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Abstract
Large Language Models (LLMs) have demon-001
strated remarkable capabilities across various002
domains, including their emerging role in miti-003
gating threats to human life, infrastructure, and004
the environment during natural disasters. De-005
spite increasing research on disaster-focused006
LLMs, there remains a lack of systematic re-007
views and in-depth analyses of their applica-008
tions in natural disaster management. To ad-009
dress this gap, this paper presents a comprehen-010
sive survey of LLMs in disaster response, in-011
troducing a taxonomy that categorizes existing012
works based on disaster phases and application013
scenarios. By compiling public datasets and014
identifying key challenges and opportunities,015
this study aims to provide valuable insights for016
the research community and practitioners in017
developing advanced LLM-driven solutions to018
enhance resilience against natural disasters.019

1 Introduction020

Natural disasters are becoming increasingly fre-021

quent and severe, posing unprecedented threats022

to human life, infrastructure, and the environ-023

ment(Manyena, 2006; Yu et al., 2018; Chaudhary024

and Piracha, 2021). The 2010 Haiti earthquake,025

for instance, resulted in over 200,000 fatalities and026

widespread infrastructure devastation (DesRoches027

et al., 2011). Similarly, the 2020 Australian bush-028

fires caused the deaths of at least 33 people and an029

estimated loss of one billion animals (Deb et al.,030

2020). The profound impact of such catastrophic031

events underscores the urgent need for effective dis-032

aster management strategies. Recently, large lan-033

guage models (LLMs) have transformed research034

and technological innovation with their exceptional035

capabilities in contextual understanding, logical036

reasoning, and complex problem-solving across037

multiple modalities (Zhang et al., 2024b,a). These038

capabilities position LLMs as powerful tools for039

natural disaster management, enabling them to ana-040

lyze vast real-time disaster data, facilitate dynamic041

communication with affected communities, and 042

support critical decision-making (Otal et al., 2024). 043

Despite their potential, a systematic review of 044

LLMs in disaster management remains absent, lim- 045

iting researchers and practitioners in identifying 046

best practices, addressing research gaps, and opti- 047

mizing LLM deployment for disaster-related chal- 048

lenges. To bridge this gap, this paper presents 049

a comprehensive survey of LLM applications in 050

disaster management, categorizing them across 051

three model architectures and the four key dis- 052

aster phases: mitigation, preparedness, response, 053

and recovery. We introduce a novel taxonomy 054

that integrates application scenarios, specific tasks, 055

and model architectures tailored to disaster-related 056

challenges. Additionally, we summarize publicly 057

available datasets, identify key challenges, and ex- 058

plore avenues for enhancing the effectiveness, ef- 059

ficiency, and trustworthiness of LLMs in disaster 060

response. This review aims to inspire and guide 061

AI researchers, policymakers, and practitioners to- 062

ward developing LLM-driven disaster management 063

frameworks. Our key contributions are as follows: 064

• Systematical Review: We provide the first 065

systematical review of explorations of LLMs 066

applications in disaster management across 067

four key disaster phases. 068

• Novel Taxonomy: We propose a taxonomy in- 069

tegrating application scenarios, specific tasks, 070

and model architectures, providing both prac- 071

tical and technical insights into this survey. 072

• Resource Compilation: We compile essen- 073

tial resources (e.g., datasets), and highlight 074

key challenges and future research directions 075

to advance LLM-driven disaster management. 076

2 Background 077

Disaster management is a multidisciplinary field 078

that integrates resources, expertise, and strategies to 079
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mitigate the impact of increasingly severe disasters.080

Its primary goal is to minimize immediate damage081

while fostering long-term resilience and adaptive082

recovery. Disaster management comprises four083

interconnected phases (Sun et al., 2020):084

• Mitigation involves identifying risks and085

vulnerabilities while implementing proactive086

measures to prevent disasters.087

• Preparedness includes developing compre-088

hensive plans and public education initiatives089

to enhance readiness for potential disasters.090

• Response identifies and addresses immediate091

needs during a disaster, including emergency092

rescue operations and resource distribution.093

• Recovery involves rebuilding affected areas,094

addressing both physical and social impacts095

to facilitate a return to normalcy.096

In general, LLMs have the potential to serve as097

general-purpose foundations for developing spe-098

cialized AI tools that enhance various aspects of099

disaster management. Here, we categorize LLM100

architectures into three main types: (1) encoder-101

based LLM (e.g., BERT (Devlin, 2018)), which ex-102

cel in contextual understanding; (2) decoder-based103

LLM (e.g., GPT (Brown, 2020)), which are opti-104

mized for sequential prediction; and (3) multimodal105

LLMs, which integrate multiple modalities to en-106

hance information processing (Tiong et al., 2022;107

Madichetty et al., 2021) In disaster management,108

common downstream tasks include classification109

(e.g., damage classification), estimation (e.g., sever-110

ity estimation), extraction (e.g., knowledge extrac-111

tion), and generation (e.g., report generation). To112

tailor LLMs for these tasks, techniques such as fine-113

tuning and prompting are commonly employed.114

3 LLM For Disaster Management115

Foundation models can be utilized across the four116

disaster management phases: mitigation, prepared-117

ness, response, and recovery. Within each phase,118

existing works are categorized based on application119

scenarios, specific tasks, and model architectures.120

Figure 1 presents an overview of our taxonomy,121

with detailed summaries provided in Appendix A.122

3.1 Disaster Mitigation123

Assessing vulnerabilities is a crucial component124

of disaster mitigation, where LLMs have demon-125

strated promising potential. This process involves126

identifying and analyzing infrastructure and com- 127

munities at risk, enabling proactive measures to 128

reduce disaster impact. 129

Vulnerability Classification. A system named In- 130

frastructure Ombudsman has leveraged supervised 131

learning with encoder-based LLMs and zero-shot 132

prompt learning with decoder-based LLMs to de- 133

tect and classify concerns about potential infras- 134

tructure failures from social media data (Chowd- 135

hury et al., 2024). This approach enables decision- 136

makers to effectively prioritize resources and ad- 137

dress critical issues in a timely manner. 138

Answer Generation. Beyond infrastructure vul- 139

nerability assessment, decoder-based LLMs can as- 140

sist in addressing community vulnerability-related 141

queries by retrieving and leveraging the Social Vul- 142

nerability Index (SVI) (Martelo and Wang, 2024). 143

3.2 Disaster Preparedness 144

In the long term, LLMs can play a pivotal role in 145

disaster preparedness through (1) enhancing pub- 146

lic awareness by disseminating accurate and ac- 147

cessible information, and (2) supporting disaster 148

forecasting with advanced data analysis. Building 149

on these forecasts, LLMs can aid decision-makers 150

in issuing (3) timely disaster warnings, improving 151

short-term preparedness. Furthermore, LLMs can 152

support well-structured (4) evacuation planning, en- 153

suring the safe relocation of individuals and assets. 154

3.2.1 Public Awareness Enhancement 155

Enhancing public awareness of disasters is crucial, 156

particularly by providing insights and knowledge 157

derived from past disaster experiences. 158

Knowledge Extraction. Encoder-based LLMs have 159

been fine-tuned to extract disaster-related knowl- 160

edge from news articles and social media (Fu et al., 161

2024), as well as from extensive disaster litera- 162

ture (Zhang and Wang, 2023), using Named Entity 163

Recognition (NER). To improve the logical coher- 164

ence of extracted entities, Ma et al. propose BERT- 165

BiGRU-CRF for NER, enabling the construction of 166

disaster knowledge graphs (Ma et al., 2023). In ad- 167

dition, decoder-based LLMs have been fine-tuned 168

with instructional learning to extract knowledge 169

triplets from documents for knowledge graph con- 170

struction (Wu et al., 2024). 171

Answer Generation. The extracted disaster knowl- 172

edge could be incorporated in decoder-based LLMs’ 173

prompts, facilitating disaster-related question an- 174

swering (Hostetter et al., 2024; Martelo and Wang, 175
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Figure 1: Taxonomy of applications of LLMs in disaster management. This survey categorizes the utilization of
LLMs across four disaster phases, highlighting specific applications where tasks such as classification, estimation,
extraction, and generation are performed by three types of LLMs (Encoder-based, Decoder-based, and Multimodal
LLM). The chart in the bottom-right corner presents the distribution of surveyed papers across each phase.

