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Abstract

Despite the critical role of mathematical capa-001
bilities in large language models (LLMs) across002
various applications, few frameworks compre-003
hensively evaluate these abilities from founda-004
tional to advanced levels. This gap hinders the005
exploration of the weaknesses in the mathemat-006
ical abilities of LLMs. In this paper, we intro-007
duce PyraMathBench1, a framework designed008
to assess the mathematical capability of LLMs009
across four difficulty aspects, emphasizing the010
breakdown of complex tasks into simpler foun-011
dational components. PyraMathBench includes012
tailored single-modal and multimodal subtasks013
to rigorously evaluate model performance. We014
also propose the plug-and-play math model, a015
dynamic toolkit that enhances the mathemat-016
ical processing abilities of LLMs, especially017
in Calculation tasks requiring intricate compu-018
tation. Subsequent experiments with existing019
LLMs have led to the following findings: (i)020
LLMs’ limited capacity for abstraction, task de-021
composition, and equation solving hinder their022
reasoning process. (ii) MLLMs predominantly023
rely on textual information when inferring Vi-024
sual Reasoning Problems.025

1 Introduction026

Numbers play an integral role in text and are ubiq-027

uitous across a wide range of natural language028

processing (NLP) tasks (Yuan et al., 2023; Sun-029

dararaman et al., 2020). Mathematical reasoning030

is essential for NLP performance, especially in031

domains like scientific research (Spithourakis and032

Riedel, 2018) and financial documents (Chen et al.,033

2019; Jiang et al., 2020). Despite rapid advance-034

ments in big data and computational power, large035

language models (LLMs) like GPT-4 and Llama036

continue to struggle with mathematical tasks (Pa-037

tel et al., 2021; Zhao et al., 2023), in part due to038

flaws in the tokenization of numbers (Liu and Low,039

1https://osf.io/h4fwr/?view_only=
392e23bd1b2443cd802b4c9ccef93dee

2023; Yuan et al., 2023) and hallucination (Ji et al., 040

2023; Chen et al., 2023). A model’s ability to han- 041

dle mathematical tasks serves as a critical indica- 042

tor of its overall competence in solving real-world 043

problems and performing abstract reasoning (Wei 044

et al., 2022). However, current LLM-based math- 045

ematical problem-solving remains largely opaque, 046

lacking mechanisms for analyzing errors or diag- 047

nosing failure modes, leading to an urgent need for 048

a high-quality comprehensive mathematical evalu- 049

ation benchmark. 050

Current benchmarks predominantly assess the 051

mathematical reasoning abilities of language 052

models through math word problems (MWPs). 053

Datasets like GSM8K (Cobbe et al., 2021) 054

and APE210K (Zhao et al., 2020), based on 055

elementary-level problems, and benchmarks such 056

as MATH (Hendrycks et al., 2021), ARB (Sawada 057

et al.), and FrontierMath (Glazer et al., 2024), 058

which involve competition-level problems like the 059

IMO and AMC, are widely used. However, these 060

benchmarks do not fully capture the limitations 061

of LLMs’ capabilities. For example, when mod- 062

els provide incorrect answers, it remains unclear 063

whether the failure stems from computational er- 064

rors or misinterpretation of the question. Some 065

efforts, such as LILA (Mishra et al., 2022), attempt 066

to address this by breaking down tasks into sub- 067

tasks. Akhtar et al. (2023) introduced a framework 068

to probe LLMs’ numerical reasoning at various 069

levels. But these frameworks lack cross-task cor- 070

relations, testing LLMs’ abilities in isolation. In 071

the realm of Multi-Modal Large Language Models 072

(MLLMs), benchmarks like MathVista (Lu et al., 073

2023) and MathVerse (Zhang et al., 2024) primar- 074

ily emphasize image comprehension, neglecting a 075

detailed exploration of the text modality’s role in 076

numerical reasoning. 077

Piaget’s cognitive theory (Piaget, 1970) divides 078

the progress of human cognition into four stages: 079

the sensorimotor stage, pre-operational stage, con- 080
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Figure 1: Two examples of decomposing complex reasoning problems into subtasks, with dashed lines representing
multimodal tasks.

