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Abstract

Long-form videos that span across wide temporal intervals are highly information
redundant and contain multiple distinct events or entities that are often loosely
related. Therefore, when performing long-form video question answering (LVQA),
all information necessary to generate a correct response can often be contained
within a small subset of frames. Recent literature explore the use of large language
models (LLMs) in LVQA benchmarks, achieving exceptional performance, while
relying on vision language models (VLMs) to convert all visual content within
videos into natural language. Such VLMs often independently caption a large
number of frames uniformly sampled from long videos, which is not efficient and
can mostly be redundant. Questioning these decision choices, we explore optimal
strategies for key-frame selection that can significantly reduce these redundancies,
namely Hierarchical Keyframe Selector. Our proposed framework, LVNet, achieves
state-of-the-art performance at a comparable caption scale across three benchmark
LVQA datasets: EgoSchema, NExT-QA, IntentQA. The code can be found at
https://github.com/jongwoopark7978/LVNet

1 Introduction

Video understanding is a long-standing vision problem [1] with numerous real-world applications.
It has been traditionally studied even before the era of differentiable representation learning, with
hierarchical approaches focusing on longer videos [3, 15, 33, 13, 32]. Today, video understanding
research involving the language modality is particularly popular, with tasks such as video question
answering that involve generating human-style conversations in response to questions regarding
videos [34, 51, 44].

The recent popularity of vision-language models (VLMs), particularly approaches connecting large
language models (LLMs) to vision architectures [23, 21, 7], has resulted in significant improvements
across visual question answering (VQA) tasks. These models demonstrate exceptional performance
within the image domain, and their video variants [47, 28, 27] perform similarly on shorter videos,
yet demonstrating limited performance on long-form video benchmarks [24, 16, 30, 31]. This can
be attributed to the nature of long-form video benchmarks, which require both temporal sequence
awareness and causal reasoning. An alternate line of works [52, 36, 16, 37] adapt LLMs that contain
strong reasoning abilities for this task, using image VLMs to generate per-frame natural language
descriptions, followed by video question answering purely within the language domain. However,
these methods employ expensive VLMs to caption a large number of uniformly sampled frames.
Such a design choice leading to high compute expense, is questioned in [4, 30, 37], and is the key
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Figure 1: (left) Our proposed LVNet contains a novel Hierarchical Keyframe Selector module to
select keyframes and followed by VLM and LLM for caption and answer generation. Hierarchical
Keyframe Selector initially begins by processing dense frames and keywords with the lighter module
and progressively exploits heavier and more performance-oriented modules on a small set of frames,
resulting from the reduction of keyframe candidates, to ensure efficient computation. (right) LVNet
achieves state-of-the-art performance on the EgoSchema subset while utilizing only a fraction of
captioned frames. In particular, LVNet obtains its highest accuracy of 68.2% with 12 captions,
outperforming VideoAgent, a model using a similar-scale captions, by 8%. A more detailed analysis
of accuracy vs. the number of captions is provided in 4.3.

motivation for our exploration of key frame selection, i.e. identifying a minimal set of frames most
useful for correctly answering a given video-question pair.

Therein, we propose LVNet, a framework containing a novel Hierarchical Keyframe Selector (HKS)
that performs efficient key-frame selection followed by VLM and LLM for caption and answer
generation as illustrated in Figure 1. Aligned with prior work [52, 39, 37], the per-frame captions
are processed with a powerful LLM to generate correct answers for a given video-question pair. The
scope of this work focuses on optimizing the prior two stages.

We summarize our key contributions as follows:
• Novel Hierarchical Keyframe Selector module which are composed of three submodules: Tem-

poral Scene Clustering (TSC), Coarse Keyframe Detector (CKD), and Fine Keyframe Detector
(FKD).

– Temporal Scene Clustering performs non-uniform frame sampling by clustering visually
similar frames, minimizing redundancy in long videos and capturing key scenes. The
lightweight module is used to efficiently filter dense frames.

