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Abstract
Navigating in an unfamiliar environment dur-
ing deployment poses a critical challenge for a
vision-language navigation (VLN) agent. Yet,
test-time adaptation (TTA) remains relatively un-
derexplored in robotic navigation, leading us to
the fundamental question: what are the key prop-
erties of TTA for online VLN? In our view, effec-
tive adaptation requires three qualities: 1) flexi-
bility in handling different navigation outcomes,
2) interactivity with external environment, and
3) maintaining a harmony between plasticity and
stability. To address this, we introduce FEEDTTA,
a novel TTA framework for online VLN utilizing
feedback-based reinforcement learning. Specif-
ically, FEEDTTA learns by maximizing binary
episodic feedback, a practical setup in which the
agent receives a binary scalar after each episode
that indicates the success or failure of the naviga-
tion. Additionally, we propose a gradient reg-
ularization technique that leverages the binary
structure of FEEDTTA to achieve a balance be-
tween plasticity and stability during adaptation.
Our extensive experiments on challenging VLN
benchmarks demonstrate the superior adaptabil-
ity of FEEDTTA, even outperforming the state-
of-the-art offline training methods in REVERIE
benchmark with a single stream of learning.

1. Introduction
Vision-Language Navigation (VLN) is a fundamental task of
connecting human interactions with robotic AI systems (Wu
et al., 2024). The navigation policies are typically trained
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Figure 1. Illustration of the learning paradigm of FEEDTTA. The
navigation agent adapts to streaming online test data by learning
to maximize the cumulative binary episodic feedback, which in-
dicates navigation success or failure. The simplicity and efficacy
of the FeedTTA framework demonstrate its potential for practical
applications in real-world navigation scenarios.

via imitation learning on a vast collection of annotated ex-
pert demonstrations, aiming to translate human behavior
into generalized robotic actions (Hao et al., 2020; Chen
et al., 2022c). However, it is inevitable for a trained policy
to encounter unseen environments during online deploy-
ment, leading to compromised reliability. Therefore, the
ability of instantly adapting to test-time environment and
performing beyond its trained capabilities, i.e., test-time
adaptation (TTA), is crucial in real-world robot navigation.

Despite its potential benefits, the application of TTA on on-
line robotic navigation remains underexplored. One existing
approach (Gao et al., 2024a) relies on the widely adopted
TTA paradigm of entropy minimization (Wang et al., 2020a;
Zhang et al., 2022), where we identify several limitations of
its usage on navigational policies. First, entropy minimiza-
tion reduces policy resilience on failed trials. That is, the
adaptations derived from failed samples attempt to improve
general predictive accuracy, but induce overfitting on similar
failure patterns. For example, when the initial navigation
fails, entropy minimization intensifies the probabilities of
the actions that lead to failure in repeated episodes. Second,
entropy minimization limits exploration. The sequential
decision-making nature of VLN requires a careful balance
between exploitation and exploration. By prioritizing en-
tropy minimization, the approach overly focuses on exploit-
ing existing knowledge while neglecting the opportunity to
learn from new, unfamiliar scenarios.
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This naturally leads us to address the important research
question: What are the key properties of TTA for online
VLN? Our analysis focuses on the following perspectives:

• Flexibility. The adaptation should be made in response to
the navigation outcome. This ensures that the policy can
adjust dynamically to different outcomes without overfit-
ting to specific failure patterns.

• Interactivity. The adaptation should be able to incor-
porate external signal from the end user, enabling more
natural and prompt adaptation to unforeseen situations by
learning human-like behavior.

• Plasticity & Stability. The adaptation should be versa-
tile in learning new information, while preventing catas-
trophic forgetting of previously acquired knowledge.

Based on this analysis, we introduce FEEDTTA, a novel
TTA framework for online VLN using feedback-based rein-
forcement learning (RL). Specifically, this work studies a
highly practical setting of binary episodic feedback, where
after each episode, the oracle provides the agent with a
binary scalar of +1 or -1, indicating whether the given in-
struction was successfully completed or not. The agent
adapts to new environment by attempting to maximize the
cumulative feedback throughout iterations. Suppose you are
an end user of a trained navigation agent. The agent carries
out an instruction, and determines to stop at a certain point,
presuming it is the desired destination. Now, you simply
inform the agent whether it is correct or wrong, which is a
rather trivial and inexpensive interaction. In an occasional
case where human feedback is unavailable, it is also feasible
for an agent to inquire AI systems (i.e., Large Language
Models (Achiam et al., 2023; Liu et al., 2024a)) for judg-
ment. Regardless of the feedback oracle, we show that the
policy adaptation is possible, even with a small amount of
streaming test data.

While the feedback offers clear and explicit guidance for
adaptation in unfamiliar environment, the binary nature of
the feedback system may introduce non-stationarity into
the adaptation process, leading to loss of plasticity (Dohare
et al., 2024). For example, unlike conventional optimization
signals, FEEDTTA estimates gradients at two distinct ex-
tremes (i.e., +1 for success and -1 for failure). We exploit
this property and develop a gradient regularization technique
named stochastic gradient reversion (SGR) to alleviate po-
tential non-stationarity. First, for each episode, SGR ran-
domly selects a subset of parameters to apply regularization.
Then, SGR modifies the direction of the estimated gradients
by reversing the derivatives of the score function w.r.t the
selected parameters. Incorporating this counterfactual rea-
soning results in a smoother gradient distribution throughout
the learning process, thereby improving plasticity. Further-
more, this enhances stability by regulating abrupt shifts in

gradient updates, ensuring the policy retains essential prior
knowledge and avoids catastrophic forgetting.

We empirically demonstrate the effectiveness of the
proposed method through extensive experiments on
REVERIE (Qi et al., 2020), R2R (Anderson et al., 2018),
and R2R-CE (Krantz et al., 2020) benchmark. FEEDTTA
successfully overcomes test-time distribution shifts, show-
ing substantial performance gains in classical evaluation
protocol of VLN. However, existing metrics primarily focus
on calculating overall averages across test-time samples,
making them inadequate for analyzing sample-wise adapt-
ability. Hence, we propose adaptive success rate (ASR),
which measures the sample-wise transition of results before
and after adaptation. The results confirm that FEEDTTA
also outperforms the compared baselines in ASR, showcas-
ing its advanced adaptability to test-time distribution shifts
and enhanced resilience in online VLN.

In summary, the contributions of this work are as follows.

• We introduce FEEDTTA, a novel TTA framework for on-
line VLN utilizing feedback-based RL. FEEDTTA learns
from user feedback at the end of each test-time episode (in-
teractivity), where feedback is given depending on the
navigation outcome (flexibility).

• We propose SGR as a gradient regularization technique to
mitigate non-stationary learning, thereby enhancing both
plasticity and stability of FEEDTTA.

• Experiments on challenging VLN benchmarks demon-
strate the superiority of FEEDTTA not only in classical
metrics, but also in our proposed sample-wise metric ASR.
Furthermore, FEEDTTA even outperforms the state-of-
the-art offline training methods in REVERIE benchmark.

