (eq. 3), optimizing
the CE loss of Dt is an approximation of the Interventional Empirical Risk of Dt based on the
training environment set Z. And Eq. 6 is the approximation of the Interventional Empirical Risk of
Dnew,aug

t +Dbuf,aug
t . With the alignment loss, the model learns little variant environment information

about the training environment set Z, which means P (Z|fθ(x)) ≈ P (Z) (the mutual information
I(Z; fθ(x)) ≈ 0). According to the Data Processing Inequality, we can infer that I(Z; fθ(x)) ≥
I(Z;F (x)) ≥ 0 as the environment information in the input decreases layer by layer. Then with the
alignment loss, I(Z;F (x)) ≈ 0 (P (Z|F (x)) ≈ P (Z)) and we have:

Lce(Dt) =
∑
y

∑
x

∑
z

Lce(F (x), y)P (F (x), y, z)

≈
∑
y

∑
x

∑
z∈Z

Lce(F (x), y)P (y|F (x), z)P (z)P (F (x))
(8)

The two environment augmentations are for approximating the Interventional Empirical Risk based
on the ideal set Z (diversifying the empirical environment set Z to make it closer to the ideal set Z).

6 EXPERIMENT RESULTS

We evaluate the proposed method in three online CL scenarios: standard disjoint task scenario,
blurry task boundary scenario, and data environment shift scenario.

6.1 DISJOINT ONLINE CONTINUAL LEARNING SCENARIO

In this scenario, the tasks come one after another and each task have its unique classes.
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Datasets and Baselines. we use five popular image classification datasets. For MNIST LeCun et al.
(1998), we split its 10 classes into 5 different tasks, 2 classes per task. For CIFAR10 Krizhevsky
& Hinton (2009), we also split its 10 classes into 5 different tasks with 2 classes per task. For
CIFAR100 Krizhevsky & Hinton (2009), we split its 100 classes into 10 different tasks with 10
classes per task. For TinyImagenet Le & Yang (2015), we split its 200 classes into 100 different tasks
with 2 classes per task for stress testing. For ImageNet Deng et al. (2009), we split its 1000 classes
into 10 different tasks with 100 classes per task. Each task runs with only one epoch for online CL.
We use 9 online CL baselines shown in Table 1. We run their official codes (Appendix B).

Backbone, Optimizer, Batch size. We follow Guo et al. (2022) and use ResNet-18 (not pre-trained)
as the backbone for all methods in the CIFAR10, CIFAR100, TinyImageNet, and ImageNet settings.
A fully connected network with two hidden layers (400 ReLU units) is used as the backbone for
MNIST. We use the Adam optimizer and set the learning rate as 1e-3 for our method and set the new
data batch size N new and buffer data batch size N buf as 10 and 64 respectively for all methods and
use the reservoir sampling for our method. We train each training batch with one iteration.

Data Augmentation. Following Guo et al. (2022), the data augmentation methods horizontal-flip,
random-resized-crop, and random-gray-scale are applied to all methods (except methods with their
specific augmentations) to improve the performance (no method has experienced performance drop).
We set α in the object mask as 0.25 by grid search and s in Augcolor(x, s) as 5. We set r1 in Augadd
as 0.75 and set the number of clusters k for each class as 3. More details are given in Appendix C.

Method MNIST CIFAR10 CIFAR100 TinyIN
B B=0.1k B=0.5k B=1k B=0.2k B=0.5k B=1k B=1k B=2k B=5k B=2k B=4k B=10k

AGEM Chaudhry et al. (2018) 56.9±5.2 57.7±8.8 61.6±3.2 22.7±1.8 22.7±1.9 22.6±0.7 5.8±0.2 5.8±0.3 6.5±0.2 0.9±0.1 2.1±0.1 3.9±0.2

GSS Aljundi et al. (2019b) 70.4±1.5 80.7±5.8 87.5±5.9 26.9±1.2 30.7±1.3 40.1±1.4 11.1±0.2 13.3±0.5 17.4±0.1 3.3±0.5 10.0±0.2 10.5±0.2

ER Chaudhry et al. (2020) 78.7±0.4 88.0±0.2 90.3±0.1 29.7±1.0 35.2±0.3 44.3±0.4 11.7±0.3 15.0±0.9 14.4±0.9 5.6±0.5 10.1±0.7 11.7±0.2

MIR Aljundi et al. (2019a) 79.0±0.5 88.3±0.1 91.3±1.9 37.3±0.3 40.0±0.6 41.0±0.6 15.7±0.2 19.1±0.1 24.1±0.2 6.1±0.5 11.7±0.2 13.5±0.2

ASER Shim et al. (2021) 61.6±2.1 71.0±0.6 82.1±5.9 27.8±1.0 36.2±1.2 44.7±1.2 16.4±0.3 12.2±1.9 27.1±0.3 5.3±0.3 8.2±0.2 10.3±0.4

GDumb Prabhu et al. (2020) 81.2±0.5 91.0±0.2 94.5±0.1 35.9±1.1 50.7±0.7 63.5±0.5 14.1±0.3 20.1±0.2 36.0±0.5 12.6±0.1 12.7±0.3 15.7±0.2

