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ABSTRACT

Recent advancements in LLM-powered agents have demonstrated significant po-
tential in generating human-like responses; however, they continue to face chal-
lenges in maintaining long-term interactions within complex environments, pri-
marily due to limitations in contextual consistency and dynamic personalization.
Existing memory systems often depend on semantic grouping and the retrieval of
past interaction groupings, which can overlook semantically irrelevant yet critical
user information and introduce retrieval noise. To address these issues, we propose
O-Mem, a novel memory framework based on active user profiling that dynami-
cally extracts and updates user characteristics and event records from interactions.
O-Mem supports hierarchical retrieval of persona attributes and topic-related con-
text, enabling more adaptive and coherent personalized responses. Additionally,
we introduce a new dataset designed to evaluate personalized long-text genera-
tion in memory-augmented agents. Experiments across three personalized tasks
demonstrate that O-Mem consistently improves long-term human–AI interaction
by scaling memory-time within interactions.

1 INTRODUCTION

LLM-empowered agents have demonstrated huge potential in generating human-level intelligent
responses (Schlegel et al., 2025) but still lacks long-term interaction ability with complex external
environments (Zhang et al., 2024). This limitation causes agents struggle to maintain consistency
of context across time (Laban et al., 2025) and reduced their personalization capability dynamically
adapting to users’ situations (Zhang et al., 2025).

Motivated by practical demands, multi agent memory systems have been proposed in recent years.
These systems store user past interactions in diverse architectures and enable agents to retrieve
relevant information from them to deliver more personalized responses. For instance, Memory
OS (Kang et al., 2025) categorizes user interactions into short-term, mid-term, and long-term per-
sona memory caches based on timestamps and frequency of occurrence. Agentic Memory (Xu
et al., 2025) organizes interactions into distinct boxes according to their semantic similarity, while
Mem0 (Chhikara et al., 2025) extracts meaningful content from messages and stores it in a database
to support semantic retrieval based on user queries. By structuring user information more effectively,
these systems enhance the ability of agents to provide efficient and highly personalized responses.

The core pipeline of such memory systems involves categorizing received messages into groups
based on topics and retrieving relevant memory groupings during user interactions. However, this
design presents several significant shortcomings: i) Memory systems that rely heavily on semantic
retrieval may overlook information that is semantically irrelevant yet potentially important—such as
broader user characteristics or situational context—which is crucial for interactions requiring a com-
prehensive understanding of the user. As illustrated on the left side of Figure 1, an intelligent agent
should consider the user’s health condition and recent schedule when planning weekend activities,
rather than relying solely on activity-related memories. ii) The chunk-based retrieval architecture
may introduce additional retrieval noise. As shown on the right side of Figure 1, unintended memory
grouping may compel the agent to retrieve information from all three groupings to gather sufficient
context for appropriate user interaction. These redundant retrievals diminish the effectiveness of
the model’s responses, while also increasing interaction latency and token consumption during large
language model inference.
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Figure 1: Left: Comparison between the conventional memory system with semantic retrieval from
message groupings (in purple) and our proposed user-centric framework O-Mem employing char-
acteristic identification, event recording, and topic-message indexing (in blue). Right: Comparison
between expected user message clustering and actual inappropriate grouping results from conven-
tional Chunk-Retrieve memory systems.

In this paper, we propose O-Mem, a memory framework based on active user profiling. Unlike
conventional approaches that merely store and group past interactions for retrieval, O-Mem actively
extracts and updates user persona characteristics and event records from ongoing dialogues. This
enables the agent to progressively refine its understanding of the user’s attributes and historical ex-
periences. We redefine the retrieval process in personalized memory systems by treating each inter-
action as a query for relevant persona attributes and past events—effectively leveraging both persona
profiles and topic-related interactions as contextual cues to support personalized responses. To fa-
cilitate research in personalized memory systems, we introduce a newly constructed and annotated
dataset,Personalized Deep Research Bench, specifically designed for personalized long-text gener-
ation tasks. Unlike existing datasets, Personalized Deep Research Bench is composed of real-world
dialogues between human users and agents.

• We identify limitations in existing chunking-based semantic retrieval memory frameworks, no-
tably their inadequate user understanding and restricted personalization abilities. To overcome
these issues, we explore an automated mechanism that constructs a memory system offering more
comprehensive and adaptive personalization.

• We propose O-Mem, a novel persona memory framework that utilizes dynamic user profiling
and a hierarchical, user-centric retrieval strategy. Unlike approaches that rely solely on semantic
retrieval of past messages, O-Mem actively constructs and updates user profiles by accumulating
knowledge from interaction histories. Furthermore, we introduce Personalized Deep Research
Bench, the first dataset specifically designed for evaluating memory capabilities in personalized
long-text generation.

• Extensive experiments on three persona-oriented tasks—i) persona-based open question an-
swering, ii) persona-guided response selection, and iii) persona-centric in-depth report genera-
tion—show that O-Mem consistently improves performance across a variety of personalized ap-
plications. By enabling dynamic user profiling and memory-time scaling, O-Mem allows LLM
agents to continuously adapt to users’ evolving needs, demonstrating strong potential for enhanc-
ing long-term human-AI interactions through more coherent personalized responses.

2 LITERATURE REVIEW

Agent Memory Sysytem Intelligent agent systems powered by large language models (LLMs) have
gained significant popularity in recent years owing to their remarkable capabilities in task compre-
hension and execution (Shen & Yang, 2025; Fırat & Kuleli, 2023; Wu et al., 2024). Nevertheless,
these systems continue to grapple with the challenge of sustaining high-quality performance when
incorporating historical experience across complex, long-duration scenarios (Kang et al., 2025;
Zhang et al., 2024). To address this limitation, numerous agent memory enhancement frameworks
have been proposed, which can be broadly classified into two categories: (i) approaches that fine-
tune LLM parameters to enhance information memorization and utilization (Wei et al., 2025; Zhou
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et al., 2025; Modarressi et al., 2024), and (ii) methods that employ sophisticated information or-
ganization and retrieval techniques within external memory systems to preserve LLMs’ long-term
capabilities. The latter approach has attracted considerable attention due to its plug-and-play nature,
which eliminates the need for additional training costs. Furthermore, these methods significantly
reduce the dependency of memory capacity on the LLMs’ input window length. For example,
Think-in-Memory (TiM) (Liu et al., 2023) preserves the reasoning traces of LLMs across multiple
dialogue rounds to alleviate response inconsistencies. A-mem (Xu et al., 2025) organizes memory
fragments into linked lists to improve retrieval performance. Grounded Memory (Ocker et al., 2025)
introduces vision language models (VLMs) to interpret consecutive audio frames, organizing these
interpretations in a graph structure for subsequent retrieval. MemoryBank (Zhong et al., 2024) incor-
porates the Ebbinghaus Forgetting Curve theory to enable agents to forget and reinforce memories
based on time elapsed and the relative significance of memory segments. MemGPT (Packer et al.,
2023) and Memory OS (Kang et al., 2025) adopt an operating system-like architecture for mem-
ory organization and retrieval, employing mechanisms such as a first-in-first-out queue for working
memory management. However, most existing systems overlook a critical aspect: how to dynam-
ically and hierarchically establish connections between memory fragments to continuously update
the agent’s overall understanding of its environment. For instance, while A-mem (Xu et al., 2025)
and Memory OS (Kang et al., 2025) store semantically similar information in linked segments and
retrieve the grouped data during response generation, their simple chunk-retrieval mechanisms, as
illustrated in Figure 1, often fail to equip agents with a comprehensive and in-depth understanding
of users prior to interaction. Therefore, to bridge this gap, we propose a novel memory system,
O-Mem, based on active user profiling. The key difference between O-Mem and previous memory
systems is that its core task is to answer the questions: ”What kind of person is this user? What has
he or she experienced?” rather than merely grouping received user information for later retrieval. We
draw inspiration from the human brain’s memory architecture and consequently redefine the three
core components of an agent’s memory: i).Episodic Memory, which is responsible for mapping a
user’s historical interaction cues to their corresponding situational contexts (e.g., mapping the cue
”project deadline” to the specific episode where the user expressed stress and requested help with
scheduling); ii).Persona Memory, which constructs and maintains a holistic profile of the user;
iii).Working Memory, which is responsible for providing relevant contextual information to the
current interaction. Together, these components work in concert to enable O-Mem to build a deep,
dynamic understanding of the user, powering more personalized and context-aware interactions.

