
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCALING LARGE LANGUAGE MODEL-BASED
MULTI-AGENT COLLABORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent breakthroughs in large language model-driven autonomous agents have
revealed that multi-agent collaboration often surpasses each individual through col-
lective reasoning. Inspired by the neural scaling law—increasing neurons enhances
performance, this study explores whether the continuous addition of collaborative
agents can yield similar benefits. Technically, we utilize directed acyclic graphs to
organize agents into a

:
multi-agent collaboration

::
network (MACNET), upon which

their interactive reasoning is topologically orchestrated for autonomous task solv-
ing. Extensive evaluations reveal that it effectively supports collaboration among
over a thousand agents, with irregular topologies outperforming regular ones. We
also identify a collaborative scaling law—the overall performance follows a logis-
tic growth pattern as agents scale, with collaborative emergence occurring earlier
than traditional neural emergence. We speculate this may be because scaling agents
catalyzes their multidimensional considerations during interactive reflection and
refinement, thereby producing more comprehensive solutions.

Figure 1: Multi-agent collaboration network (MACNET) uses directed acyclic graphs to arrange agents
for collaborative interactions, facilitating autonomous task-solving through collective reasoning.

1 INTRODUCTION

In the rapidly advancing field of artificial intelligence, large language models (LLMs) have driven
transformative shifts across numerous domains due to their remarkable linguistic capacity to seam-
lessly integrate extensive world knowledge (Vaswani et al., 2017; Brown et al., 2020). Central to this
breakthrough is the neural scaling law, where well-trained neural networks often exhibit power-law
scaling relations primarily with the number of neurons, alongside factors such as dataset size and
training time (Kaplan et al., 2020; Muennighoff et al., 2024). Despite this, LLMs have inherent
limitations in their enclosed reasoning, particularly when addressing complex situations that extend
beyond textual boundaries (Schick et al., 2023). To this end, during the inference phase, pioneering
studies transform foundational LLMs into versatile autonomous agents (Richards, 2023; Shen et al.,
2023) by encapsulating external capabilities like context-aware memory (Park et al., 2023), tool
use (Qin et al., 2024a), and procedural planning (Zhao et al., 2023). In this context, multi-agent
collaboration, within an interactive environment, prompts agents to engage in iterative reflection and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

refinement, explicitly facilitating a process of "slow thinking" (Daniel, 2017; OpenAI, 2024). This
paradigm effectively unites the distinct expertise of diverse agents (Qian et al., 2024c), ultimately
leading to solutions1 derived from their dialogues.

Although numerous studies have confirmed that task-oriented multi-agent collaboration, facilitated
by interactive behaviors, often surpasses standalone intelligence (Chen et al., 2024d;a), the potential
for continuously increasing agents remains largely overlooked—with most research involving fewer
than ten agents and only a limited number extending to several dozen (Li et al., 2023a; Park et al.,
2023; Zhang et al., 2024a). Inspired by the neural scaling law, a thought-provoking question
arises: how does the continuous addition of collaborative agents impact performance? Exploring
the collaborative scaling law is essential for linking performance trends with inference resources,
revealing underlying phenomena in agent networking, and promoting the development of scalable
and predictable LLM systems. However, technically, effective collaboration should not depend
on simple majority voting (Brown et al., 2024; Chen et al., 2024b); instead, it should incorporate
strategic mechanisms for scalable networking, cooperative interaction, and progressive decision-
making (Hopfield, 1982; Almaatouq et al., 2021; Du et al., 2024a). Toward this end, as depicted in
Figure 1, we organize multiple agents into a

:
multi-agent

:
collaboration

::
network (MACNET), upon

which their interactive reasoning is topologically orchestrated for autonomous task solving.

• For network construction, agents’ topology is constructed as a directed acyclic graph, with each
edge managed by a supervisory instructor issuing commands, and each node by a compliant execu-
tor providing tailored solutions. This establishes a functional bipartition of labor among agents,
promoting role specialization while inherently preventing backflow in information propagation.

• For interactive reasoning, agents interact in a topological order, where each round involves two
adjacent agents refining a previous solution, and only the refined solution, rather than the entire
dialogue, is propagated to the next rounds. This prevents global broadcasting and suppresses
context explosion, thereby enhancing collaboration scalability for much larger networks.

We performed extensive evaluations across different downstream scenarios, employing three types of
representative topologies—chain, tree, and graph—further divided into six representative variants.
The results show that MACNET surpasses all baselines on average and supports effective collaboration
among over a thousand agents. Counterintuitively, collaborating within irregular topologies unexpect-
edly outperforms that within regular ones. Notably, we reveal a collaborative scaling law, indicating
that the overall performance exhibits a logistic growth pattern as the process of scaling agents, with
collaborative emergence occurring earlier than previous instances of neural emergence. We speculate
this may be because scaling agents catalyzes their multidimensional considerations during interactive
reflection and refinement, thereby producing more comprehensive solutions. Longer term, we aim for
this research to extrapolate the traditional scaling from training to inference, circumventing the need
for resource-intensive retraining through inference-time procedural thinking.

2 MULTI-AGENT COLLABORATION NETWORK

To create a scalable environment for effective collaboration, as depicted in Figure 1, we organize
multiple agents into a

::
multi-

:
agent

:
collaboration

:::
network (MACNET), upon which their interactive

reasoning is topologically orchestrated for autonomous task solving.

2.1 NETWORK CONSTRUCTION

Although training-time neuron collaboration has been well-established with Transformer architec-
tures (Vaswani et al., 2017), the suitable architectures for inference-time agent collaboration remain
unclear and lack consensus. Toward this end, we draw on the concept of graphs—a data structure
that describes entities and their interrelations—and extend from previous efforts to propose a more
general topology as a directed acyclic graph (DAG) (Nilsson et al., 2020):

G = (V, E) V = {vi|i ∈ I} E = {⟨vi, vj⟩|i, j ∈ I ∧ i ̸= j} (1)
where V denotes the set of nodes indexed by the index set I , and E denotes the set of edges, with
each edge directed from one node to another and no cycles exist. A graph will orchestrate agent

1Solutions can vary from multiple-choice answers to repository-level code or coherent narratives, among
many other possibilities.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

interactions, akin to social networks where information propagates through directed edges. Intuitively,
the acyclic nature prevents information backflow, eliminating the need for additional designs like
task-specific cycle-breaking, thereby enhancing generalizability and adaptability across contexts.

GRAPH

TREECHAIN

Star Tree

Mesh Layer Random

Chain

Figure 2: Representative topologies.

NODENODE EDGE

SOLUTIONSOLUTION

O
O
O
O
O

X
X
X

INSTRUCTION

“Add GUI”

EXECUTOR EXECUTOR
INSTRUCTOR

Figure 3: Assign functionally bipartite agents
on nodes and edges, respectively.

Given the impracticality of enumerating all possible topologies, we focus on three prevalent
types—chain, tree, and graph—further divided into six representative sub-topologies, as depicted in
Figure 2. Chain topologies, resembling the waterfall model (Petersen et al., 2009), linearly structuring
interactions along agents (Wei et al., 2022b; Hong et al., 2024). Tree topologies enable agents to
branch out, interacting in independent directions (Yao et al., 2023; Zhuang et al., 2024); further
categorized into "wider" star-shaped and "deeper" tree-shaped topologies. Graph topologies support
arbitrary interaction dependencies, with nodes having multiple children and parents, forming either
divergent or convergent interactions (Besta et al., 2024a; Chen et al., 2024d; Zhuge et al., 2024; Liu
et al., 2023); further classified into fully-connected mesh topologies, MLP-shaped layered topologies,
and irregular random topologies. These representative topologies are extensively studied in complex
network (Dodds et al., 2003; Newman, 2001; Ma et al., 2024) and procedural reasoning (Zhang
et al., 2024b; Yin et al., 2023; Besta et al., 2024b), ensuring a comprehensive coverage of the most
widespread and practical topologies in multi-agent networking.

Since a functional bipartition—consisting of supervisory instructors who issue directional instructions
and compliant executors who provide tailored solutions—can effectively establish division of labor,
activate functional behaviors, and facilitate progressive task-solving (Li et al., 2023a), as depicted in
Figure 3, we strategically assign an instructor to each edge and an executor to each node:

ai = ρ(vi), ∀vi ∈ V aij = ρ(⟨vi, vj⟩), ∀⟨vi, vj⟩ ∈ E (2)

where ρ(x) represents the agentization operation on an element x, achieved by equipping a foundation
model with context-aware memory, external tools, and professional roles; ai and aij denote an
executor assigned to node vi and an instructor assigned to edge vij , respectively.

2.2 INTERACTIVE REASONING

In procedural task-solving, interactive reasoning among agents within a static network requires
strategical traversal to establish an orderly interaction criterion (Liu et al., 2024b; Chen et al., 2024e).
In a directed acyclic setting, our graph traversal strategy adheres to the principles of topological
ordering (Kahn, 1962), which ensures that each node is visited only after all its dependencies have
been traversed. Formally, for a network G, its topological order is a linear arrangement of agents ai

and aij such that for every directed edge ⟨vi, vj⟩ ∈ E , the ordering satisfies:

∀⟨vi, vj⟩ ∈ E , I(ai) < I(aij) < I(aj) (3)

where I(x) denotes the index of agent x in a topological sequence. This arrangement ensures that
each node-occupied agent ai precedes its corresponding edge-occupied agent aij , and aij precedes
aj , thereby ensuring orderly information propogation along the network.

After establishing the global order, as illustrated in Figure 4, we enable each pair of edge-connected
adjacent agents to interact for solution refinement, which results in a total assignment of |V|+ |E|
agents and require at least 2× |E| interaction rounds. Specifically, within each edge, the interactions

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Interaction

Topological
Sequence

Information
Propagation

Figure 4: Orchestrating the agents’ reasoning process involves a series of dual-agent interactions.
The topological order serves as the control flow, while the original connectivity governs the data flow.

between instructors and executors follows a dual-agent multi-turn pattern:

τ(ai, aij ,aj) =
(
τ(ai, aij), τ(aij ,aj)

)
τ(ai, aij) = (ai →aij , aij ; ai)⟲ τ(aij ,aj) = (aij → aj , aj ; aij)⟲

(4)

where τ(·) represents the interaction between agents, → signifies an act of requesting, ; indicates
a corresponding reply—within which the instructor provides an instruction and the executor offers
a solution, and ⟲ denotes an iterative process. That is, ai requests feedback, aij offers reflected
suggestions and requests further refinement, and aj provides a refined solution. Thus, the agents as-
sociated with a single edge can engage in iterative reflection and refinement, effectively implementing
an refinement of a previous solution (Madaan et al., 2023; Renze & Guven, 2024).2

2.3 MEMORY CONTROL

Note that unrestrained information exchange among agents inevitably leads to context explosion (Liu
et al., 2024b; Xu et al., 2024), ultimately hindering scalability by limiting support for additional
entities. To address this, we adopt both short- and long-term memory to manage the context visibility
for each agent (Sumers et al., 2023). Short-term memory captures the working memory within
each interaction, ensuring context-aware decision-making (Li et al., 2023a). Long-term memory
maintains context continuity by retaining only the final solution derived from current dialogue, rather
than the entire conversational history, ensuring that non-solution contexts (e.g., the detailed analysis
process preceding a solution) remain inaccessible3 to subsequent agents (Qian et al., 2024c). This
mechanism ensures that only the solution propagates through the network, which explicitly minimizes
context explosion risk while maintaining continuity. Solutions propagate by branching at divergent
nodes, or merging at convergent nodes requiring effective aggregation; technically, before refinement,
convergent agents integrate the strengths of incoming solutions through hierarchical aggregation (Du
et al., 2024b) to yield a "non-linearly" strength-aggregated solution.

Theoretically, in a mesh structure characterized by the highest interaction density, the total token
consumption for the sink4 agent who experiences maximum context pressure, with and without this
mechanism, is summarized as follows (refer to the Appendix A for detailed derivations):

O(n)w/o = t+ p+ s+ (2m− 1)(i+ s)(n(n− 1)/2 + 2(n− 2))
n≫1
≈ Cn2 ∝ n2

O(n)w/ = t+ p+ s+m(i+ s)((n− 1) + 2(n− 2))
n≫1
≈ C̄n ∝ n

where C ≡ (2m− 1)(i+ s)/2 C̄ ≡ 3m(i+ s)

(5)

where n is the network scale (i.e., |V|), t the task length, p the profile length, i the average instruction
length, s the average solution length, and m the maximum interaction rounds between adjacent agents.
This token complexity analysis implies that, without memory control, context length grows with
n2, causing squared increases in time and cost as the network scales.5 Conversely, our mechanism

2Note that although the interaction order is unfolded as a sequence for visualization purposes only, certain
sub-topologies (e.g., star) inherently support parallel processing.

3Inaccessibility doesn’t mean abandonment; when agents incorporate previous contexts into a solution, these
contexts are implicitly embedded and carried forward with the solution.

4The "sink agent" refers to the agent assigned to the sink node. In a multi-sink structure, a final sink node is
automatically appended to form a structure with only one sink.

5Empirical evidence shows that in mesh topologies with n ≥ 7 within a 16k window, the absence of memory
control almost invariably leads to context explosion issues, causing the entire reasoning process to fail.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

decouples context length from quadratic to linear growth, effectively suppressing context explosion
and enabling better scalability for larger networks.

3 EVALUATION

Baselines We select a diverse set of representative methods to facilitate a comprehensive multidi-
mensional comparison:

• COT (Wei et al., 2022b) is a technically general and empirically powerful approach that endows
LLMs with the ability to generate a coherent series of intermediate reasoning steps, naturally
leading to the final solution through process-aware thoughtful thinking.

• AUTOGPT (Richards, 2023) is a versatile agent that employs multi-step planning and tool-
augmented reasoning to decompose complex tasks into chained subtasks and leverages external
tools within an environment-feedback cycle to progressively develop effective solutions.

• GPTSWARM (Zhuge et al., 2024) formalizes a swarm of autonomous agents as computational
graphs, with nodes as manually-customized functions and edges facilitating information flow,
adaptively optimizing node prompts and modifying graph connectivity during collective reasoning.

• AGENTVERSE (Chen et al., 2024d) dynamically assembles and coordinates a team of expert agents
in chained or hierarchical structures, employing multi-agent linguistic interaction to autonomously
reflect and refine solutions while displaying emergent social behaviors.

Datasets and Metrics We adopt publicly available and logically challenging benchmarks to evaluate
performance across heterogeneous downstream scenarios.

• MMLU (Hendrycks et al., 2021) provides a comprehensive set of logical reasoning assessments
across diverse subjects and difficulties, utilizing multiple-option questions to measure general
world knowledge and logical inference capabilities. We assess the quality of generated solutions
via accuracy, which reflects the correctness of responses to multiple-choice questions.

• HumanEval (Chen et al., 2021), a widely recognized benchmark for function-level code generation,
designed for measuring basic programming skills. We assess via pass@k, which reflects function
correctness across multiple standard test cases.

• SRDD (Qian et al., 2024c) integrates complex textual software requirements from major real-world
application platforms, tailored for repository-level software development, involving requirement
comprehension, system design, code generation and testing. We assess using the official compre-
hensive metric encompassing completeness, executability, and consistency.

• CommonGen-Hard (Madaan et al., 2023) tests the ability to generate coherent sentences with
discrete concepts, assessing contextual understanding, commonsense reasoning, and creative
writing skills. We assess using a comprehensive metric that integrates crucial factors including
grammar, fluency, context relevance, and logic consistency (Li et al., 2018).