crete operational stage, and formal operational081

stage. The cognition shifts from simple and direct082

to complex and abstract. Under this framework,083

mathematical ability can be thought of as a hierar-084

chy, akin to a pyramid structure, where complex085

tasks are broken down into simpler foundational086

components. By isolating and evaluating these core087

tasks, we can better understand the interplay be-088

tween foundational skills and higher-level reason-089

ing. This hierarchical approach not only assesses090

complex tasks but also identifies how weaknesses091

in basic skills can affect overall performance.092

Based on this, we propose the PyraMathBench093

(PMB), a comprehensive hierarchical benchmark094

that includes 27,215 questions derived from 7,404095

math word problems, covering 4 key cognitive as-096

pects, 14 subcategories, and 2 modalities, ensuring097

a comprehensive evaluation. Additionally, the sub-098

tasks are decomposed from real math word prob-099

lems rather than generated, making them more ap-100

plicable to practical scenarios. PMB also incorpo-101

rates the compositional relationships between tasks,102

enabling a deeper analysis of LLMs’ strengths and103

weaknesses. Using PMB, we evaluated a variety of104

SOTA LLMs, identifying areas for improvement105

and offering valuable insights into the factors that106

influence performance in various aspects of math-107

ematical reasoning. The key findings are summa-108

rized as follows:109

• The models DeepSeek-R1, GPT-4o, and GPT-4o 110

Mini are classified in the top tier of mathematical 111

capabilities, demonstrating powerful reasoning 112

and computational capabilities. 113

• A key weakness observed across the LLMs is 114

their limited capacity for abstraction, task de- 115

composition, and equation solving. 116

• MLLMs predominantly rely on textual informa- 117

tion when inferring Visual Reasoning Problems. 118

2 The Taxonomy of PyraMathBench 119

The core motivation behind PMB’s taxonomy is 120

the recognition that mathematical tasks often re- 121

quire multiple layers of cognitive aspects and com- 122

putational skills, ranging from simple numerical 123

parsing to intricate logical reasoning. An LLM’s 124

ability to solve a high-level math word problem is 125

contingent upon its proficiency in handling lower- 126

level subcomponents. Traditional benchmarks con- 127

flate different cognitive aspects of mathematical 128

competency without an explicit framework for iso- 129

lating these subskills, making it difficult to diag- 130

nose specific failure points. By decomposing com- 131

plex mathematical tasks into distinct hierarchical 132

aspects, PMB provides a systematic method to eval- 133

uate capability at each stage of mathematical cogni- 134
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tion, allowing for a more interpretable assessment135

