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Abstract

Despite the critical role of mathematical capa-
bilities in large language models (LLMs) across
various applications, few frameworks compre-
hensively evaluate these abilities from founda-
tional to advanced levels. This gap hinders the
exploration of the weaknesses in the mathemat-
ical abilities of LLMs. In this paper, we intro-
duce PyraMathBench', a framework designed
to assess the mathematical capability of LLMs
across four difficulty aspects, emphasizing the
breakdown of complex tasks into simpler foun-
dational components. PyraMathBench includes
tailored single-modal and multimodal subtasks
to rigorously evaluate model performance. We
also propose the plug-and-play math model, a
dynamic toolkit that enhances the mathemat-
ical processing abilities of LLMs, especially
in Calculation tasks requiring intricate compu-
tation. Subsequent experiments with existing
LLMs have led to the following findings: (i)
LLMSs’ limited capacity for abstraction, task de-
composition, and equation solving hinder their
reasoning process. (ii) MLLMs predominantly
rely on textual information when inferring Vi-
sual Reasoning Problems.

1 Introduction

Numbers play an integral role in text and are ubiq-
uitous across a wide range of natural language
processing (NLP) tasks (Yuan et al., 2023; Sun-
dararaman et al., 2020). Mathematical reasoning
is essential for NLP performance, especially in
domains like scientific research (Spithourakis and
Riedel, 2018) and financial documents (Chen et al.,
2019; Jiang et al., 2020). Despite rapid advance-
ments in big data and computational power, large
language models (LLMs) like GPT-4 and Llama
continue to struggle with mathematical tasks (Pa-
tel et al., 2021; Zhao et al., 2023), in part due to
flaws in the tokenization of numbers (Liu and Low,
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2023; Yuan et al., 2023) and hallucination (Ji et al.,
2023; Chen et al., 2023). A model’s ability to han-
dle mathematical tasks serves as a critical indica-
tor of its overall competence in solving real-world
problems and performing abstract reasoning (Wei
et al., 2022). However, current LLM-based math-
ematical problem-solving remains largely opaque,
lacking mechanisms for analyzing errors or diag-
nosing failure modes, leading to an urgent need for
a high-quality comprehensive mathematical evalu-
ation benchmark.

Current benchmarks predominantly assess the
mathematical reasoning abilities of language
models through math word problems (MWPs).
Datasets like GSM8K (Cobbe et al., 2021)
and APE210K (Zhao et al.,, 2020), based on
elementary-level problems, and benchmarks such
as MATH (Hendrycks et al., 2021), ARB (Sawada
et al.), and FrontierMath (Glazer et al., 2024),
which involve competition-level problems like the
IMO and AMC, are widely used. However, these
benchmarks do not fully capture the limitations
of LLMs’ capabilities. For example, when mod-
els provide incorrect answers, it remains unclear
whether the failure stems from computational er-
rors or misinterpretation of the question. Some
efforts, such as LILA (Mishra et al., 2022), attempt
to address this by breaking down tasks into sub-
tasks. Akhtar et al. (2023) introduced a framework
to probe LLMs’ numerical reasoning at various
levels. But these frameworks lack cross-task cor-
relations, testing LLMs’ abilities in isolation. In
the realm of Multi-Modal Large Language Models
(MLLMs), benchmarks like MathVista (Lu et al.,
2023) and MathVerse (Zhang et al., 2024) primar-
ily emphasize image comprehension, neglecting a
detailed exploration of the text modality’s role in
numerical reasoning.

Piaget’s cognitive theory (Piaget, 1970) divides
the progress of human cognition into four stages:
the sensorimotor stage, pre-operational stage, con-
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Figure 1: Two examples of decomposing complex reasoning problems into subtasks, with dashed lines representing

multimodal tasks.

crete operational stage, and formal operational
stage. The cognition shifts from simple and direct
to complex and abstract. Under this framework,
mathematical ability can be thought of as a hierar-
chy, akin to a pyramid structure, where complex
tasks are broken down into simpler foundational
components. By isolating and evaluating these core
tasks, we can better understand the interplay be-
tween foundational skills and higher-level reason-
ing. This hierarchical approach not only assesses
complex tasks but also identifies how weaknesses
in basic skills can affect overall performance.

Based on this, we propose the PyraMathBench
(PMB), a comprehensive hierarchical benchmark
that includes 27,215 questions derived from 7,404
math word problems, covering 4 key cognitive as-
pects, 14 subcategories, and 2 modalities, ensuring
a comprehensive evaluation. Additionally, the sub-
tasks are decomposed from real math word prob-
lems rather than generated, making them more ap-
plicable to practical scenarios. PMB also incorpo-
rates the compositional relationships between tasks,
enabling a deeper analysis of LLMs’ strengths and
weaknesses. Using PMB, we evaluated a variety of
SOTA LLMs, identifying areas for improvement
and offering valuable insights into the factors that
influence performance in various aspects of math-
ematical reasoning. The key findings are summa-
rized as follows:

e The models DeepSeek-R1, GPT-40, and GPT-40
Mini are classified in the top tier of mathematical
capabilities, demonstrating powerful reasoning
and computational capabilities.

e A key weakness observed across the LLMs is
their limited capacity for abstraction, task de-
composition, and equation solving.