DualNet Pham et al. (2021) 85.2±0.4 91.5±0.2 94.2±0.2 45.3±1.2 52.6±0.7 60.2±0.5 17.2±0.6 27.5±1.6 31.5±0.5 10.3±0.2 18.2±0.3 20.3±0.2

SCR Mai et al. (2021b) 86.2±0.5 92.8±0.3 94.6±0.1 47.2±1.7 58.2±0.5 64.1±1.2 26.5±0.2 31.6±0.5 36.5±0.2 10.6±1.1 17.2±0.1 20.4±1.1

OCMGuo et al. (2022) 90.7±0.1 95.7±0.3 96.7±0.1 59.4±0.2 70.0±1.3 77.2±0.5 28.1±0.3 35.0±0.4 42.4±0.5 15.7±0.2 21.2±0.4 27.0±0.3

IFO (ours) 86.8±0.2 94.1±0.1 94.8±0.4 46.0±0.5 56.7±0.4 63.6±0.4 34.7±0.2 38.1±0.5 46.6±0.3 13.5±0.5 20.5±0.4 28.5±0.3

IFO+OCM (ours) 92.5±0.4 96.1±0.2 97.0±0.2 65.0±0.3 73.2±0.2 78.0±0.3 38.5±0.3 47.3±0.1 53.1±0.3 21.6±0.5 26.2±0.3 34.5±0.4

Table 1: Accuracy on the MNIST (5 tasks), CIFAR10 (5 tasks), CIFAR100 (10 tasks), and TinyIN (TinyIma-
geNet 100 tasks) datasets with different memory buffer sizes B. All values are the averages of 15 runs. See the
results on ImageNet in Figure 2(a).

Accuracy results. We report the average accuracy of all tasks after learning the final task in Ta-
ble 1. We observe that our IFO improves the performance of ER by a large margin and also outper-
forms almost all baselines. Further, the combined method IFO+OCM performs significantly better
than all baselines including OCM as IFO+OCM learns both invariant and holistic representations.
IFO+OCM is especially strong when the buffer size B is small (e.g., 10 samples per class), as the
baselines tend to over-fit the buffer data and learn variant features when B is small. IFO+OCM can
avoid this by learning invariant and holistic features. Our IFO+OCM also outperforms four batch
CL baselines in the online CL setting (see Table 4 in Appendix C).

For the ImageNet dataset, due to the poor overall performance, we compare IFO+OCM with top 3
baselines (OCM, SSIL, and SCR). Figure 2(a) shows the accuracy of all tasks seen so far after learn-
ing each task. IFO+OCM consistently outperforms the three baselines in the whole process. The
accuracy first arises and then drops as the random-initialized model doesn’t have enough features to
solve the first task until the second task arrives. The later drop is due to CF.

Forgetting rate and efficiency analysis. We report the average forgetting rate Chaudhry et al.
(2020) in Table 5 in Appendix C. As a replay method, IFO drops the forgetting rate significantly
compared to the original ER, which shows IFO’s ability to avoid forgetting by reducing the shared
irrelevant features. Further, IFO+OCM forgets the least except for DualNet, GDumb, and SCR
on TinyImageNet. But the accuracy of the three baselines is much lower than IFO+OCM. For
ImageNet, IFO+OCM also fares well. See Appendix C on time efficiency comparison.

Learning invariant representations. Here we want to use two types of metrics to quantitatively
show that our IFO has indeed learned more invariant features: (1) representation similarity of the
same class’s data across different environments. (2) model robustness on unseen environments.

We separately train a ResNet-18 model using cross-entropy loss and a model using IFO loss (Eq. 4)
on the original CIFAR10, CIFAR100, and Tiny-ImageNet datasets in one epoch respectively. Then
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Loss CIFAR10-C CIFAR100-C Tiny-ImageNet-C
Cross-entropy loss 89.0±0.2 87.9±0.1 85.7±0.3

Our LIFO (Eq. 4) 97.0±0.2 95.6±0.3 94.8±0.3

Table 2: Representation CKA correlation across different environments - the average of 5 runs.

Figure 2: (a) results in the disjoint setting using ImageNet. The buffer size is 10k. For the online i-Blurry
setting in (b) and (c), ’samples’ of the x-axis means the number of new data samples that the model has seen
and the unit is 1k. (b) results of the CIFAR100 dataset. The buffer size is 2k. (c) results of the TinyImageNet
dataset. The buffer size is 4k.

Dataset no Augcolor no Augadd no Augpadd no align no new data no mask IFO+Mixup IFO+CutMix IFO+ClassAug IFO+ClassAug IFO+RAR IFO+LwM IFO+RRR
CIFAR100 35.1±0.7 37.4±0.5 37.0±0.2 36.2±0.2 35.0±0.1 37.3±0.1 24.0±0.5 27.1±0.3 26.5±0.1 30.3±0.4 30.9±0.2 39.0±0.2 40.1±0.3

TinyImageNet 12.0±0.2 12.2±0.2 12.7±0.2 12.8±0.2 11.9±0.5 13.0±0.2 6.3±0.2 7.9±0.5 9.4±0.3 9.6±0.5 9.9±0.3 13.6±0.3 14.9±0.5

Table 3: Ablation accuracy - an average of 5 runs. The memory buffer size is 2k.