of LLM performance.136

Inspired by previous research (Xu et al., 2022;137

Akhtar et al., 2023) and Piaget’s cognitive theory,138

our benchmark taxonomizes tasks into four hierar-139

chical aspects (A1–A4), encompassing 14 distinct140

tasks. Figure 1 shows the composition of subtasks141

at each aspect and examples of subtask annotation.142

Here are concise definitions for each subtask.143

• Complex Reasoning. This aspect represents the144

most advanced level of mathematical problem-145

solving, requiring the integration of multiple146

cognitive processes and mathematical principles.147

Complex reasoning tasks require sophisticated148

logical deductions, image comprehension ability,149

and multistep problem-solving. Models must150

demonstrate the ability to connect different types151

of information, identify abstract relationships,152

and apply higher-order reasoning strategies.153

• Understanding. At this aspect, the focus is154

on the model’s ability to comprehend and in-155

terpret mathematical content, transforming un-156

structured textual or visual information into ac-157

tionable mathematical representations. Tasks in158

the Understanding category test the model’s abil-159

ity to make sense of mathematical descriptions,160

extract necessary information, and recognize pat-161

terns or structures.162

• Calculation. The Calculation aspect involves163

performing arithmetic operations and applying164

standard mathematical formulas to compute solu-165

tions. Tasks for this aspect require the model to166

perform accurate numerical manipulations and167

apply mathematical formulas correctly. This as-168

pect primarily tests the model’s computational169

efficiency and correctness.170

• Numerical Parsing. For the Numerical Parsing171

aspect, the tasks focus on the foundational abil-172

ities necessary to parse and process numerical173

information. This aspect tests the model’s abil-174

ity to recognize, interpret, and extract numerical175

data in various formats and contexts. It requires176

the model to handle the raw mathematical con-177

tent and prepare it for further computation. Due178

to the limitations of tokenization, many LLMs179

perform poorly on such simple tasks.180

We provide specific descriptions, prompts, and ex-181

amples for each subtask in Appendix B.182

3 Construction and Statistics 183

Data Sources. The PMB dataset integrates six ex- 184

isting evaluation datasets and practice questions. 185

The data collection adheres to the following guide- 186

lines: 1) It includes common mathematical prob- 187

lems and visual reasoning tasks to represent the 188

typical problem distribution. 2) Each problem is 189

structured to allow clear decomposition into sub- 190

tasks, facilitating unambiguous labeling. 3) The 191

dataset is varied in difficulty, ensuring the inclu- 192

sion of challenging tasks to effectively evaluate 193

the performance of LLMs. We excluded non- 194

mathematical content from the datasets. Based 195

on this, we collected 6 datasets as data sources: 196

ASDiv (Miao et al., 2021), alg514 (Kushman et al., 197

2014), Dolphin 18K (Shi et al., 2015), SVAMP (Pa- 198

tel et al., 2021), TAT-QA (Zhu et al., 2021), and 199

MathVista (Lu et al., 2023), supplemented with 200

some math practice. 201

Subtasks Annotation. The dataset annotation 202

is conducted by three experts proficient in high 203

school-level mathematics. The subtask questions 204

are evenly distributed among the three experts for 205

annotation, while the corresponding answers re- 206

quire validation by at least two experts. Once an- 207

notated, the answers are evaluated using the met- 208

rics outlined in Section 4. If the score falls below 209

90, the question is deemed ambiguous and subse- 210

quently discarded. We also utilized the table data 211

from TAT-QA to create images to expand the vari- 212

ety of multi-modal tasks. 213

Certain datasets provide well-structured answer 214

inference processes or automated question gener- 215

ation tools, facilitating the extraction of subtask 216

questions. Additionally, we standardize the mathe- 217

matical representations across different datasets, 218

ensuring compatibility with both Python inter- 219

preters and LaTeX (the latter being used for more 220

complex expressions). For floating-point answers, 221

numerical values are rounded to six decimal places. 222

Statistics. Figure 2 presents the distribution of sub- 223

tasks. PyraMathBench offers several advantages 224

over existing evaluation methods: (1) Comprehen- 225

sive Coverage – PMB includes a diverse array of 226

tasks, spanning four primary areas of mathemati- 227

cal reasoning and 14 subcategories, derived from 228

13,735 questions across 4,536 Math Word Prob- 229

lems. This extensive dataset facilitates a thorough 230

assessment of models across a wide range of topics 231

and difficulty levels, ensuring broad coverage of 232

mathematical challenges. (2) Compositionality 233
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of Subtasks – PMB structures subtasks derived234

