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Abstract001

Large language model (LLM)s’ next-word pre-002
dictions have shown impressive performance003
in capturing human expectations during real-004
time language comprehension. This finding005
has enabled a line of research on psycho-006
metric benchmarking of LLMs against hu-007
man language-comprehension data in order to008
reverse-engineer humans’ linguistic subjective009
probability distributions and representations.010
However, to date this work has exclusively011
involved unimodal (language-only) compre-012
hension data, whereas much human language013
use takes place in rich multimodal contexts.014
Here we extend psychometric benchmarking015
to visual language models (VLMs). We de-016
velop a novel experimental paradigm, Image-017
Conditioned Maze Reading, in which partici-018
pants first view an image and then read a text019
describing an image within the Maze paradigm,020
yielding word-by-word reaction-time measures021
with high signal-to-noise ratio and good local-022
ization of expectation-driven language process-023
ing effects. We find a large facilitatory effect024
of correct image context on language compre-025
hension, not only for words such as concrete026
nouns that are directly grounded in the image027
but even for ungrounded words in the image de-028
scriptions. Furthermore, we find that VLM sur-029
prisal captures most to all of this effect. We use030
these findings to benchmark a range of VLMs,031
showing that models with lower perplexity gen-032
erally have better psychometric performance,033
but that among the best VLMs tested perplex-034
ity and psychometric performance dissociate.035
Overall, our work offers new possibilities for036
connecting psycholinguistics with multimodal037
LLMs for both scientific and engineering goals.038

1 Introduction039

Human language comprehension is highly incre-040

mental. Our minds integrate linguistic input with041

context very rapidly: words within sentences, and042

even phonemes or letters within spoken or writ-043

ten words, to update our understanding of linguis- 044

tic input (Tanenhaus et al., 1995; Rayner, 1998). 045

This process involves the rapid update of expecta- 046

tions about the interpretation of what has already 047

been said, and predictions about what might be 048

said next. These predictions affect how we process 049

the language we encounter, helping us to recognize 050

and correct errors (Marslen-Wilson, 1975; Levy, 051

2008b) and to analyze input more rapidly. 052

The fundamental operation of large language 053

models (LLMs) is similar: LLMs put probabil- 054

ity distributions over next tokens given preceding 055

context. This convergence has made it natural to 056

compare LLM distributions with human linguistic 057

behavior. In unimodal language processing, LLM 058

predictions have been shown to align fairly well 059

with those generated by humans in the Cloze task 060

(Goldstein et al., 2022). Furthermore, there is a 061

linear relationship between a word’s surprisal in 062

linguistic context (negative log-probability; (Hale, 063

2001; Levy, 2008a)) and how long comprehenders 064

take to read it (Smith and Levy., 2013; Wilcox et al., 065

2023). These findings have generated interest in 066

psychometric benchmarking of language models 067

(LMs): comparing LMs in terms of how well their 068

autoregressive probabilities predict human reading 069

times or other types of linguistic behavior (Frank 070

and Bod, 2011; Fossum and Levy, 2012; Goodkind 071

and Bicknell, 2018; Oh and Schuler, 2023; Shain 072

et al., 2024). 073

Psychometric benchmarking of LLMs has ex- 074

clusively involved unimodal, language-only data 075

and models. But human language use generally 076

involves rich, multimodal context. For this reason 077

there is growing interest in multimodal language 078

models. The most advanced such type of model 079

is vision–language models (VLMs), which relate 080

visual content (most commonly static images) to 081

linguistic content. For example, models like BLIP- 082

2 (Li et al., 2023) can generate text associated with 083

an image; to do this, it autoregressively places con- 084
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ditional probability distributions over next linguis-085