Persona Agent. While large language models (LLMs) serve as powerful assistants for a multitude of
tasks, their effectiveness remains constrained without the ability to learn from and adapt to human
preferences through personalization. A promising direction involves the development of persona
agents—LLM-based systems deeply integrated with personal data to deliver responses aligned with
user-specific needs (Li et al., 2024b). Meeting the growing demand for such personalized interac-
tions requires methodologies that can continuously and accurately infer user characteristics from
their interactions (Sun et al., 2024; Magister et al., 2024; Eapen & Adhithyan, 2023). Most prior
work on persona-enhanced LLMs has focused on injecting user information through fine-tuning
(Salemi et al., 2024; Eapen & Adhithyan, 2023; Tan et al., 2024) or direct retrieval from user traces
of static user profiles that rely on a limited set of predefined attributes(Richardson et al., 2023; Sun
et al., 2024; Qiu et al., 2025). However, these approaches face significant limitations in handling
long-term, dynamic and evolving user preferences: fine-tuning requires computationally expensive
retraining for each update, while direct retrieval lacks the capacity to synthesize longitudinal inter-
action patterns into coherent and evolving user profiles. In this work, we propose a persona memory
system that dynamically organizes a user’s interaction history into structured persona characteristics
and experiential data, enabling more precise, adaptive, and personalized responses over time.

3 METHOD

To build a robust personalized memory system, it is essential to capture a holistic view of the user’s
historical events and traits (persona memory), along with contextual information from past interac-
tions (working memory). The system should also support recall of specific user experiences based
on situational clues (episodic memory). As illustrated in Figure 2, O-Mem implements these three
memory modules via specialized components and integrated retrieval mechanisms. It continuously
extracts and refines user profiles through ongoing interaction, building a semantic mapping between
topics/clues and corresponding interaction scenarios. This architecture enables dynamic, multi-
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Figure 2: Top: The process of encoding user interactions into memory in O-Mem. Different colors
refers to different memory components. O-Mem encodes a user interaction into memory by extract-
ing and recording relevant user attributes and event data into persona memory,episodic memory,
and working memory. Bottom: The memory retrieval process concerning one user interaction in
O-Mem. O-Mem retrieves from all its three memory components concerning one new user query.

faceted user understanding that supports powerful personalization. In this section, we first present
the notation used in our work (subsection 3.1), followed by an explanation of how user interactions
are encoded into the different memory components in O-Mem (subsection 3.2), and finally describe
the retrieval process across these memories (subsection 3.3).

3.1 PRELIMINARY: NOTATION

In this section, we define a user interaction, denoted as U , as a record of either explicit literal content
(e.g., search queries) or implicit user behavior (e.g., taking a screenshot). Let Mw be a dictionary
that maps each clue word w to the interactions in which it appears, and Mt be a dictionary that maps
each topic to its corresponding interactions. Additionally, Pa denotes the list of persona attributes,
and Pf represents the list of persona fact events.

As illustrated in Figure 2, we model these components within a cognitive architecture: Pf and Pa

constitute the user persona memory, which stores long-term, abstracted user knowledge; Mt func-
tions as working memory, capturing the topical context of the current interaction; and Mw serves
as episodic memory, acting as an associative index that links salient clues to their originating inter-
actions. Unlike the strict physiological definitions of working memory and episodic memory, The
definitions of agent working memory and episodic memory in O-Mem are past interactions
related to the current interaction topic and past interactions related to clues in the current
interaction, respectively. The semantic similarity function s(t1, t2) between two text segments t1
and t2, and the memory retrieval function FRetrieval based on s, are formally defined as follows:

s(t1, t2) =
fe(t1) · fe(t2)

∥fe(t1)∥∥fe(t2)∥
, FRetrieval(M | q) = top-k

{
s(m, q) | m ∈ M

}
where fe(·) denotes a text embedding function, top-k returns the k most similar items, and M refers
to the memory component from which retrieval is performed.
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3.2 MEMORY CONSTRUCTION PROCESS

Given the i-th user interaction ui, O-Mem first extracts its topic ti, revealed user attribute ai and
past event ei with large language model L:

(ti, ai, ei) = L(ui) (1)

The clue interaction map Mw and topic interaction map Mt are updated by increasing the count for
each word in ui and ti :

M
(i+1)
t [ti]←M

(i)
t [ti] ∪ {i}, M (i+1)

w [wj ]←M (i)
w [wj ] ∪ {i}, ∀wj ∈ T (u(i)) (2)

where T (u(i)) = {w1, w2, . . . , wn} represents the tokenized words from the i-th user interaction.
For ei, L generates an memory management operation regarding its integration with the existing
persona fact event list Pf :

Op(ei)← L
(
ei, Pf

)
∈ {Add,Ignore,Update}, Pf ← ApplyOp(Pf , ei,Op(ei)) (3)

where Op refers to the operation decision from L and ApplyOp refers to the function that executes
this operation. During our observation, we identified that similar attributes from the same user fre-
quently recur across different interactions (e.g., users always mention their hobbies repeatedly). To
better organize these extracted attributes, we propose an LLM-augmented nearest neighbor cluster-
ing method:

Op(ai)← L(ai, P
t
a) ∈ {Add, Ignore, Update}, P t

a ← ApplyOp(P t
a, ai,Op(ai)) (4)

NN(ai) = argmin
al∈P t

a,l ̸=i

(1− s(ai, al)) (5)

G = (V,E), V = {a1, . . . , aK}, E = {(al,NN(al)) | al ∈ P t
a} (6)

B = {B1, . . . , BM} = ConnectedComponents(G), Pa =

M⋃
m=1

L(Bm) (7)

where NN(ai) denotes the nearest neighbor of attribute ai based on the similarity function s(·, ·); G = (V,E)
represents the nearest-neighbor graph constructed from the temporary attribute list P t

a, with vertices corre-
sponding to attributes and edges connecting each attribute to its nearest neighbor; K refers to the total number
of attributes in P t

a, B = B1, . . . , BM is the set of connected components obtained from G via connected com-
ponent analysis; and the final attribute set Pa is obtained by applying the large language model L to analyze
the aggregated attributes within each connected component.

3.3 MEMORY RETRIEVAL PROCESS

For each user interaction ui, O-Mem conducts retrieval from the user’s persona memory, episodic memory, and
working memory. We introduce their retrieval process separately.

Working Memory Retrieval. we define the retrieval process of working memory as:

Rworking =
⋃
t∈T̂

Mt[t], where T̂ = FRetrieve(K(Mt), ui) (8)

where Mt is the mapping from topics to their corresponding interactions, K(Mt) denotes the set of topics
in Mt, ui is the current interaction, FRetrieve retrieves the most relevant topics T̂ for ui from K(Mt), and
Rworking is the set of interactions in Mt corresponding to these relevant topics.