we use the CIFAR10-C, CIFAR100-C, and Tiny-ImageNet-C datasets Hendrycks & Dietterich
(2019a) (which contain 19 different corrupted environments) to calculate the average CKA (cen-
tered kernel alignment) correlation Kornblith et al. (2019) of the hidden representations from the
trained model across different environments. Specifically, we calculate the correlation of the hid-
den representations of each class in each pair of environments z and z′ as CKA(fθ(Xz

c ), fθ(X
z′

c )),
where CKA is the CKA correlation metric, and then calculate the average of CKA(fθ(Xz

c ), fθ(X
z′

c ))

over all possible pairs of environments. We denote it as Avg(CKA(fθ(Xz
c ), fθ(X

z′

c ))). Finally, we
compute the mean Avg(CKA(fθ(Xz

c ), fθ(X
z′

c ))) across all classes. From table 2, we see that IFO
has learned class representations that have high similarities across different environments (high in-
variance). For (2), we show that our IFO generalizes well to unseen environments (see Appendix D).

6.2 BLURRY ONLINE CONTINUAL LEARNING SCENARIO

In this scenario Koh et al. (2021), the classes of the training data for a dataset are split into two parts,
N% of the classes as the disjoint part and the rest of 100 − N% of the classes as the blurry part.
Each task consists of some disjoint classes (with all their data) and some blurry classes. The disjoint
classes of a task do not appear in any other task. For the blurry class data in a task, 100 − M%
of the samples are from some randomly selected dominant blurry classes (these classes will not be
dominant classes in other tasks) and M% of the samples are from the other minor classes.

Following Koh et al. (2021), we use the i-Blurry setup with N = 50 and M = 10 (i-Blurry-50-10) in
our experiments on the CIFAR100 (5 tasks) and TinyImageNet (5 tasks) datasets. We use ResNet-34
and Adam optimizer with an initial learning rate of 0.0003 for all systems. We compare their original
system CLIB with our CLIB+IFO (replacing CLIB’s cross-entropy loss with our LIFO loss in Eq. 4)
and three best-performing baselines (OCM, SSIL, and SCR). More details are in Appendix E.

Accuracy results. Following Koh et al. (2021), we measure any time inference and plot the
accuracy-to-samples curve in Figure 2 (b)&(c). The setting is as follows: After the model sees
every 100 new samples, we test the model using the original test set of all classes in the CIFAR100
or TinyImageNet dataset and record the accuracy. The figures show that CLIB+IFO outperforms
CLIB, especially after the model has seen some tasks, which indicates that learning invariant repre-
sentations improves the overall generalization ability. We also observe that the three best baselines’
performances are weaker than that of CLIB as the three baselines are not designed for this setting.

8



Under review as a conference paper at ICLR 2024

6.3 ENVIRONMENT SHIFT IN ONLINE CONTINUAL LEARNING

In this scenario, the model learns the same classes from different environments sequentially and is
then tested in an unseen environment. We use the PACS data Li et al. (2017) to simulate this scenario
as it has four different environments. More details are in Appendix G. Table 7 in Appendix F shows
that the performance of our LIFO loss (Eq. 4) is beyond that of the cross-entropy loss Lce as LIFO
loss learns invariant features better. Another observation is that optimizing the classification loss
(LIFO or Lce) with the LOCM loss improves the performance further as learning holistic features of
one class makes the model have more knowledge to deal with samples from unseen environments.

6.4 ABLATION STUDY AND ANALYSIS

Here we use the traditional disjoint online CL scenario.

Ablation study of the components in IFO Table 3 shows the results without using Augcolor (no
Augcolor) or Augadd (no Augadd). Their results are weaker, which shows the contribution of the
proposed augmentations. For ”no Augpadd”, we replace Augpadd with Augadd in augmenting new data
batch. The result becomes worse as the pseudo environments in the stored new task data are not
used. For ”no align”, we optimize the model with each created environment without Lalign of Eq. 6
and the performance is poorer as the model tends to memorize each environment and does not learn
invariant features. For ”no new data”, only Dbuf

t in Eq. 6 is used. The performance also drops,
meaning that considering new samples to learn invariant features is useful. For ’no mask’, we set
x̂ = λ ·x+(1−λ) ·x′ for Augcolor and the performance is worse as the object color is an important
feature and should not be changed randomly.

Other data augmentations. We tried some popular data augmentations for feature learning to
create environments for IFO: Mixup Zhang et al. (2017) (IFO+Mixup)), Cutmix Yun et al. (2019)
(IFO+CutMix), MemoryAug Fini et al. (2020) (IFO+MemoryAug), ClassAug Zhu et al. (2021a)
(IFO+ClassAug) and RAR Zhang et al. (2022) (IFO+RAR). However, the results of these augmen-
tations (Table 3) are poorer than that of IFO with our environment augmentations as IFO needs to
learn invariant class representations by only changing variant features.

Maintaining salient feature maps. This approach in LwM Dhar et al. (2019) and RRR Ebrahimi
et al. (2021) for dealing with CF is complementary to IFO. IFO+LwM and IFO+RRR (Table 3)
perform slightly better than IFO, but they are much weaker than IFC+OCM (Table 1).