tic tokens given an image in context plus preceding086

linguistic context. However, evaluation techniques087

for VLMs are less developed than for unimodal088

LLMs, and we are aware of no work to date on089

psychometric benchmarking for VLMs.090

Here we present a framework and experimental091

results on psychometric evaluation of visual lan-092

guage models using a novel yet simple psycholin-093

guistic experimental paradigm. In an experimental094

trial, a participant first previews an image, then095

reads a sentence describing an image, with word-096

by-word reading times measured (Figure 1). The097

image may be the one that the sentence describes098

(the Correct Image condition), a different image099

that the sentence does not describe (the Wrong100

Image condition), or simply a black screen (the101

No Image condition). Intuitively, previewing the102

correct image should prepare the participant for the103

sentence description and facilitate them reading it104

more quickly and accurately. However, there are105

different forms that this facilitation could take, cor-106

responding to different theoretical accounts of how107

visual context shapes language processing. Addi-108

tionally, we can compare VLMs in terms of how109

well they capture how the different image contexts110

influence participant reading behavior. We can thus111

use this experimental paradigm both to gain insight112

into the role of visual context in language process-113

ing in the human mind, and to psychometrically114

benchmark visual language models.115

2 Related Work116

2.1 Human vision and language processing117

There is considerable psycholinguistic literature118

on the vision–language interface, with emphasis119

on visual context effects on spoken word recogni-120

tion, syntactic disambiguation, and predictive pro-121

cessing.Much of this work uses the Visual World122

Paradigm (VWP), which investigates eye move-123

ments in visual scenes during spoken language un-124

derstanding. Allopenna et al. (1998) and Dahan125

et al. (2001) used the VWP to demonstrate rapid,126

fine-grained effects of sub-word phonetic informa-127

tion on word-level interpretations, demonstrating128

incrementality of spoken language processing at129

the sub-word level. (Tanenhaus et al., 1995) used130

the VWP to demonstrate that the language pro-131

cessing system utilizes visual context to quickly132

interpret an ambiguous prepositional phrase, inte-133

grating lexical, syntactic, visual, and pragmatic rea-134

soning. (Altmann and Kamide, 1999) showed how 135

visual context aids predictive processing, support- 136

ing the idea that sentence comprehension involves 137

anticipating the relationships between verbs, their 138

syntactic components, and the real-world context 139

they describe. For a broader review see Huettig 140

et al. (2011). 141

2.2 Psychometric benchmarking of LLMs 142

It has long been known that words predictable 143

in context are read faster (Ehrlich and Rayner, 144

1981) and elicit distinctive brain responses (Kutas 145

and Hillyard, 1980; Kutas and Federmeier, 2011). 146

Smith and Levy. (2013) found a linear relation- 147

ship between n-gram word surprisal (negative log- 148

probability) and reading time, a relationship that 149

has held up with neural language models (Good- 150

kind and Bicknell, 2018; Wilcox et al., 2023) and 151

has been widely used to psychometrically bench- 152

mark LLMs (Oh and Schuler, 2023; Shain et al., 153

2024). There is also some evidence for a linear re- 154

lationship between surprisal and the N400 ERP re- 155

sponse (Heilbron et al., 2022, though see Szewczyk 156

and Federmeier, 2022), and the best alignment of 157

LM internal representations with brain activation 158

patterns during language comprehension seems to 159

be achieved by autoregressive LM architectures 160

(Schrimpf et al., 2021; Caucheteux and King, 2022; 161

Antonello et al., 2023). These results raise the 162

prospect of reverse-engineering human subjective 163

probabilities active during language processing 164

through psychometric LLM benchmarking. 165

2.3 The Maze paradigm 166

Our experiment involves a simple adaptation of the 167

Maze paradigm for studying word-by-word read- 168

ing (Forster et al., 2009; Witzel et al., 2012; Boyce 169

et al., 2020). In the Maze paradigm, experimen- 170

tal participants read a text passage through a se- 171

quence of two-alternative forced-choice tasks, one 172

per word in the passage. Each word is coupled with 173

an alternative distractor, one randomly assigned on 174

the left and the other on the right, and the partici- 175

pant has to choose which word is correct (i.e., fits 176

with the preceding linguistic context). The partici- 177

pant’s reaction time (RT) and whether they chose 178

the correct word are recorded. These reaction times 179

and accuracies carry information about the word’s 180

difficulty in context that can be revealed through 181

statistical analysis. The Maze paradigm has a num- 182

ber of methodological advantages: it is easily de- 183

ployable over the web, it has good signal-to-noise 184
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Correct Image Preview No Image Preview Wrong Image Preview