from the same Math Word Problem, allowing for235

detailed performance analysis. This compositional236

approach enables the isolation and evaluation of a237

model’s ability to break down complex problems238

into simpler components, providing insights into239

foundational skill deficiencies and their impact on240

overall performance. (3) Multimodal Tasks – By241

incorporating both unimodal and multimodal tasks,242

PMB enables a more comprehensive evaluation of243

LLMs. This allows assessing models’ ability to pro-244

cess different input types and engage in complex245

forms of reasoning.246

Figure 2: Subtask distribution within PyraMathBench

4 Models and Evaluation Metrics247

Using PMB, we evaluated seven state-of-the-248

art LLMs, including GPT-4o (2024-11-20 ver-249

sion), GPT-4o-mini (2024-7-18 version)2, LLaVA250

13B (Liu et al., 2023), DeepSeek-R1 (DeepSeek-251

AI et al., 2025), Qwen2.5 14B (Yang et al., 2024),252

Llama3.1 8B (Grattafiori et al., 2024), Gemma2253

9B (Team et al., 2024), and Mistral 7B (Jiang254

et al., 2023). The evaluation parameters were set255

as follows: temperature = 0.8, top_k = 40, and256

top_p = 0.9. The system prompt for each task257

contains the essential task setup and a detailed de-258

scription of the question. Additionally, hints spe-259

cific to each task are provided for LLMs that do260

not support structured output to guide the format261

of the answer. To simulate real-world mathemat-262

ical question-answering scenarios, we employed263

zero-shot settings with Chain of Thought (CoT)264

prompting (Wei et al., 2022).265

The evaluation of LLMs’ mathematical capabili-266

ties incorporates their capacity to follow output for-267

mat instructions, similar to grading practical exam268

questions. Specifically, LLMs are assessed on their269

ability to extract answers from designated fields in270

the prompt, with structured output being advanta-271

geous. The answer types include four formats: 1) a272

2https://platform.openai.com/docs/models

number or list of numbers, 2) expressions, 3) brief 273

text, and 4) multiple-choice options. 274

Numerical answers are evaluated using Equa- 275

tion 1, where y represents the reference answer 276

and ŷ represents the model response. The equation 277

considers two answers equivalent if their absolute 278

difference is less than 10× 10−4, awarding a full 279

score. For deviating answers, the score is deter- 280

mined by the absolute difference and the relative 281

magnitude of the two numbers. If no correspond- 282

ing answer is present in the model’s output, the 283

score is zero. To handle diverse mathematical ex- 284

pression formats, we employ a program based on 285

SymPy to check equivalence and compute numer- 286

ical results. This program uses heuristic methods 287

to convert expression evaluations into numerical 288

assessments. The text response format in PMB is 289

relatively fixed and short, so we apply Jaccard sim- 290

ilarity and semantic similarity as metrics. Multiple 291

reference answers are provided in PMB, and the 292

highest score derived from comparisons between 293

the model output and reference answers is used as 294

the final score. For multiple-choice questions, we 295

calculate the perfect match rate. Finally, all scores 296

are normalized to a range of 0 to 100. 297

Score(y, ŷ) =


100, if |ŷ − y| < 10× 10−4

0, if ŷ = UNDEFINED

max(0, |ŷ−y|
max(1,y,ŷ)×50), otherwise

(1) 298

5 Main Results 299

The models DeepSeek-R1, GPT-4o, and GPT-4o 300

Mini are classified in the top tier of mathemati- 301

cal capabilities, with DeepSeek-R1 demonstrating 302

the highest overall performance. In Table 1, we 303

can see that DeepSeek-R1 outperformed the other 304

models in six out of ten text-only tasks. Interest- 305

ingly, the open-source model Qwen2.5, despite hav- 306

ing a smaller model size of only 14B parameters, 307

achieved a performance comparable to that of the 308

aforementioned models, showcasing competitive 309

mathematical reasoning abilities. 310

In terms of performance on Math Word Prob- 311

lems, a key weakness observed across the LLMs 312

is their limited capacity for abstraction, task 313

decomposition, and equation solving. These defi- 314

ciencies hinder their ability to effectively address 315

complex mathematical tasks. 316

Furthermore, it can be observed that MLLMs 317

predominantly rely on textual information for 318
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Model Size MWP VRP* QA TD MK Arithmetic ES
GPT-4o* - 92.1 76.2 65.9 81.1 75.6 96.1 50.1
GPT-4o mini* - 89.4 69.9 64.5 76.1 80.8 95.6 50.4
LLaVA* 13B 34.4 25.3 11.4 36.1 61.0 60.9 8.0
DeepSeek-R1 671B 93.9 - 92.3 84.2 75.0 96.5 42.9
Qwen2.5 14B 91.0 - 64.1 72.9 83.5 90.3 58.0
Llama3.1 8B 56.9 - 54.1 69.3 78.3 81.4 34.9
Gemma2 9B 87.4 - 53.1 77.7 72.1 94.5 54.8
Mistral 7B 42.3 - 6.6 78.8 71.0 66.5 21.9