2. Related Works
2.1. Vision-Language Navigation

The goal of Vision-Language Navigation (VLN) is to fol-
low natural language instructions to reach at a designated
position by using visual cues from the camera sensors (Wu
et al., 2024; Gu et al., 2022). In terms of model architec-
ture, early works focuses on modeling the sequential action
prediction nature of VLN with recurrent neural network (An-
derson et al., 2018; Fried et al., 2018). Later, multimodal
pre-training with transformers (Vaswani, 2017) emerges as
a mainstream learning paradigm (Hao et al., 2020; Hong
et al., 2021; Li et al., 2019), enabling fast optimization of
the policy for multiple downstream navigation tasks. Re-
garding model learning strategy, imitation learning is most
widely adopted to translate expert behavior into robotic ac-
tion (Chen et al., 2022c; Pashevich et al., 2021; An et al.,
2023; Liu et al., 2024d). Many works also incorporate
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reinforcement learning to refine the policy beyond super-
vised trajectories (Chen et al., 2021; Tan et al., 2019; Wang
et al., 2020b; Chen et al., 2022a). With the advent of Large
Language Models (LLMs), most recent works (Zhou et al.,
2024; 2025; Long et al., 2024; Yu et al., 2023; Zheng et al.,
2024) utilize human-like reasoning capabilities of LLMs to
accomplish the navigational task. Despite these attempts,
online VLN agents remain vulnerable when facing environ-
ments beyond the training set, as existing approaches rely
on offline learning strategies.

2.2. Test-time Adaptation

Test-time adaptation (TTA) has emerged as a practical so-
lution for handling distribution shifts, by directly adapting
a pre-trained model to unlabeled stream of test data (Liang
et al., 2024). One research direction focuses on adjusting the
pre-trained normalization statistics with the estimated ones
from the test batch (Nado et al., 2020; Schneider et al., 2020;
You et al., 2021; Zhao et al., 2023a). Entropy minimization
is also extensively studied, aiming to reduce prediction un-
certainty in test domain (Wang et al., 2020a; Zhang et al.,
2022; Niu et al., 2022; Gao et al., 2024b). Recently, adap-
tation in continuously evolving environments is explored
to address real-world challenges (Liu et al., 2024c; Wang
et al., 2022; Liu et al., 2024b). Despite its practical neces-
sity, TTA is still in the early stages of research within the
VLN field. FSTTA (Gao et al., 2024a) initiated the study
by applying entropy minimization while considering the
episodic structure of VLN. However, we observe several
limitations (see Section 1) and develop a flexible, interac-
tive, and well-balanced TTA framework for online VLN by
leveraging feedback-based reinforcement learning.

2.3. Feedback-based Reinforcement Learning

Reinforcement Learning with Human Feedback (RLHF)
(Ouyang et al., 2022) and its variants (e.g., RLAIF (Lee
et al., 2023a) and DPO (Rafailov et al., 2024)) burst onto
the field of the Large Language Model, integrating human
preference into output generation (Achiam et al., 2023; Tou-
vron et al., 2023; Liu et al., 2024a). Inspired by this suc-
cess, many works integrate the feedback system into vari-
ous downstream tasks (Lee et al., 2023b; Pinto et al., 2023;
Black et al., 2023). In the context of TTA, RLCF (Zhao et al.,
2023b) utilizes CLIP (Radford et al., 2021) feedback for
improving the zero-shot generalization capacity of vision-
language models. Similar to our work, DFA (Peng et al.,
2023) uses human feedback for adapting control policy, but
requires multiple steps to generate counterfactual demon-
strations, which is an infeasible setup in online navigation.
Instead, we consider a binary episodic feedback, which is a
highly practical interaction with the external environment,
making it suitable for online navigation.

3. Method
3.1. Task Description

Suppose we have a pre-trained VLN policy πθ, parameter-
ized by θ. At test time, πθ is exposed to N continuously
streaming test data X = {X1, X2, ..., XN}. Each element
Xn consists of a natural language instruction In, and an
initial visual state s0n, which is a 360◦ panoramic view of
the surrounding environment. To accomplish the given in-
struction, the agent starts from s0 and predicts next action
at each time step using πθ, until it decides to stop. This pro-
duces a trajectory τ = (st, at)

T−1
t=0 , where at is the selected

action at step t and T is the total number of steps taken by
the agent.

3.2. Binary Episodic Feedback

Feedback Mechanism. We assume the presence of an
oracle O (e.g. human or AI system) at test time to assess
real-time navigation result. Once the agent determines to
stop, the oracle provides the agent with a binary feedback F ,
where +1 is given if the predicted trajectory τ successfully
followed the given instruction I , and -1 otherwise. Formally,
we consider O as a function of τ and X , which formulates
the feedback mechanism as:

F = O(τ,X) =

{
1 if τ |= I ∈ X,

−1 if τ ̸|= I ∈ X.
(1)

Unlike step-wise feedback which requires tracking through-
out the whole episode, it is trivial to simply evaluate whether
the complete trajectory was a success or failure at the end
of the episode, making it highly practical and feasible for
online environment. In this study, we focus on the most
practical setting of binary feedback, leaving the exploration
of more advanced feedback systems for future research.

Feedback-based Policy Gradient. FEEDTTA lever-
ages a Monte Carlo policy gradient algorithm REIN-
FORCE (Williams, 1992) to learn from the received feed-
back at the end of each navigation episode. A general RE-
INFORCE algorithm aims at optimizing the parameter θ of
a policy πθ to maximize the score function of the expected
return Gt =

∑T−t
i=1 γi−1Rt+i, where R is the reward and

γ is the discount factor. In FEEDTTA, the rewards are as-
signed as 0 for t < T − 1, and a binary episodic feedback
F for t = T − 1, giving us the score function as:

J(θ) = Eτ∼πθ

[
T−1∑
t=0

Gt

]
= Eτ∼πθ

[
T−1∑
t=0

γT−t−1F

]
.

(2)
Then, according to the policy gradient theorem, the approxi-
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Figure 2. Conceptual Illustration of SGR. (Left) By reversing
the gradients, SGR reduces the distribution gap between the two
extreme cases that may cause non-stationary learning. (Right)
Specifically, among the variants of α, the negative value (reversion)
shifts the original gradient closest to the counterfactual distribution.

mated gradient of the policy πθ is:

∇θJ(θ) ≈ Eat,st∼τ

[
T−1∑
t=0

∇θ log πθ(at | st) γT−t−1F

]
,

(3)
where πθ(at | st) is the probability of taking action at in
state st under the policy parameterized by θ. Here, the pa-
rameter update directly depends on the navigation outcome
F and the log probability for each selected action, imply-
ing that the policy flexibly adopts different strategies for
different results.

Analysis 3.1: LLMs as Oracle. Although episodic feed-
back is an inexpensive interaction, human involvement may
not always be possible in real-world environments. In such
cases, the agent can leverage the commonsense reason-
ing capability of LLMs (Achiam et al., 2023; Liu et al.,
2024a) for judgment. In this research, we utilize the GPT-4
model (Achiam et al., 2023) as the LLM oracle. We observe
that while LLMs can also provide beneficial feedback for
adaptation with reduced burden of human labeling, their
reliability remains a concern, requiring a careful prompting
for accurate judgments. Please refer to Appendix A for
prompting details and Exp. 5.3 for our empirical analysis
on using LLMs as feedback oracle.

3.3. Stochastic Gradient Reversion

The binary feedback provides the agent with a straightfor-
ward direction for achieving navigation success in unfamil-
iar test-time environments. However, the estimated gradi-
ents from the binary signals point toward extreme ends in the
parameter space, potentially causing non-stationarity. There-
fore, we propose Stochastic Gradient Reversion (SGR), a
gradient regularization method for FEEDTTA to maintain
plasticity and stability during adaptation.