Episodic Memory Retrieval. We define the retrieval process of episodic memory as follows. The episodic
memory is structured as a word-to-interactions mapping dictionary Mw (Mw : w → {i}), which maps words
to the sets of past interactions (memory entries) in which they appear. That is, for a word w, Mw[w] yields all
past interactions containing w. Given the current user interaction ui, the retrieval process is: (1) Tokenization:
Tokenize the utterance into a sequence of words: W = Tokenize(ui). (2) Clue Selection: Calculate the clue
selection score for each word w ∈W with respect to the clue-interaction map Mw. The word with the highest
score is selected as the target clue ŵ:

ŵ = argmax
w∈W

Score(w,Mw) (9)

Score(w,Mw) =
1

dfw
(10)

where dfw is the number of past interactions in Mw that contain the word w (i.e., dfw = |Mw[w]|). The set of
episodic memory interactions associated with the clue ŵ is then retrieved as: Repisodic = Mw[ŵ].
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Persona Memory Retrieval. We define the persona retrieval process as:
Rpersona = FRetrieval(Pf , ui)⊕ FRetrieval(Pa, ui) (11)

where Pf refers to the persona facts, Pa refers to the persona attributes, ui is the current user interaction, ⊕
denotes the concatenation operation, and Rpersona refers to the retrieved persona information.

where Pf refers to the persona facts, Pa refers to the persona attributes, ui is the current user interaction, ⊕
denotes the concatenation operation, and Rpersona refers to the retrieved persona information.

Overall Memory Retrieval. We define the overall retrieval and final response as:
R = Rworking ⊕Repisodic ⊕Rpersona, O = L

(
R, ui

)
(12)

where R represents the overall retrieved memory content, O represents the final response generated by the
language model L based on the current user interaction ui and the retrieved memories.

4 EXPERIMENT

Datasets and Evaluation Metrics. We evaluate our method on three benchmarks: LoCoMo (Maharana et al.,
2024), PERSONAMEM (Jiang et al., 2025), and Personalized Deep Research Bench (a new dataset intro-
duced in this work).

The LoCoMo benchmark features extended dialogues averaging 300 turns across four memory challenge types:
Single-hop, Multi-hop, Temporal, and Open-domain. The PERSONAMEM dataset contains user-LLM con-
versations spanning 15 diverse topics. To address the need for evaluating personalized long-text generation, we
introduce Personalized Deep Research Bench, a benchmark simulating real-world deep research scenarios.
Unlike existing datasets, Personalized Deep Research Bench comprises 50 deep research queries derived from
multi-round conversations between 25 real users and LLMs, requiring nuanced understanding of individual
user characteristics. It is built upon a subset of a deep research dataset collected from real users by our team,
but is specifically repurposed and curated for assessing memory system (see Appendix for details).

For evaluation, we employ: • LoCoMo: F1 and BLEU-1 scores following the standard protocol; • PERSON-
AMEM: Accuracy for multiple-choice questions; • Personalized Deep Research Bench: Goal Alignment
and Content Alignment scores, measuring adherence to user characteristics and expectations via LLM-as-a-
judge (Li et al., 2024a). Further details on the evaluation methodology are provided in the appendix.

Compared Baseslines. Our method is compared with: (i) open-source memory frameworks: A-Mem (Xu
et al., 2025), MemoryOS (Kang et al., 2025), Mem0 (Chhikara et al., 2025), and LangMem (Langchain-Ai);
and (ii) commercial/proprietary frameworks: ZEP (Rasmussen et al., 2025), Memos (Li et al., 2025), and
OpenAI (Mem). Due to budget constraints and licensing costs, we report results from original publications
for commercial frameworks.

Implementation Details. We use all-MiniLM-L6-v2 (all, 2024) as embedding model in O-Mem to calculate
similarities. All of our experiments are conducted on two A800 GPUs. The choice of language models across
datasets was informed by computational budget. A comparative analysis using both GPT-4.1 and GPT-4o-mini
was performed on the LoCoMo benchmark. For the remaining datasets (PERSONAMEM and Personalized
Deep Research Bench), only the larger GPT-4.1 model was used.

Performance Comparison. The experimental results in three benchmark datasets are separately shown in Ta-
ble 1,Table 2,and Table 3. Due to limited access to ZEP(Rasmussen et al., 2025), Memos(Li et al., 2025), and
OpenAI memory(Mem), we only report their performance reported in their work using GPT-4o-mini. For Per-
sonalized Deep Research Bench benchmark dataset, we only compare our method with mem0(Chhikara et al.,
2025) and MemoryOS(Kang et al., 2025) for cost efficiency. O-Mem demonstrates superior performance com-
pared to all baselines across three benchmark datasets. The performance advantage is more pronounced in com-
plex reasoning tasks. As shown in Table 1, on the comprehensive LoCoMo benchmark, O-Mem achieves the
highest average F1 scores of 51.67% with GPT-4.1 and 50.60% with GPT-4o-mini, outperforming the strongest
baselines by significant margins (2.95% and 6.18% absolute improvements, respectively). The performance
advantage is particularly pronounced in complex reasoning tasks. For Temporal reasoning, O-Mem achieves
F1 scores of 57.48% (GPT-4.1) and 53.54% (GPT-4o-mini), substantially outperforming all baselines. This
indicates that our memory management mechanism effectively handles temporal dependencies and sequential
information, which is crucial for maintaining coherent long-term conversations. Table 2 further demonstrates
O-Mem’s effectiveness in personalized interaction scenarios on the PERSONAMEM dataset. O-Mem achieves
an average accuracy of 62.99%, exceeding the closest competitor (A-Mem at 59.42%) by 3.57%. Notably, O-
Mem excels in challenging tasks such as ”Generalize to new scenarios” (73.68%) and ”Revisit reasons behind
preference updates” (89.90%), highlighting its robust capability in understanding and adapting to evolving user
preferences. The superiority of O-Mem is consistently validated on our newly introduced Personalized Deep
Research Bench dataset (Table 3), where it achieves an average alignment score of 44.49%, significantly higher
than Mem0 (36.43%). This 8.06% improvement demonstrates our method’s practical utility in real-world per-
sonalized deep research scenarios that require nuanced understanding of individual user characteristics.
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Table 1: Performance comparison using different LLMs on Locomo with best scores highlighted.

LLM Method Cat1: Multi-hop Cat2: Temporal Cat3: Open Cat4: Single-hop Average
F1 B1 F1 B1 F1 B1 F1 B1 F1 B1

GPT-4.1

LangMemory 41.11 32.09 53.67 46.22 33.38 27.26 51.13 44.22 48.72 41.36
Mem0* 30.45 22.15 10.69 9.21 16.75 11.34 30.32 25.82 25.40 20.78

MemoryOS 29.25 20.79 37.73 33.17 22.70 18.65 43.85 38.72 38.58 33.03
A-Mem 29.29 21.47 33.12 28.50 15.41 12.34 37.64 32.88 33.78 28.60
O-Mem 42.64 34.08 57.48 49.76 30.58 25.69 54.89 48.98 51.67 44.96

GPT-4o-mini

LangMemory** 36.03 27.22 38.10 32.23 29.79 23.17 41.72 35.61 39.18 32.59
Mem0* 17.19 12.06 3.59 3.37 12.24 8.57 12.74 10.62 11.62 9.24
ZEP** 23.14 14.96 17.59 14.57 19.76 13.17 32.49 27.38 26.88 21.55

MemoryOS** 41.15 30.76 20.02 16.52 48.62 42.99 35.27 25.22 34.00 25.53
OpenAI** 33.10 23.84 23.90 18.25 17.19 11.04 36.96 30.72 32.30 25.63
A-Mem** 33.23 29.11 8.04 7.81 34.13 27.73 22.61 15.25 22.24 17.02

MEMOS** 35.57 26.71 53.67 46.37 29.64 22.40 45.55 38.32 44.42 36.88
O-Mem 44.17 34.78 53.54 45.65 25.24 19.22 54.53 48.33 50.60 43.48

* Mem0 was evaluated using its open-source version due to cost and accessibility. ** These results are cited
from previous work.