2024; Li et al., 2023). Additionally, techniques176

such as retrieval-augmented generation (RAG)177

have been employed to further improve knowledge178

integration (Zhu et al., 2024).179

3.2.2 Disaster Prediction180

Effective disaster preparedness also relies on accu-181

rate and reliable disaster prediction.182

Occurrence Classification. Encoder-based LLMs183

have been widely employed for disaster prediction.184

For instance, BERT has been integrated with GRU185

and CNN to predict disaster (Indra and Duraipan-186

dian, 2023). However, textual data alone is often187

limited due to its subjective and imprecise nature,188

prompting the adoption of multimodal LLMs that189

incorporate multiple data modalities. For instance,190

Zeng et al. combine historical flood data with ge-191

ographical descriptions of specific locations to as-192

sess disaster risk (Zeng and Bertsimas, 2023). Ad-193

ditionally, satellite imagery has been leveraged to194

provide visual context, enhancing predictive accu-195

racy (Liu and Zhong, 2023). To further improve dis-196

aster prediction with explicit external knowledge,197

decoder-based LLMs have been integrated with198

retrieval-augmented generation (RAG) to retrieve199

historical flood data, aiding in risk assessment and200

action recommendation (Wang et al., 2024). 201

3.2.3 Disaster Warning 202

Once a disaster is anticipated, timely warnings are 203

essential for ensuring public safety. 204

Warning Generation. Decoder-based LLMs have 205

proven valuable in generating warning messages 206

based on rule-based alerts derived from streaming 207

data (Chandra et al., 2024), significantly improv- 208

ing the responsiveness of warning systems. Ad- 209

ditionally, RAG has enhanced LLMs by enabling 210

the retrieval of disaster alerts from official APIs, 211

providing real-time information on impending dis- 212

asters (Martelo and Wang, 2024). 213

Image Generation. In addition to textual warnings, 214

visual warnings can provide more vivid and intu- 215

itive descriptions, effectively reaching a broader 216

audience. To achieve this, multimodal LLMs en- 217

hanced by diffusion-based text-to-image generative 218

models can generate detailed visual representations 219

of impending disasters (Lubin et al., 2024), enhanc- 220

ing the clarity and impact of disaster alerts. 221

3.2.4 Evacuation Planning 222

Plan Generation. To safeguard individuals and 223

property from impending disasters, decoder-based 224
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LLMs have been prompted to generate escape plans225

and provide evacuation recommendations (Hostet-226

ter et al., 2024).227

3.3 Disaster Response228

With accurate and real-time (1) disaster identi-229

fication and (2) situation assessment, decision-230

makers can acquire critical insights to establish231

a solid foundation for response efforts. Addition-232

ally, LLMs can facilitate (3) disaster information233

coordination, enhancing collaboration among stake-234

holders for more effective disaster response. As235

a result, decision-makers can leverage LLMs to236

execute key actions, including (4) disaster rescue237

operations and (5) disaster-related consultations.238

3.3.1 Disaster Identification239

Effective disaster response begins with accurate240

and real-time identification, enabling efficient in-241

terventions (Said et al., 2019; Weber et al., 2020).242

Social media serves as a valuable resource in this243

process, offering real-time updates from affected244

individuals (Anderson, 2016; Trono et al., 2015).245

Relevance Classification with Encoder-based246

LLMs. Classifying social media posts to iden-247

tify disaster-related content is a crucial step in dis-248

aster detection, where LLMs have proven to be249

highly effective. Encoder-based LLMs augmented250

with trainable adapters are commonly employed251

for this task through fine-tuning on annotated dis-252

aster corpora (Ningsih and Hadiana, 2021; Singh253

et al., 2022; Lamsal et al., 2024a). Recogniz-254

ing the diverse sources of disaster data, ensemble255

methods combine predictions from multiple LLMs256

to leverage their complementary strengths in pro-257

cessing varied linguistic patterns (Mukhtiar et al.,258

2023). Pure LLM-based approaches may strug-259

gle to capture fine-grained structural features in260

disaster-related posts. To address this, hybrid archi-261

tectures integrate CNNs to capture local n-gram pat-262

terns (Franceschini et al., 2024; Song and Huang,263

2021; Meghatria et al., 2024), attention-based BiL-264

STMs to model sequential dependencies (Huang265

et al., 2022), and graph neural networks (GNNs) to266

represent semantic word relationships (Manthena,267

2023; Ghosh et al., 2022). To tackle the challenge268

of limited labeled training data, active learning has269

been employed to automatically label informative270

samples (Paul et al., 2023).271

Relevance Classification with Encoder-based272

LLMs. Furthermore, decoder-based LLMs such as273

Llama-2 and GPT-4 have demonstrated strong per-274

formance in relevance classification using prompt 275

learning techniques (Taghian Dinani et al., 2023). 276

Relevance Classification with Multimodal LLMs. 277

Image data also provide valuable insights for dis- 278

aster analysis and can be integrated to enhance 279

classification using multimodal LLMs. This in- 280

tegration can be achieved through simple aggre- 281

gation (Kamoji et al., 2023; Madichetty et al., 282

2021) or attention-based mechanisms (Shetty et al., 283

2024). To address challenges arising from multi- 284

modal heterogeneity, Zhou et al. employ a Cycle- 285

GAN combined with a mixed fusion strategy (Zhou 286

et al., 2023b). Beyond multimodal heterogeneity, 287

research also tackles other critical challenges in 288

multimodal learning. These include addressing 289

label scarcity through semi-supervised minimax 290

entropy domain adaptation frameworks (Wang and 291

Wang, 2022) and enhancing model performance by 292

leveraging the complementary strengths of diverse 293

LLMs and visual models using ensemble meth- 294

ods (Hanif et al., 2023). Beyond social media, data 295

from sources such as satellite imagery and news 296

articles can further enhance disaster analysis (Jang 297

et al., 2024). 298

3.3.2 Disaster Situation Assessment 299

After disaster identification, assessing its severity 300

and spread is essential for formulating effective 301

response strategies. 302

Situation Classification. encoder-based LLMs 303

have been fine-tuned to for binary classification to 304

identify situational posts (Madichetty and Sridevi, 305

2021). Raj et al. employ BERT and NER to extract 306

disaster-related locations, using location counts as 307

an indicator of disaster severity (Raj et al., 2023). 308

Additionally, multimodal LLMs integrate visual 309

data to further enhance disaster situational assess- 310

ment (Kanth et al., 2022). 311

Severity Estimation. While classification provides 312

only a coarse understanding, severity estimation 313

offers precise quantitative insights. decoder-based 314

LLMs enhanced with chain-of-thought (CoT) rea- 315

soning have been used to estimate earthquake in- 316

tensity, expressed as Modified Mercalli Intensity 317

(MMI) (Mousavi et al., 2024). In addition, mul- 318

timodal LLMs leverage rich image data for more 319

accurate estimations. For example, FloodDepth- 320

GPT employs prompt-based guidance with GPT-4 321

to estimate floodwater depth from flood images. 322

Description Generation. Beyond categorical and 323

statistical descriptions, multimodal LLMs can gen- 324
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erate more comprehensible textual situational re-325