Regularization Method. SGR utilizes the binary nature of
the feedback mechanism, and learns the ‘what if’ scenario,
instead of focusing exclusively on immediate feedback. To
simplify the explanation, we reformulate Eq. 3 as a set of
partial derivatives of the score function J(θ) with respect to

Algorithm 1 Online Learning Process of FEEDTTA
Require: Pre-trained VLN policy πθ, Online data stream
X = {X1, X2, ..., XN}, Feedback oracle O;

1: θ1 : initialized policy parameters, N : data count,
T : steps count, η : learning rate, s : state, a : action;

2: for each step n ∈ {1, 2, ...N} do
3: Follow instruction In ∈ Xn and generate trajectory:

τ ∈ (st, at)
T−1
t=0 ∼ πθ;

// Binary Episodic Feedback:
4: Receive binary feedback F = O(τ,Xn) (Eq.1);
5: Define a score function J(πθ) to maximize (Eq.2);
6: Approximate policy gradient ∇J(πθ) w.r.t θ (Eq.3);

// Stochastic Gradient Reversion:
7: Sample reversion candidate G ⊆ ∇θJ(θ) (Eq.4);
8: Reverse gθm ∈ G and obtain ∇J(πθ)

′ (Eq.5);
9: Update parameter θ through gradient ascent (Eq.6):

θn+1 ← θn + η∇J(πθ)
′

10: end for
output Policy parameter θ∗ adapted to X

each dimension of the parameter space:

∇θJ(θ) =
{∂J(θ)

∂θ1
. . .

∂J(θ)

∂θM

}
= {gθ1 . . . gθM },

where M denotes the number of dimensions that forms the
parameter space. First, SGR randomly samples a subset of
dimensions from ∇θJ(θ), where the elements are drawn
from a Bernoulli distribution with probability p:

G = {gθm | bm = 1, bm ∼ Bernoulli(p)}Mm=1 ⊆ ∇θJ(θ),
(4)

where b is the Bernoulli random variable. Then, SGR re-
verses the elements of G by multiplying a negative coeffi-
cient, modifying the gradients as:

∇θJ(θ)
′ = {g′θm}

M
m=1 =

{
αgθm , if gθm ∈ G

1
αp+(1−p) gθm , if gθm /∈ G

(5)
where α < 0 is the reversion magnitude. The 1 − p seg-
ments of the derivatives gθm ̸∈ G are proportionally scaled
to preserve consistency in the expected magnitude (i.e.,
E [g′θm ] = gθm , ∀m ∈ {1, . . . ,M}). We provide the deriva-
tion in Appendix B.1. Utilizing the modified gradient, the
parameter update at the nth iteration becomes:

θn+1 ← θn + η∇J(θ)′, (6)

where η > 0 is the learning rate. The conceptual illustration
of SGR and the overall learning process of FEEDTTA are
summarized in Figure 2 and Algorithm 1, respectively.

Analysis 3.2: Alleviating Non-stationarity. Due to the
binary feedback system, the score function to be maximized
from each feedback is negatively related (i.e., −J(θ)F=1 =
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J(θ)F=−1). Therefore, by reversing the gradient direction
for some dimensions, SGR can partially simulate a counter-
factual scenario. This mechanism allows for a more flexible
and dynamic adaptation, taking both possible outcomes into
consideration rather than limiting updates to a single ex-
treme. As a result, SGR smoothens the abrupt changes in
gradient distributions, thereby alleviating the non-stationary
learning environment with enhanced plasticity and stability.

Analysis 3.3: Catastrophic Forgetting. We analyze the
expected absolute value (EAV) of the gradients to support
the above claim. EAV quantifies the deviation from the case
where neither forgetting nor adaptation occurs, indicating
the extent of policy forgetting and adaptation. For brevity,
we omit the dimension index m in subsequent derivations.
In a standard gradient update, the EAV is given by:∑

E[|∇θJ(θ)|] =
∑
|gθ|. (7)

For small p and α such that |α| < p, the EAV for the SGR-
modified gradients is:∑

E[|∇θJ(θ)
′|] =

∑[
p|αgθ|+(1−p)

∣∣∣ gθ
αp+ (1− p)

∣∣∣].
(8)

Using a first-order approximation:∑
E [|∇θJ(θ)

′|] ≈
∑

[p |αgθ|+ (1− p) |(1 + p)gθ|]

=
∑(

1− p2 − αp
)
|gθ| .

(9)
Therefore, applying SGR scales the EAV by a factor of (1−
p2 − αp) ≤ 1, reducing the gradient magnitude compared
to the standard gradient update. If α = 0, this corresponds
to gradient dropout, where the scaling factor is fixed at
1− p2. If α > 0, the scaling factor is controlled by α, but
remains bounded above as 1− p2−αp < 1− p2. However,
when α < 0, the scaling factor is also controlled by α, but
bounded both above and below as 1−p2 < 1−p2−αp ≤ 1
This result demonstrates that reversing a subset of gradients
as proposed in SGR provides a strategic way to balance
plasticity and stability in adapting to unseen environments.

Analysis 3.4: Reversion Magnitude. In practice, α can
take on any value from the set of real numbers, which can
result in different interpretations. When α = 0, the formula-
tion becomes equivalent to gradient dropout (GD) (Tseng
et al., 2020). While GD can bring robustness in the learning
process to some extent, disregarding the updates in certain
dimensions as a whole causes loss of plasticity in the zeroed-
out dimensions. When α > 0, it simply scales the gradient
while keeping the direction unchanged. This equivalent
to adjusting the learning rate for the selected dimensions.
However, our empirical observations indicate that reversing
the gradient with a negative α yields better performance
than when α ≥ 0 (see Exp. 5.4).

4. Experimental Setup
4.1. Dataset Description
For evaluation, we use three representative VLN bench-
marks: REVERIE (Qi et al., 2020), R2R (Anderson et al.,
2018), and R2R-CE (Krantz et al., 2020). REVERIE is
a goal-oriented task, focusing on locating remote objects
with high-level instructions. The navigation is considered
successful when the agent stops within a 3m radius of the
target object and selects the correct bounding box from the
panoramic view. R2R and R2R-CE contains fine-grained
navigation instructions. Similarly, the agent should stop
within 3m from the target. R2R-CE is a variant of R2R in a
continuous environment.

4.2. Evaluation Metrics
We follow the standard evaluation protocol from the pre-
vious works (Chen et al., 2021; 2022c; Gao et al., 2024a)
and report Trajectory Length (TL), Navigation Error (NE),
Success Rate (SR), Oracle Success Rate (OSR), Suc-
cess Penalized by Length (SPL), Remote Grounding Suc-
cess (RGS) and Remote Grounding Success Penalized by
Length (RGSPL). Please refer to Appendix C for details of
each metric. In addition to these metrics, we propose the
‘Adapted Success Rate (ASR)’ metric to accurately measure
sample-wise transition of results before and after adaptation.
ASR can be formulated as:

ASR =
1

2
{P (STTA | SBase) + P (STTA | FBase)}

where P (STTA | SBase) is the preserved SR (PSR), measur-
ing how much the policy succeeds in the samples that would
have also succeeded in the base policy before adaptation.
P (STTA | FBase) represents the converted SR (CSR), indicat-
ing how much the policy succeeds in samples that would
have previously failed before adaptation. By averaging the
two, ASR can comprehensively assess both the plasticity
and stability of the adaptation process.

4.3. Implementation Details

Pre-trained Navigation Policies. We select HAMT (Chen
et al., 2021), DUET (Chen et al., 2022c), BEVBert (An
et al., 2023) and EPTNav (An et al., 2024) as the target
policy to perform test-time adaptation. HAMT is a fully
transformer-based VLN network trained via reinforcement
learning. DUET combines the global map encoding and the
local visual encoding through graph transformer. BEVBert
improves the spatial awareness of VLN with bird’s-eye-view
map representation. EPTNav focuses on agent’s long-range
goal planning in continuous environments. Our proposed
FEEDTTA is applied at the inference time of these offline
trained VLN policies. Specifically, we freeze the language
and visual encoders, updating the parameters starting from
the cross-modal encoder onward.
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Table 1. Experimental results on the REVERIE dataset. † implies that the results are obtained from our re-implementation (same for
Table 2 and Table 3). In the last column, we report the average inference time per 4 episodes, measured in milliseconds.