– Coarse Keyframe Detector generates keywords, representing atomic activities, using the
given query and LLM. It assigns confidence scores to frames based on keyword rele-
vance, sub-sampling high-confidence frames for improved interpretability over visual-only
selection.

– Fine Keyframe Detector refines frame selection by combining multiple frames using visual
templating and Visual Language Model (VLM), enabling higher-level reasoning and natural
language output for improved accuracy over the CKD’s keyword-based selection.

• Long-form Video Understanding framework requiring zero video-level training.

Our proposed LVNet achieves state-of-the-art results compared to the models that utilize a similar
number of captions on three long-form video question answering benchmarks—EgoSchema[24],
NExT-QA[41], and IntentQA[22] as described in 4.2. This demonstrates the strong performance and
general applicability of our approach.

2 Related Work

Video Question Answering: Visual question answering (VQA), a relatively recent task, involves
generating free-form and open-ended textual content conditioned on an image and natural language
text [2]. Its video variant, Video-VQA [49] replaces images with videos. While multiple early
datasets focus on querying objects or events based on referential and spatial relations [44, 51, 49],
later tasks require explicit temporal understanding of sequential events [18, 19, 50]. More recent
datasets focus on longer videos containing multiple actions and scenes spread over a wide time
interval (termed long-form videos) [41, 20] with questions additionally requiring causal reasoning to
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correctly answer. Referred to as long-form video question answering (LVQA), these benchmarks are
constructed to specifically test strong causal and temporal reasoning [41] over long temporal windows
[24]. Some works tackling such casual video VQA tasks leverage graph networks to model cross
object / event relations [14, 42, 43]. A more recent line of works integrate large-language models
(LLMs) to tackle this task [52, 36, 16, 37, 30, 39, 9] utilizing the strong reasoning skills of the LLMs.
A common aspect is the use of a vision langauge model (VLM) to convert the frame level visual
information into natural language. This is in turn input to the LLM which makes a final prediction.

Unlike these methods, our LVNet incorporates a unique Hierarchical Keyframe Selector that pro-
gressively reduces the number of keyframe candidates. Lighter modules are applied to dense frames,
while heavier, more performance-focused modules are applied to a small set of frames for efficient
computation. Additionally, LVNet does not require video-level training, unlike earlier supervised
approaches.

Frame Selection in Videos: The task of frame selection in videos has been long explored in video
[8, 53] with more recent works focused directly on long-form video question answering [4, 30]. Most
similar to our work is [37] which employs an LLM based strategy for video frame selection. However,
our proposed Hierarchical Keyframe Selector module differs with unique visual only operations as
well as cross-modal operations handling much longer frame sequences extending up to 900 frames.

3 Method

In this section, we present our training-free (i.e. zero-shot) framework for long-form video QA,
LVNet. Videos are a dense form of data with even a few seconds long clip being composed of 100s
of frames (individual images). In the case of long-form videos, this frame count is even greater.
However, the information necessary to answer a given question is often contained in a handful of
those frames. Our framework tackles this challenge of selecting an optimal and minimal set of
informative frames. We refer to this as keyframe selection. Given such a set of useful frames, we
also establish optimal strategies for extracting their information using modern large language models
(LLMs), taking into account their sequential nature.

Our proposed LVNet comprises of three components: a Hierarchical Keyframe Selector (HKS), a
Vision Language Model (VLM), and a Large Language Model (LLM) as illustrated in Figure 1.
The HKS, an efficient, hierarchical keyframe selector, is the core contribution of our work. First,
the model processes 900 uniformly sampled frames and clusters them into distinct scenes using
ResNet-18, a lightweight module that measures visual correspondence between frames. Next, it
extracts keywords from a given natural language query via LLM and selects the frames most relevant
to those keywords using CLIP-B/16. Finally, the selected frames are described in natural language
by a more powerful and computationally intensive VLM. Finally, an LLM processes the language
descriptions of the selected frames to answer a given query.