Table 2: Performance comparison on PERSONAMEM with GPT-4.1.

Method Recall user
shared facts

Suggest new
ideas

Track full
preference
evolution

Revisit reasons
behind

preference updates

Provide preference-
aligned

recommendations

Generalize to
new scenarios Average

LangMemory 31.29 24.73 53.24 81.82 40.00 8.77 42.61
Mem0 32.13 15.05 54.68 80.81 52.73 57.89 46.86

A-Mem 63.01 27.96 54.68 85.86 69.09 57.89 59.42
Memory OS 72.72 17.20 58.27 78.79 72.72 56.14 58.74

O-Mem 67.81 21.51 61.15 89.90 65.45 73.68 62.99

Table 3: Performance comparison on Personalized Deep Research Bench with GPT-4.1*.

Method Goal
Alignment

Content
Alignment

Average

Mem0 37.32 35.54 36.43
Memory OS 40.60 39.67 40.14

O-Mem 44.69 44.29 44.49

* A fair comparison was conducted by generating all deep research reports through the centralized sonar-deep-
research service (Son, 2025), leveraging retrievals from each method’s individual memory system.

5 DISCUSSION

Rethinking the Value of Memory Systems. Do we truly need meticulously designed, complex memory
systems? Most existing approaches adhere to a common paradigm: during retrieval, systems access processed
user interactions rather than raw historical data. This design is largely driven by increasingly stringent privacy
regulations worldwide (Voigt & Von dem Bussche, 2017; Calzada, 2022; Hosseini et al., 2024). By relying on
abstracted user data, memory systems help AI companies mitigate legal risks while maintaining personalization
capabilities. However, this abstraction comes at a significant cost: the irreversible loss of information fidelity
and contextual nuance. For instance, a detailed user statement such as “admiring a specific lamp and rug in
a downtown antique store last Saturday” may be compressed into a structured preference like “[User] likes
vintage home decor.” While efficient, this compression sacrifices granular details—specific objects, locations,
and temporal context—that are crucial for precise and contextually relevant interactions.

To quantify this trade-off, we compare the performance of direct retrieval-augmented generation (RAG) over all
raw interactions with O-Mem. As shown in Table 4, direct RAG achieves competitive performance (50.25 vs.
51.67 F1 score) despite its conceptual simplicity, though at a substantially higher computational cost (2.6K vs.
1.5K tokens). Notably, when compared to the results in Table 1, direct RAG with access to complete interaction
history achieves competitive performance, highlighting the fundamental value of preserving raw interaction
data. However, this comes at prohibitive computational costs that limit practical deployment. O-Mem addresses
this critical limitation by achieving comparable performance with significantly reduced overhead, positioning
it as a computationally efficient alternative that balances performance with practicality.

As depicted in Table 4, we also evaluate the practical deployment advantages of O-Mem by measuring average
peak retrieval memory overhead (Liu et al., 2024) per response. O-Mem achieves a significant 30.6% reduction
in peak memory overhead (from 33.16 MB to 22.99 MB), substantially relaxing hardware constraints for large-
scale personalized inference. While direct RAG processes complete interaction histories verbatim, O-Mem

7
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Table 4: Performance and efficiency comparison between direct retrieval from complete raw inter-
action history (Direct RAG) and O-Mem.

Method F1 (%) Avg. Token Cost Peak Memory Overhead (MB)* Delay (s)
Direct RAG 50.25 2.6K 33.16 4.01

O-Mem 51.67 1.5K 22.99 2.36
*For a fair comparison, the reported overhead for both RAG and O-Mem is calculated as the peak GPU memory
usage minus the fixed memory allocated by the same embedding model used in our main experiments.

Figure 3: Trade-off between performance and efficiency of different memory frameworks. The left
panel (a) compares the average latency per interaction. The MemoryOS latency was evaluated using
FAISS-CPU due to compatibility issues on our computing platforms, thus representing a conserva-
tive estimate of its latency. (b) The right panel compares the average computational cost (in tokens)
per interaction. Results demonstrate that O-Mem achieves a Pareto-optimal solution in both effi-
ciency and overall performance.

maintains distilled representations that preserve semantic essence while drastically reducing sequence length.
This design choice yields substantial computational memory benefits. For response latency, O-Mem demon-
strates a 41.1% reduction in delay compared to direct RAG (from 4.01 seconds to 2.36 seconds), highlighting
its efficiency for real-time applications.

Efficiency Analysis. We evaluate the efficiency of O-Mem by measuring the average token consumption and
latency per response on the LoCoMo benchmark. The results, presented in Figure 3, substantiate that O-
Mem achieves a superior balance between efficiency and effectiveness. Compared to the highest-performing
baseline, LangMem (48.72 F1), O-Mem (51.67 F1) reduces token consumption by 94% (from 80K to 1.5K
tokens) and latency by 80% (from 10.8s to 2.4s), while delivering superior performance. Against the second-
best performing baseline, MemoryOS (38.58 F1), O-Mem not only secures a 34% higher F1 score but also
reduces latency by 34% (2.4s vs. 3.6s). These results unequivocally demonstrate that O-Mem sets a new Pareto
frontier for efficient and effective memory systems.

The efficiency advantage of O-Mem stems from two key design choices: The first is the independence of its
retrieval operations across the three memory components. Unlike sequential architectures (e.g., A-men) that
rely on a cascade of coarse-to-fine stages, O-Mem performs a one-time, concurrent retrieval across all three
memory paths. Secondly, the retrieval mechanism of O-Mem utilizes user persona information, which, as
opposed to raw user interaction records, typically contains less noise, thereby enhancing the cost-effectiveness
of token usage. O-Mem also achieves a substantial reduction in storage footprint, requiring only nearly 3 MB
per user—ten times less than the almost 30 MB per user consumed by Memory OS. This storage efficiency
stems from our topic/keyword-based mapping design, which utilizes a lightweight index, in contrast to Memory
OS which must store dense vector mappings for each memory chunk. Furthermore, O-Mem employs a radically
simplified inference pipeline. Each response is generated through only one LLM invocation (three times for
LangMemory). This streamlined workflow enables O-Mem to achieve superior efficiency with minimal reponse
latency and computational expense.

Memory Component Analysis To quantify the contribution of each core module in our framework, we per-
formed an ablation study on all three memory components—Persona Memory (PM), Episodic Memory (EM),
and Working Memory (WM)—using the LocoMo benchmark. The results are summarized in Table 5. As indi-
cated in the first three rows of the table, each module individually contributes to improved overall performance.
However, such performance gains could be partially attributed to the increased volume of retrieved in-
formation, which leads to longer retrieval sequences and higher token consumption during response genera-
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Table 5: Ablation study on different components of O-Mem using the LocoMo benchmark dataset.

