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ABSTRACT

The rapid development of video processing technology makes it easy for people
to forge videos without leaving visual artifacts. The spread of forged videos may
lead to moral and legal consequences and pose a potential threat to people’s lives
and social stability. So it is significant to identify deepfake video information.
Although the previous detection methods have achieved high accuracy, the gen-
eralization is poor when facing unprecedented data in the real scene. There are
three fundamental reasons. The first is that capturing the general clue of artifacts
is difficult. The second is that selecting the appropriate model is challenging in
specific feature extraction. The third is that exploiting fully and effectively the
extracted features is hard. We find that the high-frequency information in the
image and the texture in the shallow layer of the model expose the subtle arti-
facts. The optical flow of the real video has variations while the optical flow of
the deepfake video has rarely variations. Furthermore, consecutive frames in the
real video have temporal consistency. In this paper, we propose a dual-branch
video forgery detection model named ENST, which integrates parallelly and in-
teractively EfficientNet-B5 and Swin Transformer. Specifically, EfficientNet-B5
extracts the artifacts information of high frequency and texture in the shallow layer
of the model. Swin Transformer captures the subtle discrepancies between opti-
cal flows. To extract more robust face features, we design a new loss function
for EfficientNet-B5. In addition, we also introduce the attention mechanism into
EfficientNet-B5 to enhance the extracted features. We conduct test experiments
on FaceForensics++ and Celeb-DF (v2) datasets, and comprehensive results show
that ENST has higher accuracy and generalization, which is superior to the most
advanced methods.
Index Terms: deepfakes, video forgery detection, high frequency, texture, optical
flow, EfficientNet, Swin Transformer

1 INTRODUCTION

Video synthesis techniques based on deep learning Karras et al. (2017; 2018); Thies et al. (2019)
have reduced the threshold for people to manipulate videos, and the high-quality deepfake videos
that are indistinguishable to the human eye are increasingly available Deepfakes (2020); Faceswap
(2019); Fakeapp (2020). Although this technology has been applied to Cineflex, Crytek, and driver-
less technology, which has had a positive effect on society. Inevitably, it is illegally abused by some
malicious users to forge indistinguishable false information, which seriously affects the level of
public trust in the government and society, causes irreparable social problems, and can even pose a
serious threat to politics.

Many deepfake detection methods Wang et al. (2019); Kim et al. (2021); Jeon et al. (2020) have been
proposed to address this problem and significant progress has been made. Previous works explore
forgery patterns based on manual features Ferrara et al. (2012); Pan et al. (2012); Cozzolino et al.
(2015) and then classify them by zooming in on the subtle differences between the real and forged
images. While most of the recent learning-based approaches Cozzolino et al. (2017); Chollet (2017a)
define the problem as a binary classification of an image or video with a process of first extracting
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the global features of the image using a neural network and then feeding them to a classifier to
distinguish between genuine and faked images.

However, with the increasing refinement of deep generative methods, the generated forged videos
are becoming increasingly difficult to discriminate, especially some low-quality ones with only a
few subtle visual artifacts. Most existing detection methods still focus on specific artifacts, leading
to significant challenges in the generalization and effectiveness of detection systems in realistic
scenarios. This creates an urgent need to discover subtle cues that are more critical for detection,
and then to extract and incorporate appropriate modules with efficient backbone networks to enhance
these artifact features and combine them effectively for forgery detection.

After systematic analysis, we find three fundamental reasons for the low generalization of the model.
The first is the difficulty of capturing general artifact cues and the limitations of the dataset in terms
of quantity and quality. The second is the limitations of selecting a suitable network model for
specific feature extraction. The third is the limitations of fully and effectively utilizing the extracted
features. In terms of feature cues, we find that although the generated videos are realistic with few
artifacts in the texture, the frequency domain, especially at high frequency, still reveals significant
differences, even for low-quality videos, and many forgery methods are designed to generate videos
that are slightly defective to human vision, with few methods targeting the frequency domain. In
addition, it is found that texture information located at the shallow level of the detection network
rather than the higher-level semantic information is particularly critical for detection. To eliminate
the effect of luminance in RGB on texture feature extraction, we convert the images from RGB
to YCbCr and remove the luminance (Y) channel, and combine Cb and Cr channels with high
frequencies. In addition, we find a characteristic that the optical flow of the real video changes
significantly while the optical flow of the deepfake video has little change, and coupled with the
temporal consistency of the continuous frames of the real video, we choose the high frequency,
texture, and optical flow as the feature cues for video forgery detection.