Implementation Details We construct non-deterministic topologies such as trees and graphs
utilizing fundamental structures, including binary trees, layered structures balanced in both width and
depth, and random structures crafted by removing edges from a mesh while maintaining connectivity.
By default, we employ a topology consisting of approximately four nodes, aligning with multi-
agent baselines. In interactive reasoning, GPT-4 is utilized to generate diverse role-specific profiles
and outline the available tools for agentization, which are then randomly sampled and assigned
to networked agents. GPT-3.5 is employed for interactive reasoning due to its optimal balance of
efficacy and efficiency, with each iterative interaction limited to three exchange rounds. To ensure
fairness, all baselines are configured with identical settings.

3.1 DOES OUR METHOD LEAD TO IMPROVED PERFORMANCE?

We employ the simplest topology—chain—as the default setting for comparative analysis. As
demonstrated in Table 1, the chain-structured method consistently surpasses all baselines across most
metrics, showing a significant margin of improvement. The primary advantage of MACNET-CHAIN,
over a single agent who provides solutions directly, lies in its facilitation of a procedural thinking in

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Method Paradigm MMLU HumanEval SRDD CommonGen Quality

COT 0.3544† 0.6098† 0.7222† 0.6165† 0.5757†

AUTOGPT 0.4485† 0.4809† 0.7353† 0.5972 0.5655†

GPTSWARM 0.2368† 0.4969† 0.7096† 0.6222† 0.5163†

AGENTVERSE 0.2977† 0.7256† 0.7587† 0.5399† 0.5805

MACNET-CHAIN 0.6632 0.3720 0.8056 0.5903 0.6078
MACNET-STAR 0.4456† 0.5549† 0.7679† 0.7382† 0.6267
MACNET-TREE 0.3421† 0.4878† 0.8044 0.7718† 0.6015
MACNET-MESH 0.6825 0.5122† 0.7792† 0.5525† 0.6316†

MACNET-LAYER 0.2780† 0.4939† 0.7623† 0.7176† 0.5629†

MACNET-RANDOM 0.6877 0.5244† 0.8054 0.5912 0.6522†

Table 1: The overall performance of LLM-driven methods across various datasets, including both
single-agent () and multi-agent () paradigms. Quality represents the average performance over
all tasks. For each dataset, the highest scores are highlighted in bold, while the second-highest scores
are underlined. A dagger (†) denotes statistically significant differences (p ≤ 0.05) between a method
and our chain-structured setting.

which solutions are continually reflected and refined. This process effectively mitigates previous inac-
curacies or unexpected hallucinations, aligning with previous findings (Cohen et al., 2023; Du et al.,
2024a; Qian et al., 2024b). Moreover, we observe that COT exhibits strong performance on certain
datasets, which is largely because the underlying knowledge of widely-researched benchmarks is
already embedded in foundational models, giving single agents a notable capability in these relatively
"simple" tasks. While GPTSWARM self-organizes agents through dynamic optimization of nodes
and edges, it unfortunately necessitates extensive task-specific customization for all nodes and edges,
complicating usage and thus hindering seamless generalization to heterogeneous downstream tasks.
Given the growing need for highly performant and automatic real-world systems, it is impractical to
expect that all preparatory knowledge can be fully pre-encoded in foundation models, nor can specific
adaptations be pre-made for all unforeseen complex tasks. Fortunately, MACNET bridges this gap by
automatically generating various networks through simple hyperparameters (e.g., topology type and
scale), enabling agents to engage in cooperative interactions without needing specific adjustments,
which represents a promising pathway to achieving both autonomy and generalizability. Furthermore,
we simulate a regression to graph-of-thought reasoning (Besta et al., 2024a) with a simplified agent
by ablating agents’ profiles, which led to an average performance drop of 3.67% across all topologies.
This result underscores the effectiveness of collective intelligence over singular-aspect reasoning, as
the latter represents a variant of dimensionality reduction within multi-agent environments, inevitably
blocking its potential to extrapolate potential opportunities.

3.2 HOW DO DIFFERENT TOPOLOGIES PERFORM AGAINST EACH OTHER?

To gain a deeper understanding of the impact on organizational structures within multi-agent collabo-
ration, we examine MACNET’s topologies across six representative topologies. The analysis focuses
on three key perspectives: density, shape, and direction.

Density Perspective Table 1 illustrates that different types of topologies vary significantly in
effectiveness for specific tasks; no single topology consistently excels across all tasks. For instance, a
chain topology is more suitable for software development, while a tree topology is ideal for creative
writing. This phenomenon may arise from the inherent suitability of software engineering to a
linear process, which is accomplished through sequential steps such as analysis, coding, review, and
testing; in contrast, tasks requiring high creativity necessitate more divergent structures to foster
agent interactions from various aspects. Additionally, higher interaction density, associated with
edge density (see Figure 5), correlates with improved average performance across the three primary
topological types. Specifically, the densely connected mesh topology outperforms the moderately
dense tree topology, which in turn outperforms the sparsely connected chain topology. This can be

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

De
ns

ity

0.10

0.30

0.50

0.10

0.30

0.50

0.20

Star

0.20

Tree

0.20

Chain

0.30

Layer

0.50

Mesh

0.35

Random

0.02 0.020.02
0.16

0.50

0.26

| |=50

| |=10

Figure 5: Density of different topologies at different
scales.

Q
ua

lit
y

Star
0.57

0.58

0.59

0.60

0.61

0.62

0.63

Tree

0.6267

0.5902

0.6015

0.5821

Divergent

Convergent

Figure 6: Comparison between topologies
and their reversed counterparts.

attributed to the fact that increased density natually prolongs the reasoning process among collective
agents, potentially enhancing opportunities for optimizing solutions from various aspects.

Shape Perspective Despite the intuitive appeal of densest interactions (i.e., mesh), they do not
always yield optimal performance. In contrast, irregular topologies often demonstrate statistically
significant advantages. We hypothesize that this phenomenon is because overly dense interactions
can overwhelm agents with information overload, impeding effective reflection and refinement.
Conversely, network randomization frequently induces small-world properties (Watts & Strogatz,
1998), characterized by a shorter average path length6 or a higher clustering coefficient7. These
random edge connections, akin to residual connections, can link "unacquainted" agents via direct
shortcuts, transforming them into "acquaintances" and implicitly reducing the average path length,
which naturally decreases the likelihood of long-distance solution invisibility. This phenomenon,
seemingly counterintuitive when compared to well-established regular organizational structures in the
real world, suggests that collaboration patterns in an agent’s world need not precisely mirror those in
human society. Additionally, random topologies consume approximately 51.92% less time than mesh
topologies, striking an optimal balance between reduced density and enhanced efficiency, thus serving
as a more practical choice. It has also been noticed that, with the same density, star-shaped topologies
that are "wider" tend to perform better than "deeper" tree-shaped ones. This is primarily due to
the memory control mechanism; while it efficiently manages the spread of overly lengthy contexts
across the network, it may cause deeper topologies to lose track of distant agents, occasionally
resulting in solution version rollbacks (Qian et al., 2024a). This points to an empirical search strategy
that manages network scale and clustering coefficients, whether through automated searching or
manual design, to find an optimal balance between effectiveness and efficiency. Delving deeper,
an in-depth inductive bias analysis reveals that in closed-domain scenarios (e.g., logical choices), a
chain structure significantly aids in facilitating step-by-step reasoning. Conversely, a proliferation
of parallel branches (e.g., stars) can lead to convoluted brainstorming, which may not always be
advantageous. In open-domain scenarios, topologies characterized by more convergent nodes are
shown to revise solutions more frequently and produce longer solutions8. This occurs because
more convergent nodes, with increased input diversity, increase the likelihood of refining solutions,
benefiting length-sensitive metrics as longer solutions are more likely to meet rich requirements.
Ultimately, no task is confined to a particular topology; the optimal configuration should be chosen
based on the openness of scenarios, available computing resources, and associated reasoning costs.

Direction Perspective Beyond density and shape perspectives, the inherent asymmetry in certain
topologies—where reversing the edges results in a topologically distinct configuration—has interested
us in exploring the effects of reversed topologies. As shown in Figure 6, merely reversing the
directions of specific topologies can lead to significant performance degradation. Typically, divergent
topologies, characterized by having more child nodes than parent nodes, substantially outperform
their convergent counterparts. Intuitively, solution propagation diverges smoothly, enabling each

6Average path length (Albert & Barabasi, 2002) is the average number of steps along the shortest paths for
all possible pairs of network nodes, which is a measure of the efficiency of information transport on a network.

7The clustering coefficient measures the connectivity density among a node’s neighbors (Strogatz, 2001).
8The layer topologies exhibit a 92.16% modification probability and an average solution length of 586.57,

compared to 68.48% and 308.26 for chain topologies

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

agent to discuss solutions from varied aspects. In contrast, aggregating multiple solutions at a
convergent node is more challenging, highlighting the complexity of integrating diverse aspects into
a cohesive solution. Therefore, to minimize potential degradation during solution aggregation, it is
recommended to employ topologies that maximize divergence while minimizing convergence.

3.3 COULD A COLLABORATIVE SCALING LAW BE OBSERVED?

Tree

Scale

Qu
ali
ty

Star

Scale

Qu
ali
ty

Random

Scale

Qu
ali
ty

Mesh

Scale

Qu
ali
ty

Layer

Scale

Qu
ali
ty

Chain

Qu
ali
ty

Scale

2625242322212026252423222120 26252423222120

262524232221202625242322212026252423222120

50

80

60

70

50

80

60

70

50

80

60

70

50

80

60

70

50

80

60

70

50

80

60

70

Figure 7: Scaling performance of multi-agent collaboration under different topologies. Quality
represents the average performance over all tasks.

Trend Perspective Recall the neural scaling law, which posits that increasing neurons leads to an
continual performance improvement (Kaplan et al., 2020). To investigate the collaborative scaling
law, which excavates the relationship between agent scale and performance, we initiated an attempt
by exponentially increasing the number of nodes (|V|) from 20 (regressing to a single-agent variant)
to 26 (equating to over a thousand agents in a mesh network). As depicted in Figure 7, scaling
our networks initially grows slowly in the quality of solutions generated by various multi-agent
systems, then leads to a rapid improvement before reaching a saturation point. This pattern resembles
a sigmoid-variant function:

f(|V|) = γ

1 + e−β(log |V|−α)
+ δ (6)

where {α, β, γ, δ} are real numbers specific to a particular topology. Roughly speaking, a node
magnitude of 24 appears to be a reasonable choice. However, considering the efficiency of sparse
topologies and the superior performance of dense ones, we advocate balancing shape and scale
through multidimensional trade-offs when applying this trend to various downstream applications.
This finding suggests that many existing agent systems may be operating below their full potential,
which underscores a promising path for enhancing performance by increasing the number of agents,
provided they collaborate effectively, rather than solely focusing on scaling foundational models.9

Besides, the validation of baseline scaling reveals that equalizing the number of LLM calls—whether
through majority voting in closed-domain tasks (Chen et al., 2024b) or best-of-N in open-domain
tasks (Sessa et al., 2024)—consistently highlights a lack of effective scalability across all baselines.
Majority voting enhances performance by merely 0.9%, even when augmented with COT or AUTO-
GPT, plateauing at approximately eight agents. AGENTVERSE implicitly reduces to a star topology
and frequently encounters context explosion issues when scaling beyond thirty agents, thus hindering
scalability. The energy-intensive setup of GPTSWARM necessitates manual, task-specific structuring
and prompting, which restricts both multitasking capabilities and overall scalability.

Timing Perspective The neural scaling law requires models with at least a billion parameters and
over 1022 training FLOPs to show emergent trends (Schaeffer et al., 2024). In contrast, collaborative
emergence in MACNET manifests at much smaller scales, with most topologies reaching performance

9Looking further, this fitting only reflects a general pattern from the perspective of network scales; future
research should aim for a more precise characterization by incorporating additional factors like profiles, tools
and communication protocols, or social routing.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

saturation with approximately a hundred agents. The fundamental reason is that neuron coordination
(during training) relies on numeric matrix operations, requiring all neurons to precisely and simulta-
neously learn from scratch to assimilate extensive world knowledge. Conversely, individual agents
(during inference) already possess certain knowledge from the foundational models, and their coordi-
nation through interdependent interactions utilizes existing reasoning skills to disseminate knowledge
from diverse aspects; the most critical aspects for solution refinement in agents’ interactions typically
do not require such a large scale to be thoroughly reflected and refined. Thus, alongside neuron
collaboration, agent collaboration may serve as a "shortcut" to enhance intelligence levels, especially
when large-scale retraining resources such as data and hardware are constrained.

3.4 WHAT FACTORS MIGHT CONTRIBUTE TO COLLABORATIVE EMERGENCE?

| |

11
17

41
54

1983
2359

2904

314
10
20
30
40
50
60

500
1000
1500
2000
2500
3000

Interacted Aspects
Tokens of Generated Solutions

20 23 24 25 26

Incomplete
Implementation

Logical Errors

Non-erroneous
Topics

Run
tim

e E
rro

rs

Demand Errors

Syntax Errors

No Further
Suggestions

ImportError

Needs to Be
Reviewed

Faulty
Exception
Handling

Missing
Comments

Class
Not Used

Incorrect
Logic

Missing
Files

Ta
bE

rro
r

Miss
ing

Do
cs

trin
gs

Miss
ing

Ini
tia

liza
tio

n

Plac
eholder

Only

FileNotFoundError

Security Vulnerabilitie
s

Lack of Documentation

Missing Code Segments

Case Handling Issues

Infinite Loop

UI Issues

Poor Naming

Code Duplication

Methods Not Called

Not-Good Visualization

Algorithm Unoptimized

Loop Logic Flaws

Lack of Unit Tests

Logical Errors

Non-erroneous
Topics

Runtime Errors

Demand Errors
Syntax Errors

Incomplete
Implementation

Needs to Be
Reviewed

No Further
Suggestions

Faulty
Exception
Handling

ImportError
MissingComments

Cl
as

s N
ot

Us

ed
Inc

orr
ec

t L
og

ic

Miss
ing Initia

liza
tion

Placeholder O
nly

Missing Docstrings

Case Handling Issues

FileNotFoundError

Missing Code Segments

Infinite Loop

Security Vulnerabilities

UI Issues

Code Duplication

Lack of Documentation
Algorithm Unoptimized

Poor Naming
ValueError

Methods Not Called
Class Defined Twice

Not-Good Visualization
Missing Files

Loop Logic Flaws

Off-by-one Error
Scalability Issues

Performance Bottlenecks
Faulty Arguments

KeyError
NameError

TabError

ValueError

Off-by-one Error

NameError
Class Defined Twice

IndentationError
Performance Bottlenecks

Faulty Arguments
Ineffective Logging

KeyError
TypeError

Logical Errors

Non-erroneous
Topics

Runtime Errors
Demand Errors

Syntax Errors

Incomplete
Implementation

Needs to Be
Reviewed

Missing Comments Class Not
Used

Plac
eh

old
er

Only

Faulty
Exception

Handling

ImportError

Case Handling Issues

Missing Initialization

No Further Suggestions

Missing Docstrings

Methods Not Called

Incorrect Logic
Missing Code Segments

Security Vulnerabilities
Missing Files

Unoptimized Algorithms

Logical Errors

Non-erroneous
Topics

Runtime Errors

Incomplete
Implementation

Needs to Be
Reviewed

Missing
Comments Class Not

Used

Faulty
Exce

ptio
n

Handling

No Further

Suggestions

Placeholder Only

Missing Initialization

Methods Not Called

Case Handling Issues

NameError

Syntax Errors
Runtime Errors

Logical Errors
Demand Errors

Non-erroneous Aspects
First-Level Aspects
Second-Level Aspects

ZeroDivisionError
Poor Test Coverage

Resource Exhaustion
PermissionError

AttributeError
SyntaxError

Hard-Coded Values
Network Latency Issues

Not Configure Layout
Deprecated Code Usage Scalability Issues IndexError Unexpected Token Class Not Used Dependency Conflicts TimeoutError MemoryError

Lack of Unit Tests Concurrency Issues
PermissionError

ZeroDivisionError
IndexError

TypeError
IndentationError

Figure 8: The number and distribution of aspects in agent interactions, along with the length of
solutions. The pie chart features primary aspects in the inner circle and secondary aspects in the outer
circle, with a long-tail layout to visualize tail aspects. Zoom in for more detailed information.