ports from disaster images (Hu and Rahnemoonfar,326

2024; Wolf et al., 2023).327

3.3.3 Disaster Information Coordination328

Coordinating disaster-related information is cru-329

cial for ensuring an organized and collaborative330

response (Comfort et al., 2004; Bharosa et al.,331

2010). Social media plays a pivotal role in this332

process, as individuals actively share posts con-333

taining warnings, urgent needs, and other critical334

information (Lindsay, 2011; Imran et al., 2015).335

Usefulness Estimation. To improve the accessibil-336

ity of valuable information, encoder-base LLMs are337

utilized to filter informative tweets by computing338

usefulness ratings (Yamamoto et al., 2022). How-339

ever, this approach requires a predefined threshold340

to determine the relevance of a tweet.341

Relevance Classification. Several studies fine-tune342

encoder-based LLMs for binary relevance classifi-343

cation, as discussed in Section 3.3.1. Additionally,344

LLMs have been applied to multi-level relevance345

classification to further refine disaster-related infor-346

mation filtering (Blomeier et al., 2024).347

Information Classification. To facilitate informa-348

tion dissemination, several studies have fine-tuned349

encoder-based LLMs to classify posts based on350

different information types, including actionable351

types such as "important for managers" (Sharma352

et al., 2021); humanitarian types such as "Injured353

people" (Yuan et al., 2022); and disaster-specific354

types (Liu et al., 2021). When fine-tuning data355

is limited, augmentation strategies such as man-356

ual hashtag annotation (Boros et al., 2022) and357

self-training with soft labeling (Li et al., 2021) are358

employed to enhance classification performance.359

Pure LLM-based methods may have limitations,360

as discussed in Section 3.3.1. In contrast, hy-361

brid architectures enhance performance by integrat-362

ing CNNs and BiLSTMs to improve local pattern363

comprehension (Zou et al., 2024) and employing364

Graph Attention Networks (GATs) to capture cor-365

relations between tweet embeddings and informa-366

tion types (Zahera et al., 2021). Additionally, FF-367

BERT leverages an ensemble of BERT and CNN368

to combine model strengths for improved classifi-369

cation (Wilkho et al., 2024). Other studies enhance370

the application of LLMs in disaster information371

classification by extracting rationales—evidence372

that supports classification decisions (Nguyen and373

Rudra, 2022b, 2023). RACLC (Nguyen and Rudra,374

2022a) employs a two-stage framework, utilizing 375

contrastive learning to refine rationale extraction 376

and improve classification performance. 377

Decoder-based LLMs have also been employed 378

for disaster type and humanitarian classification 379

through instruction tuning (Otal and Canbaz, 2024; 380

Yin et al., 2024), as well as zero-shot and few-shot 381

prompting (Dinani et al., 2024). 382

Multimodal LLMs can integrate rich visual data 383

from social media to enhance classification by 384

leveraging multiple modalities. This integration 385

can be achieved through simple feature aggrega- 386

tion (Zhang et al., 2022; Yu and Wang, 2024) or 387

more advanced fusion techniques, such as cross- 388

attention mechanisms (Abavisani et al., 2020) and 389

dual transformer architectures (Zhou et al., 2023a). 390

Additionally, Basit et al. classify posts into human- 391

itarian or structural categories only when the text 392

and image classification outputs align; otherwise, 393

the posts are uninformative (Basit et al., 2023). 394

Need Classification. Social media enables indi- 395

viduals to express urgent needs during disasters. 396

Encoder-based LLMs have been employed to de- 397

tect disaster-related needs (Yang et al., 2024; Vitiu- 398

gin and Purohit, 2024) and rescue requests (Tora- 399

man et al., 2023). Responders also use social me- 400

dia to share available resources. Encoder-based 401

LLMs have been employed to match needs with 402

resources using cosine similarity-based retrieval 403

methods, where both offer and request posts are 404

embedded using XLM-RoBERTa (Conneau, 2019), 405

optimizing resource allocation. 406

Location Extraction. Additionally, various post- 407

processing techniques enhance information dissem- 408

ination, particularly through location extraction. 409

Several studies fine-tune encoder-based LLMs for 410

location reference recognition (LRR), classifying 411

tokens into categories such as "Inside Locations" 412

(ILOC) and "Other Tokens" (O) (Mehmood et al., 413

2024; Suwaileh et al., 2022; Koshy and Elango, 414

2024). LRR can be further improved by integrating 415

a conditional random field (CRF) model, which 416

enhances the logical consistency of extracted lo- 417

cations (Ma et al., 2022; Zhang et al., 2021). Fur- 418

thermore, external knowledge corpora can support 419

location extraction. For instance, Caillaut et al. 420

use cosine similarity to match post entities with a 421

knowledge base, ensuring the authenticity of ex- 422

tracted locations (Caillaut et al., 2024). 423

Decoder-based LLMs are widely used for 424

extracting location-relevant information through 425
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prompt learning (Yu and Wang, 2024). To enhance426

accuracy, external knowledge has been incorpo-427

rated into prompts, including geo-knowledge (Hu428

et al., 2023) and Object Character Recognition-429

based object descriptions (Firmansyah et al., 2024).430

Summary Extraction. Furthermore, summarizing431

disaster-related posts provides a macro-level un-432

derstanding during crises. Several studies focus433

on identifying critical and informative posts for434

summarization by integrating advanced techniques435

into encoder-based LLMs, such as integer linear436

programming (ILP) (Nguyen and Rudra, 2022a;437

Nguyen et al., 2022) and Rapid Automatic Key-438

word Extraction (RAKE) (Garg et al., 2024).439

Summary Generation. Decoder-based LLMs ex-440

tend summarization capabilities by generating sum-441

maries from retrieved text. For example, Vitiugin et442

al. rank key tweets using an LSTM model and then443

apply a T5 model to generate summaries based444

on the top-ranked tweets (Vitiugin and Castillo,445

2022). Crisis2Sum performs query-focused sum-446

marization through a multi-step process, including447

query-informed document retrieval, reranking, fact448

extraction, clustering, fusion into event nuggets,449

and final selection for summarization (Seeberger450

and Riedhammer, 2024a). Additionally, agent-451

based approaches can enhance summary quality by452

leveraging multiple LLMs for document retrieval,453

reranking, and instruction-following summariza-454

tion (Seeberger and Riedhammer, 2024b).455

Report Generation. Decoder-based LLMs have456

been employed for disaster report generation, utiliz-457

ing techniques such as RAG to extract relevant web458

data (Colverd et al., 2023) and Chain-of-Thought459

reasoning to enhance the coherence and accuracy460

of generated reports.461

3.3.4 Disaster Rescuing462

Grounded in a comprehensive understanding of the463

disaster situation, disaster rescue focuses on saving464

lives and protecting property through timely and465

coordinated actions.466

Plan Generation. Effective rescue operations re-467

quire well-structured rescue plans. Decoder-based468

LLMs have been prompted to generate actionable469

response plans, offering essential guidance for dis-470

aster response (Goecks and Waytowich, 2023).471

Code Generation. Once a plan is established,472

decoder-based LLMs can support its execution by473

assisting organizations and rescue teams. For in-474

stance, they can facilitate robotic system guidance475

during rescue operations by translating verbal in- 476

puts into actionable operational commands using 477

RAG (Panagopoulos et al., 2024). 478

3.3.5 Disaster Issue Consultation 479

During disasters, affected individuals and organi- 480

zations often seek reliable guidance. Disaster is- 481

sue consultation provides advice, safety updates, 482

and expert recommendations, helping them access 483

resources, evaluate options, and make informed 484

decisions (Jiang, 2024). 485

Answer Generation. Decoder-based LLMs are 486

employed to generate answers for frequently 487

asked questions and provide disaster-related guid- 488

ance (Rawat, 2024; Chen and Fang, 2024). To miti- 489

gate hallucination, RAG is integrated with verified 490

disaster-related documents. For example, Wild- 491

fireGPT retrieves wildfire-related literature and 492

data to enhance prompts (Xie et al., 2024). Chen et 493

al. introduce a prompt chain to guide LLM reason- 494

ing over a disaster knowledge graph, incorporating 495

structured knowledge (Chen et al., 2024). Unlike 496

traditional RAG approaches without training, Xia 497

et al. combine fine-tuning for implicit knowledge 498

updates with RAG for explicit knowledge, further 499

improving response quality (Xia et al., 2024). 500

Additionally, multi-modal LLMs can integrate 501

textual and visual data to enhance disaster re- 502

sponse. For example, several visual question an- 503

swering (VQA) models, such as Plug-and-Play 504

VQA (Tiong et al., 2022), have been prompted for 505

zero-shot VQA in disaster scenarios (Sun et al., 506

2023). To handle complex user queries, ADI 507

introduces sequential modular tools, incorporat- 508

ing vision-language models (VLMs), object de- 509

tection models, and semantic segmentation mod- 510

els (Liu et al., 2024). Furthermore, FloodLense 511

combines ChatGPT with diffusion models to high- 512

light disaster-affected areas in images, enhanc- 513

ing flood-related geographical question answer- 514

ing (Kumbam and Vejre, 2024). 515

3.4 Disaster Recovery 516

LLMs can play a crucial role in (1) disaster impact 517

assessment, a vital step in the recovery process. By 518

providing a comprehensive understanding of disas- 519

ter impacts, LLMs can assist decision-makers in (2) 520

generating recovery plans tailored to specific needs. 521

Additionally, disaster responders have leveraged 522

LLMs for (3) continuous recovery process track- 523

ing, ensuring effectiveness and progress throughout 524

the recovery phase. 525
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3.4.1 Disaster Impact Assessment526