Figure 1: Schematic of image-description A-maze reading in each of the three experimental conditions. Participants first briefly
view an image and then read a description by successively choosing the word fitting the preceding linguistic context and rejecting
a foil word (example selections marked in blue). A mistake triggers an error message, and the participant moves on to the next
trial sentence.

ratio, and processing difficulty is highly localized:185

that is, if a word is difficult for the comprehender,186

that difficulty shows up predominantly in RT and187

accuracy on that word, rather than "spilling over"188

to subsequent words as is often seen with other189

reading-time measurement techniques such as eye190

tracking or self-paced reading. Boyce and Levy191

(2023) showed that a linear relationship between192

surprisal and RT holds in the Maze paradigm as it193

does for other reading time-measuring paradigms.194

3 Experimental Methodology195

We developed an Image-Conditioned Maze experi-196

mental paradigm which is like the original Maze,197

but participants preview an image before reading198

each text passage. We chose 108 images and their199

corresponding descriptions from the validation split200

of Microsoft COCO (Lin et al., 2014). In each ex-201

perimental trial, participants were first shown an202

image for 5 seconds, and then the image disap-203

peared from the screen and they read an image204

description word by word in the Maze task. We205

generated distractor words using the A(uto)-Maze206

software of Boyce et al. (2020). Reaction time207

and response for each word choice (correct vs. dis-208

tractor) were recorded. We recruited 69 US native209

English speaker participants (a quantity determined210

using power analysis based on a pilot study with211

a different set of images and descriptions) on Pro-212

lific, showed them some examples, and paid them213

12$/hour for their participation. Each of them par-214

ticipated in 36 trials, 12 in each of the three condi-215

tions described before in figure (1), with trial order216

randomized for each participant. No participant217

saw the same image description twice.218

In a separate study with different participants,219

we collected groundedness ratings for each word220

in each description in the context of the correct im-221

age associated with the description (Figure 2). We 222

recruited 42 US native English speaker participants 223

on Prolific for this study. Each sentence was rated 224

by 7 participants on average. Participants used a 225

slider to indicate how "present" each word was in 226

the image, ranging from −10 (Not Present) to +10 227

(Surely Present). 228

4 Psycholinguistic hypotheses 229

Under wide circumstances, visual input automati- 230

cally activates corresponding linguistic representa- 231

tions; a famous example is the Stroop effect, where 232

a word naming one color but presented in another, 233

such as blue, is difficult to say due to the inter- 234

ference between the words activated by the color 235

versus orthographic information. We thus hypothe- 236

size that previewing the image will tend to activate 237

at least some of the linguistic content in the image’s 238

description, so that reaction times will be faster and 239

accuracy higher more quickly and accurately in the 240

Correct Image condition than in the Wrong Image 241

and No Image conditions. We also hypothesize 242

that the Wrong Image condition may slow reaction 243

times and reduce accuracy relative to the No Image 244

condition, since the linguistic content that the im- 245

age activates may conflict with the content in the 246

subsequent text. 247

We distinguish between two versions of these 248

hypotheses. One possibility is that activation of 249

linguistic content may be restricted to content that 250

is straightforwardly grounded in the image. For 251

example, in the Correct Image example of Figure 1, 252

the words woman, red, and dress are straightfor- 253

wardly grounded: the meaning of each word is 254

prominent in the image without extensive reasoning 255

or search for complex linguistic descriptions. The 256

rest of the words in that description are, in contrast, 257

are less straightforwardly grounded. Our lexical- 258
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Figure 2: Example experiment page for a trial in the groundedness rating study. The circle indicates the slider the participant is
currently manipulating. Once a participant chooses the vertical slider, the slider turns green. A participant must rate each word in
the description to continue to the next trial. The scale on the right is a reminder of how the rating works.