To delve deeper into the underlying mechanisms, we selected the moderately-dense layer typology
employed in software development, which serves as a representative case, with similar phenomena
consistently occurring in other topologies and scenarios. Specifically, we classified the aspects
discussed in agents’ interactions into five main categories (Oh & Oh, 2022; Kohn, 2019): four levels
of errors (syntax, runtime, logic, and unmet requirements) and a non-error category; each category
contains multiple subcategories. Figure 8 displays the total number of interaction aspects, along
with their detailed distribution. Within smaller topologies (20 ≤ |V| ≤ 23), the limited interaction
density confines aspects to approximately a dozen secondary aspects. However, as the network
expands (24 ≤ |V| ≤ 26), the interaction density increases quadratically, resulting in a sudden
increase to dozens of aspects, followed by a more gradual rise. This progression closely parallels
the trend observed in emergent capabilities, which may partially attribute the emergence to the
sharp rise in detailed interacted aspects among agents. This phenomenon occurs because the token
distribution from underlying models typically follows a long-tail pattern, necessitating larger-scale
sampling to likely capture these tail tokens. Consequently, this encourages the emergence of more
infrequent "tail aspects", allowing the collaborative process to extend beyond the most common
aspects. Theoretically, the probability of a long-tail token t appearing at least once in n samples is:

pn(t) = 1− (1− p(t))
n ∝ 1− (1− 1/r(t))

|V|2
lim

|V|→∞
pn(t) = lim

n→∞
pn(t) = 1 (7)

where p(t) ∝ 1/r(t) represents a standard Zipf’s law characterizing a long-tailed distribution (New-
man, 2005); the sampling size n is proportional to the interaction density, i.e., n ∝ |V|2. It can be
inferred that increasing the network size significantly enhances the probability of tail token occur-
rences, gradually approaching an asymptote. This probability becomes an inevitable event once
the sample size is sufficiently large. Statistically, when an instructor suggests a particular aspect,
there is a 93.10% statistical likelihood that an executor will implement the recommended refinement
rather than disregard it. The scaling up enables instructors to pinpoint finer issues within solutions,
guiding executors to initiate corresponding refinements. Consequently, each round of dialogue in the
collaborative process refines solutions from different aspects, naturally elevating the probability of
producing more nuanced solutions (Liang et al., 2024; Du et al., 2024a; Cohen et al., 2023).

In response to multidimensional considerations, scaling agents accordingly prolongs the overall
length of solutions. For instance, the token length increased by 7.51 times when scaling from 20 to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

24. This characteristic, over small-scale networks, facilitates the integration of detailed requirements,
performance optimization, and other advanced factors, potentially encompassing abilities that shorter
solutions cannot. This is mainly due to the graph’s naturally divergent and convergent topologies,
which enable solutions to porpagate for strength-aggregated refinement. Therefore, unlike majority
voting, this paradigm fosters interdependent interaction and length-extended regeneration among
diversified solutions, thereby producing more comprehensive solutions (Appendix E for case study).

4 RELATED WORK

Large Language Models Trained on vast datasets through next token prediction (Vaswani et al.,
2017) and capable of manipulating billions of parameters (Muennighoff et al., 2024), LLMs have
become pivotal in natural language processing due to their seamless integration of extensive knowl-
edge (Brown et al., 2020; Bubeck et al., 2023; Radford et al., 2019; Touvron et al., 2023; Wei et al.,
2022a; Shanahan et al., 2023; Chen et al., 2021; Brants et al., 2007; Chen et al., 2021; Ouyang et al.,
2022; Yang et al., 2024; Qin et al., 2024b). Central to this breakthrough is the neural scaling law,
which posits that loss descends as a power law with model size, dataset size, and the amount of
compute used for training (Kaplan et al., 2020; Smith et al., 2022; Ruan et al., 2024). The principle
underscores that scaling up language models can lead to emergent abilities—where performance
experiences a sudden leap as the model scales (Wei et al., 2022a; Schaeffer et al., 2024).

Autonomous Agents Despite these advancements, LLMs possess inherent limitations in enclosed
reasoning, driving further research to integrate advanced capabilities such as context-aware mem-
ory (Park et al., 2023; Hua et al., 2023), tool use (Schick et al., 2023; Qin et al., 2024a), procedural
planning (Wang et al., 2023a; Zelikman et al., 2024), and role playing (Chan et al., 2024; Wang
et al., 2024c; Liu et al., 2024a), thereby transforming fundamental LLMs into versatile autonomous
agents (Richards, 2023; Shinn et al., 2024; Zhao et al., 2024; Lin et al., 2023; Mei et al., 2024;
Chu et al., 2024). Along this line, multi-agent collaboration has proven beneficial in uniting the
expertise of diverse agents for autonomous task-solving (Khan et al., 2024; Liang et al., 2024; Qian
et al., 2024c; Wang et al., 2024b;a; Zhou et al., 2024; Talebirad & Nadiri, 2023; Chen et al., 2024c;
Li et al., 2023b), which has widely propelled progress across various domains such as software
development (Hong et al., 2024; Qian et al., 2024a), game playing (Vinyals et al., 2019), personalized
recommendation (Wang et al., 2023b; Zhang et al., 2023), medical treatment (Tang et al., 2023; Li
et al., 2024a), financial marketing (Gao et al., 2024; Li et al., 2024c), educational teaching (Zhang
et al., 2024c; Yu et al., 2024), scientific research (Zeng et al., 2024; Baek et al., 2024; Ghafarollahi
& Buehler, 2024) and embodied control (Guo et al., 2024; Chen et al., 2024f; Mandi et al., 2023).
Technically, in contrast to straightforward majority voting where individuals act independently (Chen
et al., 2024b), collective emergence (Woolley et al., 2010; Hopfield, 1982; Watts & Strogatz, 1998)
posits that effective collaboration should evolve into an integrated system that promotes interdepen-
dent interactions and thoughtful decision-making (Li et al., 2024b; Piatti et al., 2024). As such, recent
studies differentiate agents into distinct expertise and encourage task-oriented interactions, forming
a chained workflow to sequentially reach final solutions (Qian et al., 2024c). Subsequent research
seeks to organize expert agents in a tree structure for hierarchical information propagation (Chen
et al., 2024d) or in a graph with predefined node and edge functions (Zhuge et al., 2024).

5 CONCLUSION

This study explores the impact of scaling multi-agent collaboration by introducing MACNET, a
scalable framework that utilizes graphs to organize agents and orchestrate their reasoning for au-
tonomous task solving. Extensive evaluations reveal that it effectively supports collaboration among
over a thousand agents, with irregular topologies outperforming regular ones. We also identify a
collaborative scaling law—the overall performance follows a logistic growth pattern as agents scale,
with collaborative emergence occurring earlier than previously observed neural emergence. We
speculate this may be because scaling agents catalyzes their multidimensional considerations during
interactive reflection and refinement, thereby producing more comprehensive solutions. However,
our research also indicates that there are limits on the scaling horizon. By extrapolating traditional
scaling from training to inference, we posit that agent collaboration could serve as a "shortcut" to
bypass the need for resource-intensive retraining by employing inference-time procedural thinking.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Reka Albert and Albert-Laszlo Barabasi. Statistical Mechanics of Complex Networks. In Reviews of
Modern Physics, 2002. URL https://arxiv.org/abs/cond-mat/0106096.

Abdullah Almaatouq, Mohammed Alsobay, Ming Yin, and Duncan J. Watts. Task Complexity
Moderates Group Synergy. In National Academy Of Sciences (PNAS), 2021. URL https:
//www.pnas.org/doi/full/10.1073/pnas.2101062118.

Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan, and Sung Ju Hwang. ResearchAgent: Iterative
Research Idea Generation over Scientific Literature with Large Language Models. In arXiv preprint
arXiv:2404.07738, 2024. URL https://arxiv.org/pdf/2404.07738.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of Thoughts:
Solving Elaborate Problems with Large Language Models. In AAAI Conference on Artificial
Intelligence (AAAI), 2024a. URL https://arxiv.org/pdf/2308.09687.

Maciej Besta, Florim Memedi, Zhenyu Zhang, Robert Gerstenberger, Guangyuan Piao, Nils Blach,
Piotr Nyczyk, Marcin Copik, Grzegorz Kwaśniewski, Jürgen Müller, Lukas Gianinazzi, Ales
Kubicek, Hubert Niewiadomski, Aidan O’Mahony, Onur Mutlu, and Torsten Hoefler. Demystifying
Chains, Trees, and Graphs of Thoughts. In arXiv preprint arXiv:2401.14295, 2024b. URL
https://arxiv.org/pdf/2401.14295.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean. Large Language Models
in Machine Translation. In Empirical Methods in Natural Language Processing (EMNLP), 2007.
URL https://aclanthology.org/D07-1090/.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
Azalia Mirhoseini. Large Language Monkeys: Scaling Inference Compute with Repeated Sampling.
In arXiv preprint arXiv:2407.21787, 2024. URL https://arxiv.org/abs/2407.21787.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language Models are Few-Shot Learners. In Advances in Neural Information
Processing Systems (NeurIPS), 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of Artificial General Intelligence:
Early Experiments with GPT-4. In arXiv preprint arXiv:2303.12712, 2023. URL https://doi.
org/10.48550/arXiv.2303.12712.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
Zhiyuan Liu. ChatEval: Towards Better LLM-based Evaluators through Multi-agent Debate. In
International Conference on Learning Representations (ICLR), 2024. URL https://iclr.cc/
virtual/2024/poster/19065.

Justin Chen, Swarnadeep Saha, and Mohit Bansal. ReConcile: Round-Table Conference Improves
Reasoning via Consensus among Diverse LLMs. In Annual Meeting of the Association for
Computational Linguistics (ACL), 2024a. URL https://aclanthology.org/2024.acl-long.
381/.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James
Zou. Are More LLM Calls All You Need? Towards Scaling Laws of Compound Inference Systems.
In arXiv preprint arXiv:2403.02419, 2024b. URL https://arxiv.org/pdf/2403.02419.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating Large
Language Models Trained on Code. In arXiv preprint arXiv:2107.03374, 2021. URL https:
//arxiv.org/pdf/2107.03374.

11

https://arxiv.org/abs/cond-mat/0106096
https://www.pnas.org/doi/full/10.1073/pnas.2101062118
https://www.pnas.org/doi/full/10.1073/pnas.2101062118
https://arxiv.org/pdf/2404.07738
https://arxiv.org/pdf/2308.09687
https://arxiv.org/pdf/2401.14295
https://aclanthology.org/D07-1090/
https://arxiv.org/abs/2407.21787
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.48550/arXiv.2303.12712
https://iclr.cc/virtual/2024/poster/19065
https://iclr.cc/virtual/2024/poster/19065
https://aclanthology.org/2024.acl-long.381/
https://aclanthology.org/2024.acl-long.381/
https://arxiv.org/pdf/2403.02419
https://arxiv.org/pdf/2107.03374
https://arxiv.org/pdf/2107.03374

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Pei Chen, Shuai Zhang, and Boran Han. CoMM: Collaborative Multi-Agent, Multi-Reasoning-
Path Prompting for Complex Problem Solving. In North American Chapter of the Associa-
tion for Computational Linguistics (NAACL), 2024c. URL https://aclanthology.org/2024.
findings-naacl.112/.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia
Qin, Yaxi Lu, Ruobing Xie, et al. AgentVerse: Facilitating Multi-agent Collaboration and Exploring
Emergent Behaviors in Agents. In International Conference on Learning Representations (ICLR),
2024d. URL https://iclr.cc/virtual/2024/poster/19109.

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing
Xie, Zhiyuan Liu, and Maosong Sun. Internet of Agents: Weaving a Web of Heterogeneous
Agents for Collaborative Intelligence. In arXiv preprint arXiv:2407.07061, 2024e. URL https:
//arxiv.org/pdf/2407.07061.

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Scalable Multi-Robot
Collaboration with Large Language Models: Centralized or Decentralized Systems? In arXiv
preprint arXiv:2309.15943, 2024f. URL https://arxiv.org/pdf/2309.15943.

Zhixuan Chu, Yan Wang, Feng Zhu, Lu Yu, Longfei Li, and Jinjie Gu. Professional Agents – Evolving
Large Language Models into Autonomous Experts with Human-Level Competencies. In arXiv
preprint arXiv:2402.03628, 2024. URL https://arxiv.org/pdf/2402.03628.

Roi Cohen, May Hamri, Mor Geva, and Amir Globerson. LM vs LM: Detecting Factual Errors via
Cross Examination. In Empirical Methods in Natural Language Processing (EMNLP), 2023. URL
https://aclanthology.org/2023.emnlp-main.778/.

Kahneman Daniel. Thinking, Fast and Slow. In Farrar, Straus and Giroux,
2017. URL https://www.pdcnet.org//collection/fshow?id=inquiryct_2012_0027_
0002_0054_0057&pdfname=inquiryct_2012_0027_0002_0055_0058.pdf&file_type=pdf.

Peter Sheridan Dodds, Duncan J. Watts, and Charles F. Sabel. Information Exchange and the
Robustness of Organizational Networks. In National Academy Of Sciences (PNAS), 2003. URL
https://www.pnas.org/doi/abs/10.1073/pnas.1534702100.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
Factuality and Reasoning in Language Models through Multiagent Debate. In International
Conference on Machine Learning (ICML), 2024a. URL https://openreview.net/pdf?id=
zj7YuTE4t8.

Zhuoyun Du, Chen Qian, Wei Liu, Zihao Xie, Yifei Wang, Yufan Dang, Weize Chen, and Cheng
Yang. Multi-Agent Software Development through Cross-Team Collaboration. In arXiv preprint
arXiv:2406.08979, 2024b. URL https://arxiv.org/pdf/2406.08979.

Shen Gao, Yuntao Wen, Minghang Zhu, Jianing Wei, Yuhan Cheng, Qunzi Zhang, and Shuo
Shang. Simulating Financial Market via Large Language Model based Agents. In arXiv preprint
arXiv:2406.19966, 2024. URL https://arxiv.org/pdf/2406.19966.

Alireza Ghafarollahi and Markus J. Buehler. SciAgents: Automating Scientific Discovery through
Multi-Agent Intelligent Graph Reasoning. In arXiv preprint arXiv:2409.05556, 2024. URL
https://arxiv.org/pdf/2409.05556.

Xudong Guo, Kaixuan Huang, Jiale Liu, Wenhui Fan, Natalia Vélez, Qingyun Wu, Huazheng Wang,
Thomas L. Griffiths, and Mengdi Wang. Embodied LLM Agents Learn to Cooperate in Organized
Teams. In arXiv preprint arXiv:2403.12482, 2024. URL https://arxiv.org/pdf/2403.12482.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Xiaodong Song,
and Jacob Steinhardt. Measuring Massive Multitask Language Understanding. In International
Conference on Learning Representations (ICLR), 2021. URL https://api.semanticscholar.
org/CorpusID:221516475.