Memory Configuration F1 (%) Bleu-1 (%) Total Tokens
WM only 44.03 38.05 1.3K

WM + EM 49.62 43.18 1.4K
WM + EM + PM 51.67 44.96 1.5K

WM + EM (token-controlled) 50.10 43.27 1.5K
WM only (token-controlled) 46.07 39.95 1.5K

tion. This trade-off between performance and efficiency has often been overlooked in prior ablation studies of
memory-augmented systems. To definitively isolate this confound, we conducted a token-controlled ablation
study (Rows 4–5 in Table 5), wherein the total token budget for each ablated configuration was fixed at 1.5K
tokens to match that of the full O-Mem framework (WM+EM+PM).The clear performance gradient under a
fixed token budget provides conclusive evidence that the performance gains are attributable to the quality and
relevance of the information retrieved by each module, not merely to an increase in context. This finding
confirms that each independent memory module of O-Mem effectively captures distinct and complementary
aspects of the interactions.

Figure 4: Memory Profile Alignment during
Memory-Time Scaling

Memory
Configuration

Average
Performance

Average Retrieval
Length (Chars)

O-Mem 44.49 6499
O-Mem w/o
Attributes 42.14 28555

Table 6: Study concerning persona attribute
on the Personalized Deep Research Bench
dataset.

Memory-Time Scaling for User Understanding. We conduct a systematic evaluation of O-Mem’s user un-
derstanding capability by examining how it scales with the number of interactions through two key analyses:
(1) verifying the accuracy of persona attributes extracted from interaction data, and (2) assessing the practical
utility of these attributes in personalizing the agent’s responses. First, to evaluate the scaling of extraction
accuracy, we collect persona attributes inferred by O-Mem from a single user’s dialogue history across in-
creasing interaction counts. These extracted attributes are then compared against the user’s ground-truth
profile using an LLM-as-judge scoring mechanism (Li et al., 2024a) to measure alignment (see Appendix for
details). As shown in Figure 4, the extracted persona attributes gradually converge toward the ground-truth
profile as interactions scale, demonstrating that O-Mem effectively refines its user understanding through
this scaling process. Second, to measure the practical impact of persona attributes, we compare O-Mem with
and without access to persona attributes on the Personalized Deep Research Bench dataset. Results in Table 6
show that incorporating persona attributes yields a significant improvement in response personalization (aver-
age performance increases from 42.14 to 44.49) while substantially reducing the retrieval length (from 28,555
to 6,499 characters). These results demonstrate that O-Mem’s ability to extract and leverage user attributes
through scaled interactions substantially enhances its performance in complex personalized text generation
tasks, achieving stronger personalization with considerably improved efficiency.

6 CONCLUSION

In this paper, we propose O-Mem, a novel memory framework that enhances long-term human-AI interaction
through dynamic user profiling and hierarchical memory retrieval. Unlike conventional approaches that rely
solely on semantic retrieval of past messages, O-Mem actively constructs and refines user profiles from ongoing
interactions. This approach effectively addresses the key limitations of conventional methods in maintaining
long-term, consistent user context. Extensive experiments on three personalized benchmarks demonstrate that
O-Mem achieves state-of-the-art performance while reducing token consumption by 94% and inference latency
by 80% compared to its closest competitor, highlighting its superior efficiency. To support research in this area,
we introduce Personalized Deep Research Bench, a new benchmark for personalized long-text generation. The
proposed framework provides an effective solution for complex personalized text generation tasks, enabling
LLM agents to deliver more coherent and contextually appropriate responses. Our work opens up promising
directions for developing more efficient and human-like personalized AI assistants.
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7 REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our work, we have provided comprehensive details throughout the
manuscript. The proposed algorithm is elaborated in the Method section (Section 3), and the experimental
configuration is detailed in the Experiments section (Section 4). Our experiments utilize the public LoCoMo
and PERSONAMEM datasets, as well as the private Personalized Deep Research Bench dataset. The source
code for our method and the Personalized Deep Research Bench dataset will be made publicly available upon
the cancellation of anonymity.

8 ETHICS STATEMENT

We adhere to the ICLR Code of Ethics in this work. Our research aims to benefit society while upholding
scientific rigor. We have considered potential risks to ensure the study is conducted ethically, fairly, and with
respect for privacy and intellectual property. Furthermore, during the data construction process, we strictly
followed the principle of informed consent, ensuring that all users were fully aware of the data’s purpose and
usage. Our data collection protocols were designed to safeguard their right to knowledge and privacy.

REFERENCES

URL https://openai.github.io/openai-agents-python/ref/memory/.

2024. URL https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2.

2025. URL https://docs.perplexity.ai/getting-started/models/models/
sonar-deep-research.

Igor Calzada. Citizens’ data privacy in china: The state of the art of the personal information protection law
(pipl). Smart Cities, 5(3):1129–1150, 2022.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building production-
ready ai agents with scalable long-term memory. arXiv preprint arXiv:2504.19413, 2025.

Joel Eapen and VS Adhithyan. Personalization and customization of llm responses. International Journal of
Research Publication and Reviews, 4(12):2617–2627, 2023.

Mehmet Fırat and Saniye Kuleli. What if gpt4 became autonomous: The auto-gpt project and use cases. Journal
of Emerging Computer Technologies, 3(1):1–6, 2023.

Henry Hosseini, Christine Utz, Martin Degeling, and Thomas Hupperich. A bilingual longitudinal analysis of
privacy policies measuring the impacts of the gdpr and the ccpa/cpra. 2024.

Bowen Jiang, Zhuoqun Hao, Young-Min Cho, Bryan Li, Yuan Yuan, Sihao Chen, Lyle Ungar, Camillo J Taylor,
and Dan Roth. Know me, respond to me: Benchmarking llms for dynamic user profiling and personalized
responses at scale. arXiv preprint arXiv:2504.14225, 2025.

Jiazheng Kang, Mingming Ji, Zhe Zhao, and Ting Bai. Memory os of ai agent. arXiv preprint
arXiv:2506.06326, 2025.

Philippe Laban, Hiroaki Hayashi, Yingbo Zhou, and Jennifer Neville. Llms get lost in multi-turn conversation.
arXiv preprint arXiv:2505.06120, 2025.

Langchain-Ai. Github - langchain-ai/langmem. URL https://github.com/langchain-ai/
langmem.

Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun Liu. Llms-as-
judges: a comprehensive survey on llm-based evaluation methods. arXiv preprint arXiv:2412.05579, 2024a.

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu, Wenxing Xu,
Xiang Wang, Yi Sun, et al. Personal llm agents: Insights and survey about the capability, efficiency and
security. arXiv preprint arXiv:2401.05459, 2024b.

Zhiyu Li, Shichao Song, Chenyang Xi, Hanyu Wang, Chen Tang, Simin Niu, Ding Chen, Jiawei Yang, Chunyu
Li, Qingchen Yu, et al. Memos: A memory os for ai system. arXiv preprint arXiv:2507.03724, 2025.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chengruidong Zhang,
Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm inference via vector retrieval.
arXiv preprint arXiv:2409.10516, 2024.

10

https://openai.github.io/openai-agents-python/ref/memory/
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://docs.perplexity.ai/getting-started/models/models/sonar-deep-research
https://docs.perplexity.ai/getting-started/models/models/sonar-deep-research
https://github.com/langchain-ai/langmem
https://github.com/langchain-ai/langmem


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lei Liu, Xiaoyan Yang, Yue Shen, Binbin Hu, Zhiqiang Zhang, Jinjie Gu, and Guannan Zhang. Think-in-
memory: Recalling and post-thinking enable llms with long-term memory. arXiv preprint arXiv:2311.08719,
2023.