Accurately assessing the extent of damage across527

both physical and social dimensions is essential for528

prioritizing recovery efforts effectively.529

Damage Classification. From the physical dimen-530

sion, encoder-based LLMs have been employed531

to identify and categorize disaster-related damage532

(e.g., human/infrastructure damage (Malik et al.,533

2024), water/power supply damage (Chen and Lim,534

2021)) Additionally, Zou et al. propose a BERT-535

BiLSTM-Sit-CNN framework, improving textual536

understanding for damage-related post identifica-537

tion and damage-type classification (Zou et al.,538

2024). Beyond type classification, LLMs have539

been utilized to assess damage severity. For in-540

stance, Jeba et al. employ BERT to classify dam-541

age impact severity in social media posts and news542

articles (Jeba et al., 2024).543

Damage Estimation. Damage severity can be544

more effectively quantified through fine-grained545

estimation. Chen et al. compute damage sever-546

ity scores by measuring the similarity between547

post tokens and predefined seed words’ embed-548

dings, both of which are derived from encoder-549

based LLMs (Chen and Lim, 2021).550

Answer Generation. In addition, decoder-based551

LLMs can answer specific assessment questions.552

Ziaullah et al. employ RAG-enhanced LLMs to553

retrieve operational status updates of critical infras-554

tructure facilities from social media data (Ziaullah555

et al., 2024). Multimodal LLMs further incorpo-556

rate remote sensing data for enhanced assessment.557

Estevao et al. prompt GPT-4o to generate dam-558

age assessments based on building images (Es-559

têvão, 2024). To improve modality alignment,560

SAM-VQA employs a supervised attention-based561

vision-language model (VLM) to integrate image562

and question features for visual question answer-563

ing (VQA) tasks (Sarkar et al., 2023). Addition-564

ally, auxiliary tasks have been leveraged to enhance565

VQA performance. For instance, DATWEP dynam-566

ically balances the significance of segmentation567

and VQA tasks by adjusting class weights during568

training (Alsan and Arsan, 2023).569

Statistic Extraction. Decoder-based LLMs have570

also used few-shot learning to extract fatality in-571

formation from social media (Hou and Xu, 2022),572

offering timely insights into human loss.573

Sentiment Classification. From the social di-574

mension, disasters can influence public sentiment,575

Get over it Choc you lost. 
Anyone with half a brain could
see it. http://t.co/ythaSNX6

off-topic

Flooding hits eastern Australia:
Hundreds of homes are

inundated and and several
people reported missing as
flood waters rise in the ...

on-topic

Figure 2: A sample of dataset for disaster relevance
classification from CrisisLexT6 (Olteanu et al., 2014).

where encoder-based LLMs (Han et al., 2024a; 576

Berbère et al., 2023) have been fine-tuned to clas- 577

sify social media posts into positive and negative 578

emotions. In addition, Li et al. employ decoder- 579

based LLM (e.g., GPT 3.5) to classify posts into 580

five emotional types, such as "panic" and "sadness", 581

using zero-shot prompting (Li et al., 2025). This 582

approach helps responders better understand and 583

address the emotional impact of disasters. 584

3.4.2 Recovery Plan Generation 585

Based on impact assessment, a recovery plan is for- 586

mulated to rebuild infrastructure, restore services, 587

and strengthen resilience (Hallegatte et al., 2018). 588

Plan Generation. Decoder-based LLMs have been 589

applied in certain recovery scenarios to generate 590

recovery and reconstruction plans. For example, 591

ChatGPT has been prompted to develop disaster 592

recovery strategies for business restoration (White 593

and Liptak, 2024; Lakhera, 2024). 594

3.4.3 Recovery Process Tracking 595

Continuous tracking of the recovery process en- 596

sures that progress remains aligned with the 597

planned timeline, allowing decision-makers to 598

adapt recovery strategies to evolving needs. 599

Sentiment Classification. Encoder-based LLMs 600

(e.g., BERTweet) have been employed to as- 601

sess public sentiment throughout the recovery pe- 602

riod (CONTRERAS et al.), enabling responders 603

to tailor recovery efforts to effectively address the 604

emotional needs of affected populations. 605

4 Datasets 606

Multiple disaster-related datasets have been em- 607

ployed to evaluate LLMs in disaster management. 608

A comprehensive list of publicly available datasets 609

is provided in Appendix B. 610

Classification datasets primarily consist of textual 611

inputs from platforms such as Twitter and news 612
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and developing new models across the four phases of
disaster management.