3.1 Background

Recent approaches utilizing LLMs for long video question answering (LVQA) [52, 36, 16, 30, 37]
can be viewed as a composition of three sequential stages: a) frame selection, b) VLM based frame
captioning, and c) LLM based answer generation. Note that the complexity of each stage varies
across methods given their focus on different aspects of the LVQA task (e.g. frame selection in some
is simply uniform sampling). In our work, we also follow this structure, but we focus on improving
the frame selection stage. Under such a framework, our proposed HKS can serve as plug-in modules
to replace the frame selection stage and the later two stages are similar to these prior works.

3.2 Architecture

Consider a long video, x ∈ RT×C×H×W with T, C, H, W for frames, channels, height, and width
respectively. Its paired natural language query is referred as q. Also consider a frame in x at
timestamp t as x[t] ∈ RC×H×W . Our goal is to output the suitable response to this query based on
information contained in the video. We refer this correct response as r.

Our LVNet processes a given video-query (x,q) pair to output a response, r̂. The HKS module
initially processes this video-query pair, selects T ′ keyframes, and outputs a deterministically sub-
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Figure 2: Detailed architecture of Hierarchical Keyframe Selector: Input frames first go through
a Temporal Scene Clustering (TSC) mechanism, which divides the long-video into scenes, enabling
per-scene subsampling. Next, a Coarse Keyframe Detector (CKD) is applied to select frames best-
aligned with keywords relevant to the query. Finally, a Fine Keyframe detector further subsamples
frames, by refining keyword alignements through a templated visual prompting.
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Figure 3: Qualitative example: We illustrate a challenging long-video QA scenario from EgoSchema
[24]. We consider an input of 900 frames, which first get clustered into scenes and subsampled to
retain around 390 frames. Next, the Coarse Keyframe Detector selects only 32 frames out of them,
based on the alignment with keywords (Here, keywords are extracted based on answer options, via
an LLM). Such coarse keyframes are then ranked based on the combination of confidence value
and temporal span, and grouped into four sets, each containing eight frames. These sets are then
processed through visual templating (i.e. simple concatenation across space) and fed into a VLM for
Fine Keyframe Detection, resulting in just 12 frames.

sampled video x′ ∈ RT ′×C×H×W . Each of these T ′ frames is then passed through the captioning
stage of our VLM to generate a set of natural language descriptions, D = {d1, d2, ...dT ′} where di
describes the frame x′[i]. Finally, the LLM processes all descriptions D and the query q to generate
response r̂.

Our unique contributions here are the Hierarchical Keyframe Selector (HKS) and optimal prompts
and description templates for the LLM when generating the final response which is also important as
suggested by our experiments. The overall architecture is given in Figure 1 (left).

3.3 Hierarchical Keyframe Selector

We now describe our proposed Hierarchical Keyframe Selector (HKS) module. As illustrated in
Figure 2, our HKS comprises of three submodules, namely 1) Temporal Scene Clustering (TSC),
2) Coarse Keyframe Detector (CKD), and 3) Fine Keyframe Detector (FKD). The inputs to HKS
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contain T frames with each of the three stages TSC, CKD, and FKD reducing this frame count to Ta,
Tb, and Tc = T ′ respectively.

Temporal Scene Clustering (TSC): The role of TSC is to perform visual content aware preliminary
frame sampling. The established approach for preliminary frame selection is uniform sampling. In
contrast, TSC extracts per-frame visual features using a deep neural network followed by an iterative
clustering procedure to identify n non-overlapping frame sets. Within each of the n sets, we uniformly
sample ≤ τ frames obtaining a total of Ta ≤ τ × n. Our iterative clustering procedure is outlined
in Algorithm 1. It calculates pairwise distances between all frames accounting for intra-frame local
information using the extracted per-frame features, followed by n iterative frame similarity based
grouping operations.