Methods Val Seen Val Unseen Test Unseen Inf. TimeOSR↑ SR↑ SPL↑ RGSPL↑ OSR↑ SR↑ SPL↑ RGSPL↑ OSR↑ SR↑ SPL↑ RGSPL↑

O
ffl

in
e-

tr
ai

ni
ng

VLN⟳BERT (Hong et al., 2021) 53.90 51.79 47.96 35.61 35.02 30.67 24.90 15.27 32.91 29.61 23.99 13.51 -
HOP+ (Qiao et al., 2022) 54.88 53.76 47.19 33.85 36.24 31.78 26.11 15.73 33.06 30.17 24.34 14.34 -
BEVBert (An et al., 2023) 76.18 73.12 65.32 51.73 56.40 51.78 36.37 24.44 57.26 52.81 36.41 22.09 -
KERM (Li et al., 2023) 79.20 76.88 70.45 56.07 55.21 50.44 35.28 24.45 57.58 52.43 39.21 23.64 -
NaviLLM (Zheng et al., 2024) - - - - 53.74 44.56 36.64 - 56.21 43.49 34.45 - -
VLN-VER (Liu et al., 2024d) 80.49 75.83 66.19 56.20 61.09 55.98 39.66 23.70 62.22 56.82 33.88 23.19 -

Te
st

-t
im

e
A

da
pt

at
io

n HAMT (Chen et al., 2021) 47.65 43.29 40.19 25.18 36.84 32.95 30.20 17.28 33.41 30.40 26.67 13.08 85.4
w/ Tent† (Wang et al., 2020a) 46.03 43.43 40.78 25.81 32.60 30.56 28.23 14.48 25.06 23.73 21.78 10.82 200.3
w/ FSTTA† (Gao et al., 2024a) 48.21 42.87 39.56 24.58 36.78 32.89 30.51 17.20 33.39 30.39 26.65 13.61 460.1
w/ FEEDTTA (Ours) 62.97 55.80 49.70 31.80 40.73 35.05 31.60 17.83 38.62 34.14 29.07 14.36 384.2

DUET (Chen et al., 2022c) 73.86 71.75 63.94 51.14 51.07 46.98 33.73 23.03 56.91 52.51 36.06 22.06 176.8
w/ Tent 73.72 71.89 64.06 50.41 51.43 47.55 33.99 23.32 57.12 52.61 36.17 22.16 515.8
w/ FSTTA 75.59 75.48 65.84 52.23 56.26 54.15 36.41 23.56 58.44 53.40 36.43 22.40 868.0
w/ FEEDTTA (Ours) 86.16 84.19 75.54 60.32 71.60 66.49 45.38 30.75 58.76 53.58 37.66 24.10 672.0

TTA Baselines. To date, FSTTA (Gao et al., 2024a) is the
only existing baseline that shares the task objective of TTA
for online VLN with our FEEDTTA. However, due to an
identified issue in the official code1, we re-implement the
method to ensure proper functionality. We denote through-
out the experiments, a † mark to indicate that the results
are obtained from our re-implementation. Furthermore, we
include Tent (Wang et al., 2020a) as our comparison to thor-
oughly contrast FEEDTTA against the entropy minimization
paradigm. For a comparable evaluation with our approach,
Tent is applied on a per-episode basis.

Hyperparameter and GPU Settings. We use a batch size
of 1 to properly simulate the online environment. Then,
we search the best-performing values for the reversion rate
p and the reversion magnitude α within {0.01, 0.05, 0.1,
0.2, 0.3} and {-0.01, -0.025, -0.05, -0.075, -0.1, -0.2, -
0.3}, respectively. For the REVERIE dataset, the results
in the paper are obtained with p = 0.01 and α = −0.2
for the validation seen split, and p = 0.05 and α = −0.2
for the validation unseen split. For R2R and R2R-CE, we
use p = 0.05 and α = 0.1 for both splits. We report the
performance variations for the combinations of the p and
α in Appendix B.2. The learning rate η is set as 5e-6. All
other hyperparameters adhere to the default configuration
of the target policy. Lastly, all experiments are conducted
on a single NVIDIA Tesla A100 GPU. However, FEEDTTA
does not require high-end server-grade GPUs and can be
efficiently deployed on practical hardware (e.g., GTX 1080).

5. Experiments
In this section, we present experimental results of our study.
Specifically, the experiments are conducted with a focus on
answering the following research questions:

• RQ1: How well does FEEDTTA perform when compared
to other TTA and offline training baselines?

1
https://github.com/Feliciaxyao/ICML2024-FSTTA/issues/1

• RQ2: How sensitive is the performance to the quality and
the quantity of the feedback provided?

• RQ3: Can LLMs replace human as the feedback oracle?

• RQ4: How does SGR enhance plasticity and stability and
alleviate non-stationarity during adaptation?

• RQ5: How does FEEDTTA compare to approaches that
use dense reward signals?

5.1. Main Navigation Results
The experiments in this section address RQ1 by comparing
the adaptability of FEEDTTA against TTA baselines while
also comparing its performance to recent state-of-the-art
offline training methods in three datasets.

REVERIE. Table 1 reports the experimental results on the
REVERIE dataset, where FEEDTTA is applied to HAMT
and DUET. First, we observe that FEEDTTA brings signif-
icant performance increase across all data splits and eval-
uation metrics. Specifically, our method improves SR and
OSR of DUET up to 41.53% and 40.20% on the validation
unseen split, respectively. For the test unseen split, we uti-
lize LLMs as the feedback oracle due to the unavailability
of goal-viewpoint data, yet the results remain promising
compared to other baselines in both HAMT and DUET. An-
other noticeable aspect is that only with a single stream of
online learning, FEEDTTA on DUET outperforms recent
state-of-the-art offline training methods. This highlights the
efficiency of actively adapting to domain shifts on-the-fly,
rather than relying on passive strategies that aim for general-
ized performance. Lastly, we compare the average inference
time per 4 episodes. The parameter update for the adaptation
brings inevitable overhead for all TTA methods. However,
considering the substantial performance increases and that
FEEDTTA does not hinder latency during navigation, the
additional overhead is negligible.

R2R & R2R-CE. Table 2 and Table 3 shows the navigation
results for R2R and R2R-CE dataset, respectively. Here, we
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Table 2. Experimental results on the R2R dataset.
Methods Val Seen Val Unseen

TL ↓ NE ↓ SR↑ SPL↑ TL ↓ NE ↓ SR↑ SPL↑

O
ff

-t
ra

in
in

g Seq2Seq (Anderson et al., 2018) 11.33 6.01 39 - 8.39 7.81 22 -
PREVALENT (Hao et al., 2020) 10.32 3.67 69 65 10.19 4.71 58 53
HAMT (Chen et al., 2021) 11.15 2.51 76 72 11.46 3.65 66 61
HOP (Qiao et al., 2022) 11.26 2.72 75 70 12.27 3.80 64 57
DAVIS (Lu et al., 2022) 12.45 3.16 80 76 12.65 3.16 67 61

T
TA

DUET (Chen et al., 2022c) 12.33 2.28 79 73 13.94 3.31 72 60
w/ FSTTA (Gao et al., 2024a) 13.39 2.25 79 73 14.64 3.03 75 62
w/ FEEDTTA (Ours) 11.49 2.09 80 75 13.52 2.95 75 65

BEVBert (An et al., 2023) 13.56 2.17 81 74 14.55 2.81 75 64
w/ FSTTA† 12.28 2.31 80 75 13.96 2.89 74 63
w/ FEEDTTA (Ours) 11.88 2.17 82 77 12.24 2.77 75 66