Model Size Sorting FA NC UC NR* VDQ* OC*
GPT-4o* - 96.4 65.0 83.9 70.7 12.0 5.4 2.4
GPT-4o mini* - 94.5 76.7 73.6 72.9 17.6 22.2 1.1
LLaVA* 13B 55.2 34.6 65.1 29.5 2.8 8.3 7.1
DeepSeek-R1 671B 94.8 73.7 86.9 80.7 - - -
Qwen2.5 14B 96.2 79.4 81.1 36.2 - - -
Llama3.1 8B 83.9 59.5 72.7 30.0 - - -
Gemma2 9B 93.9 71.7 69.0 14.9 - - -
Mistral 7B 90.4 51.7 64.3 53.9 - - -

Table 1: Main results of 8 LLMs on the 14 subtasks of PyraMathBench. Italics* represents multimodal tasks.

Visual Reasoning Problems. Their ability to ex-319

tract and process mathematical information from320

images remains relatively underdeveloped, even321

when the images involved are simple in nature.322

This suggests that LLMs require further advance-323

ments in their multimodal capabilities to enhance324

their performance in tasks that involve visual data.325

Next, we will summarize the performance of326

LLMs with regard to particular difficult aspects. In327

complex reasoning tasks, DeepSeek leads with a328

score of 93.9 in the MWP task, followed by GPT-4o329

(93.9) and Qwen2.5 (91.0). The significant perfor-330

mance decline of Mistral (42.3) and LLaVA (34.4)331

is primarily due to limited instruction-following332

and mathematical reasoning abilities. Notably,333

LLaVA, which is not designed for complex mathe-334

matical tasks, shows a rather low performance in335

the VRP task at 25.3, in contrast to GPT-4o (76.2)336

and GPT-4o mini (69.9). However, even the latter337

two models do not achieve exceptional results.338

LLMs demonstrate a marked decline in the Un-339

derstanding aspect, which is closely linked to the340

accuracy of complex reasoning. This aspect fo-341

cuses on assessing LLMs’ ability to exhibit the rea-342

soning process. Among the models, DeepSeek-R1343

stands out with a score of 92.3 in the QA subtask,344

significantly surpassing GPT-4o (65.9). In contrast,345

Mistral and LLaVA, due to their limited support for346

structured output and weaker instruction-following347

abilities, struggle with providing valid expressions348

and consequently perform poorly in this task. Task 349

decomposition ability, however, remains relatively 350

consistent across LLMs, ranging from 72 to 85, in- 351

dicating that, despite differences in reasoning skills, 352

many mainstream LLMs share a similar reasoning 353

process. 354

In the Calculation aspect, the leading LLMs 355

achieve scores of around 90 in Arithmetic and Sort- 356

ing subtasks. It should be noted that this does not 357

necessarily reflect strong computational capabil- 358

ities, but rather because the arithmetic and sort- 359

ing questions decomposed from MWP and VRQ 360

are relatively easy. A notable weakness across 361

all LLMs is their weak ability to solve equations, 362

with even the top performer, Qwen2.5, scoring only 363

58.0. Our analysis in Section 6 suggests that this 364

shortage significantly hampers LLM performance 365

in more complex problems. In the Formula Appli- 366

cation subtask, Qwen2.5 leads with a score of 79.4, 367

followed by GPT-4o mini (76.7) and DeepSeek- 368

R1 (73.7). This task requires selecting the correct 369

formula from variations; the unsatisfactory perfor- 370

mance highlights the importance of eliminating 371

hallucinations in mathematical reasoning. 372

The most notable data in the Numerical Parsing 373

aspect is the poor performance of MLLMs. In- 374

deed, the scores of three MLLMs on three tasks 375

are even lower than 10. A case analysis shows that 376

MLLMs are almost entirely unable to effectively 377

extract mathematical information on these primary 378
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school-level problems, and they mainly rely on the379

information provided in the text to solve the VRQ.380

Although the highest score for digit recognition is381

only 17.6 points for GPT-4o mini, they can actually382

recognize a considerable number of digits in the383

image, but cannot determine which digits are useful384

for solving the problem. As a result, MLLMs may385

also exhibit serious hallucinations in the presence386

of redundant information in the image.387

6 Quantitive Analysis388
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Figure 3: The Pearson’s correlation with MWP and
(Correlation X Score Lost) of each subtask.