Our reasoning for TSC is that videos, especially long-form ones, contain extensive information
redundancy across its temporal dimension. For example, in a long sub-sequence of mostly static
frames from a single scene, beyond its first frame the rest may contain little additional information.
We hypothesize that our TSC module will utilize frame level feature similarity to cluster the frames,
such that each cluster corresponds to a common scene or motion. A single cluster could contain just
one frame or significantly more based on frame feature similarities. This leads to a non-uniform
sampling of frames across the entire video. In contrast to uniform sampling across the entire videos
where each timestamp is treated equally, in our formulation the uniform sampling within segments
will allow more frames to be sampled from information heavy temporal regions.

Coarse Keyframe Detector (CKD): Unlike the TSC in prior stage, CKD reasons across both visual
and language modalities (using the paired textual query) to further sub-sample the Ta frames output
from the TSC module. The inputs to this CKD stage are the Ta frames and the paired query q. The
module generates a set of keywords KCKD, selects Tb frames conditioned on these keywords, and
outputs the selected Tb frames with a confidence value and keyword assigned to each frame.

The CKD contains three elements: a keyword generation strategy, a dual-encoder image-text model,
and an iterative algorithm for similarity based confidence assignment. The keyword generation
strategy utilizes the given query, q alongside a hand-crafted templating operation or an LLM to select
or generate suitable keywords. The dual-encoder image-text model uses a spatially aware contrastive
langauge image pre-training (CLIP) network from [29]. For confidence assignment, we construct an
algorithm as outlined in Algorithm 2 which processes two lists, one of frames and one of keywords,
and then calculates their pairwise likelihood of occurrence to assign each frame a confidence value
(that reflects its usefulness to answer the query, q).

The keyword generation strategy converts the query q into a set of keywords, KCKD where the number
of keywords |KCKD| ∈ [8, 25]. The dual-encoder model converts the keyword set KCKD and the
frame set (containing Ta frames) into two sets of embeddings. The embeddings of each set are
comparable to each other using a cosine similarity distance metric given the training formulation of
the CLIP model. These two embedding sets are processed by our confidence assignment algorithm
in Appendix A.2 which assigns each of the Ta frames a confidence score and a keyword. Note that
the same keyword can be assigned to multiple frames. However, given the much higher frame count
compared to the keyword count and the cross-frame redundancy, we do not assign multiple keywords
to a single frame.

The key role of this module is language conditioned frame selection. For a single query, there can
be multiple regions in a video that are highly informative but not useful or relevant in answering
that query. A single query can also contain multiple different concepts and attributes that must be
given attention to construct a correct answer: the keyword generation attempts to capture each of
these distinct attributes. On the visual modality, a single frame will also encode multiple concepts
and attributes. Our design choice for the spatially aware CLIPpy dual-encoder VLM from [29] is
motivated by this nature of individual frames. Finally, confidence assignment takes into account these
multiple modes of information within each frame and the query and suitably assigns a confidence
score to each frame that reflects its relevance to the query. We also highlight how the confidence
scores are directly linked to the related keyword (i.e. reason that makes the frame relevant), leading
to better interpretability and the ability to perform further keyword-based refinement in later stages.

Fine Keyframe Detector (FKD): In the prior CKD stage, cross-modal selection utilizes a dual-
encoder VLM that is constrained by the set of keywords provided and performs limited reasoning at
frame level. In contrast, FKD uses a visual templating module to combine multiple frames and uses
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VLM to generate open-ended natural language output through higher-level reasoning. The input in
this stage is the set of Fb frames, with each frame having an assigned confidence score and keyword.

Our visual templating module partitions the Tb frames into sets of 8 ordered by their confidence
scores, arranges frame sets as grids to form a collage-style image, and annotates that image with
visually identifiable tags corresponding to each frame. We further illustrate this process in Figure 3
(see Visual Templating column). Each of these visual templated images also contain a subset of the
keywords that correspond to their 8 images. These resulting visual templated images along with a
prompt containing their associated keywords and instructions to select a frame subset based on valid
association between keywords and images (see Appendix A.3 for details) are input to the VLM. The
output of the VLM is used to select a subset of each 8 image group. These frames are collected as the
output of the FKD stage, overall resulting in Tc frames.