Influence of hyperparameters in IFO. For s in augmentation Augcolor (Sec. 5.2), from Table 8 in
Appendix G, we observe that the performance has a positive correlation with the number s as the
model gradually focuses on invariant features rather than strongly depending on simple colors. We
set s to 5 as it achieves the best result. For rate r1 in the augmentation Augadd, we need to avoid
introducing trivial features (r1 is too high) and causing a huge information loss in the original image
(r1 is too low). Based on Table 8 in Appendix H, we set r1 as 0.75. For the number of clusters k,
we need to introduce more pseudo environments but the number of buffer data is limited (e.g., 10
samples per class). Based on Table 9 in Appendix H, we set k as 3.

Influence of learning invariant features for CL. Comparing IFO+OCM with OCM (see Figure 3
in Appendix H ), we find that IFO helps establish better class boundaries across tasks as IFO reduces
the difficulty of establishing cross-task class boundaries by avoiding learning variant features.

7 CONCLUSION

Although many techniques have been proposed to solve class-incremental learning (CIL), limited
work has been done to study the necessary conditions for feature learning to achieve good CIL
performances. Guo et al. (2022) showed that it is necessary to learn holistic features. This paper
demonstrated that it is also necessary to learn invariant features, and proposed a novel method to
do so. Experimental results showed that the new condition gave another major boost to online CIL
performances. Limitations of this work are discussed in Appendix I.
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ETHICS

Because our research focuses solely on classification learning using publicly available datasets, and
our algorithms aim to address the broader challenge of online continual learning rather than solving
any specific application problems, we believe there are no ethical concerns associated with this
study. We also do not foresee any negative societal consequences stemming from our approach.
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A PROOF FOR THE PROPOSITION

Proof: Based on the assumption (i) that the model has converged to an optimal point after training
task t, the model can classify class c and other seen classes well. That means the sum of the terms
for the logits of other classes (i.e., ‘...’ in Eq. 2) is very small given the class c’s sample (e.g., In
CIL, the assumption means the expected loss of class c is 0 and then the sum is 0.). For simplicity,
we delete this term in the following analysis. Based on assumption (ii), there exists an ideal CL
algorithm that protects all important weights related to previous classes when learning task t + 1,
we have θct ≈ θct+1 and ϕc,t ≈ ϕc,t+1 where θc and ϕc are the parameters in θ and ϕ that are related
to class c.

Then we can turn the computation of the forgetting to:

H(c, c′) = Exc
[−log(

eF (xZt
c ;θt,ϕc,t)

eF (x
Zt
c ;θt,ϕc,t) + eF (x

Zt
c ;θt,ϕc′,t+1)

)] (9)

The proof of the conclusion in the situation (1) is obvious as the variant features in class c’s data are
filtered out by θct .

The proof of the conclusion in situation (2): To compare the forgetting of class c for the case without
using variant features to form the class c′’s representation H(c, c′) and the case with using variant
features H(c, c′), we can calculate their gap and simplify it:

H(c, c′)−H(c, c′) = log(
eF (xZt

c ;θt,ϕc,t)

eF (x
Zt
c ;θt,ϕc,t) + eF (x

Zt
c ;θt,ϕc′,t+1)

· e
F (xZt

c ;θt,ϕc,t) + eF (xZt
c ;θt,ϕc′,t+1)

eF (x
Zt
c ;θt,ϕc,t)

)

= log(
eF (xZt

c ;θt,ϕc,t) + eF (xZt
c ;θt,ϕc′,t+1)

eF (x
Zt
c ;θt,ϕc,t) + eF (x

Zt
c ;θt,ϕc′,t+1)

)

(10)
where c′ means that the learned representation of class c′ involves variant features xvar

zt from the
previous task.

To prove our conclusion that the class representation using variant features has a higher forgetting
than the representation without using variant features, based on Eq.10, now the key is to prove
F (xZt

c ; θt, ϕc′,t+1) > F (xZt
c ; θt, ϕc′,t+1) (the last term in the numerator of Eq..10 is bigger than

the last term in the denominator). Based on Eq. 1, we simplify the last term in the numerator of
Eq..10 as F (xZt

c ; θt, ϕc′,t+1) = (θt ◦ [xinv
c , xvar

zt , 0
r])Tϕc′,t+1 + b = F (xZt

c ; θt, ϕc′,t+1) + (θt ◦
[0inv, xvar

zt , 0
r])Tϕc′,t+1. So the last term in the numerator of Eq.10 contains the last term in the

denominator. We also have (θt ◦ [0inv, xvar
zt , 0

r])Tϕc′,t+1 > 0 as ϕc′,t+1 uses the variant feature xvar
zt

to form class c′ representation. Then we have F (xZt
c ; θt, ϕc′,t+1) > F (xZt

c ; θt, ϕc′,t+1) and their
ratio is bigger than 1. Then we have H(c, c′)−H(c, c′) > log(1) = 0, which proves our conclusion.
The proof of the conclusion in situation (3) is similar to the above proof.

B ADDITIONAL DETAILS OF DISJOINT ONLINE CL SCENARIO

Due to the limitation of computational resources, we download the downsampled version of Ima-
geNet (3× 32× 32) from the official website and conduct experiments on this dataset. Augcolor is
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not used on the MNIST dataset as it contains only black and white images. We set the α and the β
values of the β distribution in Augcolor as 1. To reduce computation, we cluster and assign the stored
new class data into different clusters every 10 updates. If we do the clustering operation at a lower
frequency, the representation knowledge learned in the model may shift and so we cannot capture it
accurately.