12

https://aclanthology.org/2024.findings-naacl.112/
https://aclanthology.org/2024.findings-naacl.112/
https://iclr.cc/virtual/2024/poster/19109
https://arxiv.org/pdf/2407.07061
https://arxiv.org/pdf/2407.07061
https://arxiv.org/pdf/2309.15943
https://arxiv.org/pdf/2402.03628
https://aclanthology.org/2023.emnlp-main.778/
https://www.pdcnet.org//collection/fshow?id=inquiryct_2012_0027_0002_0054_0057&pdfname=inquiryct_2012_0027_0002_0055_0058.pdf&file_type=pdf
https://www.pdcnet.org//collection/fshow?id=inquiryct_2012_0027_0002_0054_0057&pdfname=inquiryct_2012_0027_0002_0055_0058.pdf&file_type=pdf
https://www.pnas.org/doi/abs/10.1073/pnas.1534702100
https://openreview.net/pdf?id=zj7YuTE4t8
https://openreview.net/pdf?id=zj7YuTE4t8
https://arxiv.org/pdf/2406.08979
https://arxiv.org/pdf/2406.19966
https://arxiv.org/pdf/2409.05556
https://arxiv.org/pdf/2403.12482
https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:221516475

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao,
Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta Programming for A Multi-Agent Collab-
orative Framework. In International Conference on Learning Representations (ICLR), 2024. URL
https://iclr.cc/virtual/2024/poster/18491.

J J Hopfield. Neural Networks and Physical Systems with Emergent Collective Computational
Abilities. In National Academy Of Sciences (PNAS), 1982. URL https://doi.org/10.1073/
pnas.79.8.2554.

Wenyue Hua, Lizhou Fan, Lingyao Li, Kai Mei, Jianchao Ji, Yingqiang Ge, Libby Hemphill,
and Yongfeng Zhang. War and Peace (WarAgent): Large Language Model-based Multi-Agent
Simulation of World Wars. In arXiv preprint arXiv:2311.17227, 2023. URL https://arxiv.
org/pdf/2311.17227.

A. B. Kahn. Topological Sorting of Large Networks. In Communications of the ACM, 1962. URL
https://dl.acm.org/doi/10.1145/368996.369025.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws for Neural Language Models. In
arXiv preprint arXiv:2001.08361, 2020. URL https://doi.org/10.48550/arXiv.2001.08361.

Akbir Khan, John Hughes, Dan Valentine, Laura Ruis, Kshitij Sachan, Ansh Radhakrishnan, Edward
Grefenstette, Samuel R. Bowman, Tim Rocktäschel, and Ethan Perez. Debating with More
Persuasive LLMs Leads to More Truthful Answers. In International Conference on Machine
Learning (ICML), 2024. URL https://icml.cc/virtual/2024/poster/33360.

Tobias Kohn. The Error Behind The Message: Finding the Cause of Error Messages in Python.
In ACM Technical Symposium on Computer Science Education (SIGCSE), 2019. URL https:
//doi.org/10.1145/3287324.3287381.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
CAMEL: Communicative Agents for “Mind” Exploration of Large Language Model Society. In
Advances in Neural Information Processing Systems (NeurIPS), 2023a. URL https://arxiv.
org/abs/2303.17760.

Junkai Li, Siyu Wang, Meng Zhang, Weitao Li, Yunghwei Lai, Xinhui Kang, Weizhi Ma, and Yang
Liu. Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents. In arXiv preprint
arXiv:2405.02957, 2024a. URL https://arxiv.org/pdf/2405.02957.

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More Agents is All You Need. In
arXiv preprint arXiv:2402.05120, 2024b. URL https://arxiv.org/pdf/2402.05120.

Nian Li, Chen Gao, Mingyu Li, Yong Li, and Qingmin Liao. EconAgent: Large Language Model-
Empowered Agents for Simulating Macroeconomic Activities. In Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), 2024c. URL https://aclanthology.org/2024.
acl-long.829/.

Yuan Li, Yixuan Zhang, and Lichao Sun. MetaAgents: Simulating Interactions of Human Behaviors
for LLM-based Task-oriented Coordination via Collaborative Generative Agents. In arXiv preprint
arXiv:2310.06500, 2023b. URL https://arxiv.org/pdf/2310.06500.

Zhongyang Li, Xiao Ding, and Ting Liu. Generating Reasonable and Diversified Story Ending
using Sequence to Sequence Model with Adversarial Training. In International Conference on
Computational Linguistics (COLING), 2018. URL https://aclanthology.org/C18-1088/.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and
Shuming Shi. Encouraging Divergent Thinking in Large Language Models through Multi-Agent
Debate. In Empirical Methods in Natural Language Processing (EMNLP), 2024. URL https:
//arxiv.org/pdf/2305.19118.

13

https://iclr.cc/virtual/2024/poster/18491
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
https://arxiv.org/pdf/2311.17227
https://arxiv.org/pdf/2311.17227
https://dl.acm.org/doi/10.1145/368996.369025
https://doi.org/10.48550/arXiv.2001.08361
https://icml.cc/virtual/2024/poster/33360
https://doi.org/10.1145/3287324.3287381
https://doi.org/10.1145/3287324.3287381
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://arxiv.org/pdf/2405.02957
https://arxiv.org/pdf/2402.05120
https://aclanthology.org/2024.acl-long.829/
https://aclanthology.org/2024.acl-long.829/
https://arxiv.org/pdf/2310.06500
https://aclanthology.org/C18-1088/
https://arxiv.org/pdf/2305.19118
https://arxiv.org/pdf/2305.19118

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brahman, Shiyu Huang, Chandra Bhagavatula,
Prithviraj Ammanabrolu, Yejin Choi, and Xiang Ren. SwiftSage: A Generative Agent with Fast
and Slow Thinking for Complex Interactive Tasks. In Advances in Neural Information Processing
Systems (NeurIPS), 2023. URL https://arxiv.org/pdf/2305.17390.

Ruibo Liu, Ruixin Yang, Chenyan Jia, Ge Zhang, Diyi Yang, and Soroush Vosoughi. Training
Socially Aligned Language Models on Simulated Social Interactions. In International Conference
on Learning Representations (ICLR), 2024a. URL https://arxiv.org/pdf/2305.16960.

Wei Liu, Chenxi Wang, Yifei Wang, Zihao Xie, Rennai Qiu, Yufan Dang, Zhuoyun Du, Weize Chen,
Cheng Yang, and Chen Qian. Autonomous Agents for Collaborative Task under Information
Asymmetry. In Advances in Neural Information Processing Systems (NeurIPS), 2024b. URL
https://arxiv.org/pdf/2406.14928.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic LLM-Agent Network:
An LLM-agent Collaboration Framework with Agent Team Optimization. In arXiv preprint
arXiv:2310.02170, 2023. URL https://arxiv.org/pdf/2310.02170.

Chengdong Ma, Aming Li, Yali Du, Hao Dong, and Yaodong Yang. Efficient and Scalable Reinforce-
ment Learning for Large-scale Network Control. In Nature Machine Intelligence (NMI), 2024.
URL https://doi.org/10.1038/s42256-024-00879-7.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-Refine:
Iterative Refinement with Self-Feedback. In Advances in Neural Information Processing Systems
(NeurIPS), 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf.

Zhao Mandi, Shreeya Jain, and Shuran Song. RoCo: Dialectic Multi-Robot Collaboration with Large
Language Models. In arXiv preprint arXiv:2307.04738, 2023. URL https://arxiv.org/pdf/
2307.04738.

Kai Mei, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqiang Ge, and Yongfeng Zhang. AIOS: LLM
Agent Operating System. In arXiv preprint arXiv:2403.16971, 2024. URL https://arxiv.org/
pdf/2403.16971.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi,
Aleksandra Piktus, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling Data-
Constrained Language Models. In Advances in Neural Information Processing Systems
(NeurIPS), 2024. URL https://proceedings.neurips.cc/paper_files/paper/2023/hash/
9d89448b63ce1e2e8dc7af72c984c196-Abstract-Conference.html.

M. E. J. Newman. The Structure of Scientific Collaboration Networks. In National Academy Of
Sciences (PNAS), 2001. URL https://www.pnas.org/doi/full/10.1073/pnas.98.2.404.

MEJ Newman. Power laws, Pareto distributions and Zipf’s law. In Contemporary Physics, 2005.
URL https://www.tandfonline.com/doi/abs/10.1080/00107510500052444.

Anton Nilsson, Carl Bonander, Ulf Strömberg, and Jonas Björk. A Directed Acyclic Graph for
Interactions. In International Journal of Epidemiology, 2020. URL https://doi.org/10.1093/
ije/dyaa211.

Wonseok Oh and Hakjoo Oh. PyTER: Effective Program Repair for Python Type Errors. In ACM
Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2022. URL https://dl.acm.org/doi/10.1145/3540250.3549130.

OpenAI. Learning to Reason with LLMs. In https://openai.com/index/learning-to-reason-with-llms,
2024. URL https://openai.com/index/learning-to-reason-with-llms/.

14

https://arxiv.org/pdf/2305.17390
https://arxiv.org/pdf/2305.16960
https://arxiv.org/pdf/2406.14928
https://arxiv.org/pdf/2310.02170
https://doi.org/10.1038/s42256-024-00879-7
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://arxiv.org/pdf/2307.04738
https://arxiv.org/pdf/2307.04738
https://arxiv.org/pdf/2403.16971
https://arxiv.org/pdf/2403.16971
https://proceedings.neurips.cc/paper_files/paper/2023/hash/9d89448b63ce1e2e8dc7af72c984c196-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/9d89448b63ce1e2e8dc7af72c984c196-Abstract-Conference.html
https://www.pnas.org/doi/full/10.1073/pnas.98.2.404
https://www.tandfonline.com/doi/abs/10.1080/00107510500052444
https://doi.org/10.1093/ije/dyaa211
https://doi.org/10.1093/ije/dyaa211
https://dl.acm.org/doi/10.1145/3540250.3549130
https://openai.com/index/learning-to-reason-with-llms/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F
Christiano, Jan Leike, and Ryan Lowe. Training Language Models to Follow Instruc-
tions with Human Feedback. In Advances in Neural Information Processing Systems
(NeurIPS), 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative Agents: Interactive Simulacra of Human Behavior. In Annual ACM
Symposium on User Interface Software and Technology (UIST), 2023. URL https://doi.org/
10.1145/3586183.3606763.

Kai Petersen, Claes Wohlin, and Dejan Baca. The Waterfall Model in Large-Scale Development.
In Product-Focused Software Process Improvement, 2009. URL https://doi.org/10.1007/
978-3-642-02152-7_29.

Giorgio Piatti, Zhijing Jin, Max Kleiman-Weiner, Bernhard Schölkopf, Mrinmaya Sachan, and Rada
Mihalcea. Cooperate or Collapse: Emergence of Sustainability Behaviors in a Society of LLM
Agents. In arXiv preprint arXiv:2404.16698, 2024. URL https://arxiv.org/pdf/2404.16698.

Chen Qian, Yufan Dang, Jiahao Li, Wei Liu, Zihao Xie, Yifei Wang, Weize Chen, Cheng Yang,
Xin Cong, Xiaoyin Che, Zhiyuan Liu, and Maosong Sun. Experiential Co-Learning of Software-
Developing Agents. In Annual Meeting of the Association for Computational Linguistics (ACL),
2024a. URL https://aclanthology.org/2024.acl-long.305/.

Chen Qian, Jiahao Li, Yufan Dang, Wei Liu, YiFei Wang, Zihao Xie, Weize Chen, Cheng Yang,
Yingli Zhang, Zhiyuan Liu, and Maosong Sun. Iterative Experience Refinement of Software-
Developing Agents. In arXiv preprint arXiv:2405.04219, 2024b. URL https://arxiv.org/pdf/
2405.04219.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. ChatDev:
Communicative Agents for Software Development. In Annual Meeting of the Association for
Computational Linguistics (ACL), 2024c. URL https://aclanthology.org/2024.acl-long.
810/.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. ToolLLM: Facilitating Large Language Models to Master 16000+ Real-
World APIs. In International Conference on Learning Representations (ICLR), 2024a. URL
https://iclr.cc/virtual/2024/poster/18267.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Jiaming Shen, Tianqi Liu, Jialu
Liu, Donald Metzler, Xuanhui Wang, and Michael Bendersky. Large Language Models are
Effective Text Rankers with Pairwise Ranking Prompting. In North American Chapter of the
Association for Computational Linguistics (NAACL), 2024b. URL https://aclanthology.org/
2024.findings-naacl.97/.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language Models are Unsupervised Multitask Learners. In OpenAI Blog,
2019. URL https://cdn.openai.com/better-language-models/language_models_are_
unsupervised_multitask_learners.pdf.

Matthew Renze and Erhan Guven. Self-Reflection in LLM Agents: Effects on Problem-Solving
Performance. In arXiv preprint arXiv:2405.06682, 2024. URL https://arxiv.org/abs/2405.
06682.

Toran Bruce Richards. AutoGPT. In https://github.com/Significant-Gravitas/AutoGPT, 2023. URL
https://github.com/Significant-Gravitas/AutoGPT.

Yangjun Ruan, Chris J. Maddison, and Tatsunori Hashimoto. Observational Scaling Laws and the
Predictability of Language Model Performance. In arXiv preprint arXiv:2405.10938, 2024. URL
https://arxiv.org/pdf/2405.10938.

15

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1007/978-3-642-02152-7_29
https://doi.org/10.1007/978-3-642-02152-7_29
https://arxiv.org/pdf/2404.16698
https://aclanthology.org/2024.acl-long.305/
https://arxiv.org/pdf/2405.04219
https://arxiv.org/pdf/2405.04219
https://aclanthology.org/2024.acl-long.810/
https://aclanthology.org/2024.acl-long.810/
https://iclr.cc/virtual/2024/poster/18267
https://aclanthology.org/2024.findings-naacl.97/
https://aclanthology.org/2024.findings-naacl.97/
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2405.06682
https://arxiv.org/abs/2405.06682
https://github.com/Significant-Gravitas/AutoGPT
https://arxiv.org/pdf/2405.10938

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are Emergent Abilities of Large
Language Models a Mirage? In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2024. URL https://papers.neurips.cc/paper_files/paper/2023/file/
adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. ToolFormer: Language Models Can Teach Themselves
to Use Tools. In arXiv preprint arXiv:2302.04761, 2023. URL https://arxiv.org/pdf/2302.
04761.

Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexandre
Ramé, Bobak Shariari, Sarah Perrin, Abe Friesen, Geoffrey Cideron, Sertan Girgin, Piotr Stanczyk,
Andrea Michi, Danila Sinopalnikov, Sabela Ramos, Amélie Héliou, Aliaksei Severyn, Matt Hoff-
man, Nikola Momchev, and Olivier Bachem. BOND: Aligning LLMs with Best-of-N Distillation.
In arXiv preprint arXiv:2407.14622, 2024. URL https://arxiv.org/abs/2407.14622.