Table 3. Experimental results on the R2R-CE dataset.
Methods Val Seen Val Unseen

TL ↓ NE ↓ OSR↑ SR↑ SPL↑ TL ↓ NE ↓ OSR↑ SR↑ SPL↑

O
ff

-t
ra

in
in

g Seq2Seq (Anderson et al., 2018) 9.26 7.12 46 37 35 8.64 7.37 40 32 30
SASRA (Irshad et al., 2022) 8.89 7.71 - 36 34 7.89 8.32 - 24 22
CM2(Georgakis et al., 2022) 12.05 6.10 51 43 35 11.54 7.02 42 34 28
WS-MGMAP (Chen et al., 2022b) 10.12 5.65 52 47 43 10.00 6.28 48 39 34
GridMM (Wang et al., 2023) 12.69 4.21 69 59 51 13.36 5.11 61 49 41

T
TA

ETPNav (An et al., 2024) 11.78 3.95 72 66 59 11.99 4.71 65 57 49
w/ FSTTA† (Gao et al., 2024a) 11.35 3.93 72 66 59 11.57 4.77 64 57 49
w/ FEEDTTA (Ours) 10.88 3.85 72 67 61 11.99 4.47 66 58 50

BEVBert (An et al., 2023) 13.98 3.77 73 68 60 13.27 4.57 67 59 50
w/ FSTTA 14.07 4.11 74 69 60 13.11 4.39 65 60 51
w/ FEEDTTA (Ours) 13.54 3.08 79 73 63 16.15 4.33 69 61 50

discover that FEEDTTA also adapts well on fine-grained
instructions and in continuous environment. For instance, on
the R2R validation unseen split, FEEDTTA improved 8.33%
on SPL for DUET, while reducing 10.88% in NE. Similarly,
on the validation seen split, FEEDTTA enhanced 4.05% in
SPL with 12.39% shorter TL for BEVBert. We observe
consistent results in the R2R-CE dataset. For example, on
the validation seen split, with reductions of 18.30% in NE
and 3.15% in TL, FEEDTTA improves BEVBert by 8.22%,
7.35%, and 5.00% in OSR, SR, and SPL, respectively.

Performance w.r.t. Ground Truth TLs. We further cate-
gorize the navigation tasks of REVERIE based on ground
truth TLs and evaluate the SR within each category. Fig-
ure 3 illustrates the results, where we derive two major
insights. First, FSTTA exhibits only a minimal performance
improvement over the baseline and even shows a decline
in scenes with short TLs. However, our FEEDTTA brings
solid performance gains across all categories. Furthermore,
in the validation unseen split, both the baseline and FSTTA
experience a reduction in performance as the navigation
instructions require covering longer distances. Unlike this,
FEEDTTA demonstrates a relatively consistent SR regard-
less of TLs, highlighting the method’s robustness across
diverse scenes and instructions.

5.2. Quality and Quantity of Feedback

The following experiments address RQ2 by studying the
sensitivity of FEEDTTA on the quality (e.g., based on accu-
racy) and the quantity (e.g., based on first K samples and
update interval) of the feedback. We use the REVERIE
dataset and DUET as the baseline for this experiment.

Feedback Accuracy. Figure 4-(a) illustrates the perfor-
mance changes w.r.t. feedback accuracies. In this experi-

Figure 3. Trajectory Length Analysis. We visualize the relation
between the ground truth TL (x-axis) and the SR (y-axis) for the
REVERIE dataset. The length are measured in metric.

ment, episodes are randomly selected to receive accurate
feedback, while the remaining episodes are given inaccurate
feedback. Then, we obtain results with feedback accura-
cies varying from 50% to 100%. Feedback accuracies less
than 50% leads to obvious adaptation failure. Furthermore,
the overall result suggests that the SR and the SPL metrics
are proportional to the quality of the feedback. However,
FEEDTTA outperforms the baseline in SR with from 50%-
60% of the accuracy, implying that the method is robust to
noisy or inaccurate feedback.

First-K-Sample. Providing feedback for every navigation
episode may not be feasible in real-world scenarios. In Fig-
ure 4-(b), we report the performance changes w.r.t. number
of feedback provided. Specifically, the x-axis denotes the
percentage of first K episodes that receive feedback, where
we report results for every 10%. Here, we observe that
FEEDTTA surpasses the baseline results with only using
20% of the total episodes, showcasing its high efficiency.
The performance improves further in proportion to the in-
crease in the percentage of episodes receiving feedback.

Interval-based Update. Another strategy to measure sen-
sitivity on feedback quantity is to modify update intervals.
Figure 4-(c) illustrates the changes in performance with re-
spect to update intervals, where feedback is provided after
every 1, 2, 4, 10, 20, and 100 iterations. For both data splits,
frequent update generally produces better navigation results.
Although the two splits differ in total amount of data, set-
ting the update interval greater than 10 and using less than
20% of data commonly hinders the adaptation in both splits.
This implies that maintaining a balance between feedback
frequency and the amount of data utilized is critical for
effective adaptation of FEEDTTA.

5.3. LLMs as Feedback Oracle

Before utilizing the LLMs for the evaluation of the test un-
seen split in Table 1, we first validate their feasibility as the
oracle on the REVERIE validation unseen split. We leverage
a two-step LLM architecture for determining the navigation
success or failure. First, we ask the LLM to identify a target
goal from the instruction. We then provide the goal and the
panoramic image from the last step of navigation, asking
whether the navigation was successful. The details of the
prompts for the experiments are provided in Appendix A.
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Figure 4. Feedback Analysis. We study the sensitivity of our method on (a) feedback accuracy, (b) number of first K feedback samples,
and (c) update interval. The plotted results represent the average of 3 experiments conducted with different seeds.

Table 4. Experiments on Large Language Model Oracle.

LLMs Feedback Accuracy Navigation Performance
Accuracy Recall Precision OSR↑ SR↑ SPL↑ RGSPL↑

GPT-4o-mini 0.65 0.62 0.73 59.61 49.90 32.50 23.27
GPT-4o 0.72 0.84 0.68 58.42 52.29 33.56 22.59

Table 5. Effects of different gradient regularization variants on α.
FEEDTTA w/o reg. denotes a variant of FEEDTTA without any
regularization techniques applied.

Methods TL ↓ SR↑ SPL↑ RGSPL↑ ASR↑ PSR↑ CSR↑

V
al

Se
en

DUET (Chen et al., 2022c) 13.86 71.75 63.94 51.14 - - -
+ FEEDTTA w/o reg. 17.18 81.80 69.10 56.33 71.88 94.72 49.04
+ FEEDTTA w/ GD (α = 0) 15.04 83.06 73.68 59.27 73.07 96.12 50.03
+ FEEDTTA w/ GS (α > 0) 17.36 84.14 72.94 58.39 73.31 96.72 49.90
+ FEEDTTA w/ SGR (α < 0) 15.17 84.19 75.54 60.32 76.67 97.33 56.01

V
al

U
ns

ee
n DUET 22.11 46.98 33.73 23.03 - - -

+ FEEDTTA w/o reg. 31.08 63.14 40.55 27.94 64.35 83.17 45.53
+ FEEDTTA w/ GD (α = 0) 35.70 63.36 39.81 27.48 64.38 87.12 41.65
+ FEEDTTA w/ GS (α > 0) 31.04 61.63 41.47 27.61 65.13 83.91 46.35
+ FEEDTTA w/ SGR (α < 0) 31.83 66.49 45.38 30.75 67.69 85.18 50.21

For the experiment, we utilize the GPT-4o (Achiam et al.,
2023) and its smaller variant as the oracle for DUET, and
report the results in Table 4. With 65% and 72% of feed-
back accuracies, respectively, the LLM oracles generally
enhance the baseline performance, which corresponds to our
experiment in Figure 4-(a). Furthermore, the larger model
outperforms the smaller variant in predicting navigation
outcomes, suggesting a correlation between commonsense
reasoning capabilities and navigation reasoning. Therefore,
as LLMs advance further, their reliability as feedback ora-
cles will also improve, making them an efficient alternative
to human feedback.