MLLMs predominantly rely on textual informa-
tion when inferring Visual Reasoning Problems.

2 The Taxonomy of PyraMathBench

The core motivation behind PMB’s taxonomy is
the recognition that mathematical tasks often re-
quire multiple layers of cognitive aspects and com-
putational skills, ranging from simple numerical
parsing to intricate logical reasoning. An LLM’s
ability to solve a high-level math word problem is
contingent upon its proficiency in handling lower-
level subcomponents. Traditional benchmarks con-
flate different cognitive aspects of mathematical
competency without an explicit framework for iso-
lating these subskills, making it difficult to diag-
nose specific failure points. By decomposing com-
plex mathematical tasks into distinct hierarchical
aspects, PMB provides a systematic method to eval-
uate capability at each stage of mathematical cogni-



tion, allowing for a more interpretable assessment
of LLM performance.

Inspired by previous research (Xu et al., 2022;
Akhtar et al., 2023) and Piaget’s cognitive theory,
our benchmark taxonomizes tasks into four hierar-
chical aspects (A1-A4), encompassing 14 distinct
tasks. Figure 1 shows the composition of subtasks
at each aspect and examples of subtask annotation.
Here are concise definitions for each subtask.

e Complex Reasoning. This aspect represents the
most advanced level of mathematical problem-
solving, requiring the integration of multiple
cognitive processes and mathematical principles.
Complex reasoning tasks require sophisticated
logical deductions, image comprehension ability,
and multistep problem-solving. Models must
demonstrate the ability to connect different types
of information, identify abstract relationships,
and apply higher-order reasoning strategies.

e Understanding. At this aspect, the focus is
on the model’s ability to comprehend and in-
terpret mathematical content, transforming un-
structured textual or visual information into ac-
tionable mathematical representations. Tasks in
the Understanding category test the model’s abil-
ity to make sense of mathematical descriptions,
extract necessary information, and recognize pat-
terns or structures.

e Calculation. The Calculation aspect involves
performing arithmetic operations and applying
standard mathematical formulas to compute solu-
tions. Tasks for this aspect require the model to
perform accurate numerical manipulations and
apply mathematical formulas correctly. This as-
pect primarily tests the model’s computational
efficiency and correctness.

e Numerical Parsing. For the Numerical Parsing
aspect, the tasks focus on the foundational abil-
ities necessary to parse and process numerical
information. This aspect tests the model’s abil-
ity to recognize, interpret, and extract numerical
data in various formats and contexts. It requires
the model to handle the raw mathematical con-
tent and prepare it for further computation. Due
to the limitations of tokenization, many LLMs
perform poorly on such simple tasks.

We provide specific descriptions, prompts, and ex-
amples for each subtask in Appendix B.

3 Construction and Statistics

Data Sources. The PMB dataset integrates six ex-
isting evaluation datasets and practice questions.
The data collection adheres to the following guide-
lines: 1) It includes common mathematical prob-
lems and visual reasoning tasks to represent the
typical problem distribution. 2) Each problem is
structured to allow clear decomposition into sub-
tasks, facilitating unambiguous labeling. 3) The
dataset is varied in difficulty, ensuring the inclu-
sion of challenging tasks to effectively evaluate
the performance of LLMs. We excluded non-
mathematical content from the datasets. Based
on this, we collected 6 datasets as data sources:
ASDiv (Miao et al., 2021), alg514 (Kushman et al.,
2014), Dolphin 18K (Shi et al., 2015), SVAMP (Pa-
tel et al., 2021), TAT-QA (Zhu et al., 2021), and
MathVista (Lu et al., 2023), supplemented with
some math practice.

Subtasks Annotation. The dataset annotation
is conducted by three experts proficient in high
school-level mathematics. The subtask questions
are evenly distributed among the three experts for
annotation, while the corresponding answers re-
quire validation by at least two experts. Once an-
notated, the answers are evaluated using the met-
rics outlined in Section 4. If the score falls below
90, the question is deemed ambiguous and subse-
quently discarded. We also utilized the table data
from TAT-QA to create images to expand the vari-
ety of multi-modal tasks.

Certain datasets provide well-structured answer
inference processes or automated question gener-
ation tools, facilitating the extraction of subtask
questions. Additionally, we standardize the mathe-
matical representations across different datasets,
ensuring compatibility with both Python inter-
preters and LaTeX (the latter being used for more
complex expressions). For floating-point answers,
numerical values are rounded to six decimal places.
Statistics. Figure 2 presents the distribution of sub-
tasks. PyraMathBench offers several advantages
over existing evaluation methods: (1) Comprehen-
sive Coverage — PMB includes a diverse array of
tasks, spanning four primary areas of mathemati-
cal reasoning and 14 subcategories, derived from
13,735 questions across 4,536 Math Word Prob-
lems. This extensive dataset facilitates a thorough
assessment of models across a wide range of topics
and difficulty levels, ensuring broad coverage of
mathematical challenges. (2) Compositionality



of Subtasks — PMB structures subtasks derived
from the same Math Word Problem, allowing for
detailed performance analysis. This compositional
approach enables the isolation and evaluation of a
model’s ability to break down complex problems
into simpler components, providing insights into
foundational skill deficiencies and their impact on
overall performance. (3) Multimodal Tasks — By
incorporating both unimodal and multimodal tasks,
PMB enables a more comprehensive evaluation of
LLMs. This allows assessing models’ ability to pro-
cess different input types and engage in complex
forms of reasoning.