Murray Shanahan, Kyle McDonell, and Laria Reynolds. Role Play with Large Language Models. In
Nature, 2023. URL https://www.nature.com/articles/s41586-023-06647-8.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
GPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2023. URL https://proceedings.neurips.cc/paper_
files/paper/2023/file/77c33e6a367922d003ff102ffb92b658-Paper-Conference.pdf.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language Agents with Verbal Reinforcement Learning. In Advances in Neural Information
Processing Systems (NeurIPS), 2024. URL https://arxiv.org/abs/2303.11366.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, Elton Zhang, Rewon
Child, Reza Yazdani Aminabadi, Julie Bernauer, Xia Song, Mohammad Shoeybi, Yuxiong He,
Michael Houston, Saurabh Tiwary, and Bryan Catanzaro. Using DeepSpeed and Megatron to
Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model. In arXiv preprint
arXiv:2201.11990, 2022. URL https://arxiv.org/pdf/2201.11990.

Steven H. Strogatz. Exploring Complex Networks. In Nature, 2001. URL https://www.nature.
com/inproceedingss/35065725.

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cogni-
tive Architectures for Language Agents. In arXiv preprint arXiv:2309.02427, 2023. URL
https://arxiv.org/pdf/2309.02427.

Yashar Talebirad and Amirhossein Nadiri. Multi-Agent Collaboration: Harnessing the Power of
Intelligent LLM Agents. In arXiv preprint arXiv:2306.03314, 2023. URL https://arxiv.org/
abs/2306.03314.

Xiangru Tang, Anni Zou, Zhuosheng Zhang, Ziming Li, Yilun Zhao, Xingyao Zhang, Arman Cohan,
and Mark Gerstein. MedAgents: Large Language Models as Collaborators for Zero-shot Medical
Reasoning. In arXiv preprint arXiv:2311.10537, 2023. URL https://arxiv.org/pdf/2311.
10537.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and Efficient Foundation Language Models. In arXiv preprint arXiv:2302.13971, 2023. URL
https://arxiv.org/pdf/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is All You Need. In Advances in Neural Information
Processing Systems (NeurIPS), 2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, and et al. Grandmaster Level in StarCraft II
using Multi-agent Reinforcement Learning. In Nature, 2019. URL https://doi.org/10.1038/
s41586-019-1724-z.

16

https://papers.neurips.cc/paper_files/paper/2023/file/adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf
https://papers.neurips.cc/paper_files/paper/2023/file/adc98a266f45005c403b8311ca7e8bd7-Paper-Conference.pdf
https://arxiv.org/pdf/2302.04761
https://arxiv.org/pdf/2302.04761
https://arxiv.org/abs/2407.14622
https://www.nature.com/articles/s41586-023-06647-8
https://proceedings.neurips.cc/paper_files/paper/2023/file/77c33e6a367922d003ff102ffb92b658-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/77c33e6a367922d003ff102ffb92b658-Paper-Conference.pdf
https://arxiv.org/abs/2303.11366
https://arxiv.org/pdf/2201.11990
https://www.nature.com/inproceedingss/35065725
https://www.nature.com/inproceedingss/35065725
https://arxiv.org/pdf/2309.02427
https://arxiv.org/abs/2306.03314
https://arxiv.org/abs/2306.03314
https://arxiv.org/pdf/2311.10537
https://arxiv.org/pdf/2311.10537
https://arxiv.org/pdf/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Haotian Wang, Xiyuan Du, Weijiang Yu, Qianglong Chen, Kun Zhu, Zheng Chu, Lian Yan, and
Yi Guan. Learning to Break: Knowledge-Enhanced Reasoning in Multi-Agent Debate System. In
arXiv preprint arXiv:2312.04854, 2024a. URL https://arxiv.org/pdf/2312.04854.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language
Models. In Annual Meeting of the Association for Computational Linguistics (ACL), 2023a. URL
https://aclanthology.org/2023.acl-long.147.pdf.

Lei Wang, Jingsen Zhang, Xu Chen, Yankai Lin, Ruihua Song, Wayne Xin Zhao, and Ji-Rong
Wen. RecAgent: A Novel Simulation Paradigm for Recommender Systems. In arXiv preprint
arXiv:2306.02552, 2023b. URL https://arxiv.org/pdf/2306.02552.

Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong, and Yangqiu Song. Rethinking the Bounds of
LLM Reasoning: Are Multi-Agent Discussions the Key? In Annual Meeting of the Association for
Computational Linguistics (ACL), 2024b. URL https://aclanthology.org/2024.acl-long.
331/.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
Emergent Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-
Persona Self-Collaboration. In North American Chapter of the Association for Computational
Linguistics (NAACL), 2024c. URL https://aclanthology.org/2024.naacl-long.15/.

Duncan J. Watts and Steven H. Strogatz. Collective Dynamics of Small-World Networks. In Nature,
1998. URL https://www.nature.com/inproceedingss/30918#citeas.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals,
Percy Liang, Jeff Dean, and William Fedus. Emergent Abilities of Large Language Models.
In Transactions on Machine Learning Research, 2022a. URL https://arxiv.org/abs/2206.
07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia,
Ed Chi, Quoc V Le, and Denny Zhou. Chain-of-thought Prompting Elicits Reason-
ing in Large Language Models. In Advances in Neural Information Processing Systems
(NeurIPS), 2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Anita Williams Woolley, Christopher F Chabris, Alex Pentland, Nada Hashmi, and Thomas W
Malone. Evidence for a Collective Intelligence Factor in the Performance of Human Groups. In
Science, 2010. URL https://www.science.org/doi/10.1126/science.1193147.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee, Chen Zhu, Zihan Liu, Sandeep Subramanian,
Evelina Bakhturina, Mohammad Shoeybi, and Bryan Catanzaro. Retrieval Meets Long Context
Large Language Models. In International Conference on Learning Representations (ICLR), 2024.
URL https://arxiv.org/abs/2310.03025.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
Large Language Models as Optimizers. In International Conference on Learning Representations
(ICLR), 2024. URL https://arxiv.org/abs/2309.03409.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of Thoughts: Deliberate Problem Solving with Large Lan-
guage Models. In Advances in Neural Information Processing Systems (NeurIPS),
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf.

Zhangyue Yin, Qiushi Sun, Cheng Chang, Qipeng Guo, Junqi Dai, Xuanjing Huang, and Xipeng
Qiu. Exchange-of-Thought: Enhancing Large Language Model Capabilities through Cross-Model
Communication. In Empirical Methods in Natural Language Processing (EMNLP), 2023. URL
https://aclanthology.org/2023.emnlp-main.936/.

17

https://arxiv.org/pdf/2312.04854
https://aclanthology.org/2023.acl-long.147.pdf
https://arxiv.org/pdf/2306.02552
https://aclanthology.org/2024.acl-long.331/
https://aclanthology.org/2024.acl-long.331/
https://aclanthology.org/2024.naacl-long.15/
https://www.nature.com/inproceedingss/30918#citeas
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://www.science.org/doi/10.1126/science.1193147
https://arxiv.org/abs/2310.03025
https://arxiv.org/abs/2309.03409
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://aclanthology.org/2023.emnlp-main.936/

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Jifan Yu, Zheyuan Zhang, Daniel Zhang-li, Shangqing Tu, Zhanxin Hao, Rui Miao Li, Haoxuan
Li, Yuanchun Wang, Hanming Li, Linlu Gong, Jie Cao, Jiayin Lin, Jinchang Zhou, Fei Qin,
Haohua Wang, Jianxiao Jiang, Lijun Deng, Yisi Zhan, Chaojun Xiao, Xusheng Dai, Xuan Yan,
Nianyi Lin, Nan Zhang, Ruixin Ni, Yang Dang, Lei Hou, Yu Zhang, Xu Han, Manli Li, Juanzi Li,
Zhiyuan Liu, Huiqin Liu, and Maosong Sun. From MOOC to MAIC: Reshaping Online Teaching
and Learning through LLM-driven Agents. In arXiv preprint arXiv:2409.03512, 2024. URL
https://arxiv.org/pdf/2409.03512.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
Quiet-STaR: Language Models Can Teach Themselves to Think Before Speaking. In arXiv preprint
arXiv:2403.09629, 2024. URL https://arxiv.org/abs/2403.09629.

Zheni Zeng, Bangchen Yin, Shipeng Wang, Jiarui Liu, Cheng Yang, Haishen Yao, Xingzhi Sun,
Maosong Sun, Guotong Xie, and Zhiyuan Liu. ChatMol: Interactive Molecular Discovery with
Natural Language. In Bioinformatics, 2024. URL https://doi.org/10.1093/bioinformatics/
btae534.

An Zhang, Leheng Sheng, Yuxin Chen, Hao Li, Yang Deng, Xiang Wang, and Tat-Seng Chua.
On Generative Agents in Recommendation. In arXiv preprint arXiv:2310.10108, 2023. URL
https://arxiv.org/pdf/2310.10108.

Bin Zhang, Hangyu Mao, Jingqing Ruan, Ying Wen, Yang Li, Shao Zhang, Zhiwei Xu, Dapeng Li,
Ziyue Li, Rui Zhao, Lijuan Li, and Guoliang Fan. Controlling Large Language Model-based Agents
for Large-Scale Decision-Making: An Actor-Critic Approach. In arXiv preprint arXiv:2311.13884,
2024a. URL https://arxiv.org/pdf/2311.13884.

Yifan Zhang, Yang Yuan, and Andrew Chi-Chih Yao. On the Diagram of Thought. In arXiv preprint
arXiv:2409.10038, 2024b. URL https://arxiv.org/pdf/2409.10038.

Zheyuan Zhang, Daniel Zhang-Li, Jifan Yu, Linlu Gong, Jinchang Zhou, Zhiyuan Liu, Lei Hou, and
Juanzi Li. Simulating Classroom Education with LLM-Empowered Agents. In arXiv preprint
arXiv:2406.19226, 2024c. URL https://arxiv.org/pdf/2406.19226.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: LLM
Agents are Experiential Learners. In AAAI Conference on Artificial Intelligence (AAAI), 2024.
URL https://doi.org/10.1609/aaai.v38i17.29936.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large Language Models as Commonsense Knowl-
edge for Large-Scale Task Planning. In Advances in Neural Information Processing Systems
(NeurIPS), 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
65a39213d7d0e1eb5d192aa77e77eeb7-Paper-Conference.pdf.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, Huajun Chen, and Yuchen Eleanor Jiang. Symbolic
Learning Enables Self-Evolving Agents. In arXiv preprint arXiv:2406.18532, 2024. URL https:
//arxiv.org/abs/2406.18532.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, Victor Bursztyn, Ryan A. Rossi, Somdeb
Sarkhel, and Chao Zhang. ToolChain*: Efficient Action Space Navigation in Large Language
Models with A* Search. In arXiv preprint arXiv:2310.13227, 2024. URL https://arxiv.org/
pdf/2310.13227.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jurgen
Schmidhuber. Language Agents as Optimizable Graphs. In International Conference on Machine
Learning (ICML), 2024. URL https://arxiv.org/pdf/2402.16823.

18

https://arxiv.org/pdf/2409.03512
https://arxiv.org/abs/2403.09629
https://doi.org/10.1093/bioinformatics/btae534
https://doi.org/10.1093/bioinformatics/btae534
https://arxiv.org/pdf/2310.10108
https://arxiv.org/pdf/2311.13884
https://arxiv.org/pdf/2409.10038
https://arxiv.org/pdf/2406.19226
https://doi.org/10.1609/aaai.v38i17.29936
https://proceedings.neurips.cc/paper_files/paper/2023/file/65a39213d7d0e1eb5d192aa77e77eeb7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/65a39213d7d0e1eb5d192aa77e77eeb7-Paper-Conference.pdf
https://arxiv.org/abs/2406.18532
https://arxiv.org/abs/2406.18532
https://arxiv.org/pdf/2310.13227
https://arxiv.org/pdf/2310.13227
https://arxiv.org/pdf/2402.16823

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The appendix of the paper Scaling Large Language Model-based Multi-Agent Collaboration presents
supplementary materials such as theoretical derivations, dataset descriptions, additional results, and
case studies. These comprehensive details are intended for the review phase. The final version of the
appendix will be appropriately condensed based on the significance of each section and feedback
from the reviewers.

A THEORETICAL DERIVATIONS: TOKEN COMPLEXITY ANALYSIS

This section analyzes token consumption complexity in a network, focusing on a mesh structure.
A mesh network, with its high interaction density, connects each node to many others, facilitating
extensive communication. This makes it ideal for examining the upper bounds of token consumption
complexity, as structures with fewer connections will have equal or lower complexities.

We start by calculating token consumption for a single agent in the network G = (V, E), where V
represents nodes and E represents edges. The network scale, n, is the number of nodes (|V|). Other
parameters include:

Symbol Description
t Task length
p Profile length
i Average instruction length
s Average solution length
m Maximum interaction rounds between adjacent agents

Without memory control mechanisms, the token consumption for the source executor (agent at the
source node) is calculated as:

O(v1)w/o = O(v1)
input
w/o +O(v1)

output
w/o = (t+ p) + s (8)

This equation represents the source executor’s basic needs: understanding the task, knowing its profile
(role and tools), and generating a solution, similar to the direct inference process of most LLMs.

Once the source executor generates information, it interacts with an instructor through a connected
edge, before the instructor interacts with another executor, involving multiple rounds of reflected
instructions and refined solutions. Therefore, for the second agent, token consumption is:

O(v2)w/o = (t+ p+ s) + (mi+ (m− 1)s) + (ms+ (m− 1)i)

= t+ p+ s+ (2m− 1)(i+ s)
(9)

This shows that each additional edge in the network increases token consumption by (2m− 1)(i+ s).

For the sink agent (the final agent in G), without aggregation mechanisms, token consumption is:

O(vn)
w/o-agg
w/o = t+ p+ s+ (2m− 1)(i+ s)|E|

= t+ p+ s+ (2m− 1)(i+ s)
n(n− 1)

2

(10)

where |E| is the number of edges, calculated as n(n−1)
2 for a fully connected mesh network.

The sink node aggregates solutions from n − 1 previous nodes. Let d be the number of branches
aggregated at each step in a hierarchical process. Total token consumption for aggregation is:

O(vn)
w/-agg
w/o = (2m− 1)(i+ s)T (| • vn|) (11)

where •v represents predecessor nodes of v, T (n) is the number of edges in a d-way tree with n lead
nodes:

T (| • vn|) = T (n− 1) = n− 1 +
n− 1

d
+

n− 1

d2
+ · · ·

= (n− 1)

(
1 +

1

d
+

1

d2
+ · · ·

)
= (n− 1)

(
1− (1d)

⌈logd(n−1)⌉

1− 1
d

)

=
d(n− 2)

d− 1

(12)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

This formula accounts for cumulative token consumption as solutions are aggregated through the
network, considering the branching factor d.

In binary aggregation, where each step combines two branches (d = 2), the total token consumption
for the sink agent is:

O(vn)w/o = O(vn)
w/o-agg
w/o +O(vn)

w/-agg
w/o

= t+ p+ s+ (2m− 1)(i+ s)

(
n(n− 1)

2
+ 2(n− 2)

) (13)

Here, n(n−1)
2 represents token consumption from interactions across all edges in a fully connected

mesh network. The term 2(n − 2) accounts for binary aggregation, where each step halves the
number of nodes at each hierarchy level. This formula illustrates the balance between interaction
and aggregation costs: interaction costs grow at a quadratic rate with node count due to the mesh
structure, while aggregation costs grow linearly, showing the efficiency of binary aggregation.