grounding hypothesis is that linguistic facilitation259

or interference effects from the image will be lim-260

ited to relatively straightforwardly grounded words.261

In cognitive terms, objects, properties, events, and262

states in the scene are visually identified, and the263

corresponding lemmas are activated, so that when264

those lemmas are encountered in the image de-265

scription, they are processed more effectively. We266

operationalize groundedness in two different ways:267

first as open-class (generally more grounded) ver-268

sus closed-class (generally less grounded) parts of269

speech; second, through our grounding study as270

described in Section 3.271

The second possibility, the comprehensive-272

grounding hypothesis, is that images evoke expec-273

tations over complete possible descriptions. This274

hypothesis predicts that facilitation or interference275

will affect all types of words in the sentence, re-276

gardless of part of speech or groundedness. A277

particularly strong version of the comprehensive-278

grounding hypothesis is that all facilitation and279

interference effects from the image will be medi-280

ated by this shift in linguistic expectations. If this281

strong version of the hypothesis is correct, and if282

visual language models do a good job of captur-283

ing this shift in expectations, then visual language284

model surprisal should fully account for the effect285

of experimental condition in the human behavioral286

data in our experiment.287

5 Modelling Approach 288

Both for testing our psycholinguistic hypothe- 289

ses and for psychometric benchmarking we fitted 290

mixed-effects regression models to the behavioral 291

data we collected, using the brms and lmer pack- 292

age in R. These models give us parameter estimates 293

for various predictor variables that are interpretable 294

in terms of our psycholinguistic hypotheses, and we 295

use the data likelihoods obtained by using predic- 296

tors derived from different VLMs for psychometric 297

benchmarking. 298

5.1 Predictor variables 299

We created a set of predictor variables of Condi- 300

tion_ID, frequency, word length, groundedness, 301

open vs. closed part of speech, and surprisals 302

from six Transformer-based LLMs: 4 visual lan- 303

guage models with a variety of objectives regarding 304

language-vision alignment (BLIP2, Li et al., 2023; 305

KOSMOS2, Peng et al., 2023; LLAVA-7b, Liu 306

et al., 2023; and IDEFICS-9b, Laurençon et al., 307

2024) and 2 language only (GPT2, Radford et al., 308

2019; and LLAMA2 Touvron et al., 2023). Con- 309

dition_ID indicates whether a certain image de- 310

scription was seen in Correct, Wrong, or No Im- 311

age condition, which could be extracted from the 312

experiment setup on IBEX. For length, we used 313

the length in characters excluding end punctuation. 314

We obtain word frequencies from SUBTLEX_US 315

(Brysbaert and New, 2009); for the words not in the 316
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database, we use the minimum frequency of any317