The purpose of the initial visual templating module is to allow reasoning across a set of frames
using the image-text VLM (which is trained to process a single image at time). This partitioning of
the input Tb frames is performed based on confidence scores from the prior stage and timestamps.
The eight frames with top confidence scores are grouped into the first visual template, followed
by the next eight and so forth. This ensures the VLM selects both high confidence concepts and
low confidence concepts, accounting for biases and weaknesses in our CKD stage. After that, we
temporally reorder some image sets with low confidence scores to cover keyframes distributed
across long-range segments, while the sets with high confidence scores concentrate on keyframes in
short-range segments. A total of 16 low-score frames are temporally reordered in this process. The
algorithm is described in Algorithm 3 and the prompting technique is explained in Appendix A.3.
Our intuition is that such a mechanism allows one to best utilize the complementary strengths of two
different VLMs from CKD and FKD stages for better frame selection overall.

3.4 Comparison with Other Keyframe Selection Methods:

We aim to highlight the main advantage of the Hierarchical Keyframe Selector over other existing
keyframe selection methods. Models like VideoAgent and TraveLER provide useful comparisons, as
they work with a similar-scale number of captions. VideoAgent and TraveLER rely on uniform frame
selection in the first iteration without analyzing the entire video. They identify important segments
based solely on these initial frames and the LLM’s response, which can be problematic if the initial
uniformly selected frames are not representative of the entire video or if the LLM misinterprets
the captions and prompts. In such cases, the LLM might incorrectly identify segments for further
analysis. If the LLM fails to pinpoint the correct segment initially, the entire process can break down
because subsequent frames will be similar to the first set, leading the LLM to continuously select
frames within or near the initial segment. Additionally, for videos that are as challenging or more
difficult than EgoSchema in terms of temporal complexity and activities, these models may require
numerous iterations to finalize keyframes selection. This results in higher computational and latency
costs, as it necessitates numerous runs of resource-intensive VLM and LLM models.

In contrast, our method analyzes the entire video with high frame rates using a lightweight ResNet-
18 [12] and segments the video non-uniformly based on scene continuity. We then select several
frames in each segment by measuring feature similarity between frame features and keywords
using the CLIP-B/16 (0.12B) [29] which is lighted than VideoAgent’s EVA-CLIP-8Bplus (8B).
By reviewing the entire video and non-uniformly selecting keyframes based on scene continuity
and similarity scores, these keyframes accurately represent the question-based important frames
distribution in the entire video. Furthermore, we use VLM for a fine-grained selection of keyframes,
improving keyframe selection when CLIP-B/16 struggles to understand detailed atomic activities in
the frames. By hierarchically segmenting the video with different modules, the resulting segments
and keyframes are more reliable than those from VideoAgent. Even with more challenging videos,
our process only needs to go through the video once to collect keyframes, maintaining computational
efficiency.

4 Experiments

In this section, we first discuss our experimental setup followed by quantitative evaluations comparing
to existing baselines and ablations of our proposed components. We then present qualitative results
for our method and outline some limitations of our approach.
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4.1 Experimental Setup

Datasets: Given the training free nature of our framework, we do not utilize any video datasets for
training. Datasets are used purely for evaluation. We select three benchmark video visual question
answering datasets focused on long-form videos for this purpose: EgoSchema [24], NExT-QA [41],
and IntentQA [22]. The first dataset, EgoSchema, is a very long-form video question-answering
dataset with 5031 questions. For each question, EgoSchema requires the correct answer to be selected
between five given options based on a three-minute-long video clip. The second dataset, NExT-QA,
is another rigorously designed video question answering benchmark containing questions that require
causal & temporal action reasoning, and common scene comprehension to correctly answer. These
questions are further classified as Causal (Cau.), Temporal (Tem.), and Descriptive (Des.) and we
evaluate on its validation set containing 4996 questions over 570 videos. The third dataset, IntentQA
[22] is based on NExT-QA videos corresponding to temporal and causal reasoning quetions. It
consists of 16k multiple-choice questions which are classified as Why?, How? or Before/After
(B./A.).