Similarly, utilizing the proposed memory control mechanism, the total token consumption for the
source agent under minimal context pressure is:

O(v1)w/ = t+ p+ s (14)

For the second executor, the total token consumption is:
O(v2)w/ = (t+ p+ s) + i+ (ms+ (m− 1)i)

= t+ p+ s+m(i+ s)
(15)

Each additional edge increases token consumption by m(i+ s). Therefore, the sink agent’s token
consumption, excluding aggregation, is:

O(vn)
w/o-agg
w/ = t+ p+ s+m(i+ s)| • v2|

= t+ p+ s+m(i+ s)(n− 1)
(16)

The sink node aggregates n− 1 solutions, with d branches at each hierarchical step. The total token
consumption for aggregation is:

O(vn)
w/-agg
w/ = m(i+ s)T (n− 1)

= m(i+ s)
d(n− 2)

d− 1

(17)

For the binary aggregation setting:

O(vn)w/ = O(vn)
w/o-agg
w/ +O(vn)

w/-agg
w/

= t+ p+ s+m(i+ s) ((n− 1) + 2(n− 2))
(18)

In conclusion, for large n, the expressions simplify to:

O(vn)w/o
n≫1
≈ (2m− 1)(i+ s)

2
n2 ∝ n2

O(vn)w/
n≫1
≈ 3m(i+ s)n ∝ n

(19)

These indicate quadratic growth without memory control and linear growth with memory control,
highlighting its efficiency as n increases.

Going deeper, without the implementation of the proposed mechanism, the total computational
complexity involved in token consumption across the network can be expressed as follows:

O(V)w/o = O(v1)w/o +O(v2)w/o + · · ·+O(vn)w/o

=
(2m− 1)(i+ s)

2

(
12 + 22 + · · ·+ n2

)
=

(2m− 1)(i+ s)

2

n(n+ 1)(2n+ 1)

6
n≫1
≈ (2m− 1)(i+ s)

6
n3

∝ n3

(20)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

From this expression, it is evident that the absence of the mechanism results in a cubic growth rate of
token consumption relative to the size of the network n. This cubic complexity signifies substantial
computational overhead, limiting the scalability of the network for larger datasets or more extensive
applications.

Conversely, when the mechanism is applied, the inference token consumption undergoes a significant
transformation:

O(V)w/ = O(v1)w/ +O(v2)w/ + · · ·+O(vn)w/

= 3m(i+ s) (1 + 2 + · · ·+ n)

= 3m(i+ s)
n(n+ 1)

2
n≫1
≈ 3m(i+ s)

2
n2

∝ n2

(21)

The introduction of the mechanism reduces the computational complexity from cubic to quadratic
with respect to n. This notable reduction facilitates enhanced scalability and performance, making it
more feasible to implement the network for larger-scale inference tasks. Therefore, this highlights the
potential of the mechanism to significantly reduce token consumption during the inference process,
thereby paving the way for more efficient and scalable network architectures.

B SUPPLEMENTARY DESCRIPTIONS: DATASETS

MMLU The MMLU dataset is a massive multitask test consisting of multiple-choice questions
from various branches of knowledge. The test covers 57 tasks including elementary mathematics,
US history, computer science, law, and more. It ranges in difficulty from an elementary level to an
advanced professional level, and it tests both world knowledge and problem-solving ability. All 57
tasks and their detailed topics are shown in Figure 9. The initial format of questions is shown in
Figure 10.

HumanEval The HumanEval dataset comprises 164 hand-written programming problems, each
including a function signature, a docstring, a function body, and multiple unit tests. Problems are
designed to test the model’s ability to generate functionally correct code from natural language
specifications. For instance, the tasks often involve implementing algorithms for sorting, searching,
and manipulating data structures such as arrays and strings. An example of the initial prompt of the
HumanEval test is shown in Figure 11. Each problem also includes multiple test cases that validate
the correctness of the generated code.

SRDD The SRDD dataset is a comprehensive database containing 1,200 software descriptions for
automatic software generation. The dataset structure is shown in Figure 12. The construction of this
database adhered to the following three-stage strategy for constructing a diverse and unique dataset:
1) Random Sampling: First, ChatGPT is independently inquired multiple times to obtain software
information under a certain category, and then the duplication is removed at the token granularity
of the software name. 2) Sequential Sampling: Then we add the generated software information in
sequence in the form of negative prompts, requiring ChatGPT to continue generating unique software
information. 3) Check: Although ChatGPT has been required to follow certain rules when generating,
LLM is more likely to be overconfident when generating according to rules than when judging based
on rules. Therefore, our last step is to let ChatGPT determine whether the generated software follows
the rules. This strategy initially establishes datasets by random sampling some software data, then
records existing data, granting ChatGPT autonomy to produce novel entries. SRDD is created with
human-designed rules that make the created software easy for researchers to evaluate, for example,
the collected software does not need internet or multi-player participation. The length distribution
of software descriptions in SRDD is shown in Figure 13. We sought to analyze the effects and
semantic features of the generated software descriptions by using t-SNE to perform dimensionality
reduction and visualization on the description embedding generated by the OpenAI Ada Model. As
demonstrated in figure 14, significant clustering of tasks bearing the same color is observed. It can be
concluded that 1) software descriptions of the same category are distributed in clusters, indicating
that the generated descriptions are highly related to their categories. 2) Descriptions in different

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

subcategories under the same category are clustered together, such as the game subcategories in the
lower right corner. 3) Some subcategories of different categories also show overlaps in the figure,
such as Tools&Utilities and Graphics, Schedule and Business, Sports and Sports Game. Such an
overlap is comprehensible given the multi-functionality of some software applications that may not
be confined to a single classification.

CommonGen-Hard The CommonGen dataset is a constrained text generation task designed to
evaluate the ability of generative models in commonsense reasoning. The dataset is composed of
35,141 unique concept sets and corresponding human-annotated sentences that describe everyday
scenarios using those concepts. The CommonGen-Hard dataset is a more challenging variant of
the original dataset CommonGen. CommonGen-Hard requires models to generate coherent and
grammatically correct sentences incorporating 20-30 concepts, as opposed to the original task which
presents a set of 3-5 related concepts. This significant increase in the number of concepts tests the
model’s ability to perform advanced commonsense reasoning, contextual understanding, and creative
problem-solving, as it must generate meaningful sentences that encompass a broader range of ideas.
Two key challenges of the tests are rational reasoning with underlying commonsense knowledge
about given concepts, and compositional generalization for unseen combination of concepts. Samples
shown in Figure 15 include a concept set and the coherent sentences generated.

Licence The four datasets used in this experiment are all licensed under the CC-BY-NC-4.0 license,
allowing free use for scientific research.

C SUPPLEMENTARY EXPERIMENTS: TIME CONSUMPTION ANALYSIS

To investigate the time costs of MACNET and the underlying mechanisms, we analyzed the results
on the SRDD dataset. To maximize the difference in topological properties (e.g., graph density,
maximum depth, etc,) the number of nodes is chosen as 50. As mentioned in the mainbody, a topology
G requires at least 2 × |E| interaction rounds. Therefore, interaction rounds for different types of
topologies can be calculated as in Figure 16. After carefully examining the experiment logs, it can be
concluded that consumed time is positively correlated with the quantity of interaction rounds. We
recorded the average time consumed on each type of topology, as shown in Figure 17.

Similar results can also be obtained from other datasets and topologies. Moreover, we noticed
that cost increases exponentially rather than linearly as the number of interaction rounds increases.
Consequently, it is suggested that future implementation should carefully balance the cost and
performance.

D SUPPLEMENTARY EXPERIMENTS: ABLATION STUDY

To study the role of profiles in the agent reasoning process within our system, we orchestrated a series
of experiments in which the profiles of all agents were left blank. As illustrated in Figure 18, the
performance of MACNET deteriorates for an average of 3.75% with the absence of the profiles. This
phenomenon suggests that the profile deployment mechanism of MACNET is effective.

Additionally, we conducted experiments utilizing Claude10 as the base model. The number of
nodes was set to 4 and datasets were selected as SRDD and CommonGen, mainly considering costs.
Profile deployment and topologies align with the configurations delineated in implementation details.
Figure 19 demonstrates that Claude outperforms ChatGPT in these experiments.

E SUPPLEMENTARY EXPERIMENTS: CASE STUDY

This section presents a case study on software developed, detailing each stage of its lifecycle. The
representative software is "Business Sales Performance Tracker" with a user’s requirement: "Business
Sales Performance Tracker is a software application that helps businesses track and analyze their
sales performance. It provides features for inputting sales data, generating reports, and visualizing

10Claude 3 sonnet (until 20240229), by Anthropic.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

sales performance metrics. The application also allows businesses to set sales goals and compare
actual performance against targets".

Figure 20 illustrates the Business Sales Performance Tracker’s user interface. On the top left, a
data entry interface is displayed, where users can input sales-related information. This interface
allows for the repeated entry of customer names, product names, and sales figures into designated
fields. Users can then click the "Add Sales Data" button to integrate this information into the tracking
system. For generating comprehensive reports, the user can click the "Generate Report" button. This
action produces a statistical report within a terminal window, displaying key metrics such as total
revenue, sales growth, conversion rate, average order value, customer acquisition cost, and customer
lifetime value. Additionally, a visual report in the form of a histogram is displayed on the right
side of the window. The software includes tools in the toolbar, which enable users to customize the
histogram’s layout and style. These tools also provide options to save and export the graphical data
representations.

Figures 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30 provide a comprehensive view of the multi-agent
interaction. Each figure captures the detailed dialogue and interactions, showcasing the collaborative
efforts and methodologies employed in the development of the software.

Figure 31 illustrates a case of a single-agent generating code on the SRDD dataset. Figures 32, 33,
and 34 compare the code generated by our multi-agent system (|V|=50) using the same prompt. It
demonstrates that multi-agent collaboration results in multidimensional features (such as multi-file
output, code comments, user interface, and operational correctness) accompanied by a significant
increase in solution length.

To view additional examples of software developed by MACNET-CHAIN, please refer to Figure 35
for screenshots.

F DISCUSSION: LIMITATIONS AND FUTURE WORK

While our study has thoroughly explored the capabilities of collaborative autonomous agents across
various tasks, it is crucial for both researchers and practitioners to remain cognizant of the limitations
and risks associated with this study.

Compared to single-agent methods, the iterative interactions between multiple agents inherently
demand more tokens and time, leading to increased computational requirements for the backbone
models and potential environmental impacts. For example, our extensive experiment spanned more
than six weeks and incurred of at least $3,024.62. While the findings were informative and intriguing,
the high resource expenditure raises concerns about the sustainability of future research endeavors.
To address this, future research could focus on developing methods that enable agents to achieve
equivalent or superior capabilities with fewer interactions. A promising strategy is to avoid full-graph
inference by utilizing only a subset of the graph, such as identifying the best sub-team to execute the
task.

We examined six representative topologies and identified a promising architectural direction through
observed phenomena. However, within the vast space of network structures, identifying the theoreti-
cally optimal collaborative network of agents without bias remains a challenge. Further exploration
into this optimal collaborative network is an interesting direction for future research. Moreover,
there is significant value in exploring collaborative mechanisms, such as dynamically generating
and assigning agents (including personalized profiles, external tools, multi-step planning, foundation
models, and finer-grained labor division), and enhancing inference coordination (e.g., efficient routing
strategies, information transmission mechanisms, and long-context management).

In agents’ reasoning, the aggregation of multiple solutions at graph nodes presents a complex chal-
lenge. The current strategy of combining strengths and eliminating weaknesses offers foundational
insights but may fall short due to model hallucinations, potentially leading to performance degrada-
tion. We recommend designing the topology to minimize convergent nodes, while also developing a
more robust aggregation strategy to effectively address this issue.

The performance of multi-agent collaboration, given its additional factors, is inherently more unpre-
dictable than traditional scaling. We minimize bias through general designs and repeated experiments,
but future work should consider more mature patterns and higher-quality metrics. As current tech-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

nology lacks precise automated evaluation systems for complex tasks (e.g., software development
and creative writing), manual verification becomes labor-intensive and impractical for large-scale
datasets. This study focuses on objective and critical dimensions, such as comprehensive software in-
dicators considering completeness, executability, and consistency. Future research should investigate
finer-grained dimensions to enhance the objectivity and quantifiability of performance evaluations,
including solutions’ functionalities, robustness, safety, and user-friendliness.

Given the nascent stage of multi-agent collaboration models, most relevant studies focus on inference.
When faced with diverse tasks, current methods handle each task independently due to the lack
of methodologies that effectively incorporate past experiences. This inexperience often results in
repetitive errors or unnecessary trial-and-error processes in multi-step tasks, requiring additional
human intervention, especially in real-world applications. Therefore, multi-agent collaborative
learning is an urgent area for research, promising more efficient cross-task inference and reduced
resource consumption.

However, we believe that these potential limitations serve as inspiration for future research directions
and can be effectively mitigated by engaging a broader, technically proficient audience. We expect
that our findings will provide valuable insights into enhancing collaborative learning and reasoning in
the ever-evolving dynamics of LLM-powered agents.

G REPRODUCIBILITY: SOFTWARE AND DATA

The SupplementaryMaterials.zip file contains detailed configuration guidelines, execution com-
mands, source code, and datasets used in this study, along with additional resources. These materials
are meticulously curated to enable the replication of all data presented in our paper. They have been
rigorously validated, with successful installation and testing conducted by multiple testers, ensuring
compatibility with both Windows and Mac OS systems. This comprehensive preparation significantly
enhances the reproducibility of our findings. All materials will be publicly accessible on GitHub to
support future research endeavors.

H AI ASSISTANTS

ChatGPT11 was used purely with the language of the paper during the writing process, including
spell-checking and paraphrasing the authors’ original content, without suggesting new content. Any
content generated with the assistant underwent meticulous manual review and subsequently received
final approval from the authors.