For AGEM Chaudhry et al. (2018), following the original paper, we use random sampling to update
the replay buffer and to sample data from the buffer.

For GSS Aljundi et al. (2019b), based on the original paper, we use the same optimizer and learning
rate as above. The number of buffer batches randomly sampled from the memory to estimate the
maximal gradients of the cosine similarity score is set to 10 and the randomly sampled buffer batch
(Xbuffer) size for calculating the score is 64.

For DualNet Pham et al. (2021), based on the original paper, we use the Look-ahead optimizer to
train DualNet’s slow learner and the memory is implemented as a reservoir buffer. Its architecture is
the full ResNet-18. We follow it and train the slow learner with n = 3 iterations using the episodic
memory data before observing a mini-batch of labeled data. We follow its official setting and only
use the random cropping and flipping for the supervised training phase. For other optimizers and
hyper-parameters, we follow the official code.

For ASER Shim et al. (2021), we follow the original paper and use the mean value of Adversarial
SV and Cooperative SV, and set the maximum number of samples per class for random sampling as
1.5. We allow 3 nearest neighbors for KNN-SV computation. We use the same SV-based methods
for both Memory-Update and Memory-Retrieval as given in the original paper.

For MIR/ER Aljundi et al. (2019a), we set the sub-sample size to 128 and follow the original paper
to set other hyper-parameter.

For DER++ Buzzega et al. (2020), we follow the original paper and set the value of alpha (α) as 0.1,
and fix the beta (β) as 0.5.

For GDumb Prabhu et al. (2020), we follow the official code and use CutMix as the regularization
to overcome over-fitting. we follow the official code and set the number of epochs for training the
whole buffer data as 256 for MINIST, CIFAR10, and CIFAR100 datasets, and 32 for the TinyIma-
genet dataset. We set the gradient clip as 10.

For SCR Mai et al. (2021b), we follow the orginal paper and set the temperature for contrastive loss
as 0.07. We employ a linear layer with the size [dimh,128] as the contrastive head. We follow the
official code and use the horizontal-flip, random-resized crop, random-gray-scale, and color-jitter as
data augmentations.

For methods AGEM, ASER, MIR, ER, DER++ GDumb, and SCR, we follow Guo et al. (2022)
and use the Adam optimizer and set the learning rate as 1e-3 to optimize them. For DualNet, it has
specific optimization algorithms for fast and slow learners respectively, so we do not change it.

The official code of these systems can be found in the following locations.

ER and MIR: https://github.com/optimass/Maximally_Interfered_
Retrieval.
DualNet: https://github.com/phquang/DualNet.
ASER and SCR: https://github.com/RaptorMai/online-continual-learning.
GDumb: https://github.com/drimpossible/GDumb.
DER++: https://github.com/aimagelab/mammoth.
AGEM: https://github.com/facebookresearch/agem.
GSS: https://github.com/rahafaljundi/Gradient-based-Sample-Selection.
Co2L: https://github.com/chaht01/Co2L.
The code for IL2A: https://github.com/Impression2805/IL2A.
SSIL: https://github.com/hongjoon0805/SS-IL-Official.
OCM: https://github.com/gydpku/OCM.
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Table 4: Accuracy on the MNIST (5 tasks), CIFAR10 (5 tasks), CIFAR100 (10 tasks), and TinyIm-
ageNet (100 tasks) datasets with different memory buffer sizes B. All values are the averages of 15
runs.

Method MNIST CIFAR10 CIFAR100 TinyImageNet
B B=0.1k B=0.5k B=1k B=0.2k B=0.5k B=1k B=1k B=2k B=5k B=2k B=4k B=10k

DER++ Buzzega et al. (2020) 74.4±1.1 91.5±0.2 92.1±0.2 44.2±1.1 47.9±1.5 54.7±2.2 15.3±0.2 19.7±1.5 27.0±0.7 4.5±0.3 10.1±0.3 17.6±0.5

IL2A Zhu et al. (2021a) 90.2±0.1 92.7±0.1 93.9±0.1 54.7±0.5 56.0±0.4 58.2±1.2 18.2±1.2 19.7±0.5 22.4±0.2 5.5±0.7 8.1±1.2 11.6±0.4

Co2L Cha et al. (2021) 83.1±0.1 91.5±0.1 94.7±0.1 42.1±1.2 51.0±0.7 58.8±0.4 17.1±0.4 24.2±0.2 32.2±0.5 10.1±0.2 15.8±0.4 22.5±1.2

SSIL Ahn et al. (2021) 88.2±0.1 93.0±0.2 95.1±0.1 49.5±0.2 59.2±0.4 64.0±0.5 26.0±0.1 33.1±0.5 39.5±0.4 9.6±0.7 15.2±1.5 21.1±0.1

IFO+OCM 92.5±0.4 96.1±0.2 97.0±0.2 65.0±0.3 73.2±0.2 78.0±0.3 38.5±0.3 47.3±0.1 53.1±0.3 21.6±0.5 26.2±0.3 34.5±0.4

Table 5: Average forgetting rate. The table includes both the online CL baselines and the adapted
online CL baselines from the 4 batch/offline CL systems. All numbers are the averages of 15 runs.
See the forgetting rates for the ImageNet dataset in the text below.