Model Choices: For the HKS module, we use the ResNet-18 [12] for the TSC, CLIP-B/16 [29] for
the CKD and GPT-4o for the FKD. We select ResNet-18 and CLIP-B/16 due to their smaller models
sizes—0.01B and 0.12B, respectively–which are significantly lighter compared to GPT-4o, whose
model size is expected to be on the scale of 100B-1T. This makes them well-suited for filtering dense
frames efficiently. In line with previous state-of-the-art work [39, 52, 36], we employ GPT API,
especially GPT-4o, for both VLM and LLM. This choice is driven by its cost-effectiveness and lighter
computational requirements compared to GPT-4. GPT-4o is used as the VLM for generating captions
and as the LLM for answering questions in our framework.

Table 1: Combined Results on EgoSchema [24], NExT-QA [41], and IntentQA [22]. We compare
LVNet against prior zero-shot models across three datasets, highlighting different task splits. The
models are ordered based on the number of captions processed before answering the question.
LVNet achieves state-of-the-art accuracies of 71.7%, 61.1%, and 72.9% on the three datasets,
respectively, using just 12 frames compared to the models using the similar number of captions.
Models with video-caption pretraining or utilizing significantly more captions than the 12 frames used
by LVNet are de-emphasized in grey or downplayed in light green to ensure fairness with image-level
pretraining or highlight caption efficiency.

Model EgoSchema NExT-QA IntentQA

Cap. Acc. (%) Cap. Cau. (%) Tem. (%) Des. (%) All (%) Cap. Why? (%) How? (%) B./A. (%) All (%)

Vamos [36] - 48.3 - - - - - - - - - -
IG-VLM [17] - 59.8 - 69.8 63.6 74.7 68.6 - - - - 65.3
VideoLLaMA 2 [5] - 53.3 - - - - - - - - - -
InternVideo2 [38] - 60.2 - - - - - - - - - -
Tarsier [35] - 61.7 - - - - 79.2 - - - - -
VIOLET [10] 5 19.9 - - - - - - - - - -
mPLUG-Owl [46] 5 31.1 - - - - - - - - - -
VideoAgent [37] 8.4 54.1 8.2 72.7 64.5 81.1 71.3 - - - - -
MVU [30] 16 37.6 16 55.4 48.1 64.1 55.2 - - - - -
MoReVQA [25] 30 51.7 16 70.2 64.6 - 69.2 - - - - -
TraveLER [37] - - ∼25 70.0 60.5 78.2 68.2 - - - - -
VFC [26] - - 32 45.4 51.6 64.1 51.5 - - - - -
SeViLA† [48] 32 22.7 32 61.3 61.5 75.6 63.6 32 - - - 60.9
ProViQ [6] 60 57.1 60 - - - 64.6 - - - - -
VideoTree [40] 63.2 61.1 ≤56 75.2 67.0 81.3 73.5 ≤56 - - - 66.9
FrozenBiLM [45] 90 26.9 - - - - - - - - - -
LifelongMemory [39] 90 62.1 - - - - - - - - - -
LangRepo [16] 180 41.2 90 64.4 51.4 69.1 60.9 90 62.8 62.4 47.8 59.1
LLoVi [52] 180 50.3 90 69.5 61.0 75.6 67.7 90 68.4 67.4 51.1 64.0

LVNet (ours) 12 61.1 12 75.0 65.5 81.5 72.9 12 75.0 74.4 62.1 71.7

4.2 Evaluation

Quantitative Results: We evaluate LVNet on the EgoSchema, NExT-QA, and IntentQA dataset
and present our results in Table 1. Models with video-caption pretraining are de-emphasized in grey
to ensure fairness with image-level pertaining. Models utilizing significantly more captions than
the 12 frames are downplayed in light green to consider caption efficiency. For EgoSchema, we
achieve 61.1% on the fullest, the highest among the models utilizing approximately 12 captions. This
result outperforms VideoAgent, the next best model using 8.4 captions, by 7%. To ensure a fair
comparison, we ablate the number of captions for LVNet in 2c, observing that LVNet with 8 captions
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Table 2: Ablations on EgoSchema [24]: We evaluate different design decisions of our framework on
EgoSchema 500-video subset for zero-shot video VQA.