Visual Data Qu )
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Object Counting: 85 \
Formula Application: 246 \

Sorting: 581 >

Question Abstraction: 5,459

Figure 2: Subtask distribution within PyraMathBench

4 Models and Evaluation Metrics

Using PMB, we evaluated seven state-of-the-
art LLMs, including GPT-40 (2024-11-20 ver-
sion), GPT-40-mini (2024-7-18 version)?, LLaVA
13B (Liu et al., 2023), DeepSeek-R1 (DeepSeek-
Al et al., 2025), Qwen2.5 14B (Yang et al., 2024),
Llama3.1 8B (Grattafiori et al., 2024), Gemma?2
9B (Team et al., 2024), and Mistral 7B (Jiang
et al., 2023). The evaluation parameters were set
as follows: temperature = 0.8, top_k = 40, and
top_p = 0.9. The system prompt for each task
contains the essential task setup and a detailed de-
scription of the question. Additionally, hints spe-
cific to each task are provided for LLMs that do
not support structured output to guide the format
of the answer. To simulate real-world mathemat-
ical question-answering scenarios, we employed
zero-shot settings with Chain of Thought (CoT)
prompting (Wei et al., 2022).

The evaluation of LLMs’ mathematical capabili-
ties incorporates their capacity to follow output for-
mat instructions, similar to grading practical exam
questions. Specifically, LLMs are assessed on their
ability to extract answers from designated fields in
the prompt, with structured output being advanta-
geous. The answer types include four formats: 1) a
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number or list of numbers, 2) expressions, 3) brief
text, and 4) multiple-choice options.

Numerical answers are evaluated using Equa-
tion 1, where y represents the reference answer
and ¢ represents the model response. The equation
considers two answers equivalent if their absolute
difference is less than 10 x 10~4, awarding a full
score. For deviating answers, the score is deter-
mined by the absolute difference and the relative
magnitude of the two numbers. If no correspond-
ing answer is present in the model’s output, the
score is zero. To handle diverse mathematical ex-
pression formats, we employ a program based on
SymPy to check equivalence and compute numer-
ical results. This program uses heuristic methods
to convert expression evaluations into numerical
assessments. The text response format in PMB is
relatively fixed and short, so we apply Jaccard sim-
ilarity and semantic similarity as metrics. Multiple
reference answers are provided in PMB, and the
highest score derived from comparisons between
the model output and reference answers is used as
the final score. For multiple-choice questions, we
calculate the perfect match rate. Finally, all scores
are normalized to a range of 0 to 100.

100,
Score(y,9) = ¢ 0
max (0

if |§—y|<10x 1074
if § = UNDEFINED

[g—yl

s W), otherwise

(D
5 Main Results

The models DeepSeek-R1, GPT-40, and GPT-40
Mini are classified in the top tier of mathemati-
cal capabilities, with DeepSeek-R1 demonstrating
the highest overall performance. In Table 1, we
can see that DeepSeek-R1 outperformed the other
models in six out of ten text-only tasks. Interest-
ingly, the open-source model Qwen?2.5, despite hav-
ing a smaller model size of only 14B parameters,
achieved a performance comparable to that of the
aforementioned models, showcasing competitive
mathematical reasoning abilities.

In terms of performance on Math Word Prob-
lems, a key weakness observed across the LL.Ms
is their limited capacity for abstraction, task
decomposition, and equation solving. These defi-
ciencies hinder their ability to effectively address
complex mathematical tasks.

Furthermore, it can be observed that MLLMs
predominantly rely on textual information for



Model Size | MWP VRP* QA TD MK Arithmetic ES
GPT-40%* - 92.1 76.2 659 81.1 75.6 96.1 50.1
GPT-40 mini* - 89.4 69.9 645 76.1 80.8 95.6 50.4
LLaVA* 13B 344 253 114 36.1 61.0 60.9 8.0
DeepSeek-R1 | 671B | 93.9 - 92.3 842 75.0 96.5 42.9
Qwen2.5 14B 91.0 - 64.1 729 835 90.3 58.0
Llama3.1 8B 56.9 - 541 693 78.3 81.4 349
Gemma?2 9B 87.4 - 53.1 777 721 94.5 54.8
Mistral 7B 42.3 - 6.6 788 71.0 66.5 21.9

Model Size | Sorting  FA NC UC NR* VDQ* ocC*
GPT-40%* - 96.4 65.0 839 70.7 12.0 54 2.4
GPT-40 mini* - 94.5 767 736 729 17.6 22.2 1.1
LLaVA* 13B 55.2 346 651 295 2.8 8.3 7.1
DeepSeek-R1 | 671B 94.8 737 869 80.7 - - -
Qwen2.5 14B 96.2 794 81.1 36.2 - - -
Llama3.1 8B 83.9 59.5 7277 30.0 - - -
Gemma2 9B 93.9 71.7  69.0 149 - - -
Mistral 7B 90.4 51.7 643 539 - - -

Table 1: Main results of 8§ LLMs on the 14 subtasks of PyraMathBench. Italics* represents multimodal tasks.