Method MNIST CIFAR10 CIFAR100 TinyImageNet
B B=0.1k B=0.5k B=1k B=0.2k B=0.5k B=1k B=1k B=2k B=5k B=2k B=4k B=10k

AGEM Chaudhry et al. (2018) 32.5±5.9 30.1±4.2 32.0±2.9 36.1±3.8 43.2±4.3 48.1±3.4 43.3±0.2 45.7±0.3 43.9±0.2 73.9±0.2 78.9±0.2 74.1±0.3

GSS Aljundi et al. (2019b) 26.1±2.2 17.8±5.22 10.5±6.7 75.5±1.5 65.9±1.6 54.9±2.0 30.8±0.2 30.7±0.5 26.4±0.3 72.8±1.2 72.6±0.4 71.5±0.2

ER Chaudhry et al. (2020) 22.7±0.5 9.7±0.4 6.7±0.5 42.0±0.3 26.7±0.7 20.7±0.7 34.2±0.2 31.7±0.9 35.3±0.9 68.2±2.8 66.2±0.8 67.2±0.2

MIR Aljundi et al. (2019a) 22.3±0.5 9.0±0.5 5.7±0.9 40.0±1.6 25.9±0.7 24.5±0.5 24.5±0.3 21.4±0.3 21.0±0.1 61.1±3.2 60.9±0.3 59.5±0.3

ASER Shim et al. (2021) 33.8±1.1 24.8±0.5 13.8±0.4 71.1±1.8 59.1±1.5 50.4±1.5 25.0±0.2 12.2±1.9 13.2±0.1 65.7±0.7 64.2±0.2 62.2±0.1

DualNet Pham et al. (2021) 9.8±0.3 5.0±0.3 3.8±0.2 38.5±0.4 32.1±0.5 25.2±0.4 20.1±0.3 12.2±1.9 7.5±0.2 20.7±0.5 16.2±0.3 14.7±0.3

GDumb Prabhu et al. (2020) 10.3±0.1 6.2±0.1 4.8±0.2 26.5±0.5 24.5±0.2 18.9±0.4 16.7±0.5 17.6±0.2 16.8±0.4 15.9±0.5 14.6±0.3 11.7±0.2

SCR Mai et al. (2021b) 10.7±0.1 4.7±0.1 4.0±0.2 41.3±0.1 31.5±0.2 24.7±0.4 17.5±0.2 11.6±0.5 5.6±0.4 19.4±0.3 15.4±0.3 14.9±0.7

DER++ Buzzega et al. (2020) 25.0±0.3 7.3±0.3 6.6±1.2 30.1±0.8 31.8±2.5 18.7±3.4 43.4±0.2 44.0±1.9 25.8±3.5 67.2±1.7 63.6±0.3 55.2±0.7

IL2A Zhu et al. (2021a) 8.7±0.1 7.2±0.1 4.1±0.1 36.0±0.2 32.1±0.4 29.1±0.4 24.6±0.6 12.5±0.7 20.0±0.5 65.5±0.7 60.1±0.5 57.6±1.1

Co2L Cha et al. (2021) 14.7±0.2 7.1±0.1 3.1±0.1 32.0±0.1 21.0±0.3 16.9±0.2 16.9±0.4 16.6±0.6 9.9±0.7 60.5±0.5 52.5±0.9 42.5±0.8

SSILAhn et al. (2021) 11.3±0.1 2.7±0.1 2.8±0.1 36.0±0.7 29.6±0.4 13.5±0.4 40.1±0.5 33.9±1.2 21.7±0.8 44.4±0.7 36.6±0.7 29.0±0.7

OCMGuo et al. (2022) 4.7±0.1 1.8±0.1 1.3±0.1 23.0±0.2 14.0±0.7 12.0±1.1 12.2±0.3 8.5±0.3 4.5±0.3 23.5±1.9 21.0±0.3 18.6±0.5

IFO 11.5±0.5 4.6±0.2 4.1±0.1 17.0±0.3 14.4±0.2 11.0±0.5 15.9±0.3 16.0±0.2 7.1±0.3 22.8±0.6 20.0±0.4 15.5±0.6

IFO+OCM 4.2±0.1 1.0±0.2 1.1±0.1 16.3±0.3 8.1±0.1 2.0±0.7 11.9±0.5 8.3±0.4 4.3±0.2 22.5±0.3 18.6±0.5 13.5±0.8

Table 6: Test accuracy in the robustness benchmark. All numbers are the averages of 15 runs

Dataset CIFAR100-C Tiny-ImageNet-C
Methods Severity 1 Severity 2 Severity 3 Severity 4 Severity 5 Severity 1 Severity 2 Severity 3 Severity 4 Severity 5

OCM 38.5±0.2 34.9±0.2 32.0±0.4 28.9±0.7 24.1±0.3 13.7±0.2 11.6±0.5 9.0±0.3 6.7±0.3 5.0±0.3

IFO 46.5±0.2 42.5±0.3 39.4±0.5 35.9±0.4 30.1±0.7 14.3±0.3 12.1±0.3 9.6±0.2 7.1±0.2 5.6±0.2

C ADDITIONAL RESULTS FOR THE DISJOINT ONLINE CL SETTING

We also adapted 4 batch/offline CL systems to online CL systems. Their results are given in Table 4.
Our proposed IFO+OCM method still outperforms these batch CL baselines in the online CL setting.