Influence of Subtasks on High-level Task To389

quantify the influence of various abilities on LLM390

performance, we computed the Pearson Correla-391

tion Coefficient between the scores of MWPs and392

each subtask. A higher correlation value signifies393

greater relevance of the subtask to overall MWP394

performance. The results are shown in Figure 4.395

Additionally, to identify LLMs’ potential weak-396

nesses, we multiplied the average score loss on397

each subtask by its corresponding correlation co-398

efficient with MWP. This approach highlights the399

subtasks that perform poorly and have a signifi-400

cant impact on MWP scores. From a correlation401

perspective, tasks such as Arithmetic (0.98), ES402

(0.94), FA (0.92), and QA (0.89) show strong ties403

to MWP performance. However, when considering404

score losses, it becomes evident that ES (56.0), QA405

(43.4), and FA (33.1) represent the key weaknesses406

of LLMs, as their scores for the Arithmetic task is407

already satisfying. This suggests that LLMs need to408

enhance their ability to solve equations and handle409

abstract reasoning problems as a top priority.410

Multi-modal Through case analysis, we identi-411

fied that the failure of MLLMs in NR tasks stems412

primarily from their inability to extract only the413

required numbers. Although these models recog-414

nize numbers with relatively high accuracy, they415

often randomly select numbers from the image416

without focusing on the relevant areas necessary 417

for solving the problem. This leads to a signifi- 418

cant accuracy drop when redundant data is present 419

in the image (averaging 43.1 to 1.3). In VDQ 420

tasks, MLLMs exhibit prominent hallucinations, 421

resulting in inferences and analyses that deviate 422

from the actual content of the image. In OC tasks, 423

MLLMs fail not only due to their inability to se- 424

lect the correct objects based on instructions but 425

also due to poor performance in counting large, pat- 426

terned groups (e.g., 10times10 arranged blocks). 427

Hence, MLLMs struggle to extract meaningful in- 428

formation from images when addressing visual rea- 429

soning problems, relying primarily on text-based 430

data. This suggests that some previous work (Liu 431

et al., 2024) focused on enhancing feature extrac- 432

tion through key region-of-interest identification 433

in images may fail to yield sufficiently satisfactory 434

results in mathematical contexts. 435

Difficulty in Information Identification The 436

Numerical Parsing tasks require LLMs to extract 437

accurate and relevant information from data pre- 438

sented in various formats. However, analysis of 439

LLM responses in this aspect revealed a consistent 440

issue in the multimodal task NR, where LLMs tend 441

to over-identify irrelevant information. Though this 442

issue was somewhat mitigated in NR compared to 443

other tasks. To assess the impact of this behavior on 444

model performance and robustness, we introduced 445

an unrelated, random problem before each task 446

(e.g., inserting a word problem requiring solving an 447

equation before an arithmetic question). This ma- 448

nipulation led to an average score reduction across 449

the text-modality subtasks for four aspects: 11.3 450

points for Complex Reasoning, 8.7 points for Un- 451

derstanding, 21.5 points for Calculation, and 29.7 452

points for Numerical Parsing. These findings high- 453

light that the inclusion of extraneous information 454

significantly impairs LLM performance on mathe- 455

matical tasks. Further case analysis revealed that 456

while LLMs struggle to identify relevant data in 457

lower-level tasks, they effectively discard incorrect 458

answers through logical reasoning in higher-level 459

tasks, leading to a lesser performance degradation 460

in those cases. 461

7 The Plug-and-Play Math Model 462

Despite the impressive language modeling capa- 463

bilities of large language models (LLMs), their 464

performance in tasks involving simple arithmetic, 465

number recognition, and factual retrieval remains 466

6



Given 𝑥 =
1

2
( 5 + 1),

find 
𝑥3+𝑥+1

𝑥5
.

```Reasoning Process```

Thus, the simplified 

expression is: 
3𝑥+2

5𝑥+3

w/o PPM

Question Tool calling

Model output Answer

Step 1: Express x … that is 
1

2
( 5 + 1)…

1/2 * (sqrt(5) + 1) = 1.618

Step 3: Substitute into the 

expression… the expression 

becomes: 
(1.68)3+(1.68)+1

(1.68)5
…

(1.68)3+(1.68)+1

(1.68)5
 = 0.618334 