(a) Visual Templating Order: In-
stead of default confidence-based
ordering for Visual Templating,
we consider Temporal ordering.

Visual Templating order Acc. (%)

Temporal 65.2
Hybrid (Confidence + Temporal) 68.2

(b) Effect of Hierarchical
Keyframe Modules: We
measure the accuracy of the
LVNet by adding hierarchi-
cal keyframe modules pro-
gressively.

TSC CKD FKD Acc.

✓ ✓ ✓ 68.2
✓ ✓ ✗ 65.8
✓ ✗ ✗ 64.5
✗ ✗ ✗ 62.6

(c) Number of Frame Captions: We
ablate different number of frames con-
sidered for captioning in our framework.
Compared to VideoAgent [37], ours is
more stable with consistently better per-
formance.

Frames 6.4 8 8.4 11 12 16

VideoAgent[37] 58.4 - 60.2 57.4 - -
LVNet (ours) - 64.4 - - 68.2 67.8

still outperforms VideoAgent with 8.4 captions by 4.2% in the EgoSchema subset. The superior
accuracy of LVNet over other keyframe selectors, such as those used in VideoAgent and TraveLER,
is discussed in Section 3.4.

We next evaluate on the NExT-QA[41] dataset. This dataset has a particular focus on both temporal
and casual reasoning based question-answer pairs. Our approach achives state-of-the-art performance
on this benchmark outperforming prior work among the models utilizing approximately 12 captions.
In fact, our LVNet with just 12 frame captions achieves 72.9% overall accuracy, outperforming
VideoAgent [37] (71.3% at 8.2 captions) by 1.6%.

We finally evaluate on the IntentQA[22] dataset. Our approach achieves state-of-the-art results on this
benchmark, outperforming all prior work, including the de-emphasized models with video-caption
pretraining and the downplayed models utilizing significantly more captions than 12 frames. In fact,
LVNet shows a substantial improvement (+4.8%) over the next best model, VideoTree [40] (66.9%
with 90 captions), achieving 71.7% accuracy with only 12 frame captions.

Given the generative nature of VQA tasks as well as the limited availability and noisy nature of
fully-annotated video VQA corpora, building generalizable fully-supervised models are challenging
for these tasks. Nevertheless, we highlight how our zero-shot and video level training-free framework
is competitive with the best supervised approaches on this dataset. This indicates the promise of
utilizing pretrained models, especially those equipped with extensive world knowledge and reasoning
skills from alternate modality specific learning (i.e. in our cases image domain VLMs and language
domain LLMs).

Qualitative Analysis of the Hierarhical Keyframe Selector: We compare the open-ended re-
sponses of LVNet and the uniform sampling method in Figure 4 to understand the effectiveness of
the hierarchical keyframe selector in LVNet. The frames chosen by LVNet and the naive uniform
sampling method are indicated by blue and red checkmarks in the images, respectively. LVNet selects
frames at 5, 69, and 135 seconds by executing the hierarchical keyframe selector and generates
captions based on those frames. When we feed the concatenated captions to the LLM to answer
the given question: "Based on the video, what are the three main types of tools that C uses..." in an
open-ended manner, the output identifies two main activities: welding torches and measuring tapes,
among the three main activities described in Option 3 (welding handle, hammer, and measuring tape),
which is the correct answer. This leads LVNet to choose the correct option.