5.4. Effects of Stochastic Gradient Reversion

In this section, we address RQ4 by comparing the overall
navigation performance between different gradient regular-
ization methods, analyzing weight magnitude for plasticity,
and analyzing catastrophic forgetting for stability.

Gradient Regularization Comparison. Table 5 presents
the navigation results of FEEDTTA using different gradi-
ent regularization methods from Analysis 3.3, with a fo-
cus on the ASR metric. We denote the regularization with
α = 0 as GD (i.e., gradient dropout) and the regularization
with α > 0 as GS (i.e., gradient scaling), where we set
α = 0.05 to ensure a valid comparison with our method.
While FEEDTTA alone significantly enhances the target

Figure 5. Plasticity Analysis. We illustrate (left) cumulative suc-
cess rates and (right) changes in weight magnitude over iterations.
The results are averaged across 3 experiments with different seeds.

policy’s performance, its effectiveness is further amplified
with the addition of gradient regularization. Among them,
reversing the gradient directions and enabling counterfac-
tual reasoning as in SGR yields superior result in the binary
feedback environment. Specifically, for both data splits,
SGR brings 14.21% and 10.28% improvements in CSR, re-
spectively, indicating the flexibility of FEEDTTA in dealing
with failure scenarios. In the validation unseen split, GD
shows the highest result in PSR, but rather decreases CSR,
hindering the balance of the two metrics.

Weight Magnitude Analysis. As the agent repeatedly per-
forms the online navigation task in a non-stationary environ-
ment, it tends to experience a loss of plasticity. We relate
this phenomenon with the increase in the weight magni-
tude, where larger magnitudes imply a potential for over-
fitting (Dohare et al., 2024). To analyze our method in
this perspective, we visualize the cumulative success rates
and changes in the L1 weight magnitude on the validation
unseen split of REVERIE in Figure 5. Here, we observe
that without any regularization or with a simple scaling
method, the policy encounters the loss of plasticity and re-
sults in a gradual performance drop. This corresponds to
the changes in weight magnitude, where the two variants
exhibits the largest scale. Unlike these methods, SGR stands
out with the lowest scale in weight magnitude, resulting in
a stable increase throughout iterations. This is attributed
to its counterfactual reasoning strategy that addresses the
non-stationary nature of the binary learning environment.

Catastrophic Forgetting Analysis. Preserving the trained
knowledge is as much important as acquiring new knowl-
edge. Table 6 reports the results on the validation seen split,
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Table 6. Experiments on Catastrophic Forgetting.

Methods Val Unseen (✓)→ Val Seen (✗)
TL ↓ OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑

DUET (Chen et al., 2022c) 13.86 73.86 71.15 63.94 57.41 51.44

+ FSTTA (Gao et al., 2024a) 13.40 73.16 71.78 64.18 57.05 51.18

+ FEEDTTA w/o reg. 19.43 74.91 73.72 61.96 59.24 50.02
+ FEEDTTA w/ GD 22.01 72.24 71.05 57.19 57.20 46.72
+ FEEDTTA w/ GS 20.11 72.80 71.68 58.90 57.55 47.72
+ FEEDTTA w/ SGR 18.45 76.04 73.86 62.74 59.31 49.93

Table 7. Comparison of Feedback Strategies
Feedback Strategy SR SPL RGSPL

Distance-based (Dense) 63.25 42.89 28.46
Goal-based (Sparse) 66.49 45.38 30.75

re-evaluated after the TTA on the validation unseen split
to measure catastrophic forgetting. First, our FEEDTTA,
without gradient regularization, enhances the OSR, SR and
RGS metric after adaptation on the validation unseen dataset.
This suggests that, beyond adaptation to a specific domain,
the proposed feedback-based RL framework broadly en-
hances navigation success. We interpret the increase in
TL as representing the minimal additional exploration re-
quired to achieve navigation success. Furthermore, while
GD and GS exhibit catastrophic forgetting, the proposed
SGR rather brings substantial improvements in the success
rates, strengthening the policy’s generalizability as well as
adaptability on specific domain.

5.5. Comparison with Different Feedback Strategies

The rationale behind choosing a simple binary episodic
feedback mechanism stems from the practical limitations
of the online test-time navigation environment: (1) Human
involvement should be minimal, as following every navi-
gation steps to provide rewards is infeasible in real-world
environment; and (2) Reward systems used in offline learn-
ing (e.g. step-wise distance-based rewards ) are infeasible
at test-time, as we assume no access to ground-truth goal
position or pre-defined maps. We empirically evaluate the
efficiency of the feedback system by comparing our method
with the step-wise distance-based reward system used in
HAMT, where the feedback is defined as the reduction in
distance to the target at each step. Additionally, if the agents
successfully arrives at the goal positions, 2 is given as a
success signal and otherwise -2 as a penalty. As we observe
from Table 7, our binary episodic feedback surpasses the
distance-based dense reward system, even without access
to ground-truth information. This clearly demonstrates that
the proposed feedback mechanism appears to be simple, yet
efficient and effective in improving navigation performance.

6. Conclusion
In this work, we introduce FEEDTTA, an effective TTA
paradigm for online vision-language navigation that lever-

ages feedback-based reinforcement learning. The proposed
adaptation strategy utilizing binary episodic feedback en-
ables agents to dynamically interact with their external en-
vironment by providing them with a notion of success and
failure. Additionally, we develop a gradient regularization
method, SGR, to robustly alleviate non-stationarity during
adaptation. Through extensive experiments on challenging
VLN benchmarks, our FEEDTTA showcases its superiority
not only in traditional metrics but also in the proposed ASR
metric, which evaluates the sample-wise transition of results
before and after adaptation.
Limitation and Future Work. While LLMs show substan-
tial potential as a replacement for human feedback, concerns
about their reliability as oracles remain unresolved. The dis-
parity between the accuracy of human judgment and LLM
judgment must be minimized to ensure safer real-world ap-
plications. Since this work successfully incorporated the
concept of feedback-based RL for the VLN task, we propose
exploring more advanced applications of LLMs as feedback
oracles as a promising direction for future research.

Impact Statement
Although our FEEDTTA leads significant performance im-
provements, it does not guarantee perfect prediction across
the diverse environment. Therefore, significant attention
must be paid for rigorous verification processes, prior to
integrating it into the embodied AI system.
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A. Details of Large Language Model Oracles
In Figure 6, we provide the prompts we utilized for the experiments in a dialogue format. As mentioned in Sec 5.3, the
process leverages a two-step architecture, where the LLM first identifies the target goal from the given instruction, and
then determines the navigation success/failure based on the alignment of the goal with the panoramic image from the last
navigation step. The system offers an effective solution in scenarios where human feedback is unavailable.

Your Task:
- Analyze the given panoramic view image together to identify if the image generally describe a 
scenario where the {response_goal} is visible.
- Conclude whether the navigation is a success or failure based on a broad alignment between the 
instruction and image.

               
Evaluation Criteria:
1. Yes: If the {response_goal} can be reasonably found with the given image.
2. No: If the {response_goal} is inconsistent with the given image, with no reasonable alignment 
or evidence.

               
Important Notes:
1. Use reasonable inference to find the {response_goal} in the given image. If the image broadly 
describe the target object(e.g., "armchair" can be replaced with "chair"), treat it as a success.
2. Partial Alignment: If the majority of the details in the given image align with the instruction, 
consider it a "Yes”.
Exact positioning or minor missing details should not override a clear overall match.

Input:
- natural language instruction: {instruction_txt}
- Panoramic Image: 

     

Output:
- Your response should only be "Yes" or "No".
               