outlets, categorizing data based on informativeness613

(relevance) (Olteanu et al., 2014) (illustrated in614

Figure 2), humanitarian types (Imran et al., 2016),615

damage levels (Alam et al., 2021b), and other rel-616

evant attributes. Some datasets also incorporate617

visual data, including satellite imagery and social618

media images (Alam et al., 2018). Model perfor-619

mance is typically evaluated using metrics such as620

accuracy and F1 score.621

Estimation datasets usually provide quantitative622

labels such as flood depths (Akinboyewa et al.,623

2024). Metrics like Mean Absolute Error (MAE)624

are used for evaluation.625

Generation datasets are also extensively used626

and primarily fall into two categories: ques-627

tion answering and summarization. Question-628

answering datasets provide disaster-related ques-629

tions paired with crowdsourced annotated an-630

swers (Rawat, 2024). Additionally, multimodal631

question-answering datasets, which incorporate632

disaster-related images as contextual information,633

are widely utilized (Sun et al., 2023). For the sum-634

marization task, large collections of documents635

serve as inputs, with reference summaries curated636

by domain experts (McCreadie and Buntain, 2023).637

Both question-answering and summarization tasks638

are evaluated using metrics such as BLEU.639

Extraction datasets identify and label spe-640

cific elements within a sentence, such as key-641

words (Nguyen and Rudra, 2022a) and loca-642

tions (Suwaileh et al., 2022). Tokens are labeled as643

"outside," "start," or "end" to indicate their extrac-644

tion status. These datasets are primarily used for645

token-level classification tasks and are evaluated646

using classification metrics.647

5 Challenges and Opportunities648

Large Language Models (LLMs) hold great649

promise for disaster management but face several650

key limitations. Most studies deploy generic LLMs 651

as universal solutions, overlooking domain-specific 652

challenges and the need for tailored frameworks, 653

as shown in Figure 3. Additionally, current applica- 654

tions are heavily concentrated on disaster response, 655

leaving other phases underexplored, as illustrated 656

in Figure 1. To fully harness the potential of LLMs 657

in disaster management, researchers must address 658

the disaster-specific challenges outlined below. 659

Dataset Construction. Current datasets are heav- 660

ily skewed toward classification tasks, leaving other 661

areas underexplored. Additionally, raw disaster 662

data often contains uncertainty and bias (Smith and 663

Katz, 2013), posing challenges in constructing reli- 664

able datasets. Innovative approaches, such as syn- 665

thetic data generation (Kalluri et al., 2024), offer 666

a promising solution to enhance dataset coverage 667

across diverse disaster-related scenarios. 668

Efficient Deployment. Large-scale LLMs face ef- 669

ficiency challenges (Ramesh Raja et al., 2024), lim- 670

iting their viability for real-time decision-making 671

in emergency disaster scenarios. While lightweight 672

models offer a more efficient alternative (Saleem 673

et al., 2024), they often compromise robustness 674

in disaster-related tasks. Developing models that 675

balance efficiency and reliability is essential for 676

effective disaster management. 677

Robust Generation. Decoder-based LLMs are 678

prone to hallucination, generating factually inaccu- 679

rate outputs that pose serious risks in disaster con- 680

texts, such as false evacuation routes, resource mis- 681

allocation, and potential loss of lives. To mitigate 682

these risks, strategies such as integrating RAG with 683

external knowledge bases (Colverd et al., 2023), 684

domain-specific training (Lamsal et al., 2024a), and 685

uncertainty estimation (Xu et al.) can help reduce 686

hallucinated outputs and improve reliability. 687

6 Conclusion 688

This paper surveys the application of LLMs in dis- 689

aster management across the four disaster phases, 690

introducing a taxonomy that integrates application 691

scenarios, specific tasks, and the architectures of 692

models addressing these tasks. By presenting pub- 693

licly available datasets and identifying key chal- 694

lenges, we aim to inspire collaborative efforts be- 695

tween AI researchers and decision-makers, ulti- 696

mately enabling the full potential of LLMs to build 697

more resilient communities and advance proactive 698

disaster management practices. 699
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Limitations700

Survey Scope. This work focuses exclusively on701

disaster management applications only where ex-702

isting LLMs have been utilized, leaving out other703

potential scenarios (e.g. repair cost evaluation dur-704

ing the recovery phase) that have yet to be explored705

in current LLM research. While these unexplored706

areas hold significant promise for future advance-707

ments, they fall beyond the scope of this study due708

to space constraints.709

Datasets. Additionally, we include only a subset of710

datasets used in existing studies, prioritizing those711

that are easily accessible. Many datasets either are712

not open-sourced, have restrictive access policies,713

or lack assured quality, making them less suitable714

for reproducibility and further research.715
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I am trapped! #Flood
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Figure 4: Pipeline of major tasks performed by different types of LLMs in disaster management.

A Summary of Papers1575

A.1 Summary Table1576

Table 1 summarizes the surveyed papers, detailing1577

their disaster phases, application scenarios, specific1578

tasks, and architecture types.1579

A.2 Pipeline Illustration1580

In this section, we present Figure 4, which il-1581

lustrates the role of LLMs in disaster manage-1582

ment. The figure outlines the major pipelines of1583

three LLM architectures—encoder-based, decoder-1584

based, and multimodal—applied across the four1585

task types covered in this survey: classification,1586

extraction, estimation, and generation. This visual-1587

ization provides key insights into their mechanisms1588

and applications in disaster management.1589

A.3 Statistics1590

To provide a comprehensive overview of the current1591

state of LLMs in disaster management, we present1592

statistics from the surveyed papers, highlighting a1593

significant gap between the NLP and disaster man-1594

agement communities. This gap underscores the1595

urgent need for stronger interdisciplinary collabo-1596

ration to bridge these fields and fully harness the1597

potential of LLMs in addressing disaster-related1598

challenges.1599

Figure 3 illustrates the number of publications1600

leveraging existing LLMs versus those developing1601

new frameworks, revealing that most studies are1602

heavily application-focused. The majority rely on1603

fine-tuning or prompting existing LLMs for disas-1604

ter management tasks, rather than designing novel 1605

architectures. While some efforts have provided 1606

valuable insights, most research remains concen- 1607

trated on the response phase, with limited explo- 1608

ration across other critical disaster management 1609

scenarios. Figure 5 illustrates the distribution of 1610

publications across academic venues, revealing that 1611

relatively few disaster management papers appear 1612

in NLP- or AI-specific conferences and journals. 1613

This trend reflects limited engagement from the 1614

LLM research community in this domain, under- 1615

scoring the need to increase awareness and foster 1616

greater collaboration within the field. 1617

B Datasets 1618

Table 2 summarizes existing publicly available 1619

datasets. For classification tasks, we exclude 1620

datasets that focus on a single disaster type if they 1621

are already incorporated into comprehensive bench- 1622

marks such as CrisisBench (Alam et al., 2021b). 1623

B.1 Classification Datasets 1624

• CrisisLexT6 (Olteanu et al., 2014): This 1625

dataset is designed for relevance classifica- 1626

tion. It contains data from six crisis events 1627

between October 2012 and July 2013. 1628

• CrisisLexT26 (Olteanu et al., 2015): This 1629

dataset is an updated version of CrisisLexT6, 1630

which contains public data from 26 crisis 1631

events in 2012 and 2013 with relevance in- 1632

formation and six humanitarian categories. 1633
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• CrisisNLP (Imran et al., 2016): This dataset1634

is a large-scale dataset that includes classes1635

from humanitarian disaster responses and1636

classes related to health emergencies. It is col-1637

lected from 19 different disaster events that1638

happened between 2013 and 2015.1639

• SWDM2013 (Imran et al., 2013): This dataset1640

is utilized for relevance classification that con-1641

sists of tweets from two events: (i) the Joplin1642

collection contains tweets from the tornado1643

that struck Joplin, Missouri on May 22, 2011;1644

(ii) The Sandy collection contains tweets col-1645

lected from Hurricane Sandy that struck the1646

Northeastern US on Oct 29, 2012.1647

• ISCRAM2013 (Imran et al., 2013): This1648

dataset consists of tweets collected from the1649

same events as in SWDM2013, containing1650

both relevance and humanitarian categories.1651

• Disaster Response Data (DRD) (Alam et al.,1652

2021b): This dataset consists of tweets col-1653

lected during various crisis events that took1654

place in 2010 and 2012. This dataset is anno-1655

tated using 36 classes that include relevance1656

as well as humanitarian categories.1657

• Disasters on Social Media (DSM) (Alam1658

et al., 2021b): This dataset comprises 10K1659

tweets annotated with relevance labels.1660

• AIDR (Imran et al., 2014): This dataset con-1661

tains data obtained from the AIDR system on1662

September 25, 2013, collecting tweets using1663

hashtags such as "#earthquake". It is utilized1664

for relevance and humanitarian classification.1665

• CrisisMMD (Alam et al., 2018): This dataset1666

is a multimodal and multitask dataset com-1667

prising 16k labeled tweets and corresponding1668

images. Tweets have been sourced from seven1669

natural disaster events that took place in 2017.1670

Each sample is annotated with relevance, hu-1671

manitarian (eight classes), and damage sever-1672

ity categories (mild, severe, and none).1673

• Multi-Crisis (Sánchez et al., 2023): This1674

dataset was proposed to evaluate transfer1675

learning scenarios where data from high-1676

resource languages (e.g., English) is used to1677

classify messages in low-resource languages1678

(e.g., Spanish, Italian) and unseen crisis do-1679

mains, with relevance and humanitarian cate-1680
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Figure 5: Publication distribution across various aca-
demic venues, with a focus on model design on the left
and application-based research on the right.