In contrast, the uniform sampling method selects frames at 0, 16, and 32 seconds and generates
captions based on those frames. Similarly, when we feed the concatenated captions to the LLM to
answer the same question, the output identifies only one activity—welding tools—resulting in the
selection of the incorrect option. This example highlights the importance of keyframe selection and
demonstrates the effectiveness of hierarchical keyframe selection in LVNet.

4.3 Ablations

In this section, we present ablations on key design decisions such as the sorting order in FKD, the
number of frames for captions, and the effect of different components in HKS. In all ablations, we
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… holding a 

welding torch …

… …

A person is using 

a hacksaw…
A person is working 

on unwrapping…

0 5 16 32 69 135

A person is welding

or soldering …
C is using a 

power tool …
…They are manipulating 

a measuring tape …

LLM Output:

LVNet (Ours): Based on the video, the three main types of tools used are welding torches, pliers, and measuring tapes…

Uniform Sampling: The three main types of tools used are hacksaws, welding tools, and power tools…

Time(s):

Caption:

GT (option 3): The three main types of tools that c uses are a welding handle, a hammer, and a measuring tape…

Prompt: {Concatenated Captions from       or        }. I request you to answer the following question based on the preceding descriptions in 

less than 50 words. Question: Based on the video, what are the three main types of tools that c uses, and how do their roles in shaping the iron 

differ from one another?

Figure 4: Open-ended Responses from LVNet vs Uniform Sampling: The frames chosen by
LVNet and the naive uniform sampling method are indicated with blue and red checkmarks, re-
spectively. LVNet identifies both welding torches and measuring tapes, choosing the correct option,
whereas uniform sampling only detects welding tools and selects the incorrect answer. The blue, red,
and purple highlights correspond to the three main activities in the video—welding a handle, using a
hammer, and using a measuring tape, respectively.

use a subset of EgoSchema [24], composed of 500 videos. Additional ablations about Choice of LLM
and Effect of Patch Size on Keyword Matching in CKD are in Appendix A.1
Visual Templating Order: In visual templating, prioritizing frames by keyword confidence scores
followed by reordering low-confidence frames based on timestamp is more effective than relying
solely on temporal order. In this hybrid approach, high-confidence frames are selected from shorter
segments by sampling three keyframes per set of eight, grouped by confidence rather than timespan.
Conversely, low-confidence keyframes, which are crucial but more visually challenging for keyword
matching, are sampled from broader video sections, with three frames per set of eight grouped by
timestamp. This hybrid approach outperforms purely temporal ordering by 3%.
Number of Frame Captions: We conducted an ablation study on the number of frame captions
used in our setup, comparing it to VideoAgent [37], which operates with a similarly small number of
captions. Our findings show that LVNet achives its highest accuracy 68.2% with 12 captions, while
even its lowest accuracy 64.4% with 8 captions still surpasses VideoAgent’s best accuracy 60.2%
with 8.4 captions.
Effect of Hierarchical Keyframe Modules: This table demonstrates the impact of incrementally
adding the temporal scene clustering (TSC), coarse keyframe detector (CKD), and fine keyframe
detector (FKD) modules. Without any of these modules, the model relies on uniform sampling and
achieves 62.6%. When TSC is added and 12 frames are selected uniformly, the accuracy increases to
64.5%. Adding both TSC and CKD raises the accuracy to 65.8%. Finally, incorporating all three
modules—TSC, CKD, and FKD—into the model, which is LVNet, results in an accuracy of 68.2%.
This demonstrates the importance of including all modules in LVNet for optimal performance.

5 Conclusion

We proposed a novel approach for Long-form Video Question Answering (LVQA) that achieves state-
of-the-art performance compared to the model using the similar-scale captions across 3 benchmarks
datasets. Our Hierarchical Keyframe Selector demonstrates the effectiveness of keyframe selection in
understanding a very long-form video QA. Additionally, we highlight the zero-shot capability for
long-form video comprehension of our LVNet framework, which requires no video-level training.
Our experiments showcase its significant advantage over previous methods.
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