You are an indoor navigation robot executing the following instruction.
Instruction: {instruction_txt}
Task: Considering this instruction, what is the place or object you should ultimately look for? 
Answer in simple word or phrase. Do not include any additional text in your response.

Answer : {response_goal}

Answer : “Yes” or “No”

Example dialogue for the REVERIE dataset

Figure 6. Overall pipeline of LLMs as an oracle.

B. Details of Stochastic Gradient Reversion
B.1. Derivation of the Scaling Factor in Eq.5

We provide a mathematical derivation of how the scaling factor of 1
αp+(1−p) in Eq. 5 can ensure consistency in expectation.

Step 1. Expectation of the Modified Gradient: The modified gradient can be written as:

g′θm = gθm · (α · bm + (1− bm)).

13



TTA for Online VLN with Feedback-based Reinforcement Learning

Taking the expectation over bm, where E[bm] = p, we have:

E[g′θm ] = gθm · E[α · bm + (1− bm)].

Substituting E[bm] = p, the expectation becomes:

E[g′θm ] = gθm · (αp+ (1− p)).

Step 2. Scaling the Modified Gradient: To ensure consistency in expectation, we scale g′θm by 1
αp+(1−p) . The scaled

gradient is:

g̃′θm =
g′θm

αp+ (1− p)
.

Step 3. Expectation of the Scaled Gradient: Taking the expectation of g̃′θm , we get:

E[g̃′θm ] = E

[
g′θm

αp+ (1− p)

]
=

E[g′θm ]

αp+ (1− p)
.

From Step 1, E[g′θm ] = gθm · (αp+ (1− p)). Substituting this gives us:

E[g̃′θm ] =
gθm · (αp+ (1− p))

αp+ (1− p)
= gθm .

B.2. Reversion Rate p and Reversion Magnitude α

Figure 7. Hyperparameter Analysis of SGR. We illustrate the performance variations w.r.t. the reversion rate p and the reversion
magnitude α. The red markers in the color bar indicate the performances of DUET w/ FEEDTTA before applying the SGR regularization
and the yellow-boxed cells are the reported combination throughout the manuscript.

In this section, we analyze the performance variations for the combinations of the reversion rate p and the reversion
magnitude α in SGR. Figure 7 illustrates the results of FEEDTTA on the validation unseen split of REVERIE, measured
on three metrics SR, SPL, and RGSPL. DUET (Chen et al., 2022c) is utilized as the target policy. Here, we observe three
insights: (1) SGR generally brings improvements in the performance, demonstrating its robustness on various configurations
of p and α. (2) A reversion rate of p = 0.05 generally yields decent navigation performances. (3) Regularizing an excessively
small number of parameters with p = 0.01 has minimal effect on performance. (4) Reversing gradients with magnitudes
exceeding 0.3 results in lower SPL and RGSPL, suggesting increased exploration during navigation.

C. Details of Evaluation Metrics
Below, we provide the details of the evaluation metrics that are used throughout our experiments.

• Trajectory Length (TL) measures the average distance the agent traveled from the starting point to the endpoint in
metric units. Lower value typically indicates efficient navigation.
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Table 8. General TTA sequence ordering.
Method SR SPL RGSPL

DUET 46.98 33.73 23.03
w/ FEEDTTA 65.33 (±1.10) 42.63 (±1.98) 28.71 (±1.45)

Table 9. Continual TTA sequence ordering.
Method SR SPL RGSPL

DUET 46.98 33.73 23.03
w/ FEEDTTA 54.81 (±1.89) 36.70 (±0.87) 23.74 (±0.47)

Table 10. Per-Scene TTA sequence ordering
Scene ID 1 2 3 4 5 6 7 8 9 10

SR 48.63 / 60.78 72.22 / 77.16 32.65 / 37.51 46.85 / 51.75 43.34 / 51.09 30.30 / 39.46 44.84 / 56.76 50.60 / 64.57 45.89 / 71.54 55.67 / 69.47
(±1.65) (±0.87) (±0.96) (±1.00) (±3.25) (±4.49) (±5.92) (±7.48) (±2.73) (±1.53)

SPL 30.74 / 40.80 56.61 / 61.51 19.88 / 22.79 37.27 / 38.98 25.55 / 29.31 19.81 / 24.73 35.21 / 30.53 34.36 / 38.59 29.54 / 50.29 44.91 / 56.42
(±0.96) (±1.73) (±0.49) (±1.30) (±3.14) (±3.57) (±3.12) (±5.51) (±6.74) (±2.87)

• Navigation Error (NE) measures the average distance between the ground truth endpoint and the predicted endpoint
in metric units. Lower value indicates that the agent closely followed the given instruction.

• Success Rate (SR) calculates the fraction of successful navigation over total navigation attempts, where NE < 3 is
considered as a success.

• Oracle Success Rate (OSR) calculates the fraction of successful navigation over total navigation attempts, where it is
considered as a a success if one of the navigation points in the trajectory contains a ground truth endpoint.

• Success penalized by Path Length (SPL) evaluates the weighed trajectory efficiency for navigation success, where
a score closer to SR indicates that the trajectory closely followed the shortest path. The equation is formulated as
SPL = 1

N

∑N
n=1 Sn

TLn

max(SPn,TLn)
, where S is the binary indicator for success and SP denotes the shortest path.

• Remote Grounding Success (RGS) measures the portion of navigation attempts that successfully grounded the target
object required from the instruction, determined by a bounding box prediction with IoU (intersection over union) ≥ 0.5
compared to the ground truth.

• Remote Grounding Success penalized by Path Length (RGSPL) calculates the weighed trajectory efficiency for
remote grounding success, similar to the SPL metric.

D. Effects of Different Sequence Ordering
Online learning is inherently sequence-dependent. However, we show that the benefits of FEEDTTA is invariant to sequence
ordering through the following experiments with three different configurations. We use the ’validation unseen’ split of the
REVERIE dataset and compare with the DUET policy. For all configurations, the reported numbers of FEEDTTA are the
average of the results from 3 different seeds, with standard deviation reported in brackets.

• General TTA: In this configuration, all episodes are randomly ordered regardless of scene IDs, which corresponds to the
experimental setting reported in Table 1 of our paper. The results are reported in Table 8.

• Continual TTA: For this configuration, we fix the episode orders for each scene ID, and set the adaptation sequence
based on mixed scene ID orders, evaluating continual adaptation performances across different scenes. The results are
reported in Table 9.

• Per-Scene TTA: Here, we analyze the effects of random episode orders for each scene ID. Note that in this setting, the
adaptation is performed per-scene, and not throughout the entire validation set. The results are reported in Table 10 in the
form of (DUET / +FeedTTA).

These experiments confirm that sequence ordering does influence navigation outcomes; however, the benefits of FEEDTTA
remain consistent, as evidenced by superior performances with low variations across different seeds.

E. Trajectory Visualization
In this section, we analyze the trajectories of DUET before and after applying our FEEDTTA with visual illustrations. For
this study, we select two episodes that initially fail under the base DUET policy but achieve success following a one-step
parameter update with our FEEDTTA. The visualized results in Figure 8 provides the following insights.
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(1) The base DUET policy navigates to a destination that closely resembles the instructed location but often fails due to
missing critical details. For instance, in the first sample shown on the left of Figure 8, the agent following the DUET policy
navigates to the bathroom, as specified by the instruction. However, the predicted destination does not fully align with the
specific details provided in the instruction. This can be also observed in the second example, where the agent stops near the
kitchen near the family room, but fails to reach the precise location described in the instruction.

(2) Upon receiving negative feedback via FEEDTTA after a navigation failure, the agent adjusts its trajectory at a certain
point that we refer to as an uncertainty zone. Uncertainty zone is a visual state with multiple feasible navigable locations,
resulting in high uncertainty (i.e., entropy). In both examples, the measured entropy at the uncertainty zone is the highest
observed along the DUET trajectory. The updated policy from FEEDTTA chooses an alternative path within the uncertainty
zone, enabling exploration of new possibilities.