Forgetting rate. From this forgetting rate table (Table 5), we observe an obvious drop in forgetting
rate from OCM to IFO+OCM. In the ImageNet setting, the forgetting rates for the four top methods
are 11.47 (SCR), 12.1 (SSIL), 11.7 (OCM), and 10.9 (IFO+OCM).

Training time. The training of our strongest method IFO+OCM is slower than that of OCM (the
best baseline) (e.g., 4.5 percent on CIFAR100 dataset), but our accuracy performance is obviously
better and it is critical to learn invariant features. We believe that improved training algorithms and
advanced GPUs will relieve this issue in the future.

D EFFECTIVENESS OF INVARIANT REPRESENTATION LEARNING

Although better results of our method in the disjoint online CL setting have already indicated that our
proposal is able to learn invariant features better. Here we use one additional experiment to further
evaluate the effectiveness of learning invariant features: model robustness on unseen environments.

Model robustness on unseen environments. To verify that our method has learned invariant fea-
tures to form the class representation, we conduct the following experiment (this is not a continual
learning setting). After training on the CIFAR100 CIL setting, we test the trained model on the
CIFAR100-C dataset Hendrycks & Dietterich (2019b), which is a model robustness benchmark
consisting of 19 corruption types with five levels of severity applied to the original test set of CI-
FAR100. The corruptions come from four main categories: noise, blur, weather, and digital. Each
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Table 7: Test accuracy in the unseen environment. All numbers are the averages of 15 runs. ’Art-painting’
means that the model first learns the other three environments sequentially (order: Cartoon → Photo →
Sketch), and then model is tested on the data points of the environment ’Art-painting’. ’Cartoon’ means that the
model first learns the other three environments sequentially (order: Art-Painting → Photo → Sketch), and then
the model is tested on the data points of the environment ’Cartoon’. ’Photo’ means that the model first learns
the other three environments sequentially (order: Art-Painting → Cartoon → Sketch), and then the model is
tested on the data points of the environment ’Photo’. ’Sketch’ means that the model first learns the other three
environments sequentially (order: Art-Painting → Cartoon → Photo), and then the model is tested on the data
points of the environment ’Sketch’.

Method Art-painting Cartoon Photo Sketch
Lce 12.7±0.3 15.8±0.5 12.5±0.2 12.1±0.3

Linv 13.5±0.2 17.4±0.3 13.3±0.4 13.2±0.6

LOCM + Lce 14.7±0.5 17.8±0.2 13.2±0.6 13.1±0.4

LOCM + Linv 15.0±0.4 18.9±0.2 14.6±0.1 17.2±0.4

corruption has five levels of severity and “5” indicates the most corrupted one. Those corruptions
are not used in training, so the test can be viewed as a test of the trained model in unseen envi-
ronments. A model that has learned invariant features should achieve higher performance. From
Table 6, we observe that IFO indeed outperforms the OCM method on 19 unseen environments.
Note that we use IFO as we want to isolate effectiveness of the invariant feature learning, which is
more important for unseen environments. The gap between IFO and OCM gets larger as the level
of severity increases. We conduct a similar experiment on the Tiny-ImageNet-C dataset (another
robustness dataset in Hendrycks & Dietterich (2019b)), and the conclusion is consistent (Table 6).
Those experiments empirically verify that our method learns more invariant features than OCM.

E MORE DETAILS ABOUT THE I-BLURRY ONLINE CL SCENARIO

Following Koh et al. (2021), for all methods, we use the batch size of 16 and 3 updates per streamed
sample for CIFAR100 and the batch size of 32 and 3 updates per streamed sample for TinyImageNet,
and employ ResNet-34 for CIFAR100 and TinyImageNet. In the CIFAR100 setting, each task has
10 unique disjoint classes and 10 dominant blurry classes exclusively. The selection process of
the classes for each task is random. In the TinyImageNet setting, each task has 20 unique disjoint
classes and 20 dominant blurry classes exclusively. AutoAugment Cubuk et al. (2019) and CutMix
Yun et al. (2019) are also used as data augmentations. For CLIB and CLIB+INV, we use the same
adaptive learning rate schedule Koh et al. (2021) with γ = 0.95 and m = 10 for the two datasets. We
use their official code https://github.com/naver-ai/i-Blurry to run the experiments.