Lucie Charlotte Magister, Katherine Metcalf, Yizhe Zhang, and Maartje ter Hoeve. On the way to llm person-
alization: Learning to remember user conversations. arXiv preprint arXiv:2411.13405, 2024.

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and Yuwei Fang.
Evaluating very long-term conversational memory of llm agents. arXiv preprint arXiv:2402.17753, 2024.
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9 APPENDIX

9.1 USE OF LLMS

In this study, the large language model (LLM) was employed to assist in the writing process—specifically, to
improve the articulation of experimental findings, perform proofreading for grammatical errors and typos, and
verify mathematical formulations. It was not utilized for literature search or research ideation.

9.2 DETAILS CONCERNIG PERSONALIZED DEEP RESEARCH BENCH DATASET

9.2.1 CONSTRUCTION PROCESS

We recruited 25 demographically diverse volunteers (age, occupation, income, life stage) who, after training
on data authenticity and privacy, mapped their personal information to a custom character model schema. To
enrich these explicit profiles with dynamic context,we employed professional annotators simulate the daily
interactions of these collected personas through the Xiaobu Memory APP to: (i) interact with an integrated as-
sistant, and (ii) log natural-context memory fragments (e.g., travel, health, and family plans). This longitudinal
data captured users’ evolving interests, habits, and latent preferences. The benchmark’s final stage required a
principled pairing of profiles with memory tasks to generate personalized queries. Since random pairing would
fail to capture user motivation and unique memory anchors, we employed a user-driven, committee-guided
protocol. Each volunteer selected tasks from pool that resonated with personal memory traces (e.g., past mile-
stones, domain knowledge, methodological hurdles). This ensured each task mirrored the participant’s memory
landscape, capturing idiosyncratic experiences and recall patterns. These 50 selected queries constitute the Per-
sonalized Deep Research Bench dataset for memory-based personalized deep research reports generation1.

9.2.2 EVALUATION METRICS

To rigorously evaluate the efficacy of the generated personalized depth reports, we adopt a principled approach
centered on two pivotal metrics: Goal Alignment and Content Alignment. These dimensions were selected
because they directly correspond to the fundamental challenges of personalization: Goal Alignment assesses
the system’s capacity to comprehend and address a user’s explicit and underlying motivations, while Content
Alignment evaluates the appropriateness of the report’s substantive content—its topic, depth, and breadth—to
the user’s unique knowledge background and interests. Our measurement methodology is grounded in the
established LLM-as-Judge paradigm (Li et al., 2024a), for which we have designed structured prompts to oper-
ationalize these indicators. While we acknowledge that no evaluation framework can claim perfect objectivity,
we contend that this approach provides a systematic, transparent, and currently optimal approximation for
assessing the nuanced construct of personalization quality.

9.2.3 PERSONA ALIGNMENT SCORE

To evaluate the fidelity of the user profiles extracted by O-Mem, we have designed structured prompts that
direct a large language model to compare the extracted profiles against the ground-truth user profiles and assign
a consistency score. Similar to the evaluation of goal and content alignment, this approach leverages the LLM-
as-a-judge paradigm. We acknowledge the inherent limitations of this method in achieving perfect objectivity.
Its primary objective, however, is not to provide a precise measurement but to fundamentally assess whether
O-Mem can construct a dynamic and increasingly accurate user portrait as the number of interactions scales.

9.2.4 EVALUATION PROMPT

Prompt for Goal Alignment Criteria Generation

You are an experienced research article evaluation expert. You excel at breaking down abstract eval-
uation dimensions (such as ”Goal Understanding and Personalization Insight”) into actionable, clear
evaluation criteria tailored to the specific research task and user persona, and assigning reasonable
weights with explanations for each criterion.
</system role>

1The full Personalized Deep Research Bench benchmark released to the community will comprise the entire
initial query set, including the 50 highly personalized queries selected for this study as well as the broader
collection, which, despite being less discriminative for memory personalization, remains a valuable asset for
future research.
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<user prompt>
Background: We are evaluating a research article written for the following research task under the
dimension of Goal Alignment.
Goal Alignment: Whether the research fully and accurately understands the relationship between
the task and the user persona, extracts deep and implicit needs, and generates a personalized report
based on that understanding, with a focus on performing user-centered, deeply personalized matching
between the user persona and task requirements.

<task>
”{task prompt}”
</task>

The user persona is as follows:
<persona>
”{persona prompt}”
</persona>

<instruction>
Your goal:
For the Goal Alignment dimension of this research article, formulate a set of detailed, specific, and
highly targeted evaluation criteria that are tightly aligned with the above <task> and <persona>.
You need to:

1. Deeply analyze the user persona and task scenario: Thoroughly examine the back-
ground characteristics, knowledge structure, cognitive habits, and latent expectations of
<persona>. Combine this with the specific application scenario of <task> to iden-
tify the user’s core explicit needs and deeper implicit needs.

2. Formulate personalized evaluation criteria: Based on the above analysis, propose specific
evaluation criteria that reflect a deep understanding of <persona> and a close fit to the
<task> scenario. These criteria should assess whether the content is well adapted to the
user persona in style, depth, perspective, and practicality.

3. Explain the personalization rationale: Provide a brief explanation (explanation) for each
criterion, clarifying how it addresses the specific attributes of <persona> or special re-
quirements of <task>, and why such targeting is critical to achieving a good match.

4. Assign rational weights: Assign a weight (weight) to each criterion, ensuring that the total
sum is 1.0. The distribution of weights should directly reflect the relative importance of each
criterion in measuring how well the content matches ”this particular user” in ”this particular
task.” The closer a criterion is tied to persona characteristics and task scenario, the higher its
weight should be.

Core requirements:

1. Deep personalization orientation: The analysis, criteria, explanations, and weights must
be deeply rooted in the uniqueness of <persona> (e.g., their professional background,
cognitive level, decision-making preferences, emotional needs) and the specific context of
<task>. Avoid generic or templated evaluation.

2. Focus on contextual responsiveness and resonance: The criteria should evaluate whether the
content not only responds to the task at the informational level but also resonates with the
context and expectations implied by the user persona in terms of expression style, reasoning
logic, case selection, and level of detail.

3. Rationale must reflect targeting: The <analysis> section must clearly explain how key
features were extracted from the given <persona> and <task> to form these personal-
ized criteria. Each criterion’s explanation must directly show how it serves this specific user
and task.

4. Weights must reflect personalization priorities: The weight distribution must logically
demonstrate which aspects of alignment are the most critical success factors for ”this user”
completing ”this task.”

5. Standard output format: Strictly follow the example format below. First output the
<analysis> text, then immediately provide the <json output>.

</instruction>

<example rational>
The example below demonstrates how to develop Goal Alignment evaluation criteria based on the
task requirements. Focus on understanding the thinking process and analytical approach used in
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the example, rather than simply copying its content or numerical weights.
</example rational>
...

Please strictly follow the above instructions and methodology. Now, for the following specific task,
start your work:
<task>
”{task prompt}”
</task>

<persona>
”{persona prompt}”
</persona>

Please output your <analysis> and <json output>.
</user prompt>

Prompt for Content Alignment Criteria Generation

You are an experienced research article evaluation expert. You are skilled at breaking down abstract
evaluation dimensions (such as “Content Alignment”) into actionable, clear, and specific evaluation
criteria tailored to the given research task and user persona, and assigning reasonable weights and
explanations for each criterion.
</system role>
<user prompt>
Background: We are providing a personalized scoring rubric for a specific task and user persona from
the dimension of Content Alignment.
Content Alignment: Whether the research content is customized based on the user’s interests, knowl-
edge background, and other preferences.