Visual Reasoning Problems. Their ability to ex-
tract and process mathematical information from
images remains relatively underdeveloped, even
when the images involved are simple in nature.
This suggests that LLMs require further advance-
ments in their multimodal capabilities to enhance
their performance in tasks that involve visual data.

Next, we will summarize the performance of
LLMs with regard to particular difficult aspects. In
complex reasoning tasks, DeepSeek leads with a
score of 93.9 in the MWP task, followed by GPT-40
(93.9) and Qwen2.5 (91.0). The significant perfor-
mance decline of Mistral (42.3) and LLaVA (34.4)
is primarily due to limited instruction-following
and mathematical reasoning abilities. Notably,
LLaVA, which is not designed for complex mathe-
matical tasks, shows a rather low performance in
the VRP task at 25.3, in contrast to GPT-40 (76.2)
and GPT-40 mini (69.9). However, even the latter
two models do not achieve exceptional results.

LLMs demonstrate a marked decline in the Un-
derstanding aspect, which is closely linked to the
accuracy of complex reasoning. This aspect fo-
cuses on assessing LLMs’ ability to exhibit the rea-
soning process. Among the models, DeepSeek-R1
stands out with a score of 92.3 in the QA subtask,
significantly surpassing GPT-40 (65.9). In contrast,
Mistral and LLaVA, due to their limited support for
structured output and weaker instruction-following
abilities, struggle with providing valid expressions

and consequently perform poorly in this task. Task
decomposition ability, however, remains relatively
consistent across LLMs, ranging from 72 to 85, in-
dicating that, despite differences in reasoning skills,
many mainstream LLMs share a similar reasoning
process.

In the Calculation aspect, the leading LLMs
achieve scores of around 90 in Arithmetic and Sort-
ing subtasks. It should be noted that this does not
necessarily reflect strong computational capabil-
ities, but rather because the arithmetic and sort-
ing questions decomposed from MWP and VRQ
are relatively easy. A notable weakness across
all LLMs is their weak ability to solve equations,
with even the top performer, Qwen2.5, scoring only
58.0. Our analysis in Section 6 suggests that this
shortage significantly hampers LLM performance
in more complex problems. In the Formula Appli-
cation subtask, Qwen?2.5 leads with a score of 79.4,
followed by GPT-40 mini (76.7) and DeepSeek-
R1 (73.7). This task requires selecting the correct
formula from variations; the unsatisfactory perfor-
mance highlights the importance of eliminating
hallucinations in mathematical reasoning.

The most notable data in the Numerical Parsing
aspect is the poor performance of MLLMs. In-
deed, the scores of three MLLMs on three tasks
are even lower than 10. A case analysis shows that
MLLMs are almost entirely unable to effectively
extract mathematical information on these primary



school-level problems, and they mainly rely on the
information provided in the text to solve the VRQ.
Although the highest score for digit recognition is
only 17.6 points for GPT-40 mini, they can actually
recognize a considerable number of digits in the
image, but cannot determine which digits are useful
for solving the problem. As a result, MLLMs may
also exhibit serious hallucinations in the presence
of redundant information in the image.

6 Quantitive Analysis
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Figure 3: The Pearson’s correlation with MWP and
(Correlation X Score Lost) of each subtask.

Influence of Subtasks on High-level Task To
quantify the influence of various abilities on LLM
performance, we computed the Pearson Correla-
tion Coefficient between the scores of MWPs and
each subtask. A higher correlation value signifies
greater relevance of the subtask to overall MWP
performance. The results are shown in Figure 4.
Additionally, to identify LLMs’ potential weak-
nesses, we multiplied the average score loss on
each subtask by its corresponding correlation co-
efficient with MWP. This approach highlights the
subtasks that perform poorly and have a signifi-
cant impact on MWP scores. From a correlation
perspective, tasks such as Arithmetic (0.98), ES
(0.94), FA (0.92), and QA (0.89) show strong ties
to MWP performance. However, when considering
score losses, it becomes evident that ES (56.0), QA
(43.4), and FA (33.1) represent the key weaknesses
of LLMs, as their scores for the Arithmetic task is
already satisfying. This suggests that LLMs need to
enhance their ability to solve equations and handle
abstract reasoning problems as a top priority.