For features such as high frequency and texture, which require attention to local details, we choose
EfficientNet-B5 Tan & Le (2019), a CNN class network that is superior in local feature extrac-
tion, as one of the backbone networks, which has higher accuracy and performance compared with
other CNNs. For features such as optical flow, which reflect the inter-frame temporality, we choose
Swin Transformer Liu et al. (2021), a Transformer class network that is superior in global repre-
sentation, as another backbone network, which applies to all scales of images, simple and flexible
in computation, and shows excellent performance compared with other Transformers. In addition,
we introduce the attention mechanism and a new loss function for EfficientNet-B5 to extract more
robust face features.

In summary, in this paper, we propose a novel multiple-cue video forgery detection model ENST
using a combination of high frequency, low-level texture, and optical flow cues, based on the fusion
of EfficientNet-B5 and Swin Transformer, which fully integrates multiple key features and uses an
advanced backbone network for extraction. To demonstrate the effectiveness of ENST, we conduct
extensive experiments on FaceForensics++ Rssler et al. (2019) and Celeb-DF (v2) Li et al. (2019), as
well as a comparison of various settings in an ablation study. Comprehensive experiments indicate
that ENST has excellent competitive properties.

The contributions of this paper are as follows:

1. We investigate the current video forgery detection methods in-depth and systematically, and find
three reasons for the poor generalization ability of these methods, as well as discover several artifact
cues in forgery detection, and use these cues to design an efficient network structure for the above
reasons.

2. We propose a novel network structure ENST, which can utilize the local feature extraction ability
of EfficientNet-B5 and the global relationship sensing ability of Swin Transformer, and integrate
them to complement their abilities during data processing. In addition, we introduce the attention
module and a new loss function for EfficientNet-B5 to enhance the ability to extract features.

3. Our experiments on FaceForensics++ and Celeb-DF (v2) demonstrate that ENST achieves supe-
rior classification performance and generalization compared to other state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 presents related work in the field of video
forgery detection and describes the motivation for the proposed ENST. Section 3 details the specifics
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of the proposed model. Section 4 describes the experimental results and analysis. Section 5 con-
cludes this paper.

2 RELATED WORK

2.1 VIDEO FAKE CUES

In recent years, various deep learning forgery methods have produced synthetic images or videos
of faces Suwajanakorn et al. (2017; 2015) that have caused some degree of harm to society. The
problem of deep forgery detection has received extensive attention in the vision field, and many
forgery detection methods have been proposed to detect such forged products. Some methods focus
on mining specific artifacts generated by the forgery process, such as color space Li et al. (2018);
McCloskey & Albright (2018) and shape cues. Many deep learning methods Marra et al. (2018); Yu
et al. (2018); Zhou et al. (2018) use deep neural networks to extract high-level semantic information
from the spatial domain and then classify a given image or video. Some methods convert the image
from the spatial domain to the frequency domain Stuchi et al. (2017); Franzen (2018), capturing
some information that is valuable for forgery detection. Stuchi et al. (2017) employ a fixed set of
filters to extract different ranges of frequency information and then adopt a fully connected layer to
obtain classification results. Durall et al. (2019) extract the frequency domain information using the
DFT transform and average the amplitudes of the different frequency bands. Other methods extract
statistical features, such as capturing features from spatial textures Pan et al. (2009); Conotter (2011)
and transform domain coefficient distributions Chen et al. (2009); Lyu & Farid (2005). Video detec-
tion methods can discover differences in the temporal dimension of video frames Sabir et al. (2019);
Guera & Delp (2018), such as Wang & Dantcheva (2020) using spatial and motion information,
and Chintha et al. (2020); Amerini et al. (2020); Caldelli et al. (2021) using optical flow for video
forgery detection. While the above methods are limited to specific cues, we take full advantage of
these cues.