word in that database. Groundedness comes from318

our norming study. For open versus closed class319

part of speech, we ran the Stanford POS tagger on320

our image descriptions, and considered all nouns,321

adjectives, adverbs, and non-auxiliary verbs, as322

open-class, and the rest as closed-class. Surprisal323

does not vary across condition for language-only324

LLMs, but does for VLMs, since the condition-325

ing image differs by condition. (Note that for the326

No Image condition we used a black screen as the327

image, and additionally added "Ignore the image328

context" as a prompt preceding the description.)329

5.2 Regression predictor coding330

Unless otherwise specified, we used Helmert cod-331

ing for Condition_ID, set up so that one predictor332

encodes the wrong vs. no and the other predictor333

encodes the correct vs. (wrong or no) contrast.334

We sum code open vs. closed part of speech (POS).335

Unless the model is condition specific, in which336

case Condition_ID can’t be used as a predictor,337

we also assumed an interaction between Condi-338

tion_ID and groundedness and Condition_ID and339

POS. For all the models, we use the maximal ran-340

dom effects structure justified by the design, so we341

have included correlated by-subject, by-sentence,342

by-word, and by-word token random slopes for343

Condition_ID, the fixed effect of our primary theo-344

retical interest.345

5.3 Further modeling details346

For reading time prediction, we fitted mixed linear347

models using all aforementioned predictors. For348

error occurrence prediction we fitted mixed logit349

models. using the default hyperparameters. For350

differentiating between LLM and VLM surprisal351

fitted models across different conditions, we used352

groundedness, frequency, length, and surprisal for353

every model fitted with one type of condition data.354

To investigate if surprisal differences can be ex-355

plained as a function of groundedness, we used356

groundedness and POS interaction and other word357

level predictors to predict surprisal differences (cor-358

rect relative to no and correct relative to wrong). To359

study the spillover effects, we analyzed the effects360

of the lagged predictors. So along with the word-361

level predictors of the current word, we fitted the362

RT model with also the predictors of the previous363

word, i,e, surprisal, frequency, length, and ground-364

edness. For model comparisons, we included fre-365

quency, length, and groundedness as predictors and366

fitted the models using R’s lmer with either 1 or 367

2 sources of surprisal and assessed the effect of 368

adding the second surprisal source with a likeli- 369

hood ratio test (using R’s anova()). For all lmer 370

fitted models in this paper, we used maximum like- 371

lihood estimation (MLE). 372

6 Results 373

6.1 Reading Time Prediction 374

To examine the important predictors of a reading 375

time prediction model, consider figure (3), which 376

plots the coefficient estimates and 95% confidence 377

interval of the effects we care about in such mixed 378

effect models. It is evident from the second coef- 379

ficient in figure (3) that for the models fitted with 380

text-based surprisals, there is a very significant fa- 381

cilitation for both open and closed class words in 382

the correct condition compared to the other condi- 383

tions. This evidence strongly suggests that people’s 384

facilitation of reading image descriptions after hav- 385

ing a relevant visual preview can be explained by 386

Comprehensive Grounding Hypothesis and not 387

by Lexical Grounding hypothesis. 388

6.2 Error Prediction 389

To investigate if the errors that people make have 390

anything theoretically interesting to tell us, we first 391

look into a univariate analysis. Consider distribu- 392

tion of BLIP2 surprisal, which is a VLM, across 393

words in different conditions and correctness status 394

in figure (4). One can clearly see that people make 395

mistakes with contextually highly surprising words. 396

To prove this claim rigorously with a multivariate 397

analysis, we fit a logistic regression model, so the 398

goal is to predict log-likelihood of making an error. 399

From figure(5), which shows the coefficients and 400

confidence interval of important effects of this lo- 401

gistic regression model, it becomes evident that the 402

effect of surprisals is consistent across all models 403

and increasing surprisal leads to more likelihood 404

of error occurrence. Condition_ID doesn’t signif- 405

icantly affect the likelihood of error occurrence, 406

and people are less likely to make errors for Open 407

parts of speech in the correct condition compared 408

to other conditions. 409

6.3 Differentiating between unimodal and 410

multimodal surprisal fitted model across 411

differentconditions 412

To elucidate the difference between models fitted 413

with LLM & VLM surprisals and examine the ef- 414
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Figure 3: Coefficent Estimates and 95% CI of the fixed effects with theoretical interests for models fitted with open and closed
class respectively. As before, Condition_ID was Helmert encoded making comparisons between wrong vs no and correct vs
wrong and no mean
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Figure 4: X axis indicates the conditions and correctness status
of words(whether or not someone made a mistake in that
word) and Y axis indicates mean and standard error of BLIP2
surprisal for words in a certain condition and correctness status
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Figure 5: Estimate & 95% CI of difference in the predicted log
odds of the fixed effects with theoretical interests. Note that
the model had a Condition_ID*POS term, where the encoding
of these terms is similar to before, resulting in 2 main effects
of Condition_ID and 2 interaction terms.

fects of other word level predictors as the nature 415

of surprisal changes across conditions for VLMs, 416

we fit mixed effect models with data from each 417

condition type separately in figure(6). Note that

correct no wrong
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Figure 6: Coefficent Estimates and 95% CI of the fixed effects
with theoretical interests.