Multi-modal Through case analysis, we identi-
fied that the failure of MLLMs in NR tasks stems
primarily from their inability to extract only the
required numbers. Although these models recog-
nize numbers with relatively high accuracy, they
often randomly select numbers from the image

without focusing on the relevant areas necessary
for solving the problem. This leads to a signifi-
cant accuracy drop when redundant data is present
in the image (averaging 43.1 to 1.3). In VDQ
tasks, MLLMs exhibit prominent hallucinations,
resulting in inferences and analyses that deviate
from the actual content of the image. In OC tasks,
MLLMs fail not only due to their inability to se-
lect the correct objects based on instructions but
also due to poor performance in counting large, pat-
terned groups (e.g., 10times10 arranged blocks).
Hence, MLLMs struggle to extract meaningful in-
formation from images when addressing visual rea-
soning problems, relying primarily on text-based
data. This suggests that some previous work (Liu
et al., 2024) focused on enhancing feature extrac-
tion through key region-of-interest identification
in images may fail to yield sufficiently satisfactory
results in mathematical contexts.

Difficulty in Information Identification The
Numerical Parsing tasks require LLMs to extract
accurate and relevant information from data pre-
sented in various formats. However, analysis of
LLM responses in this aspect revealed a consistent
issue in the multimodal task NR, where LLMs tend
to over-identify irrelevant information. Though this
issue was somewhat mitigated in NR compared to
other tasks. To assess the impact of this behavior on
model performance and robustness, we introduced
an unrelated, random problem before each task
(e.g., inserting a word problem requiring solving an
equation before an arithmetic question). This ma-
nipulation led to an average score reduction across
the text-modality subtasks for four aspects: 11.3
points for Complex Reasoning, 8.7 points for Un-
derstanding, 21.5 points for Calculation, and 29.7
points for Numerical Parsing. These findings high-
light that the inclusion of extraneous information
significantly impairs LLM performance on mathe-
matical tasks. Further case analysis revealed that
while LLMs struggle to identify relevant data in
lower-level tasks, they effectively discard incorrect
answers through logical reasoning in higher-level
tasks, leading to a lesser performance degradation
in those cases.

7 The Plug-and-Play Math Model

Despite the impressive language modeling capa-
bilities of large language models (LLMs), their
performance in tasks involving simple arithmetic,
number recognition, and factual retrieval remains
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Figure 4: Accuracy comparison of four models on five
subtasks w/ and w/o plug-and-play math model.

suboptimal. This limitation is primarily due to
the tokenization and training approach inherent to
LLMs, making substantial improvements in these
areas difficult through simple model adjustments.
However, our quantitative analysis indicates that
LLMs’ accuracy on low-level tasks significantly in-
fluences their performance on more complex tasks.
To address this, we propose a Plug-and-Play Math
Model (PMM), a dynamic toolkit that enhances the
mathematical processing abilities of LLMs. Un-
like prior approaches that rely on self-supervised
fine-tuning, this model focuses on simplifying tool
integration by streamlining API calls.

This model supports several functions, including
1) Arithmetic, 2) Equation Solving, 3) Sorting, 4)
Knowledge Point Explanation, 5) Constant Stor-
age, and 6) Numerical Correction. As depicted in
Figure 4, the LLLM can generate natural language
requests for tool calls invarious formats (e.g. latex,
unicode, Markdown), which the model then parses
to identify task requirements and return appropriate
results. This method reduces the communication
overhead and increases the accuracy of tool uti-
lization while preserving the core competencies
of the LLM. Detailed descriptions of the PMM’s
functions are provided in Appendix B.

Result To evaluate the effectiveness of the PMM,
we conducted comparative experiments on four
LLMs that support tool calling, assessing perfor-
mance on the MWP task and four subtasks within
the Calculation aspect. The Calculation aspect sub-
tasks were selected to test PMM’s plug-and-play
capability, as these tasks can be solved directly
via tool calls. PMM utilizes an Output Parser to
analyze LLM tool calls, extract specific requests,
perform calculations, and return the results.

The results show a substantial improvement in

Figure 5: Accuracy comparison of four models on five
subtasks w/ and w/o plug-and-play math model.

performance after applying PMM. The average
score for Arithmetic and Sorting tasks reached
99.4% and 99.7%, respectively, while the score
for Equation Solving increased by 41.4%. Formula
Application saw less significant improvement, pri-
marily due to the varied expressions of formulas
and mismatches between the stored definitions in
PMM and those in the questions. Nevertheless,
the significant gains in the Calculation aspect high-
light PMM’s effectiveness for simple, single-step
problems.

For MWP tasks, which require multi-step rea-
soning, the average score improvement was 2.5%.
Notably, the Question Abstract capability of GPT-
40, GPT-40-mini, and Qwen2.5, which have signif-
icantly improved in the MWP task, is higher than
Llama3.1. This ability is a key factor in PMM’s
success with more complex tasks. In conclusion,
PMM can enhance the math capabilities of LLMs,
particularly for single-step calculations and numer-
ically intensive problems.