gories. It is collected from 7 existing datasets, 1681

53 crisis events, and contains 9 domains. 1682

• CrisisBench (Alam et al., 2021b): This 1683

dataset is a comprehensive benchmark con- 1684

solidated from 9 existing datasets, utilized for 1685

relevance and humanitarian classification. 1686

• Eyewitness Messages (Zahra et al., 2020): 1687

This dataset is designed to identify disaster 1688

eyewitness-related tweets and classify them 1689

into three categories: direct eyewitnesses, in- 1690

direct eyewitnesses, and vulnerable eyewit- 1691

nesses—individuals who anticipate a disaster 1692

and are present in regions where disaster warn- 1693

ings have been issued. It comprises 14,000 1694

tweets collected from earthquakes, hurricanes, 1695

and wildfires. 1696

• TREC Incident Streams (McCreadie et al., 1697

2019): This dataset has been developed as 1698

part of the TREC-IS 2018 evaluation chal- 1699

lenge and consists of 20k tweets labeled for 1700

actionable information identification and in- 1701

formation criticality assessment. 1702

• HumAID (Alam et al., 2021a): This dataset 1703

contains 77k labeled tweets, which are sam- 1704

pled from 24 million tweets collected during 1705

19 disasters between 2016 and 2019, including 1706

hurricanes, earthquakes, wildfires, and floods. 1707

It is balanced in terms of disaster types and 1708

contains 7 humanitarian categories. 1709

• EPIC: This dataset contains data primarily 1710

collected from Hurricane Sandy, including 1711

tweets from 93 users across four annotation 1712

schemes, with data spanning three weeks 1713

around the hurricane’s landfall. It is used for 1714

relevance and humanitarian classification. 1715
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B.2 Estimation Datasets1716

• Did You Feel It (DYFI) (Atkinson and Wald,1717

2007): This dataset includes ground shak-1718

ing intensity and geographic distribution in-1719

formation, collected from post-earthquake re-1720

ports through 750,000 online questionnaire1721

responses from individuals who experienced1722

the event.1723

• FloodDepth (Akinboyewa et al., 2024): This1724

dataset consists of 150 flood photos collected1725

online, used to estimate floodwater depth1726

based on various reference objects, including1727

stop signs, vehicles, and humans.1728

• Behavioral Facilitation (BF) (Yamamoto1729

et al., 2022): This dataset, collected after the1730

2018 Hokkaido earthquake, includes data la-1731

beled with usefulness ratings based on behav-1732

ioral facilitation information.1733

B.3 Extraction Datasets1734

• (Fu et al., 2024): This dataset contains1735

county-level data from news media collected1736

during urban flood events from 2000 to 2022.1737

It is utilized to extract information such as the1738

time and location of disasters.1739

• (Ma et al., 2023): This dataset is designed1740

for entity and relation extraction, compris-1741

ing 5,560 annotated instances, 12,980 entities,1742

and 6,895 relations derived from reports on1743

geological hazards.1744

• DisasterMM (Andreadis et al., 2022): This1745

dataset was collected from Twitter by search-1746

ing for flood-related keywords. It consists1747

of two subsets: RCTP, which includes 6,6721748

tweets for relevance classification, and LETT,1749

which contains 4,992 tweets used for location1750

extraction. In the LETT subset, words are an-1751

notated with "B-LOC" for the first word in1752

a sequence referring to a location, "I-LOC"1753

for subsequent words within the same loca-1754

tion sequence, and "O" for words that do not1755

correspond to a location.1756

• (Suwaileh et al., 2022): This dataset contains1757

22,000 crisis-related tweets from various dis-1758

asters, including floods, earthquakes, and hur-1759

ricanes. It is annotated with location-related1760

tags such as "inLOC" and "outLOC."1761

• Re´SoCIO (Caillaut et al., 2024): This 1762

dataset is constructed by merging Wikipedia 1763

datasets and multiple disaster-related datasets, 1764

annotated with a set of 9 NER labels with 1765

different types of information. 1766

• (Nguyen and Rudra, 2022a): This dataset 1767

contains tweet data with annotated rationales 1768

from 4 subsets of CrisisNLP. It is used for ra- 1769

tionale extraction, and the extracted rationales 1770

can assist in disaster classification. 1771

B.4 Generation Datasets 1772

• (Vitiugin and Castillo, 2022): This dataset is 1773

used to generate summaries of various disaster 1774

events, with the official report of each event 1775

serving as the ground truth. 1776

• CrisisFACTS (McCreadie and Buntain, 1777

2023): This dataset is a multi-stream collec- 1778

tion comprising data from eight crisis events 1779

gathered across various platforms. It is de- 1780

signed to process daily multi-platform streams 1781

and generate summaries based on specific 1782

information needs, such as "Have airports 1783

closed?" 1784

• DisasterQA (Rawat, 2024): This dataset in- 1785

cludes disaster-related multiple choice ques- 1786

tions from 7 different sources, examples could 1787

be "What causes a tsunami?". 1788

• FFD-IQA (Sun et al., 2023): This dataset 1789

comprises 2,058 images and 22,422 question- 1790

meta ground truth pairs related to the safety 1791

of individuals trapped in disaster sites and the 1792

availability of emergency services. It includes 1793

three types of questions: free-form, multiple- 1794

choice, and yes-no questions. 1795

• FloodNet (Rahnemoonfar et al., 2021): This 1796

dataset consists of 4,500 question-image pairs 1797

collected after Hurricane Harvey. The ques- 1798

tions pertain to buildings, roads, and entire 1799

scenes, categorized into four groups: "Simple 1800

Counting," "Complex Counting," "Yes/No," 1801

and "Condition Recognition." 1802
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Table 1: Summary of LLMs in disaster management with their disaster phases, application scenarios, specific tasks,
and architecture types. "Arch": Type of LLM architectures used; "NM": Whether the paper presents novel methods.

Paper Phase Application Task Arch NM

(Chowdhury et al.,
2024)

Mitigation Vulnerability Assessment Vulnerability Classification Decoder No

(Martelo and Wang,
2024)

Mitigation Vulnerability Assessment Answer Generation Decoder Yes

(Fu et al., 2024) Preparedness Public Awareness Enhancement Knowledge Extraction Encoder No
(Zhang and Wang,
2023)

Preparedness Public Awareness Enhancement Knowledge Extraction Encoder No

(Ma et al., 2023) Preparedness Public Awareness Enhancement Knowledge Extraction Encoder Yes
(Wu et al., 2024) Preparedness Public Awareness Enhancement Knowledge Extraction Decoder No
(Hostetter et al., 2024) Preparedness Public Awareness Enhancement Answer Generation Decoder No
(Martelo and Wang,
2024)

Preparedness Public Awareness Enhancement Answer Generation Decoder No

(Li et al., 2023) Preparedness Public Awareness Enhancement Answer Generation Decoder No
(Indra and
Duraipandian, 2023)

Preparedness Disaster Forecast Occurrence Classification Encoder Yes

(Zeng and Bertsimas,
2023)

Preparedness Disaster Forecast Occurrence Classification Multimodal Yes

(Liu and Zhong, 2023) Preparedness Disaster Forecast Occurrence Classification Multimodal Yes
(Wang et al., 2024) Preparedness Disaster Forecast Occurrence Classification Decoder No
(Chandra et al., 2024) Preparedness Disaster Warning Warning Generation Decoder No
(Martelo and Wang,
2024)

Preparedness Disaster Warning Warning Generation Decoder No

(Lubin et al., 2024) Preparedness Disaster Warning Image Generation Multimodal Yes
(Hostetter et al., 2024) Preparedness Evacuation Planning Plan Generation Decoder No
(Ningsih and Hadiana,
2021)

Response Disaster Identification Relevance Classification Encoder No

(Madichetty and
Madisetty, 2023)

Response Disaster Identification Relevance Classification Encoder No

(Singh et al., 2022) Response Disaster Identification Relevance Classification Encoder No
(Powers et al., 2023) Response Disaster Identification Relevance Classification Encoder No
(Duraisamy and
Natarajan, 2024)