11https://chat.openai.com/

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Task Tested Concepts Supercategory
Abstract Algebra Groups, rings, fields, vector spaces, ... STEM
Anatomy Central nervous system, circulatory system, ... STEM
Astronomy Solar system, galaxies, asteroids, ... STEM
Business Ethics Corporate responsibility, stakeholders, regulation, ... Other
Clinical Knowledge Spot diagnosis, joints, abdominal examination, ... Other
College Biology Cellular structure, molecular biology, ecology, ... STEM
College Chemistry Analytical, organic, inorganic, physical, ... STEM
College Computer Science Algorithms, systems, graphs, recursion, ... STEM
College Mathematics Differential equations, real analysis, combinatorics, ... STEM
College Medicine Introductory biochemistry, sociology, reasoning, ... Other
College Physics Electromagnetism, thermodynamics, special relativity, ... STEM
Computer Security Cryptography, malware, side channels, fuzzing, ... STEM
Conceptual Physics Newton’s laws, rotational motion, gravity, sound, ... STEM
Econometrics Volatility, long-run relationships, forecasting, ... Social Sciences
Electrical Engineering Circuits, power systems, electrical drives, ... STEM
Elementary Mathematics Word problems, multiplication, remainders, rounding, ... STEM
Formal Logic Propositions, predicate logic, first-order logic, ... Humanities
Global Facts Extreme poverty, literacy rates, life expectancy, ... Other
High School Biology Natural selection, heredity, cell cycle, Krebs cycle, ... STEM
High School Chemistry Chemical reactions, ions, acids and bases, ... STEM
High School Computer Science Arrays, conditionals, iteration, inheritance, ... STEM
High School European History Renaissance, reformation, industrialization, ... Humanities
High School Geography Population migration, rural land-use, urban processes, ... Social Sciences
High School Gov’t and Politics Branches of government, civil liberties, political ideologies, ... Social Sciences
High School Macroeconomics Economic indicators, national income, international trade, ... Social Sciences
High School Mathematics Pre-algebra, algebra, trigonometry, calculus, ... STEM
High School Microeconomics Supply and demand, imperfect competition, market failure, ... Social Sciences
High School Physics Kinematics, energy, torque, fluid pressure, ... STEM
High School Psychology Behavior, personality, emotions, learning, ... Social Sciences
High School Statistics Random variables, sampling distributions, chi-square tests, ... STEM
High School US History Civil War, the Great Depression, The Great Society, ... Humanities
High School World History Ottoman empire, economic imperialism, World War I, ... Humanities
Human Aging Senescence, dementia, longevity, personality changes, ... Other
Human Sexuality Pregnancy, sexual differentiation, sexual orientation, ... Social Sciences
International Law Human rights, sovereignty, law of the sea, use of force, ... Humanities
Jurisprudence Natural law, classical legal positivism, legal realism, ... Humanities
Logical Fallacies No true Scotsman, base rate fallacy, composition fallacy, ... Humanities
Machine Learning SVMs, VC dimension, deep learning architectures, ... STEM
Management Organizing, communication, organizational structure, ... Other
Marketing Segmentation, pricing, market research, ... Other
Medical Genetics Genes and cancer, common chromosome disorders, ... Other
Miscellaneous Agriculture, Fermi estimation, pop culture, ... Other
Moral Disputes Freedom of speech, addiction, the death penalty, ... Humanities
Moral Scenarios Detecting physical violence, stealing, externalities, ... Humanities
Nutrition Metabolism, water-soluble vitamins, diabetes, ... Other
Philosophy Skepticism, phronesis, skepticism, Singer’s Drowning Child, ... Humanities
Prehistory Neanderthals, Mesoamerica, extinction, stone tools, ... Humanities
Professional Accounting Auditing, reporting, regulation, valuation, ... Other
Professional Law Torts, criminal law, contracts, property, evidence, ... Humanities
Professional Medicine Diagnosis, pharmacotherapy, disease prevention, ... Other
Professional Psychology Diagnosis, biology and behavior, lifespan development, ... Social Sciences
Public Relations Media theory, crisis management, intelligence gathering, ... Social Sciences
Security Studies Environmental security, terrorism, weapons of mass destruction, ... Social Sciences
Sociology Socialization, cities and community, inequality and wealth, ... Social Sciences
US Foreign Policy Soft power, Cold War foreign policy, isolationism, ... Social Sciences
Virology Epidemiology, coronaviruses, retroviruses, herpesviruses, ... Other
World Religions Judaism, Christianity, Islam, Buddhism, Jainism, ... Humanities

Figure 9: Tasks of the MMLU dataset.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

MMLU Prompt

The following are multiple-choice questions (with answers) about abstract algebra.
Find the degree for the given field extension Q(sqrt(2), sqrt(3), sqrt(18)) over Q.
A. 0
B. 4
C. 2
D. 6
Answer:

Figure 10: The official prompt of the MMLU dataset.

HumanEval Prompt

from typing import List

def below_zero(operations: List[int]) -> bool:
""" You're given a list of deposit and withdrawal operations on a bank

account that starts with zero balance. Your task is to detect if at any
point the balance of account falls below zero, and at that point function
should return True. Otherwise it should return False.

>>> below_zero([1, 2, 3])
False
>>> below_zero([1, 2, -4, 5])
True
"""

Figure 11: The official prompt of the HumanEval dataset.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

SRDD

Education

Language

Science

News

Culture

Reference&Books

Family&Kids

Work

Finance

Tools&Utilities

Budgeting

Business

Development

Security

Office

Data

Life

Shopping

Restaurants&Delivery

Entertainment

Personalisation

Health&Fitness

Medical

SocialNetwork

Sports

Travel

Transportation

Game

Action Game

Strategy Game

Racing Game

Role Playing Game

Sport Game

Management Game

Shooter Game

Puzzle Game

Board Game

Simulation Game

Creation

Graphics

Music

Photo

Video

Schedule

Notebook

Figure 12: The hierarchy of the SRDD dataset.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

4 9 14 19 24 29 34 39 44 49 54 59 64 69 74 79 84 89 94 10
0

Sentence Length

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y

Figure 13: The software description length distribution in SRDD.

Security

Restaurants&Delivery

Notebook

Development

Music

Shopping

Business

Office

Schedule

Social Network

Data Science

Family&Kids

Sports

Sport Game

Health&Fitness

Personalization

Board Game

Role Playing Game
Simulation Game

Strategy Game

Racing Game

Medical

Management Game

Shooter Game

Action Game

Puzzle Game
Entertainment

Budgeting

Finance

Culture

Reference&Books
News

Transportation

Travel

Tools&Utilities

Video

Graphics

Language

Figure 14: The t-SNE visualization of the SRDD task embeddings via the ada embedding model.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

CommonGen Example

Concept set:
["oxidation", "cup", "mower", "space", "window", "arch", "pineapple", "spatula", "smoke",
"tie", "gun", "insert", "boat", "use", "tomato", "chest", "vest", "bartender", "move", "micro-
phone", "axis"]
Coherent sentence:
In order to achieve success, one must be persistent in their efforts, just like a mower persis-
tently cuts through the grass. It is important to keep pushing forward, even in the face of
adversity, just like the smoke that rises even when the fire is trying to fade. Encouraging
others to do the same can lead to a more positive and productive environment. It takes a
daring attitude to step out of one’s comfort zone and take risks, just like a boat daringly
sailing into the vast space of the ocean. By being persistent, encouraging, and daring, one can
overcome obstacles and achieve their goals, just like a pineapple growing steadily on its plant,
even when it faces harsh weather conditions. I draw inspiration from pushing the boundaries
of traditional art forms and exploring new techniques. It is through this bold approach that
I am able to create truly unique and inspiring pieces. In my latest piece, I incorporated
elements of oxidation to create a stunning visual representation of change and transformation.
The image of a cup, delicately balanced on the edge of a window, symbolizes the delicate
balance of life. I used a mower to carve intricate patterns into the grass, turning the lawn into
a work of art. The vast expanse of space serves as a backdrop for my imagination to run wild,
unrestricted by earthly limitations. I adorned the archway with vibrant pineapple sculptures,
adding a touch of tropical flair to the serene surroundings. A spatula became my tool of
choice as I manipulated smoke to create ethereal and ephemeral forms that danced in the air.
As I carefully inserted a boat into the space, signifying a journey towards new horizons and
discoveries, with each deliberate move, I guided the piece towards its final form, shaping it
with the precision of a sculptor. The gun, once a symbol of destruction, was transformed
into a statement of peace and reconciliation. The microphone, positioned at the axis of the
composition, captured the subtle nuances and whispers of the artwork, amplifying its impact.
In the end, I stood back and admired the culmination of my efforts, a testament to the power
of daring creativity and fearless self-expression.

Figure 15: One example of CommonGen’s concept-sets and the coherent sentences generated by
MACNET.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

18 18

62

0

10

20

30

40

50

60

70

Chain Tree Graph

#I
nt
er
ac
tio
ns

#nodes = 50

Figure 16: The quantity of interaction rounds in Chain, Tree, and Graph topologies.

938
2372

17587

0

5000

10000

15000

20000

Chain Tree Graph

D
ur

at
io

n
 (s

)

#nodes = 50

Figure 17: Average time consumed (duration) under different topologies.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0.70

0.75

0.79

0.67

0.74

0.700.69 0.70 0.70

0.66

0.71

0.67

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Chain Star Tree Mesh Layer Random

Q
ua
lit
y

With Profile

Without Profile

Figure 18: Ablation study on profiles under different topologies.

0.75

0.63

0.73

0.61

0.50

0.55

0.60

0.65

0.70

0.75

0.80

SRDD CommonGen

Q
ua
lit
y

ChatGPT

Claude

Figure 19: Performances of Claude and ChatGPT on SRDD and CommonGen-Hard datasets.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 20: Demonstration of the "Business Sales Performance Tracker" software developed by
MACNET-CHAIN.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Profiles

: Instructor : Executor

: You are a highly skilled programmer, ready to embark on the development of a Business
application. Your first notable characteristic is your exceptional ability to design effective
algorithms and analyze their time and space complexity. With your keen understanding of
algorithm design and analysis, you possess the expertise to create efficient and optimized
solutions for complex problems. Your meticulous approach ensures that the algorithms
you design are not only effective but also scalable, taking into consideration the time and
space constraints of the application. In addition to your algorithmic prowess, you possess
a second characteristic that sets you apart – software training and education. You have a
natural talent for imparting knowledge and providing software training to both users and
team members. Your ability to break down complex concepts into easily understandable
modules allows you to effectively educate others on the intricacies of the software. Whether
it’s conducting workshops, creating comprehensive training materials, or offering one-on-
one guidance, you excel at empowering individuals to confidently navigate the application.
Lastly, your expertise extends to the formulation and execution of software version control
strategies. You understand the importance of maintaining a well-organized and controlled
development environment. With your meticulous attention to detail, you ensure that the
software version control strategy is carefully crafted to facilitate seamless collaboration
among team members. You implement best practices, such as branching and merging, to
ensure the smooth integration of code changes. Your ability to navigate complex version
control systems allows you to effectively manage multiple versions of the software, ensuring
stability and reliability throughout the development process. As a programmer poised to
develop a Business application, your exceptional skills in algorithm design and analysis,
software training and education, and software version control strategy make you an invaluable
asset. Your ability to create efficient algorithms, educate others on software usage, and
maintain a controlled development environment sets the stage for a successful and impactful
application.

: As a programmer poised to develop a Business application, you possess a remarkable
proficiency in multiple programming languages. Your mastery of languages like Python,
Java, C++, JavaScript, and more, allows you to effortlessly navigate through various coding
frameworks and libraries, ensuring a seamless development process. Beyond your pro-
gramming language expertise, you have also honed your skills in leadership development
within software teams. Your ability to cultivate and develop leadership qualities among
your team members is commendable. You inspire and motivate your colleagues, fostering a
collaborative and efficient work environment. Your guidance and mentorship empower your
team to deliver high-quality software solutions, meeting and exceeding client expectations.
Furthermore, you excel in providing software user training and support. Understanding the
importance of user-friendly applications, you invest time and effort in ensuring that end-users
are well-equipped to utilize the software effectively. Your comprehensive training sessions
and ongoing support enable users to navigate the application effortlessly, maximizing its
potential and enhancing their productivity. In summary, as a programmer poised to develop a
Business application, your mastery of multiple programming languages, leadership devel-
opment skills, and dedication to software user training make you an invaluable asset. Your
ability to seamlessly navigate through coding languages, cultivate leadership qualities, and
provide exceptional user support ensures the successful development and implementation of
Business applications.

Figure 21: Assign profiles to agents.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Agent Interaction in SRDD

: Instructor : Executor

: We have decided to complete the task through a executable software with multiple files
implemented via Python. As the Programmer, to satisfy the new user’s demands, you should
write one or multiple files and make sure that every detail of the architecture is, in the end,
implemented as code. The software should be equipped with graphical user interface (GUI)
so that user can visually and graphically use it; so you must choose a GUI framework (e.g.,
in Python, you can implement GUI via tkinter, Pygame, Flexx, PyGUI, etc.).
Think step by step and reason yourself to the right decisions to make sure we get it right.
You will first lay out the names of the core classes, functions, methods that will be necessary,
as well as a quick comment on their purpose.

:

main.py

import tkinter as tk
from tkinter import messagebox
from sales_data import SalesData
from sales_report import SaleReport
class SalesPerformanceTracker:

def __init__(self, root):
self.root = root
self.root.title("BusinessSalesPerformanceTracker")
self.sales_data = SalesData()
self.create_widgets()

def create_widgets(self):
Create and configure input fields
self.customer_name_label = tk.Label(self.root, text="CustomerName:"

)
self.customer_name_label.grid(row=0, column=0, padx=10, pady=10,

sticky=tk.W)
self.customer_name_entry = tk.Entry(self.root)
self.customer_name_entry.grid(row=0, column=1, padx=10, pady=10)
self.product_name_label = tk.Label(self.root, text="ProductName:")
self.product_name_label.grid(row=1, column=0, padx=10, pady=10,

sticky=tk.W)
self.product_name_entry = tk.Entry(self.root)
self.product_name_entry.grid(row=1, column=1, padx=10, pady=10)
self.sales_figure_label = tk.Label(self.root, text="SalesFigure:")
self.sales_figure_label.grid(row=2, column=0, padx=10, pady=10,

sticky=tk.W)
self.sales_figure_entry = tk.Entry(self.root)
self.sales_figure_entry.grid(row=2, column=1, padx=10, pady=10)

def add_sales_data(self):
customer_name = self.customer_name_entry.get()
product_name = self.product_name_entry.get()
sales_figure = self.sales_figure_entry.get()
if customer_name and product_name and sales_figure:

self.sales_data.add_data(customer_name, product_name, float(
sales_figure))

messagebox.showinfo("Success", "Salesdataaddedsuccessfully!")
else:

· · ·

Figure 22: Agent interaction, part 1.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Agent Interaction in SRDD

: Executor

main.py

· · ·

else:
messagebox.showerror("Error", "Pleasefillinallfields.")

self.clear_input_fields()
def generate_report(self):

report = SalesReport(self.sales_data)
report.generate()

def clear_input_fields(self):
self.customer_name_entry.delete(0, tk.END)
self.product_name_entry.delete(0, tk.END)
self.sales_figure_entry.delete(0, tk.END)

if __name__ == "__main__":
root = tk.Tk()
app = SalesPerformanceTracker(root)
root.mainloop()

sales_data.py

class SalesData:
def __init__(self):

self.data = []
def add_data(self, customer_name, product_name, sales_figure):

self.data.append({
"customer_name": customer_name,
"product_name": product_name,
"sales_figure": sales_figure

})
def get_total_revenue(self):

return sum(data["sales_figure"] for data in self.data)
def get_sales_growth(self):

if len(self.data) < 2:
return 0

first_sales = self.data[0]["sales_figure"]
last_sales = self.data[-1]["sales_figure"]
return (last_sales - first_sales) / first_sales * 100

def get_conversion_rate(self):
if len(self.data) == 0:

return 0
total_sales = sum(data["sales_figure"] for data in self.data)
total_customers = len(self.data)
return total_sales / total_customers

def get_average_order_value(self):
if len(self.data) == 0:

return 0
total_sales = sum(data["sales_figure"] for data in self.data)
total_orders = len(self.data)
return total_sales / total_orders

· · ·

Figure 23: Agent interaction, part 2.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Agent Interaction in SRDD

: Executor

sales_data.py

· · ·

def get_customer_acquisition_cost(self):
if len(self.data) == 0:

return 0
total_sales = sum(data["sales_figure"] for data in self.data)
total_customers = len(self.data)
return total_sales / total_customers

def get_customer_lifetime_value(self):
if len(self.data) == 0:

return 0
total_sales = sum(data["sales_figure"] for data in self.data)
total_customers = len(self.data)
return total_sales / total_customers

def get_sales_by_product_category(self):
sales_by_category = {}
for data in self.data:

product_name = data["product_name"]
sales_figure = data["sales_figure"]
if product_name in sales_by_category:

sales_by_category[product_name] += sales_figure
else:

sales_by_category[product_name] = sales_figure
return sales_by_category

sales_report.py

import matplotlib.pyplot as plt
class SalesReport:

def __init__(self, sales_data):
self.sales_data = sales_data

def generate(self):
pass

· · ·

Figure 24: Agent interaction, part 3.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Agent Interaction in SRDD

: Executor

sales_data.py

· · ·

def generate_summary_report(self):
total_revenue = self.sales_data.get_total_revenue()
sales_growth = self.sales_data.get_sales_growth()
conversion_rate = self.sales_data.get_conversion_rate()
average_order_value = self.sales_data.get_average_order_value()
customer_acquisition_cost = self.sales_data.

get_customer_acquisition_cost()
customer_lifetime_value = self.sales_data.

get_customer_lifetime_value()
report = f"SummaryReport:\n\n"
report += f"TotalRevenue:${total_revenue:.2f}\n"
report += f"SalesGrowth:{sales_growth:.2f}%\n"
report += f"ConversionRate:{conversion_rate:.2f}\n"
report += f"AverageOrderValue:${average_order_value:.2f}\n"
report += f"CustomerAcquisitionCost:${customer_acquisition_cost:.2f

}\n"
report += f"CustomerLifetimeValue:${customer_lifetime_value:.2f}\n"
print(report)

def generate_sales_by_product_category_report(self):
sales_by_category = self.sales_data.get_sales_by_product_category()
categories = list(sales_by_category.keys())
sales_figures = list(sales_by_category.values())
plt.bar(categories, sales_figures)
plt.xlabel("ProductCategory")
plt.ylabel("SalesFigure")
plt.title("SalesbyProductCategory")
plt.show()

def generate_sales_by_product_category_report(self):
sales_by_category = self.sales_data.get_sales_by_product_category()
categories = list(sales_by_category.keys())
sales_figures = list(sales_by_category.values())
plt.bar(categories, sales_figures)
plt.xlabel("ProductCategory")
plt.ylabel("SalesFigure")
plt.title("SalesbyProductCategory")
plt.show()

: The main.py file contains the main application class SalesPerformanceTracker, which
handles the GUI and user interactions. It imports the SalesData class from sales_data.py and
the SalesReport class from sales_report.py. The add_sales_data method is responsible
for...