2.2 DEEPFAKE DETECTION STRUCTURES

Many deep learning models have been proposed to extract features and discover forgery patterns
directly without targeting a specific forgery cue or artifact, classify real and fake images or videos,
and implement deep forgery detection created by random methods. EfficientNet Tan & Le (2019)
achieves higher accuracy with a larger network by combining a composite model expansion method
with neural structure search techniques to optimize the dimensions of network depth, network width,
and input image resolution, which has higher accuracy and performance compared to other advanced
CNNs. Each layer of Swin Transformer computes self-attention within the window of the transform,
enabling cross-window connectivity for all scales of the image. Swin Transformer is flexible and
efficient, with only linear complexity for image size. Convolution module in CNN is good at extract-
ing local details, and as the layers get deeper, the attention field will be wider and more suitable for
image processing. But to capture global information, detection model often requires stacking many
convolutional layers. While attention in Transformer is good at grasping the whole, but requires a
large amount of data for training. Conformer Peng et al. (2021) uses a parallel and complementary
approach, combining both CNN and Transformer branches to preserve the features extracted by both
branches, to achieve performance beyond CNN and ViT Dosovitskiy et al. (2020) with comparable
parameter complexity.

3 PROPOSED METHOD

In this section, we outline the principles and details of the different parts of the proposed method
according to the data processing process.

It is challenging for most methods to extract sufficiently comprehensive features with suitable net-
work models and then integrate them effectively for forgery detection. Inspired by Conformer Peng
et al. (2021), we choose two models EfficientNet-B5 and Swin Transformer with more efficient
performance among CNNs and Transformers, as baselines and combine them for video forgery de-
tection.
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EfficientNet-B5 extracts local features of frames, such as high frequency features and texture fea-
tures by using the characteristic of focusing well on local features. Swin Transformer extracts arti-
fact features from the optical flow map between frames to obtain the global representation of frames,
where the optical flow features responding to the temporal consistency between frames are used.

We design a parallel interactive deep forgery detection architecture ENST to learn a potential repre-
sentation that can distinguish between real and forged faces, and the pipeline of ENST is shown in
Figure 1.

Feature Interaction Module

Extracted Faces i-th frame

Optical Flow

CbCr

High-frequency

MTCNN

Video

Lsoftmax+ LArcface + Lsc

Real/Fake

HF & Texture

Feature Maps
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Figure 1: The video forgery detection pipeline of proposed ENST, where Swin Transformer-A rep-
resents the first three stages in Swin Transformer, Swin Transformer-B represents the last stage in
Swin Transformer, and D represents DCT operation.

3.1 PRE-PROCESSING

We first extract the frames of the input video, and then use the Multitask Cascaded CNNs (MTCNN)
Zhang et al. (2016) to detect and extract the faces present in each frame, crop the faces of each frame,
then resize to 224×224 pixels. Moreover, we normalize them to zero mean and unit variance, and
finally obtain the extracted faces. After that, we first operate on a single frame in the video, and the
face in frame i is input to two branches after the basic feature extraction process.

3.2 EFFICIENTNET-B5 BRANCH

We exploit the structurally improved EfficientNet-B5 branch to extract the deepfake information in
the high frequency and texture, and enhance it to finally obtain the features of a fully connected
linear layer. We introduce the specific details in the following subsections.

3.2.1 FEATURE

The motion process of faces is complex, and most forgery methods do not consider sufficiently
precise global constraints during forgery, which can easily lead to missing facial texture details of
the generated faces and inconsistencies among features in diverse domains.

As the skin tones in RGB images are more influenced by the luminance, we convert the extracted
faces from RGB to YCrCb by separating and removing the Y channel which denotes luminance.

In addition, considering the important effect of high frequency on forgery detection, we convert the
image from the spatial domain to the frequency domain by DCT operation, and then use a high-pass
filter to extract the high frequency component, which was merged with the two channels of Cr and
Cb to form a three-dimensional 224×224×3 feature tensor. Then it was fed into EfficientNet-B5 to
extract the detail components in high frequency and the fine artifacts of the shallow texture.
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3.2.2 LOSS

We assume that real and fake faces in videos have distinguishable feature distributions, and samples
of different classes are clustered together. To extract robust face features and to distinguish the video
distributions of real and fake faces, instead of using the more common softmax and cross-entropy, we
combine softmax loss, additive angular margin loss (ArcFace) Deng et al. (2018) and single-center
loss (SCL) Li et al. (2021) as the loss function of EfficientNet-B5 for extracting features. ArcFace
and SCL have some similarities, both are used to compress intra-class tightness and enhance inter-
class diversity. And we combine these objective functions to improve the accuracy of the extracted
features.