8 Related Work

The evaluation of LLMs in mathematical reason-
ing has seen significant advancements through the
development of various benchmarks targeting dis-
tinct cognitive tasks and problem-solving abilities.
MWPs have been a central focus, as they mir-
ror real-world applications of mathematical rea-
soning and knowledge integration. Datasets like
GSMSK (Cobbe et al., 2021), APE210K (Zhao
et al., 2020), MATH401 (Yuan et al., 2023), and
Math23K (Wang et al., 2017) provide diverse prob-
lem sets ranging from elementary to undergraduate
levels, assessing foundational to advanced reason-
ing skills. In pursuit of more rigorous assessments,
the Advanced Reasoning Benchmark (Sawada



et al.) sourced from graduate-level exams and
professional resources, covering topics from un-
dergraduate to early graduate curricula. Olympiad-
Bench (He et al., 2024), FrontierMath (Glazer et al.,
2024), PutnamBench (Tsoukalas et al., 2024), and
OmniMATH (Gao et al., 2024) focus on olympiad-
level mathematics, curating problems from interna-
tional competitions like IMO and AMC. However,
these benchmarks do not fully capture the limita-
tions of LLMs’ capabilities. For example, when
models provide incorrect answers, it remains un-
clear whether the failure stems from computational
errors or misinterpretation of the question. Some
efforts, such as LILA (Mishra et al., 2022), attempt
to address this by breaking down tasks into sub-
tasks. Akhtar et al. (2023) introduced a framework
to probe LLMs’ numerical reasoning at various
levels. But these frameworks lack cross-task corre-
lations, testing LLMs’ abilities in isolation.

The mathematical ability of MLLLM is also a fo-
cus in both academia and industry, MathVista (Lu
et al., 2023) is a benchmark designed to combine
challenges from diverse mathematical and visual
tasks and systematically analyze the mathematical
reasoning capabilities of SOTA MLLMs in visually
complex scenarios. MathVerse (Zhang et al., 2024)
meticulously collects 2,612 high-quality, multi-
subject math problems with diagrams to assess
whether and how much MLLMs can truly under-
stand the visual diagrams for mathematical reason-
ing. However, these evaluation benchmarks primar-
ily emphasize image comprehension, neglecting
a detailed exploration of text modality’s role in
numerical reasoning.

9 Conclusion

This paper proposes PyraMathBench, a comprehen-
sive hierarchical benchmark that includes 27,215
questions derived from 7,404 math word prob-
lems, covering 4 key cognitive aspects, 14 subcat-
egories, and 2 modalities, ensuring a comprehen-
sive evaluation. Our evaluation of multiple LLMs
and MLLMs highlights their limitations in prob-
lem abstraction, equation solving, and image-based
information extraction, which impede accurate in-
ferences on complex mathematical tasks. These
findings underscore the need for improved logical
reasoning and the reduction of multimodal halluci-
nations. Through quantitative analysis, we assess
the deficiencies of each LLM and the influence of
individual subtasks on high-level task performance.

We also propose the plug-and-play math model, a
dynamic toolkit designed to enhance the mathe-
matical capabilities of LLMs. Experimental results
demonstrate that this model significantly improves
LLMs’ performance in computational and complex
reasoning tasks.

10 Limitations

This study annotates subtasks by decomposing the
MWP and VRQ problems, though it is important to
note that this decomposition is not the only possible
approach regarding task types and content. While
various strategies have been employed to mitigate
the impact of this issue during evaluation, it might
still influences the results, particularly in the Un-
derstanding aspect. Furthermore, our task decom-
position method does not independently evaluate
the full range of LLM language capabilities, which
means our classification system does not include
all atomic tasks. This is a direction for our future
work. Moreover, the current study focuses on En-
glish only. Additional research could be conducted
on a diverse range of further languages.

While the plug-and-play math model is de-
signed to enhance LLMs’ performance on Pyra-
MathBench’s subtasks, it is primarily optimized for
these specific tasks. Consequently, its effectiveness
may not be as pronounced in other mathematical
domains, such as formula proofs or algebraic cal-
culations, which are not part of the current subtask
set.
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A Details of the Plug-and-Play Math
Model

The Plug-and-Play Math Model supports several
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Solving, 3) Sorting, 4) Knowledge Point Explana-
tion, 5) Constant Storage, and 6) Numerical Cor-
rection. Here are the detailed descriptions of each
function:

e Arithmetic. Detects arithmetic operations re-
quested by LLMs, such as addition, subtraction,
multiplication, division, roots, and exponents,
and computes the corresponding results.

Equation Solving. Identifies equation-solving
tasks involving multiple unknowns or variable
definitions and provides numerical solutions for
each unknown after solving.

Sorting. Sorts a set of numbers, which may
be expressed in various formats, and returns the
ordered result.

Knowledge Point Explanation. Supplies math-
ematical knowledge (e.g., formulas, definitions,
and theorem proofs) in response to LLM queries
from a local database.

Constant Storage. Stores frequently used math-
ematical constants (e.g., e, m), retains data
from the questions and previous problem-solving
steps, providing this information upon request.

Numerical Correction. Automatically com-
pares the LLLM’s reasoning process with stored
constants and alerts the model of potential nu-
merical inaccuracies.
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B Detailed Description of each Subtask

In this section, we provide detailed information on
each subtask, including 1) aspects, 2) whether it is
a multimodal task, 3) size, 4) design rationale and
description, and 5) all versions of the prompt we
used.
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Subtask

Aspect

Multi-modal Size

Math Word Problem (MWP)

Complex Reasoning

No 5476

Description

Assesses the model’s ability to solve mathematical problems presented in natural language and
reasoning through complex, real-world problems and translating them into mathematical solutions.