<task>
“{task prompt}”
</task>

The user persona is as follows:
<persona>
“{persona prompt}”
</persona>
<instruction>
Your Goal: For the Content Alignment dimension of this research article, create a set of detailed,
concrete, and highly tailored evaluation criteria for the above <task> and <persona>. You need to:

1. Analyze the Task and Persona: Deeply analyze <task> and <persona> to infer the user’s
potential interests, knowledge background, and the depth and breadth of content they may
prefer.

2. Formulate Criteria: Based on your analysis, propose specific evaluation criteria that focus
on whether the report’s content matches the user’s interest points and knowledge level.

3. Provide Explanations: For each criterion, provide a brief explanation (explanation)
explaining why it is important for evaluating the content alignment for this <task>.

4. Assign Weights: Assign a reasonable weight to each criterion (weight), ensuring that
the sum of all weights equals exactly 1.0. The weight allocation should logically reflect
the personalization-first principle: criteria directly tied to unique personal traits, exclusive
preferences, or specific contextual needs in the user persona should receive higher weights,
as they are key to achieving true personalized content alignment.

5. Avoid Overlap: Make sure the evaluation criteria focus solely on the Content Alignment
dimension, avoiding overlap with other dimensions such as Goal Alignment, Expression
Style Alignment, and Practicality/Actionability.

Core Requirements:

1. Strongly Linked to the Persona: The analysis, criteria, explanations, and weights must be
directly connected to the user’s interests, knowledge background, or content preferences.
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2. Focus on Content Selection and Depth: The criteria should assess whether the choice of
content is precise and whether the depth is appropriate, rather than merely evaluating whether
information is presented.

3. Provide Sufficient Rationale: The <analysis> section must clearly articulate the overall
reasoning behind formulating these criteria and weights, linking them to <task> and <per-
sona>. Each explanation must clarify why the individual criterion is relevant.

4. Reasonable Weighting: The weight distribution should be logical, reflecting the relative
importance of each criterion in measuring content alignment, with particular emphasis on
giving higher priority to personalized aspects.

5. Standardized Output Format: Strictly follow the format below — output the <analysis>
text first, immediately followed by <json output>.

</instruction>
<example rational>
The following example demonstrates how to formulate content alignment evaluation criteria based
on the task requirements and user persona. Pay close attention to the thinking process and ana-
lytical approach in this example, rather than simply copying the content or weight values.
</example rational>
. . .
Please strictly follow the above instructions and methodology. Now, for the following specific task,
start your work:
<task>
“{task prompt}”
</task>
<persona>
“{persona prompt}”
</persona>
Please output your <analysis> and <json output>.
</user prompt>

Scoring Prompt for Personalization

(For convenience and under time constraints, a temporary, unrefined prompt was employed for
scoring during the experiment. The additional personalized indicators included in this temporary
prompt—beyond the core metrics of goal alignment and content alignment—were ultimately dis-
carded due to conceptual overlap. Therefore, this provisional prompt is functionally equivalent to our
intended final evaluation design.)

<system role>You are a strict, meticulous, and objective expert in evaluating personalized research
articles. You excel at deeply evaluating research articles based on specific personalization assessment
criteria, providing precise scores and clear justifications.</system role>

<user prompt>
Task Background
You are given an in-depth research task. Your job is to evaluate a research article written for this task
in terms of its performance in Personalization Alignment. We will evaluate it across the following
four dimensions:

1. Goal Alignment

2. Content Alignment

3. Presentation Fit

4. Actionability & Practicality

<task>
{task prompt}
</task>

User Persona
<persona>
{persona prompt}
</persona>
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Article to be Evaluated
<target article>
{article}
</target article>

Evaluation Criteria
You must evaluate the specific performance of this article in terms of personalization alignment, fol-
lowing the criteria list below, outputting your analysis and then assigning a score from 0–10. Each
criterion includes its explanation, which you should read carefully.
<criteria list>
{criteria list}
</criteria list>

<Instruction>
Your Task
Strictly follow each criterion in <criteria list> to evaluate how <target article> meets that criterion.
You must:

1. Analyze Each Criterion: For each item in the list, think about how the article meets the
requirements of that criterion.

2. Analytical Evaluation: Combine the article content, the task, and the user persona to ana-
lyze the article’s performance for that criterion, pointing out both strengths and weaknesses.

3. Scoring: Based on your analysis, give a score between 0 and 10 (integer) for the article’s
performance on that criterion.

Scoring Rules
For each criterion, give a score between 0 and 10 (integer). The score should reflect the quality of the
article’s performance:

• 0–2 points: Very poor. Almost completely fails to meet the requirement.

• 2–4 points: Poor. Meets the requirement only partially, with significant shortcomings.

• 4–6 points: Average. Basically meets the requirement; neither particularly good nor bad.

• 6–8 points: Good. Mostly meets the requirement, with notable strengths.

• 8–10 points: Excellent/Outstanding. Fully or exceptionally meets the requirement.

Output Format Requirements
Strictly follow the <output format> below to output the evaluation results for each criterion. Do not
include any irrelevant content, introductions, or conclusions. Start from the first dimension and
output all dimensions and their criteria in sequence:
</Instruction>

<output format>

1 {
2 "goal_alignment": [
3 {
4 "criterion": "[The text of the first
5 Goal Alignment criterion]",
6 "analysis": "[Analysis]",
7 "target_score": "[integer score 0-10]"
8 },
9 {

10 "criterion": "[The text of the second
11 Goal Alignment criterion]",
12 "analysis": "[Analysis]",
13 "target_score": "[integer score 0-10]"
14 },
15 ...
16 ],
17 "content_alignment": [
18 {
19 "criterion": "[The text of the first Content Alignment
20 criterion]",
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21 "analysis": "[Analysis]",
22 "target_score": "[integer score 0-10]"
23 },
24 ...
25 ],
26 "presentation_fit": [
27 {
28 "criterion": "[The text of the first Presentation Fit
29 criterion]",
30 "analysis": "[Analysis]",
31 "target_score": "[integer score 0-10]"
32 },
33 ...
34 ],
35 "actionability_practicality": [
36 {
37 "criterion": "[The text of the first Actionability
38 & Practicality criterion]",
39 "analysis": "[Analysis]",
40 "target_score": "[integer score 0-10]"
41 },
42 ...
43 ]
44 }

</output format>

Prompt for Persona Align Score

<system role>
You are an experienced user research expert, skilled in analyzing and comparing user personas. Your
task is to carefully compare a ”Preset User Persona” and a ”System Dynamically Learned User Per-
sona”, and identify the key similarities and differences between them.
</system role>

<user prompt>
Your analysis must strictly follow these four dimensions:

1. **Basic Attributes & Goals**: Compare similarities and differences in areas such as occu-
pation, identity, core objectives, and usage motivations.

2. **Behavioral Patterns**: Compare similarities and differences in areas such as usage fre-
quency, commonly used features, and interaction depth.

3. **Needs & Preferences**: Compare similarities and differences in areas such as content
preferences, feature requirements, and pain points.

4. **Overall Image Differences**: Summarize the overall perceptual differences between the
two personas (e.g., ”Diligent Learner” vs. ”Efficient Problem Solver”).