ArcFace

ArcFace is an improvement on SphereFace Liu et al. (2017) in terms of feature vector normalization
and additive angular spacing, forcing a boundary between the distance of a sample to its class center
and the distance of a sample to other class centers in a corner space. It improves interclass separa-
bility, and also enhancing intraclass tightness and interclass diversity, allowing the model to learn
features that are highly distinguishable between real and fake faces features, resulting in a more
robust classification for forgery detection. ArcFace loss is defined as:

LArcface = −
1

N

N∑
i=1

log
( es·(cos(θyi+m))

es·(cos(θyi+m)) +
∑N
j=1,j 6=yi e

s·cos θj

)
, (1)

where N is the batch size, n is the class number, m is an additive angular margin penalty between
xi and Wyi , θj is the angle between the weight Wj and the feature xi, Wj is the j-th column of
the weight W , and s is the radius of a hypersphere where the learned embedding features are thus
distributed on.

Single-center Loss (SCL)

The purpose of SCL is to minimize the distance from the real face to the center point while maxi-
mizing the distance from the fake face to the center point, so that the network can learn more subtle
forgery information and reduce the optimization difficulty. SCL is defined as:

Lsc =Mnat +max(Mnat −Mman +m
√
D, 0), (2)

where Mnat is the average Euclidean distance of the true face representation from the center point
C, andMman is the average Euclidean distance of the false face representation from the center point
C. The Euclidean distance m is related to the arithmetic square root of the feature dimension D. To
facilitate the setting of the hyper-parameter m, the boundary is designed here as m

√
D.

In addition, considering that SCL is based on mini-batch samples and focuses directly on feature
representation, while softmax loss can focus on the global and on how to map the feature represen-
tation to the discrete label space. So, we use the global information retained by softmax loss to guide
the update of center points in SCL and increase the robustness of training.

In general, to reconcile the local feature representation and the global update, we use a combination
of three loss functions, The total loss function is defined as:

Ltotal = Lsoftmax + αLArcface + βLsc, (3)

where α and β are hyper-parameters or weights that adjust the balance between Lsoftmax, LArcface,
and Lsc. They are used to provide a relatively efficient and flexible total loss function.

3.2.3 ATTENTION

The attention mechanism allows models to focus on and fully learn crucial information, and is
widely adopted as a module in models in natural language processing and computer vision Jie et al.
(2017); Huang et al.; Vaswani et al. (2017).

We take EfficientNet-B5 as the extraction model for artifact features in high frequency and low layer
textures. To focus more on the artifacts in the feature maps, inspired by Bonettini et al. (2020), we
insert the attention module between the MBConv layers of EfficientNet-B5, as shown in Figure 2,
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Figure 2: Attention module is introduced into MBConv interlayers in EfficientNet-B5.

Figure 2 shows the effect of adding only one attention module. In the practical experiment, we add
the attention module sequentially from front to back between layers to compare the effect of the
attention mechanism on the overall detection performance of the model. First, the high frequency
and texture information of the frames are combined and fed to EfficientNet-B5. Forging the images
will result in overlapping areas of high frequency and texture information, which can be a guide
to the extraction of texture information. In addition, the attention module can notice these subtle
artifacts in the shallow layers. The final output is an enhanced fusion feature of high frequencies
and textures.

3.3 SWIN TRANSFORMER BRANCH

Considering that the optical flow of the real video changes, while the optical flow of the faked
video rarely changes. In addition, the distance between parts of the face and the head motion vary
continuously and regularly between frames of the real video, while most forgery methods seldom
concern to ensure the continuity between frames of the deep forgery video by effective modeling,
which leads to the temporal inconsistency of the consecutive frames.

To exploit this temporal variation difference, we first divide the video into 0∼N consecutive frames,
and extract the optical flow of frame i and frame i+ 1 as the optical flow of frame i by using PWC-
Net Sun et al. (2018). Then we input them into Swin Transformer-A to obtain the patch embeddings
of the middle layer, where Swin Transformer-A represents the first three stages in Swin Transformer.