Figure 25: Agent interaction, part 4.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Agent Interaction in SRDD

: Instructor : Executor

:

Unimplemented File

sales_report.py

In our software, each file must strictly follow a markdown code block format, where the
following tokens must be replaced such that "FILENAME" is the lowercase file name
including the file extension, "LANGUAGE" in the programming language, "DOCSTRING"
is a string literal specified in source code that is used to document a specific segment of code,
and "CODE" is the original code:
FILENAME
```LANGUAGE
'''
DOCSTRING
'''
CODE
```
As the Programmer, to satisfy the complete function of our developed software, you have
to implement all methods in the sales_report.py file which contains an unimplemented
class. Now, implement all methods of the sales_report.py and all other codes needed, then
output the fully implemented codes, strictly following the required format.

:

sales_report.py

· · ·

def __init__(self, sales_data):
self.sales_data = sales_data

def generate(self):
self.generate_summary_report()
self.generate_sales_by_product_category_report()

def generate_summary_report(self):

· · ·

Code Diff on sales_report.py

def generate(self):
- pass
+ self.generate_summary_report()
+ self.generate_sales_by_product_category_report()

Figure 26: Agent interaction, part 5.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Agent Interaction in SRDD

: Instructor : Executor

:
{Code}
<Comment>
The highest priority comment is that the get_customer_lifetime_value
method in the SalesData class is currently returning the same value as the
get_customer_acquisition_cost method. This is incorrect as the customer life-
time value should be calculated differently.
To fix this, you need to update the logic in the get_customer_lifetime_value method to
calculate the average sales per customer over the lifetime of the business. You can do this by
dividing the total revenue by the total number of customers.
Here’s the revised code for the get_customer_lifetime_value method:

sales_data.py

def get_customer_lifetime_value(self):
if len(self.data) == 0:

return 0
total_sales = sum(data["sales_figure"] for data in self.data)
total_customers = len(set(data["customer_name"] for data in self.data)

)
return total_sales / total_customers

Please make this change and ensure that the get_customer_lifetime_value method returns
the correct value.

:

sales_data.py

· · ·

def get_customer_acquisition_cost(self):
if len(self.data) == 0:

return 0
total_sales = sum(data["sales_figure"] for data in self.data)
total_customers = len(self.data)
return total_sales / total_customers

def get_customer_lifetime_value(self):
if len(self.data) == 0:

return 0
total_sales = sum(data["sales_figure"] for data in self.data)
total_customers = len(set(data["customer_name"] for data in self.data)

)
return total_sales / total_customers

· · ·

Figure 27: Agent interaction, part 6. To save space, we have omitted the specific code with {Code}.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Agent Interaction in SRDD

: Instructor : Executor

:
{Code}
The highest priority comment is that the GUI elements of buttons for "Add Sales Data" and
"Generate Report" are not implemented in the SalesPerformanceTracker class in main.py.
To make the software user-friendly and provide intuitive controls for shape manipulation, the
GUI elements need to be created.
To fix this, you need to implement the GUI layout and controls in the
SalesPerformanceTracker class.
For example:

main.py

self.add_button = tk.Button()
self.add_button.grid()
self.generate_report_button = tk.Button()
self.generate_report_button.grid()

Make sure to replace the placeholder code with the actual implementation of the GUI elements
and their corresponding event bindings and callback functions. Once these changes are made,
the software will have a user-friendly interface with intuitive controls.

:

main.py

· · ·

self.sales_figure_entry = tk.Entry(self.root)
self.sales_figure_entry.grid(row=2, column=1, padx=10, pady=10)
Create buttons
self.add_button = tk.Button(self.root, text="AddSalesData", command=

self.add_sales_data)
self.add_button.grid(row=3, column=0, padx=10, pady=10)
self.generate_report_button = tk.Button(self.root, text="Generate

Report", command=self.generate_report)
self.generate_report_button.grid(row=3, column=1, padx=10, pady=10)

def add_sales_data(self):
customer_name = self.customer_name_entry.get()
product_name = self.product_name_entry.get()

· · ·

Figure 28: Agent interaction, part 7.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Agent Interaction in SRDD

: Instructor : Executor

:
Test Reports of Source Codes:

Test Error on sales_report.py

Traceback (most recent call last):
File "sales_report.py", line 6, in <module>
import matplotlib.pyplot as plt

ModuleNotFoundError: No module named 'matplotlib'

Error Summary of Test Reports: "nothing need to do on codes, install the missing module"
Note that each file must strictly follow Now, use the format exemplified above and modify
the problematic codes based on the error summary. Output the codes that you fixed based on
the test reported and corresponding explanations (strictly follow the format defined above,
including FILENAME, LANGUAGE, DOCSTRING and CODE; incomplete "TODO" codes
are strictly prohibited). If no bugs are reported, please return only one line like "<INFO>
Finished".

:

<Action> Install matplotlib package

> pip3 install matplotlib
Collecting matplotlib
.....
Downloading matplotlib-3.8.2-cp39-cp39-macosx_11_0_arm64.whl (7.5 MB)

--------- 7.5/7.5 MB 7.6 MB/s eta 0:00:00
Installing collected packages: matplotlib
Successfully installed matplotlib-3.8.2

sales_report.py

import matplotlib.pyplot as plt
class SalesReport:

def __init__(self, sales_data):
self.sales_data = sales_data

· · ·

Figure 29: Agent interaction, part 8.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Agent Interaction in SRDD

: Instructor : Executor

:

Test Error on main.py

Test Reports of Source Codes:
Traceback (most recent call last):
File "main.py", line 9, in <module>
from sales_report import SaleReport

ImportError: cannot import name 'SaleReport' from 'sales_report' (
sales_report.py)

Error Summary of Test Reports:
Based on the test report, the bug causing the problem is an import error in the main.py file.
The error message states that it cannot import the name SaleReport from the sales_report
module. This suggests that there is an issue with the import statement in the main.py file.
To fix this bug, you need to import the correct name from the sales_report module.
Note that each file must strictly follow Now, use the format exemplified above and modify
the problematic codes based on the error summary. Output the codes that you fixed based on
the test reported and corresponding explanations (strictly follow the format defined above,
including FILENAME, LANGUAGE, DOCSTRING and CODE; incomplete "TODO" codes
are strictly prohibited). If no bugs are reported, please return only one line like "<INFO>
Finished".

:

main.py

'''
Business Sales Performance Tracker
Author: MACNET-CHAIN
'''
import tkinter as tk
from tkinter import messagebox
from sales_data import SalesData
from sales_report import SalesReport
class SalesPerformanceTracker:

def __init__(self, root):
self.root = root

· · ·

Code Diff on main.py

from sales_data import SalesData
- from sales_report import SaleReport
+ from sales_report import SalesReport

Figure 30: Agent interaction, part 9.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Single-Agent Generated Software

Prompt: A software application that allows users to find local sports matches and events in
their area. Users can search for specific sports, view upcoming matches, and connect with
other participants.

main.py

class Event:
def __init__(self, sport, location, date, participants):

self.sport = sport
self.location = location
self.date = date
self.participants = participants

class SportsApp:
def __init__(self):

self.events = []

def add_event(self, event):
self.events.append(event)

def search_events(self, sport):
matching_events = []
for event in self.events:

if event.sport == sport:
matching_events.append(event)

return matching_events

def view_upcoming_events(self):
upcoming_events = []
for event in self.events:

if event.date >= datetime.now().date():
upcoming_events.append(event)

return upcoming_events

def connect_with_participants(self, event):
pass

app = SportsApp()
event1 = Event("Football", "LocalStadium", datetime(2022, 9, 15), ["John",

"Mike", "Sarah"])
event2 = Event("Basketball", "CommunityCenter", datetime(2022, 9, 20), ["

David", "Emily"])
app.add_event(event1)
app.add_event(event2)

football_events = app.search_events("Football")
for event in football_events:

print(event.sport, event.location, event.date)

upcoming_events = app.view_upcoming_events()
for event in upcoming_events:

print(event.sport, event.location, event.date)

participants = app.connect_with_participants(event1)
for participant in participants:

print(participant)

Figure 31: Codes generated by single-agent system.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Multi-Agent Generated Software

Prompt: A software application that allows users to find local sports matches and events in
their area. Users can search for specific sports, view upcoming matches, and connect with
other participants.

database.py

'''
Database module to manage sports events. It includes methods to add events

, find matches by sport, get upcoming matches by location, and
retrieve participants by match ID.

'''
from event import Event
class Database:

def __init__(self):
self.events = []

def find_matches(self, sport):
return [event for event in self.events if event.sport == sport]

def add_event(self, event):
self.events.append(event)

def get_upcoming_matches(self, location):
return [event for event in self.events if event.location ==

location]
def get_participants(self, match_id):

for event in self.events:
if event.id == match_id:

return event.participants
return None

event.py

'''
This file contains the Event class. It initializes with an ID, sport,

location, date, and time, and maintains a list of participants. The
add_participant method adds a participant to the event, and the
__str__ method provides a string representation of the event's
details.

'''
class Event:

def __init__(self, id, sport, location, date, time):
self.id = id
self.sport = sport
self.location = location
self.date = date
self.time = time
self.participants = []

def add_participant(self, participant):
self.participants.append(participant)

def __str__(self):
return f"ID:{self.id},Sport:{self.sport},Location:{self.location},

Date:{self.date},Time:{self.time}"

Figure 32: Codes generated by MACNET, part 1.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Multi-Agent Generated Software

sports_app.py

'''
Sports Application module. The `SportsApp` class integrates a `Database`

and `UserInterface`. It runs a loop offering options to search
matches, view upcoming matches, or connect with participants,
handling user input and displaying results accordingly.

'''
from database import Database
from user_interface import UserInterface
class SportsApp:

def __init__(self):
self.database = Database()
self.user_interface = UserInterface()

def run(self):
while True:

self.user_interface.display_menu()
choice = self.user_interface.get_choice()
if choice == 1:

self.search_matches()
elif choice == 2:

self.view_upcoming_matches()
elif choice == 3:

self.connect_with_participants()
elif choice == 4:

break
else:

print("Invalidchoice.Pleasetry again.")
def search_matches(self):

sport = self.user_interface.get_sport()
matches = self.database.find_matches(sport)
if matches:

self.user_interface.display_matches(matches)
else:

print("Nomatchesfound.")
def view_upcoming_matches(self):

location = self.user_interface.get_location()
upcoming_matches = self.database.get_upcoming_matches(location)
if upcoming_matches:

self.user_interface.display_matches(upcoming_matches)
else:

print("Noupcomingmatchesfound.")
def connect_with_participants(self):

match_id = self.user_interface.get_match_id()
participants = self.database.get_participants(match_id)
if participants:

self.user_interface.display_participants(participants)
else:

print("Noparticipantsfound.")

Figure 33: Codes generated by MACNET, part 2.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Multi-Agent Generated Software

user_interface.py

'''
User Interface module for the Sports application. The `UserInterface`

class handles user interactions, displaying a menu for searching
matches, viewing upcoming matches, and connecting with participants.
It processes user inputs and displays match and participant details.

'''
class UserInterface:

def display_menu(self):
print("Welcometothe Sportsapplication!")
print("1.SearchMatches")
print("2.View UpcomingMatches")
print("3.Connectwith Participants")
print("4.Exit")

def get_choice(self):
while True:

try:
choice = int(input("Enteryourchoice:"))
if choice in [1, 2, 3, 4]:

return choice
else:

print("Invalidchoice.Pleaseenter a numberbetween1 and 4."
)

except ValueError:
print("Invalidinput.Pleaseenter a number.")

def get_sport(self):
return input("Enterthesportyou are interestedin: ")

def get_location(self):
return input("Enteryourlocation:")

def get_match_id(self):
return int(input("EnterthematchID:"))

def display_matches(self, matches):
print("Matches:")
for match in matches:

print(match)
def display_participants(self, participants):

print("Participants:")
for participant in participants:

print(participant)

main.py

'''
This is the main file of the Sports application.
'''
from sports_app import SportsApp
def main():

app = SportsApp()
app.run()

if __name__ == "__main__":
main()

Figure 34: Codes generated by MACNET, part 3.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Figure 35: The software repository crafted by MACNET-CHAIN encompasses a diverse array of
software categories, including but not limited to the game category and tool category. Each category
contains a range of applications, each uniquely designed to meet specific user requirements and
functionalities. The game category includes a variety of games developed using MACNET-CHAIN,
ranging from simple puzzle games to more complex strategy and simulation games. These games are
designed not only for entertainment but also to demonstrate the capabilities of MACNET-CHAIN in
handling intricate logic, graphics, and user interaction. The tool category comprises various utility
and productivity tools. Examples might include applications for data analysis, task management,
or content creation. These tools are tailored to enhance productivity and efficiency, showcasing
MACNET-CHAIN’s ability to create software that addresses practical, everyday needs. In addition to
these categories, the MACNET-CHAIN-created software warehouse likely includes many other types
of software, each illustrating the versatility and breadth of applications that can be developed using
this advanced development platform.

47

	Introduction
	Multi-Agent Collaboration Network
	Network Construction
	Interactive Reasoning
	Memory Control

	Evaluation
	Does Our Method Lead to Improved Performance?
	How Do Different Topologies Perform Against Each Other?
	Could A Collaborative Scaling Law Be Observed?
	What Factors Might Contribute to Collaborative Emergence?

	Related Work
	Conclusion
	Theoretical Derivations: Token Complexity Analysis
	Supplementary Descriptions: Datasets
	Supplementary Experiments: Time Consumption Analysis
	Supplementary Experiments: Ablation Study
	Supplementary Experiments: Case Study
	Discussion: Limitations and Future Work
	Reproducibility: Software and Data
	AI Assistants