Response Disaster Identification Relevance Classification Encoder No

(Ullah et al., 2023) Response Disaster Identification Relevance Classification Encoder No
(Li and Chen, 2024) Response Disaster Identification Relevance Classification Encoder No
(Zhao et al., 2024) Response Disaster Identification Relevance Classification Encoder No
(Karanjit et al., 2024) Response Disaster Identification Relevance Classification Encoder No
(Pabari et al., 2023) Response Disaster Identification Relevance Classification Encoder No
(de Bruijn et al., 2019) Response Disaster Identification Relevance Classification Encoder No
(Zhao et al., 2024) Response Disaster Identification Relevance Classification Encoder No
(Wang et al., 2021) Response Disaster Identification Relevance Classification Encoder No
(Habib et al., 2024) Response Disaster Identification Relevance Classification Encoder No
(Liu et al., 2021) Response Disaster Identification Relevance Classification Encoder No
(Fontalis et al., 2023) Response Disaster Identification Relevance Classification Encoder No
(Mehmood et al., 2024) Response Disaster Identification Relevance Classification Encoder No
(Paul et al., 2023) Response Disaster Identification Relevance Classification Encoder Yes
(Lamsal et al., 2024a) Response Disaster Identification Relevance Classification Encoder Yes
(Manthena, 2023) Response Disaster Identification Relevance Classification Encoder Yes
(Danday and Murthy,
2022)

Response Disaster Identification Relevance Classification Encoder Yes

(Ghosh et al., 2022) Response Disaster Identification Relevance Classification Encoder Yes
(Taghian Dinani et al.,
2023)

Response Disaster Identification Relevance Classification Decoder No

(Kamoji et al., 2023) Response Disaster Identification Relevance Classification Multimodal Yes
(Madichetty et al.,
2021)

Response Disaster Identification Relevance Classification Multimodal Yes

(Koshy and Elango,
2023)

Response Disaster Identification Relevance Classification Multimodal Yes

(Shetty et al., 2024) Response Disaster Identification Relevance Classification Multimodal Yes
(Zhou et al., 2023b) Response Disaster Identification Relevance Classification Multimodal Yes
(Yu and Wang, 2024) Response Disaster Identification Relevance Classification Multimodal Yes
(Zhang et al., 2022) Response Disaster Identification Relevance Classification Multimodal Yes
(Kota et al., 2022) Response Disaster Identification Relevance Classification Multimodal Yes
(Wang and Wang, 2022) Response Disaster Identification Relevance Classification Multimodal Yes
(Hanif et al., 2023) Response Disaster Identification Relevance Classification Multimodal Yes

20



Paper Phase Application Task Arch NM

(Jang et al., 2024) Response Disaster Identification Relevance Classification Multimodal Yes
(Madichetty and
Sridevi, 2021)

Response Disaster Situation Assessment Situation Classification Encoder Yes

(Raj et al., 2023) Response Disaster Situation Assessment Situation Classification Encoder Yes
(Kanth et al., 2022) Response Disaster Situation Assessment Situation Classification Multimodal Yes
(Mousavi et al., 2024) Response Disaster Situation Assessment Severity Estimation Decoder No
(Akinboyewa et al.,
2024)

Response Disaster Situation Assessment Severity Estimation Multimodal No

(Hu and Rahnemoonfar,
2024)

Response Disaster Situation Assessment Description Generation Multimodal No

(Wolf et al., 2023) Response Disaster Situation Assessment Description Generation Multimodal No
(Yamamoto et al., 2022) Response Disaster Information Coordination Usefulness Estimation Encoder No
(Blomeier et al., 2024) Response Disaster Information Coordination Relevance Classification Encoder No
(Adesokan et al., 2023) Response Disaster Information Coordination Information Classification Encoder No
(Wahid et al., 2022) Response Disaster Information Coordination Information Classification Encoder No
(Chandrakala and Raj,
2022)

Response Disaster Information Coordination Information Classification Encoder No

(Naaz et al., 2021) Response Disaster Information Coordination Information Classification Encoder No
(Du et al., 2023) Response Disaster Information Coordination Information Classification Encoder No
(Adesokan et al., 2023) Response Disaster Information Coordination Information Classification Encoder No
(Han et al., 2024b) Response Disaster Information Coordination Information Classification Encoder No
(Sharma et al., 2021) Response Disaster Information Coordination Information Classification Encoder No
(Yuan et al., 2022) Response Disaster Information Coordination Information Classification Encoder No
(Liu et al., 2021) Response Disaster Information Coordination Information Classification Encoder No
(Boros et al., 2022) Response Disaster Information Coordination Information Classification Encoder Yes
(Li et al., 2021) Response Disaster Information Coordination Information Classification Encoder Yes
(Zou et al., 2024) Response Disaster Information Coordination Information Classification Encoder Yes
(Zahera et al., 2021) Response Disaster Information Coordination Information Classification Encoder Yes
(Wilkho et al., 2024) Response Disaster Information Coordination Information Classification Encoder Yes
(Nguyen and Rudra,
2022b)

Response Disaster Information Coordination Information Classification Encoder Yes

(Nguyen and Rudra,
2023)

Response Disaster Information Coordination Information Classification Encoder Yes

(Nguyen and Rudra,
2022a)

Response Disaster Information Coordination Information Classification Encoder Yes

(Otal and Canbaz,
2024)

Response Disaster Information Coordination Information Classification Decoder No

(Yin et al., 2024) Response Disaster Information Coordination Information Classification Decoder No
(Dinani et al., 2024) Response Disaster Information Coordination Information Classification Decoder No
(Zhang et al., 2022) Response Disaster Information Coordination Information Classification Multimodal Yes
(Yu and Wang, 2024) Response Disaster Information Coordination Information Classification Multimodal Yes
(Shetty et al., 2024) Response Disaster Information Coordination Information Classification Multimodal Yes
(Abavisani et al., 2020) Response Disaster Information Coordination Information Classification Multimodal Yes
(Zhou et al., 2023a) Response Disaster Information Coordination Information Classification Multimodal Yes
(Basit et al., 2023) Response Disaster Information Coordination Information Classification Multimodal Yes
(Yang et al., 2024) Response Disaster Information Coordination Need Classification Encoder No
(Toraman et al., 2023) Response Disaster Information Coordination Need Classification Encoder No
(Zhou et al., 2022) Response Disaster Information Coordination Need Classification Encoder No
(Vitiugin and Purohit,
2024)

Response Disaster Information Coordination Need Classification Encoder Yes

(Conneau, 2019) Response Disaster Information Coordination Need Classification Encoder Yes
(Lamsal et al., 2024b) Response Disaster Information Coordination Need Classification Encoder Yes
(Mehmood et al., 2024) Response Disaster Information Coordination Location Extraction Encoder No
(Suwaileh et al., 2022) Response Disaster Information Coordination Location Extraction Encoder No
(Koshy and Elango,
2024)

Response Disaster Information Coordination Location Extraction Encoder Yes

(Ma et al., 2022) Response Disaster Information Coordination Location Extraction Encoder Yes
(Zhang et al., 2021) Response Disaster Information Coordination Location Extraction Encoder Yes
(Caillaut et al., 2024) Response Disaster Information Coordination Location Extraction Encoder Yes
(Yu and Wang, 2024) Response Disaster Information Coordination Location Extraction Decoder No
(Hu et al., 2023) Response Disaster Information Coordination Location Extraction Decoder No
(Firmansyah et al.,
2024)

Response Disaster Information Coordination Location Extraction Decoder No

(Nguyen and Rudra,
2022a)

Response Disaster Information Coordination Summary Extraction Encoder Yes

(Nguyen et al., 2022) Response Disaster Information Coordination Summary Extraction Encoder Yes
(Garg et al., 2024) Response Disaster Information Coordination Summary Extraction Encoder Yes
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(Vitiugin and Castillo,
2022)

Response Disaster Information Coordination Summary Extraction Decoder Yes

(Colverd et al., 2023) Response Disaster Information Coordination Report Generation Decoder No
(Pereira et al., 2023) Response Disaster Information Coordination Report Generation Decoder No
(Seeberger and
Riedhammer, 2024b)

Response Disaster Information Coordination Report Generation Decoder Yes

(Seeberger and
Riedhammer, 2024a)

Response Disaster Information Coordination Report Generation Decoder Yes

(Goecks and
Waytowich, 2023)

Response Disaster Rescuing Plan Generation Decoder No

(Panagopoulos et al.,
2024)