418
for models fitted with VLM surprisals, the effect of 419

surprisal in the correct condition has a bigger effect 420

size compared to text-based surprisals, although 421

not as big given that the effect of groundedness has 422

shrunk a lot. One can see that the effect of ground- 423

edness in the correct condition has a much smaller 424

effect size for VLMs compared to text-based LLMs. 425

So the difference in effect size alone isn’t enough 426

to explain the disappearance of those big fixed ef- 427

fects(groundedness in figure (6), Condition_ID and 428

POS main effect and interaction in figure(10) and 429

figure (3). Rather, most of the explanation is in 430

how the surprisals change when one goes from 431

text LLM surprisal to VLM surprisal. 432

For text-based LLMs, the surprisal effect size 433

in the correct condition is much smaller than in 434

the wrong condition while the surprisal effect size 435

seems to be similar in all conditions for VLMs. 436
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This also strongly indicates that visual language437

model surprisal captures people’s expectations re-438

garding upcoming language content consistently439

and more effectively across variations of visual440

contexts. All this evidence strongly indicates that441

Correct Image preview substantially affects com-442

prehenders’ expectations and that visual-language443

model surprisal captures a substantial part (though444

not all) of this effect.445

6.4 Can surprisal difference be explained as a446

function of groundedness?447
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Figure 7: Every word token in a certain sentence is indicated
with a dot here. X coordinate of that dot indicates the GPT2
surprisal of that word given the previous words in that sentence
and the Y coordinate of that dot indicates the KOSMOS2
surprisal of that word given the previous words and the image
that sentence is describing, i.e, the KOSMOS2 surprisal in the
correct condition. The color of the dot is determined by the
groundedness rating of the word, noted as a scale to the right.

To get more insights into the main scientific448

question here, consider the figure (7). Observe449

the huge swath of dots indicating highly grounded450

words under the blue line, the best-fitted linear rela-451

tionship between GPT2 and KOSMOS2 surprisal.452

This finding strongly suggests that a lot of highly453

grounded words exhibit notably lower surprisal val-454

ues in VLMs when contrasted with those derived455

solely from textual models. Intuitively speaking,456

ImageConditionedTextSurprisal - TextSurprisal for457

a word roughly indicates the reduction of surprisal458

for the presence of the image. Hence, we expect459

that the more negative ImageConditionedTextSur-460

prisal - TextSurprisal is for a word, the more the461

effect of the image is on that word, hence the more462

grounded that word should be in the image. In fig-463

ure (8) we predicted surprisal difference between464

two conditions from the same model using POS465

type, POS type and groundedness interaction, fre-466

quency and length. Additionally, we incorporated467

a random slope model, encompassing all fixed pre-468

dictors, with sentence type serving as the grouping 469

variable. The significance of the groundedness ef- 470

fect for each type of POS is indicated with asterisks 471

on the plot. 472

Note that when comparing correct condition to 473

no condition, we notice a consistent pattern of open 474

class words’ groundedness significantly contribut- 475

ing to the surprisal difference for all models, but we 476

don’t notice the same for closed class words, which 477

does make sense given the nature of closed class 478

words. These results indicate a strong correlation 479

between a word’s degree of grounding in an image 480

and the reduction of that word’s surprisal due to 481

the presence of that image. 482
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Figure 8: For each of the 4 VLMs we considered for this
project, the X axis indicates the groundedness value of a word
and the Y axis indicates the difference between the surprisals
of that word in correct condition and no condition (left panel)
and wrong condition and no condition(right panel). The best
linear fits for each type of POS(open/closed) are shown in the
plots. The significance of groundedness contribution for each
type of POS is also indicated in each plot.

However, we notice a significant contribution of 483

open class words’ groundedness on surprisal differ- 484

ence for BLIP2 and IDEFICS(but in the opposite 485

direction of what we saw in the other compari- 486

son). At first, it might seem counter-intuitive but it 487

just tells us that models like BLIP2 and IDEFICS 488

struggle to ignore the image context in the wrong 489

image condition, hence for the open class words in 490
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a sentence that would otherwise be grounded in the491