Input Data:
- **Preset User Persona**: presetpersonatext
- **System Learned User Persona**: learnedpersonatext
Output Requirements:
Please output your analysis results in **pure JSON format** only, without any additional explanations.
The JSON structure should be as follows:

{{
"comparison_by_dimension": {{
"Basic Attributes & Goals": {{
"Preset Persona Summary": "one-sentence summary",
"Learned Persona Summary": "one-sentence summary",
"Key Similarities": ["point 1", "point 2", ...],
"Key Differences": ["point 1", "point 2", ...],
"Difference Level": "High/Medium/Low"
// Judge based on the significance of differences
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}},
"Behavioral Patterns": {{
... // Same structure as above

}},
"Needs & Preferences": {{
... // Same structure as above

}}
}},
"overall_summary": {{
"Preset Persona Overall Image": "a descriptive label or phrase",
"Learned Persona Overall Image": "a descriptive label or phrase",
"Overall Alignment Score": "integer from 0-100", // 100
indicates complete alignment
"Most Important Insight": "one or two sentences explaining the
most critical insight"

}}
}}

</user prompt>

9.3 INTERACTION UNDERSTANDING PROMPT

UNDERSTAND USER EXPERIENCE PROMPT

Perform topic tagging on this message from user following these rules:
1. Generate machine-readable tag
2. Tag should cover:
- Only one primary event concerning the user messages.
- The author’s attitude towards the event.
- The topic should be the subject of the message which the user held attitude towards.
- The topic and reason behind the attitude, sometimes you need to infer the attitude from the users’
words.
- The facts or events infered or revealed from the user’s message.
- If the author mention the time of the facts or events, the tag should also include the time inferred
from the message (e.g., last day, last week)
- Any attributes of the user revealed by the user’s message (e.g., demographic features,biographical
information,etc).
3. Use this JSON format:

{{
” t e x t ” : ” o r i g i n a l message ” ,
” t a g s ” : {{
” t o p i c ” : [ ” e v e n t ” ] ,
” a t t i t u d e ” : [ ” a t t i t u d e t o w a r d s t h e e v e n t ” : P o s t i v e o r N e g a t i v e o r Mixed ]
” r e a s o n ” : [ ” The r e a s o n c o n c e n r i n g t h e a t t i t u d e t o w a r d s t h e e v e n t ” ]
” f a c t s ” : [ ” The f a c t s o r e v e n t s i n f e r e d from t h e use r ’ s message ” ]
” a t t r i b u t e s ” : [ ” The a t t r i b u t e s o f t h e u s e r r e v e a l e d by
t h e use r ’ s message ” ]
}} ,
” summary ” : ”One s e n t e n c e summary of t h e message ”
” r a t i o n a l e ” : ” b r i e f e x p l a n a t i o n c o n c e n r i n g why r a i s i n g t h e s e t a g s ”
}}

Example Input: ”The jazz workshop helped me overcome performance anxiety”
Example Output:

{{
” t e x t ” : ” L a s t week ’ s j a z z workshop h e l p e d me overcome
p e r f o r m a n c e a n x i e t y s i n c e t h e t u t o r s a r e so p a t i e n t s . ” ,
” t a g s ” : {{

” t o p i c ” : [ ” music workshop ” ] ,
” a t t i t u d e ” : [ ” P o s i t i v e ” ] ,
” r e a s o n ” : [ ” The t u t o r s can t e a c h t h e use p a t i e n t l y . ” ] ,
” f a c t s ” : [ ” j o i n j a z z workshop l a s t week ” ] ,
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” a t t r i b u t e s ” : [ ” u s e r wor rys a b o u t j a z z p e r f o r m a n c e ” ]
}} ,
” summary ” : ” J a z z workshop h e l p e d t h e u s e r overcome
p e r f o r m a n c e a n x i e t y . ”
” r a t i o n a l e ” : ” The use r ’ s p e r f o r m a n c e a n x i e t y was
a l l e v i a t e d wi th t h e h e l p o f J a z z Workshop .
T h e r e f o r e , he i s p o s i t i v e t o w a r d s J a z z Workshop . ”
}}

Example Input: ”I stop playing basketball for this semester due to too much stress.”
Example Output:

{{
” t e x t ” : ” The u s e r s t e p away from p l a y i n g b a s k e r b a l l
due t o t o o much s t r e s s . ” ,
” t a g s ” : {{

” t o p i c ” : [ ” p l a y i n g b a s k e t b a l l ” ] ,
” a t t i t u d e ” : [ ” n e g a t i v e ” ] ,
” r e a s o n ” : [ ” Too much s t r e e f o r p l a y i n g b a s k e t b a l l ” ] ,
” f a c t s : [ ” s t o p p l a y i n g b a s k e t b a l l ” ] ,
” a t t r i b u t e s ” : [ ” u s e r h a t e s t r e s s ” ]

}} ,
” summary ” : ” The u s e r s t o p p l a y i n g b a s k e r b a l l due t o
t o o much s t r e s s . ”
” r a t i o n a l e ” : ” The u s e r s t o p p l a y i n g b a s k e r b a l l due
t o t o o much s t r e s s .
T h e r e f o r e , t h e u s e r i s n e g a t i v e t o w a r d s p l a y i n g b a s k e t b a l l . ”

}}

Example Input: ”I go back to play basketball due to strenghten my body yesterday.”
Example Output:

{{
” t e x t ” : ” The u s e r r e t u r n t o p l a y b a s k e t b a l l due t o
s t r e n g h t e n t h e body . ” ,
” t a g s ” : {{

” t o p i c ” : [ ” p l a y i n g b a s k e t b a l l ” ] ,
” a t t i t u d e ” : [ ” P o s i t i v e ” ] ,
” r e a s o n ” : [ ” B a s k t e r b a l l c o u l d h e l p s t r e n g h t e n i n g t h e body ” ] ,
” f a c t s ” : [ ” r e t u r n t o p l a y b a s k e t b a l l y e s t e r d a y ” ] ,
” a t t r i b u t e s ” : [ ” User v a l u e t h e body ” ]

}} ,
” summary ” : ” The u s e r go back t o p l a y b a s k e t b a l l due t o
s t r e n g h t e n t h e body . ”
” r a t i o n a l e ” : ” he u s e r go back t o p l a y b a s k e t b a l l due t o
s t r e n g h t e n t h e body . There , t h e u s e r i s p o s i t i v e t o w a r d s
p l a y i n g b a s k e t b a l l . ”
}}

Example Input: ”I hate playing basktetball due to its preasure”
Example Output:

{{
” t e x t ” : ” I h a t e p l a y i n g b a s k t e t b a l l s i n c e I move from my
hometowm GuangZhou due t o i t s p r e a s u r e . ” ,
” t a g s ” : {{

” t o p i c ” : [ ” h a t e p l a y i n g b a s k e t b a l l ” ] ,
” a t t i t u d e ” : [ ” n e g a t i v e ” ] ,
” r e a s o n ” : [ ” The u s e r h a t e s p l a y i n g b a s k t e t b a l l f o r p r e a s u r e . ” ] ,
” f a c t s ” : [ ” h a t e p l a y i n g b a s k e t b a l l ” ] ,
” a t t r i b u t e s ” : [ ” u s e r h a t e s t r e s s ” , ” use r ’ s hometown
i s GuangZhou ” ]

}} ,
” summary ” : ” The u s e r go back t o p l a y b a s k e t b a l l due t o
s t r e n g h t e n t h e body . ”
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” r a t i o n a l e ” : ” The u s e r go back t o p l a y b a s k e t b a l l due t o
s t r e n g h t e n t h e body . There , t h e u s e r i s p o s i t i v e t o w a r d s
p l a y i n g b a s k e t b a l l . ”
}}

Now analyze this message: ”message”
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