Response Disaster Rescuing Code Generation Decoder No

(Rawat, 2024) Response Disaster Issue Consultation Answer Generation Decoder No
(Chen and Fang, 2024) Response Disaster Issue Consultation Answer Generation Decoder No
(Xie et al., 2024) Response Disaster Issue Consultation Answer Generation Decoder No
(Chen et al., 2024) Response Disaster Issue Consultation Answer Generation Decoder Yes
(Xia et al., 2024) Response Disaster Issue Consultation Answer Generation Decoder Yes
(Sun et al., 2023) Response Disaster Issue Consultation Answer Generation Multimodal No
(Liu et al., 2024) Response Disaster Issue Consultation Answer Generation Multimodal Yes
(Kumbam and Vejre,
2024)

Response Disaster Issue Consultation Answer Generation Multimodal Yes

(Malik et al., 2024) Recovery Disaster Impact Assessment Damage Classification Encoder No
(Chen and Lim, 2021) Recovery Disaster Impact Assessment Damage Classification Encoder No
(Jeba et al., 2024) Recovery Disaster Impact Assessment Damage Classification Encoder No
(Zou et al., 2024) Recovery Disaster Impact Assessment Damage Classification Encoder Yes
(Chen and Lim, 2021) Recovery Disaster Impact Assessment Damage Estimation Encoder Yes
(Ziaullah et al., 2024) Recovery Disaster Impact Assessment Answer Generation Decoder No
(Estêvão, 2024) Recovery Disaster Impact Assessment Answer Generation Multimodal No
(Sarkar et al., 2023) Recovery Disaster Impact Assessment Answer Generation Multimodal No
(Alsan and Arsan,
2023)

Recovery Disaster Impact Assessment Answer Generation Multimodal No

(Hou and Xu, 2022) Recovery Disaster Impact Assessment Statistic Extraction Decoder No
(Han et al., 2024a) Recovery Disaster Impact Assessment Sentiment Classification Encoder No
(Alharm and Naim) Recovery Disaster Impact Assessment Sentiment Classification Encoder No
(Zhang and Ma, 2023) Recovery Disaster Impact Assessment Sentiment Classification Encoder No
(Varghese et al., 2024) Recovery Disaster Impact Assessment Sentiment Classification Encoder No
(Berbère et al., 2023) Recovery Disaster Impact Assessment Sentiment Classification Encoder No
(Li et al., 2025) Recovery Disaster Impact Assessment Sentiment Classification Decoder No
(White and Liptak,
2024)

Recovery Recovery Plan Generation Plan Generation Decoder No

(Lakhera, 2024) Recovery Recovery Plan Generation Plan Generation Decoder No
(CONTRERAS et al.) Recovery Recovery Process Tracking Sentiment Classification Encoder No

Table 2: Summary of publicly available datasets utilized in disaster management. For Application, "DI": Disaster
Identification; "DInf": Disaster Information Coordination; "DIC": Disaster Issue Consultation; "DSA": Disaster
Situation Assessment; "PAE": Public Awareness Enhancement; "DIA": Disaster Impact Assessment. For Disaster
Type, "Mix" denotes the datasets contain various types of disasters.

Dataset Phase Application Task Disaster Type Modality Used in #Sample

CrisisLexT6 (Olteanu
et al., 2014)

Response DI Classification Mix Text (McDaniel
et al., 2024)

60,082

CrisisLexT26 (Olteanu
et al., 2015)

Response DI, DInf Classification Mix Text (McDaniel
et al., 2024)

27,933

CrisisNLP (Imran
et al., 2016)

Response DI, DInf Classification Mix Text (Taghian Di-
nani et al.,
2023)

52,656

SWDM13 (Imran
et al., 2013)

Response DI, DInf Classification Mix Text (McDaniel
et al., 2024)

1,543

ISCRAM2013 (Im-
ran et al., 2013)

Response DI, DInf Classification Mix Text (McDaniel
et al., 2024)

3,617

DRD (Alam et al.,
2021b)

Response DI, DInf Classification Mix Text (McDaniel
et al., 2024)

26,235

DSM (Alam et al.,
2021b)

Response DI Classification Mix Text (McDaniel
et al., 2024)

10,876
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Dataset Phase Application Task Disaster Type Modality Used in #Sample

AIDR (Imran et al.,
2014)

Response DI, DInf Classification Mix Text (McDaniel
et al., 2024)

7,411

CrisisMMD (Alam
et al., 2018)

Response DI, DInf Classification Mix Text,
Image

(Jain et al.,
2024)

16,058

Multi-
Crisis (Sánchez
et al., 2023)

Response DI, DInf Classification Mix Text (Sánchez
et al., 2023)

164,625

CrisisBench (Alam
et al., 2021b)

Response DI, DInf Classification Mix Text (McDaniel
et al., 2024)

109,796

Eyewitness
Messages (Zahra
et al., 2020)

Response DInf Classification Mix Text (Zahra
et al., 2020)

14,000

TREC Incident
Streams (Mc-
Creadie et al.,
2019)

Response DI, DInf Classification Mix Text (Khattar
and Quadri,
2022)

19,784

HumAID (Alam
et al., 2021a)

Response DInf Classification Mix Text (Basit et al.,
2023)

77,000

EPIC (Stowe et al.,
2018)

Response DI, DInf Classification Mix Text (Adesokan
et al., 2023)

3469

Did You Feel It
(DYFI) (Mousavi
et al., 2024)

Response DSA Estimation Earthquake Text (Mousavi
et al., 2024)

750,000

FloodDepth (Akin-
boyewa et al., 2024)

Response DSA Estimation Flood Text,
Image

(Akinboyewa
et al., 2024)

150

Behavioral
Facilitation
(BF) (Yamamoto
et al., 2022)

Response DInf Estimation Earthquake Text (Yamamoto
et al., 2022)

1,400

(Fu et al., 2024) Preparedness PAE Extraction Flood Text (Fu et al.,
2024)

633

(Ma et al., 2023) Preparedness PAE Extraction Landslide Text (Ma et al.,
2023)

5,560

DisasterMM (An-
dreadis et al., 2022)

Response DI, DInf Classification,
Extraction

Flood Text (Mehmood
et al., 2024)

6,672,
4,992

(Suwaileh et al.,
2022)

Response DInf Extraction Mix Text (Suwaileh
et al., 2022)

22,137

Re´SoCIO (Cail-
laut et al., 2024)

Response DInf Extraction Flood Text (Caillaut
et al., 2024)

4,617

(Nguyen and
Rudra, 2022a)

Response DInf Extraction Mix Text (Nguyen
and Rudra,
2022a)

32

(Vitiugin and
Castillo, 2022)

Response DInf Generation Mix Text (Vitiugin
and
Castillo,
2022)

5,791

CrisisFACTS (Mc-
Creadie and
Buntain, 2023)

Response DIC Generation Mix Text (Pereira
et al., 2023)

748,466

DisasterQA (Rawat,
2024)

Response PAE, DIC Generation Mix Text (Rawat,
2024)

707

FFD-IQA (Sun
et al., 2023)

Response DIC Generation Flood Text,
Image

(Sun et al.,
2023)

22,422

FloodNet (Rah-
nemoonfar et al.,
2021)

Recovery DIA Generation Flood Text,
Image

(Sarkar
et al., 2023)

4,500

23


	Introduction
	Background
	LLM For Disaster Management
	Disaster Mitigation
	Disaster Preparedness
	Public Awareness Enhancement
	Disaster Prediction
	Disaster Warning
	Evacuation Planning

	Disaster Response
	Disaster Identification
	Disaster Situation Assessment
	Disaster Information Coordination
	Disaster Rescuing
	Disaster Issue Consultation

	Disaster Recovery
	Disaster Impact Assessment
	Recovery Plan Generation
	Recovery Process Tracking


	Datasets
	Challenges and Opportunities
	Conclusion
	Summary of Papers
	Summary Table
	Pipeline Illustration
	Statistics

	Datasets
	Classification Datasets
	Estimation Datasets
	Extraction Datasets
	Generation Datasets