F MORE DETAILS ABOUT THE DATA ENVIRONMENT SHIFT ONLINE CL
SCENARIO

Here we cannot use MNIST, CIFAR, and ImageNet datasets as they do not have clearly defined
environments. We use the PACS dataset Li et al. (2017) to simulate this scenario. PACS has four
different environments: art painting, cartoon, photo, and sketch. Each environment has data points
of the same seven classes. We choose each set of three environments as the training environment and
the remaining environment as the test environment. Thus four experiments are conducted with dif-
ferent training and test environments. We report the average test result over the four experiments as
the empirical estimation of the ability of our method in learning invariant features. We use ResNet-
18 (not pre-trained) as the backbone for our method IFO and baselines and use the Adam optimizer
and set the learning rate as 1e-3 for all methods. The batch size for the new data batch is 10 and
there is no need to store or sample buffer data. Data of each environment is run in one epoch for
online CL. The core of this setting is to learn invariant features under the shift of environments. So
we focus on the representation-learning loss and do not consider/use the replay strategy to overcome
forgetting. From Table 7, we observe that the model optimized with our invariance loss achieves
higher test performance than that of the traditional cross-entropy loss in the unseen environment.
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Table 8: Ablation accuracy for the hyper-parameters - an average of 5 runs. B is the memory buffer
size.

Dataset s r1
0 1 2 3 4 5 6 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

CIFAR100 (B=2k) 35.1±0.7 36.6±0.3 37.1±0.3 37.6±0.4 38.0±0.2 38.1±0.5 38.1±0.2 30.2±0.2 34.1±0.1 35.2±0.4 37.3±0.4 38.0±0.3 38.1±0.5 37.8±0.2 37.0±0.2

TinyImageNet (B=2k) 12.0±0.2 12.3±0.2 12.5±0.2 13.1±0.3 13.0±0.4 13.5±0.5 13.7±0.3 9.0±0.5 11.5±0.3 11.7±0.5 12.9±0.3 13.3±0.2 13.5±0.5 12.9±0.5 12.6±0.3

Table 9: Ablation accuracy for the hyper-parameters - an average of 5 runs. B is the memory buffer
size.

Dataset k

1 2 3 4 5
CIFAR100 (B=2k) 37.8±0.1 37.9±0.2 38.1±0.5 38.1±0.2 38.0±0.3

TinyImageNet (B=2k) 12.4±0.3 12.8±0.3 13.5±0.5 13.0±0.4 13.1±0.3

G ABLATION ANALYSIS OF HYPER-PARAMETERS IN IFO

Based on the results in Table 8. we set s in Augcolor to 5 as it achieves the best performance with
less computation. Also, we set r1 in Augadd as 0.75 and the number of clusters k as 3 (Table 9).

H INFLUENCE OF LEARNING INVARIANT FEATURES

To further investigate how learning invariant features helps the performance of CL methods, we
measure three abilities of OCM and IFO+OCM: (1) the ability to establish decision boundaries
between the classes within the new task by recording the accuracy performance of the new task.
From Figure 3(a), we see that IFO+OCM’s accuracy of the new task outperforms that of OCM
as learning invariant features makes the model improve its generalization power. (2) the ability to
maintain the learned decision boundaries within a task by calculating the average task incremental
accuracy of the previous tasks. Our method IFO+OCM again outperforms OCM (Figure 3(b)) as
IFO+OCM mitigates the overfitting problem of the limited buffer data. (3) the ability to establish
class boundaries across tasks. We measure this by considering only the logit of the true label of each
test instance in a task and the logits of the classes from the other tasks when the model predicts the
label of the test instance. IFO+OCM’s performance is still better than that of OCM (Figure 3(c)) as
IFO+OCM reduces variant features, which enables the model to project those class representations
to different locations in the space, making the decision boundaries easier to establish. Also from
Figure 3 also shows that improving the last ability is the biggest challenge for online CL.

Figure 3: We conduct experiments on the CIFAR100 dataset (10 tasks) with a buffer size of 2k. (a)
Performance of learning new tasks. (b) the performance of maintaining learned decision boundaries.
(c) Performance of establishing decision boundaries across different tasks.
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I LIMITATIONS AND BROAD IMPACT

This paper has shown the necessity of learning invariant features for overcoming forgetting and has
demonstrated strong performances across multiple datasets and settings. Given that much of the
research in continual learning (CL) has focused on designing empirical algorithms, the formal study
in this paper should have a broader and deeper impact. However, we have not yet identified sufficient
conditions for feature learning in order to eliminate forgetting in a CL system. Finding the set of
principles that can guide feature learning in CL is of utmost importance. Our future work will be
dedicated to investigate this problem. Another limitation is that our paper focuses on online CL
settings. In our future work, we will also try to adapt our method to the batch CL setting.

19


	Introduction
	Related Work
	Problem Formulation and Background
	Theoretical Analysis of Invariant Representation Learning
	Learning Invariant Features
	Invariant Feature Learning Optimization Objective
	Environment Augmentation based on Prior Knowledge: Method I
	Environment Augmentation via Clustering the Replay Data: Method II
	Put Everything Together

	Experiment Results
	Disjoint Online Continual Learning Scenario
	Blurry Online Continual Learning Scenario
	Environment Shift in Online Continual Learning
	Ablation Study and Analysis

	Conclusion
	Proof for the Proposition
	Additional Details of Disjoint Online CL Scenario
	Additional Results for the Disjoint Online CL Setting
	Effectiveness of Invariant Representation Learning
	More Details about the i-Blurry Online CL Scenario
	More Details about the Data Environment Shift Online CL Scenario
	Ablation Analysis of Hyper-parameters in IFO
	Influence of Learning Invariant Features
	Limitations and Broad Impact