Prompt

System

Human

You are a helpful Al robot, you can solve mathematical problem
accurately.\nThink step by step and answer the following math

word problem.

**Question®*: \n{question }

Table 2: Detailed description of subtask Math Word Problem.

Subtask

Aspect

Multi-modal Size

Visual Reasoning Porblem (VRP)

Complex Reasoning

Yes 1928

Description

This subtask evaluates the model’s ability to combine textual and visual information for solving
mathematical problems. MLLMs need to reason across multiple modalities and extract relevant
insights from both text and images. The tasks include various types such as geometry problems,

VQA, and statistic reasoning.

Prompt

System

Human

You are a helpful Al robot, you can solve mathematical problem
accurately.\nThink step by step and answer the following visual
reasoning problem based on the following image.

**Question**: \n{question}

Table 3: Detailed description of subtask Visual Reasoning Problem.
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Subtask Aspect Multi-modal Size
Question Abstraction (QA) Understanding No 5459
Description

This subtask requires LLLMs to convert natural language problems into solvable structured
mathematical representations, including arithmetic, equations, and sorting numbers.

Prompt

System (arithmetic)

Human

You are a helpful Al robot, you can solve mathematical problem
accurately.\nThe Math Word Problem(MWP), as a manifestation
of questions, can be understood as the process of solving it by
computing an operational expression. The following will provide
a math word problem that you need to abstract into an arithmetic
expression that can be directly interpreted by Python, such as 6 *
(5+3).\nYou can use functions from the maths§tandard library.

**Math
\n{MWP}

Word  Problem®*%*:

System (equation)

Human

You are a helpful Al robot, you can solve mathematical problem
accurately.\nYou are a helpful Al robot, you can solve mathemat-
ical problem accurately, The Math Word Problem(MWP), as a
manifestation of questions, can be understood as the process of
solving a equation or system of equations. The following will
provide a math word problem that you need to abstract into a
equation or system of equations. Specifically, you need to first
list the unknown variable(s) that need to be used after abstraction.
If there are multiple unknown variables, use commas to separate
them. Then list the abstract equation, and if there are multiple
equations, list them in multiple lines.\nYou can use functions from
the math§tandard library.

*#*Math
\n{MWP}

Word  Problem®*%*:

System (sorting)

Human

You are a helpful Al robot, you can solve mathematical prob-
lem accurately.\nThe following will provide a math word prob-
lem(MWP) that you have to compare or sort some numbers in the
MWP to solve it.\nExtract the numbers that need to be compared
or sorted from the questions.

**Math
\n{MWP}

Word  Problem®**:

Table 4: Detailed description of subtask Question Abstraction.
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Subtask Aspect Multi-modal Size
Task Decompisition (TD) Understanding No 4175
Description

The LLMs are required to analyze the MWP and determine the necessary steps for solving
it. The LLMs must have a sufficient understanding of the text and mathematical logic to answer
correctly. This subtask has a certain degree of openness..

Prompt

System

Human

You are a helpful Al robot,
you can solve mathematical
problem accurately.\nThe Math
Word Problem(MWP), as a type
of comprehensive mathematical
problem, it may require various
mathematical operations such as
calculations and solving equa-
tions during to solve it.\n"Based
on the MWP provided below,
choose what mathematical opera-
tions are needed to solve it.

**Math Word Problem**: \n{ MWP }\n\n**Mathematical oper-
ation list**: \nA: Additional information such as mathematical
formulas, constants, theorems, etc. that are not directly provided
in the question.\nB: Solve an equation or system of equations.\nC:
Perform mathematical arithmetic.\nD: Sort or compare the data in
the question.\nE: Identify and only identify the numbers in various
formats provided in the information that are needed to solve the
problem.\nF: Identify the numerical unit(s) required to obtain the
answer.\nG: Identify and only identify the numbers in various
formats provided in the image that are needed to solve the prob-
lem.\nH: Quantify data in images that are not directly presented
in numerical terms.\nl: Count the number of certain objects in the
picture.

Table 5: Detailed description of subtask Task Decompisition.

Subtask Aspect Multi-modal Size
Math Knowledge (MK) Understanding No 58
Description

This subtask evaluates the model’s ability to leverage fundamental mathematical knowledge,
such as approximations of constants and geometric formulas that are not explicitly provided in the
problem. For example, the approximation of e or applying the quadratic formula for the root of an

equation.
Prompt
System Human
You are a helpful Al robot, you can solve mathematical prob- | **Math ~ Word  Problem**:
lem accurately.\nThe following will provide a math word prob- | \n{question}

lem(MWP). To solve this MWP, an additional knowledge point,
such as a theorem or formula, is required. Please answer the name

of this knowledge point.

Table 6: Detailed description of subtask Math Knowledge.

Subtask Aspect

Multi-modal Size

Arithmetic Calculation

No 3499

Description

This subtask evaluates the model’s proficiency in performing basic mathematical operations

such as four operations, root operation, exponential operation, etc.

Prompt

System

Human

You are a helpful Al robot, you can solve mathematical problem
accurately.\nPlease calculate the provided arithmetic expression.