image in the ’Correct Image’ context, they have sig-492

nificantly high surprisal due to those words’ visual493

absence in the ’Wrong Image’ context, resulting in494

the significance we observe in figure (8).495

7 Perplexity and psychometric accuracy496

In recent years, there has been an effort to study497

the increase of log-likelihood for including LLM498

surprisal estimate from models as a function of499

perplexity(Oh and Schuler, 2023). To investigate500

what traits in a VLM give them better predictive501

power for human RT, we ran a similar analysis502

with different-sized open-sourced versions of all503

the models we used in the work - two versions of504

all the VLMs except for KOSMOS-2 and a new505

VLM that improved upon Llava, Llava-Next. The506

baseline regression model was considered with all507

baseline predictors such as main effects of helmert508

encoded Condition_ID and sum encoded POS and509

interaction between them, frequency, length and510

full regression models additionally contained each511

LM surprisal predictor. Both the baseline and full512

regression models had the same random effects513

structure; a random intercept and slope for Condi-514

tion_ID within each subject, sentence, word, and515

word token type was included. After fitting the516

regression models, we determined the increase in517

log-likelihood (∆LL) for each model by subtract-518

ing the log-likelihood of the baseline model from519

that of the full model. Finally, the perplexity of520

each model type was calculated on our dataset of521

all items. Figure (9) shows the resultant plots.
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Figure 9: Increase in regression model log-likelihood fitted
with data from all conditions for including each surprisal
estimate as a function of image-conditioned perplexity, the
different-sized versions of the same model are indicated with
different shades of the same color and connected with a line
for ease of interpretation.

522
Note that the increase of log-likelihood for523

adding surprisals from different-sized versions of524

the same model isn’t very different, however dif- 525

ferent models can have very different predictive 526

power regardless of the size, consider Llava and 527

Llava-Next for example, both versions considered 528

for these models have the same sizes(7B and 13B 529

parameter) but Llava-Next has a lot more predictive 530

power compared to Llava. This strongly indicates 531

that training diet and objective are more important 532

than the model size when it comes to psychomet- 533

ric predictive power. However, all the smaller-size 534

versions except for Llava-Next are better than the 535

bigger-size versions. Although this needs further 536

exploration, the observations indicate that for each 537

type of training objective and diet, there is possibly 538

an optimal number of parameters that make the 539

model most aligned with human expectations, and 540

beyond that alignment decreases. 541

8 Conclusion 542

In this work, we have developed a novel experi- 543

mental paradigm, Image-Conditioned Maze Read- 544

ing, to study human linguistic expectations during 545

real-time language comprehension when a visual 546

context is involved. Our results demonstrate a sub- 547

stantial facilitatory effect of correct image context 548

on language comprehension. This effect is evident 549

not only for concrete nouns, adjectives, or verbs 550

directly present in the image but also extends to 551

words not explicitly grounded in the visual con- 552

text. We extended psychometric benchmarking to 553

visual language models and found that VLM sur- 554

prisals capture most to all of the facilitator effect 555

that occurs due to the presence of a relevant vi- 556

sual context. We also found a strong correlation 557

between a word’s degree of grounding in the image 558

and the reduction of that word’s surprisal for the 559

presence of that image. We showed empirical sup- 560

port indicating that heightened contextual surprisal 561

significantly contributes to errors in maze tasks. Fi- 562

nally, our findings reveal compelling evidence that 563

the training objectives and diet of Vision-Language 564

Models (VLMs) significantly impact their psycho- 565

metric predictive power, more so than their size. 566

However, this observation warrants further investi- 567

gation. 568

9 Limitations 569

In this study, we used images and descriptions from 570

the validation split of the COCO dataset. At that 571

time, we were uncertain about the specifics of inves- 572

tigating Vision-Language Models (VLMs). Upon 573

8



further examination down the line, we discovered574

that Llava and BLIP-2 had COCO in their pre-575

training data, indicating that these models may have576

encountered some of our items before. In future577

work, we plan to use images and descriptions from578

a dataset that has not been used for pre-training any579

of the models.580

Another challenge we faced was the limited581

availability of different-sized versions of open-582

sourced VLMs for comprehensive analysis. There583

are typically only 2-3 versions available for each584

model. This limited our analysis compared to stud-585

ies like (Oh and Schuler, 2023), which utilized586

many versions of Pythia models (Biderman et al.,587

2023) for interpretability analysis and understand-588

ing the development of knowledge in autoregres-589

sive transformers. The scarcity of multiple versions590

of open-sourced VLMs hindered our ability to per-591

form a similarly comprehensive analysis.592
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