(3) Only with a single-step parameter update with feedback, the agent successfully arrives at the desired destination. Multiple
iterations from the online data stream further enhance adaptability, and generalizability by learning the notion of success
and failure, which is demonstrated throughout our experiments.

Go to the bathroom with the granite 
sink and take down the picture.

DUET

+ FeedTTA

Common Traj. DUET Traj. + FeedTTA Traj.

Wrong!

Correct!
picture

granite sink

Go to the dining room on level 2 and pull out 
the white chair closest to the living room.

DUET

+ FeedTTA

Wrong!

Correct!

white chair

Uncertainty Zone

Uncertainty Zone

Uncertainty Zone

Common Traj. DUET Traj. + FeedTTA Traj.Uncertainty Zone

Figure 8. Visual Analysis of FEEDTTA. We illustrate two examples of episodes that initially fail under the base policy but achieve
success after applying FEEDTTA. We provide a top-down view of the trajectories, along with a panoramic image of the uncertainty zone
and the endpoints reached by DUET and FEEDTTA.

F. FAQ & Discussions
In this section, we share some of the notable questions and discussions that emerged throughout the research process.

Question 1: How is learning from online feedback different from learning from ground truths?
Answer: Online feedback and ground truth are inherently different in the VLN task. First, ground truth consists of offline
collected state-action pairs for each step, whereas online feedback can be any scalar value based on the oracle’s objective.
Accordingly, ground truths directly force the policy to learn optimal action, which guarantees performance when strictly
followed. However, feedback provides indirect guidance by encouraging actions that maximize the reward, which may vary
depending on the oracle’s preferences. Considering these aspects, learning from ground truths is infeasible and impractical
in the online TTA setup, whereas feedback-based learning offers a more adaptable framework by enabling policies to
iteratively improve through interaction with the environment and alignment with the oracle’s objectives.

Question 2: Why is the performance improvement smaller in the R2R datasets compared to that of REVERIE’s?
Answer: We assume this is due to differences in the instructions between the two datasets and their alignment with the
binary episodic feedback mechanism of FEEDTTA. While FEEDTTA demonstrates its superior test-time adaptability in both
datasets, the R2R-trained policy and the REVERIE-trained policy inherently require different guidance for performance
improvements. Given that the former relies on dense, step-wise guidance during training, the binary episodic feedback
provided by FEEDTTA might be relatively sparse to drive significant performance enhancements. However, the latter, which
is trained to operate under less structured and more abstract instructions, is better suited to benefit from the sparse binary
episodic feedback of FEEDTTA, allowing it to adapt more effectively during test-time.

Question 3: Can FEEDTTA adapt to novel navigation tasks at test time?
Answer: Continuing from the previous analysis, we empirically address this question by conducting experiments on the R2R
dataset (i.e., step-by-step instruction following task) with a policy trained on the REVERIE dataset (i.e., goal-oriented task),
and similarly, on the REVERIE dataset using a policy trained on R2R. Evaluations are carried out on the validation unseen
split of both dataset. Table 11 shows that while the absence of fine-grained trajectory details in REVERIE instructions leads
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to longer TL for R2R-trained policies to identify the goal point, both training brings improvement in the navigation success
of each task. This suggests that FEEDTTA effectively leverages the shared knowledge underlying both tasks, which involves
reaching a target point based on given instructions. However, the results from the RGSPL metric suggest that adapting and
improving on an untrained task in real-time using a single-stream online learning approach is challenging.

Table 11. Experimental results on the cross-task TTA.

REVERIE→R2R NE ↓ SR SPL R2R→REVERIE TL ↓ SR RGSPL

DUET (Chen et al., 2022c) 9.78 17.33 4.82 DUET 14.67 24.91 3.47
w/ FEEDTTA 8.94 18.35 6.51 w/ FEEDTTA 22.50 28.86 3.49

Question 4: Can LLM-generated counterfactual evaluations replace SGR?
Answer: The counterfactual reasoning of SGR is a regularization technique applied on a limited number of parameters,
which means that the large portion of parameters should be updated based on proper feedback for intended functionality.
Furthermore, while LLMs can indeed reason counterfactual scenarios, their reliability on predicting navigation outcomes
itself still remains as a challenge, making them unsuitable as a direct replacement for SGR.

Question 5: Can FeedTTA be applied to Visual Navigation tasks?
Answer: Yes, FEEDTTA can be applied to Visual Navigation (VN) tasks even in the absence of complex language
instructions, as it only requires determining success or failure within the navigation system. To identify the dominant
modality influencing navigation outcomes, we analyze navigation consistency for each trajectory in the REVERIE dataset,
where each trajectory is paired with multiple language instructions. Specifically, we compute the average success rate across
different instructions for each trajectory. We then identify trajectories with consistent outcomes—defined as those with a
high (> 0.8) or low (< 0.2) average success rate—and calculate their proportion within the validation set. Our experiment
yields a ratio of 0.72, suggesting that visual observations are a key factor not only in VN tasks but also in VLN, where they
play a more decisive role compared to language variations.

Question 6: Does increased trajectory length in some episodes represent beneficial exploration?
Answer: We justify that the increased trajectory length (TL) indicates beneficial exploration by empirically testing
the hypothesis: “The overall increase in TL primarily results from episodes that would have failed in the origi-
nal navigation but succeeded after applying FeedTTA”. In Table 12, we compare the increase in TLs for the suc-
cessful navigation episodes after adaptation, categorized based on the pre-tested results before applying FEEDTTA.
For this experiment, we use the ’validation unseen’ split of the REVERIE dataset with DUET as the base policy.

Table 12. Trajectory length and exploration
Success→Success Fail→Success

Increased TL 3.54 (±1.45) 10.65 (±3.75)

Here, we discover that the average TL increase is significantly larger
for fail-to-success cases than for success-to-success cases. This clearly
demonstrates the important role of FEEDTTA in overcoming failure
cases through extended exploration in unseen navigation environment.

Question 6: What new directions for research does FEEDTTA
suggest?
Answer: FEEDTTA serves as an exemplar of incorporating the recent advancements of the feedback-based RL into the
robotic navigation task. Considering the contributions and limitations of FEEDTTA, we suggest the following topics as
prospective future research directions:

• Advanced application of LLMs as navigation oracles. As highlighted in Sec.5.3 and Sec.6, enhancing the accuracy
of navigation outcome predictions is essential to ensure safer deployment of LLMs as navigation oracles. One approach
is to develop a more advanced LLM architecture and prompting system capable of capturing the complex reasoning
underlying its predictions. Another way is to incorporate visual foundation models (Radford et al., 2021; Kirillov et al.,
2023; Liu et al., 2025) to provide LLMs with more spatial contexts. Both approaches will enhance the reliability of
LLMs as oracles, benefiting not only the TTA of VLN but also zero-shot VLNs (Zhou et al., 2024; Long et al., 2024).

• Test-time Adaptation on untrained navigation tasks. In real-world scenarios, the given instructions and tasks may
differ from the trained navigation tasks, leading to the outcomes shown in Table 11. Therefore, it is crucial to develop a
generalized TTA for diverse navigation tasks to ensure the versatility of embodied agents in real-world applications.

• Feedback-based RL for offline VLN training. RL is accommodated in several previous literature (Chen et al., 2021;
2022a) with heuristic reward shaping. However, with the success of feedback-based RL in online navigation with
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FEEDTTA, training the notion of success and failure through binary episodic feedback can alleviate the burden of
manual reward shaping. We speculate that combining policies trained with offline feedback-based RL and online TTA
using feedback-based RL techniques, such as FEEDTTA, could yield substantial synergy.
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