3.4 FEATURE INTERACTION MODULE

We introduce the feature of complementary fusion by adding a feature interaction module. In order
to solve the problem of mismatching the size of the feature map in the Efficient-B5 branch and
the patch embeddings in the Swin Transformer branch, we use a special conversion operation, in
which a 1×1 convolution is used to align the dimensionality of the feature map with the number of
channels of the patch embeddings. Then, the spatial dimensions are aligned by the downsampled
module. Finally, the feature map are added to the patch embedding.

In addition, the global context is gradually exported from the Swin Transformer branch to the feature
map in Efficient-B5 to enhance the global perception capability of the Efficient-B5 branch. We adopt
a similar operation by first upsampling the patch embedding to align the spatial scales. Then a 1×1
convolution is used to align the number of channels of the patch embeddings with the dimensionality
of the feature map.

Moreover, considering that the forgery operation causes changes in various aspects of the forgery
region, the same regions of different features extracted have definite similarities, so this parallel and
complementary fusion of the two branches also enables the two branches to guide each other and
focus on the local artifact that is instrumental for forgery detection.
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3.5 FEATURE CONCATENATION

This part is the combination of all face region features of frame i extracted from two branches
connected to form a feature concatenation of frame i, which includes the extracted high frequency,
texture features, and patch embeddings.

The above operations are performed for each frame in sequence to obtain the feature concatenations
of the 0∼N frames of the videos. After resizing, they are transformed into individual patches,
which are combined into N patches, and then transformed into a new patch embedding, and then
input it to Swin Transformer-B, then followed by the linear layer and softmax layer, finally output
the classification prediction of the whole video, where Swin Transformer-B represents the last stage
in Swin Transformer. It is worth mentioning that, after “i-th frame” and before “All frames features”
in Figure 1 represent the operation process of the i-th frame alone, and the rest of Figure 1 represents
the operation process of all frames.

4 EXPERIMENTS

4.1 DATASETS

In this paper, we use FaceForensics++ to train and verify the performance of our proposed model
ENST, and Celeb-DF (v2) to verify the generalization of the model.

4.1.1 FACEFORENSICS++

FaceForensics++ is a facial forgery video dataset, including original videos and videos generated
by the four most representative face manipulation methods (Face2Face, FaceSwap, DeepFakes and
NeuralTextures), each category has 1000 forgery videos, and the extracted frames contain more
than 500,000 forged images in each category. According to different compression levels, the com-
pression factors can be classified as c0(raw), c23(medium) and c40(high). As with the setup in
FaceForensics++, we split the dataset in each category into a fixed train set, a validation set and a
test set containing 720, 140 and 140 videos, respectively. In the following experiments, we use two
compression levels of c23(medium) and c40(high) for the data. By default, the metric are Acc and
AUC.

4.1.2 CELEB-DF (V2)

Celeb-DF (v2) contains both real and fake videos from Youtube. Unlike the FaceForensics++, the
fake videos in Celeb-DF (v2) are further segmented to handle issues such as color inconsistency and
low-frequency smoothing, and have online playback-level high-resolution pictures quality. Celeb-
DF (v1) contains 795 fake videos. Celeb-DF (v2) is an extension of Celeb-DF (v1) and includes
590 original videos collected from YouTube with different age, race, and gender themes, and 5639
corresponding fake videos. Celeb-DF (v2) has more diverse and challenging data, which is beneficial
to verify the generalization of the proposed method.

4.2 SETTINGS

Based on the parameters of Conformer by default, we combine the parameters in both branches of
EfficientNet-B5 and Swin Transformer. ENST uses an optimizer of AdamW. The momentum is 1.0.
The weight decay factor is 0.05. The batch size is 256. The epoch is 300. The initial learning rate is
0.001. The LR scheduler is decaying with a cosine schedule.

4.3 COMPARISON OF METHODS

We compare the proposed method ENST with previous high-performance video forgery detection
models on FaceForensics++, and the results are shown in Table 1. Comparing with some advanced
methods, we find that although c40 reduces the AUC by 6.50 and the accuracy by 10.57 compared to
c23, it still outperforms other methods. We analyze that although the compression loses the details of
image texture, the extracted high-frequency information and the optical flow information between
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Table 1: Comparison of the results of different models on the two quality types of FaceForensics++.