**Arithmetic Expression**: {ex-
pression}

Table 7: Detailed description of subtask Arithmetic.
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Subtask Aspect Multi-modal Size

Equation Solving (EQ) Calculation No 1571

Description

Require LLMs to solve both single-variable and systems of equations. It evaluates the model’s
algebraic skills and its capacity for handling more advanced mathematical structures.

Prompt
System (equation) Human
You are a helpful Al robot, you can solve mathematical problem | **Unknown Variable**: {vari-
accurately.\n"Please solve the provided equation. able \n**Equation**:  {equa-
tion}"
System (system of equations) Human
You are a helpful Al robot, you can solve mathematical problem | **Unknown Variable**: ({vari-
accurately.\n"Please solve the provided system of equations. ables}\n**System of Equa-
tions**: {equations}"

Table 8: Detailed description of subtask Equation Solving.

Subtask Aspect Multi-modal Size

Sorting Calculation No 581

Description

This subtask evaluates a model’s ability to arrange numbers or objects in a specific order,
assesses its understanding of order relationships and computational reasoning.

Prompt

System Human

You are a helpful Al robot, you can solve mathematical problem | **Numbers**: {numbers}
accurately.\nPlease sort the following numbers in ascending order.

Table 9: Detailed description of subtask Sorting.

Subtask Aspect Multi-modal Size
Formula Application (FA) Calculation No 246
Description

This subtask requires the LLMs to recognize and apply specific formulas to solve problems and
tests the LLMs’ familiarity with mathematical relationships.

Prompt

System Human

You are a helpful Al robot, you can solve mathematical prob- | **Theorem or Formula**: for-
lem accurately.\nChoose the correct definition for the following | mula\n**Options**:\noptions
theorem or formula.

Table 10: Detailed description of subtask Formula Application.
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Subtask Aspect Multi-modal Size

Number Conversion (NC) Numerical Parsing No 2877

Description

This subtask evaluates an LLM’s ability to recognize and interpret important numbers in different
formats, such as Arabic numerals, written words, and scientific notation. For example, "one hundred
and three" or "1.13e+2" should be converted into "113". LLM also needs to avoid identifying
invalid information.

Prompt

System Human

You are a helpful Al robot, you can solve mathematical problem | **MWP**: {MWP}
accurately.\nThe Math Word Problem(MWP), as a type of com-
prehensive mathematical problem, it requires identify important
information in the question to solve the problem.\nThe following
will provide a math word problem, and you need to identify and
**ONLY ** identify "the numbers in various formats provided in
the information that are needed to solve the problem.

Table 11: Detailed description of subtask Number Conversion.

Subtask Aspect Multi-modal Size
Unit Conversion (UC) Numerical Parsing No 1089
Description

In MWP, especially in physics-related problems, unit conversion is extremely important. This
subtask measures an LLM’s understanding of various units of measurement and its ability to convert
between them. For example, converting "5 kW-h" to J or "100°C" to Fahrenheit.

Prompt

System Human

You are a helpful Al robot, you can solve mathematical problem | **MWP**: {MWP}
accurately.\nThe Math Word Problem(MWP), as a type of com-
prehensive mathematical problem, it requires identify important
information in the question to solve the problem.\nThe following
will provide a math word problem, and you need to identify the
number with unit(s) required to solve the MWP. (Ignore numbers
without units.)

Table 12: Detailed description of subtask Unit Conversion.
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Subtask Aspect Multi-modal Size

Numeral Recognition (NR) Numerical Parsing Yes 133

Description

This task assesses an LLM’s ability to extract mathematical content like numbers, variables, and
formulas from images. The model may need to extract and interpret a formula from an image of
handwritten notes. LLM also needs to avoid identifying invalid information.

Prompt

System Human

You are a helpful Al robot, you can solve mathematical problem | **VRP**: { VRP}
accurately.\nThe Visual Reasoning Problem(VRP), as a type of
comprehensive mathematical problem, it requires identify impor-
tant information in the image to solve the problem.\nThe following
will provide a visual reasoning problem and a image, you need to
identify and **ONLY ** identify the numbers in the image that
are needed to solve the problem.

Table 13: Detailed description of subtask Numeral Recognition.

Subtask Aspect Multi-modal Size
Visual Data Quantification (VDQ) Numerical Parsing Yes 38
Description

In the image, some data is not directly presented in numerical form, such as the time pointed
by the clock or the length of an object. This subtask evaluates the model’s ability to understand
instructions and quantify nonvalue data in images.

Prompt

System Human

You are a helpful Al robot, you can solve mathematical problem | **Question**: \n{question}
accurately.\nldentify the specified data from the following image.
If the data is not presented directly in numerical form, you need to

quantify it.
Table 14: Detailed description of subtask Visual Data Quantification.
Subtask Aspect Multi-modal Size
Object Counting (OC) Numerical Parsing Yes 85

Description

This subtask requires models to count specified objects in an image based on a given description.
It tests the models’ visual reasoning and object recognition skills.

Prompt

System Human

You are a helpful Al robot, you can solve mathematical problem | **Target Object™*: \n{question }
accurately.\nldentify the number of specified objects from the
following image.

Table 15: Detailed description of subtask Object Counting.
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