Model c40 c23
AUC Acc AUC Acc

MesoNet Afchar et al. (2018) - 70.47 - 83.10
Face X-ray Li et al. (2020) 61.60 - 87.40 -
Xception Chollet (2017b) 89.30 86.86 96.30 95.73

Two-branch Masi et al. (2020) 86.59 - 98.70 -
Efficient-B4 Zhao et al. (2021) 90.40 88.69 97.60 99.29

ENST(Ours) 91.12 88.73 97.62 99.30

video frames have excellent robustness to the compressed information, which can well resist the
compression interference and maintain the robustness of the model.

Table 2: Comparison of generalization results of different models, which train on the FaceForen-
sics++ train set and test on Celeb-DF (v2) (AUC(%)).

Model FF++ Celeb-DF (v2)
Two-stream Zhou et al. (2018) 70.10 53.80

Mesolnception4 Afchar et al. (2018) 83.00 53.60
Two Branch Masi et al. (2020) 93.18 73.41
Efficient-B4 Zhao et al. (2021) 99.8 67.44

ENST(Ours) 99.8 67.51

In order to verify whether ENST has superior generalization in realistic scenarios that are not in-
cluded in the train set, we put the model trained on FaceForensics++ on Celeb-DF (v2) for experi-
ments on transfer learning, we use the fine-tuning model, i.e., freeze parts of the convolutional layers
of the pre-trained model, train the remaining convolutional layers, and after the model converges,
reduce its learning rate and fine-tune the layers. We randomly select 40 samples in Celeb-DF (v2)
with FaceForensics++ to train the model to prevent catastrophic forgetting, and the results are shown
in Table 2. The experimental results show that ENST has a better transfer capability and the ability
to learn new types of samples. It shows superior generalization on new types of data.

4.4 ABLATION STUDY

To verify the effectiveness of each part of ENST, we conduct an ablation study and evaluate the
network on FaceForensics++.

4.4.1 COMPARISON OF LOSS

Table 3: Comparison of results using different loss functions in EfficientNet-B5 on c23 of the Face-
Forensics++.

Loss Function AUC Acc
Arcface 88.15 84.48

SCL 92.27 90.64
Softmax + Arcface 91.52 87.86

Softmax + SCL 95.46 96.93
Softmax+ Arcface + SCL 98.67 97.65

On FaceForensics++, we compare the experimental results of using different loss functions when
extracting features in EfficientNet-B5, as shown in Table 3. First, we compare the classification
results of Arcface and SCL individually, after which softmax is added to guide the improvement of
the global classification. Finally the three losses are combined. The experimental results indicate
that the highest accuracy is achieved when softmax, Arcface, and SCL are integratively used.
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Table 4: Comparison of results on the FaceForensics++ with the addition of the attention module at
different stages of EfficientNet-B5, where Xindicates the addition of the attention module in stage
i of EfficientNet-B5. Stage 1 indicates after the first MBConv. Only the first five of the seven are
listed here.

Stage

1 X X X X X
2 X X X X
3 X X X
4 X X
5 X

AUC 96.35 97.82 98.53 98.67 98.55 95.63
Acc 94.65 96.07 96.53 97.65 94.49 89.48

4.4.2 COMPARSION OF ATTENTION

On FaceForensics++, we start from the previous of the EfficientNet-B5 structure and add attention
modules at different stages, and the experimental results are shown in Table 4, which shows that the
accuracy increases gradually with the addition of attention modules. However, when continuing to
add at the 4th stage, the accuracy has slightly decreased, and when continuing to join in the 5th stage,
the accuracy rate shows a significant decrease, which is consistent with our speculation. Our anal-
ysis suggests that the artifacts are mainly concentrated in the shallow network of EfficientNet-B5,
and the shallow feature extraction can provide enough critical information for the whole classifi-
cation network to classify, while the deep feature extraction is of little significance. Furthermore,
the increase of the attention module will increase the computational volume and affect the overall
performance improvement.

5 CONCLUSION

In this paper, we systematically analyze the reasons for the low generalization of the current forgery
video detection system and discover some subtle but critical cue features in forgery detection. In or-
der to combine the discovered cues and improve the generalization problem, we propose a network
structure ENST with parallel interaction fusion of two branches, EfficientNet-B5 and Swin Trans-
former. We also introduce the attention mechanism and add a new loss function to EfficientNet-B5
to further focus on and enhance the artifact features and extract more robust face features. Com-
prehensive experiments indicate that ENST has better performance and generalization than other
advanced methods.
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