```Reasoning Process```

The result is: 

0.618334

history

Plug-and-Play Model

Output Parser

1.Constant

2. Knowledge 

Point Explanation

3.Arithmetic

4. Equation Solving

5.Sorting

6. Numerical Correction

Answer Formatter

PPM

PPM

w/ PPM

Figure 4: Accuracy comparison of four models on five
subtasks w/ and w/o plug-and-play math model.

suboptimal. This limitation is primarily due to467

the tokenization and training approach inherent to468

LLMs, making substantial improvements in these469

areas difficult through simple model adjustments.470

However, our quantitative analysis indicates that471

LLMs’ accuracy on low-level tasks significantly in-472

fluences their performance on more complex tasks.473

To address this, we propose a Plug-and-Play Math474

Model (PMM), a dynamic toolkit that enhances the475

mathematical processing abilities of LLMs. Un-476

like prior approaches that rely on self-supervised477

fine-tuning, this model focuses on simplifying tool478

integration by streamlining API calls.479

This model supports several functions, including480

1) Arithmetic, 2) Equation Solving, 3) Sorting, 4)481

Knowledge Point Explanation, 5) Constant Stor-482

age, and 6) Numerical Correction. As depicted in483

Figure 4, the LLM can generate natural language484

requests for tool calls invarious formats (e.g. latex,485

unicode, Markdown), which the model then parses486

to identify task requirements and return appropriate487

results. This method reduces the communication488

overhead and increases the accuracy of tool uti-489

lization while preserving the core competencies490

of the LLM. Detailed descriptions of the PMM’s491

functions are provided in Appendix B.492

Result To evaluate the effectiveness of the PMM,493

we conducted comparative experiments on four494

LLMs that support tool calling, assessing perfor-495

mance on the MWP task and four subtasks within496

the Calculation aspect. The Calculation aspect sub-497

tasks were selected to test PMM’s plug-and-play498

capability, as these tasks can be solved directly499

via tool calls. PMM utilizes an Output Parser to500

analyze LLM tool calls, extract specific requests,501

perform calculations, and return the results.502

The results show a substantial improvement in503
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performance after applying PMM. The average 504

score for Arithmetic and Sorting tasks reached 505

99.4% and 99.7%, respectively, while the score 506

for Equation Solving increased by 41.4%. Formula 507

Application saw less significant improvement, pri- 508

marily due to the varied expressions of formulas 509

and mismatches between the stored definitions in 510

PMM and those in the questions. Nevertheless, 511

the significant gains in the Calculation aspect high- 512

light PMM’s effectiveness for simple, single-step 513

problems. 514

For MWP tasks, which require multi-step rea- 515

soning, the average score improvement was 2.5%. 516

Notably, the Question Abstract capability of GPT- 517

4o, GPT-4o-mini, and Qwen2.5, which have signif- 518

icantly improved in the MWP task, is higher than 519

Llama3.1. This ability is a key factor in PMM’s 520

success with more complex tasks. In conclusion, 521

PMM can enhance the math capabilities of LLMs, 522

particularly for single-step calculations and numer- 523

ically intensive problems. 524

8 Related Work 525

The evaluation of LLMs in mathematical reason- 526

ing has seen significant advancements through the 527

development of various benchmarks targeting dis- 528

tinct cognitive tasks and problem-solving abilities. 529

MWPs have been a central focus, as they mir- 530

ror real-world applications of mathematical rea- 531

soning and knowledge integration. Datasets like 532

GSM8K (Cobbe et al., 2021), APE210K (Zhao 533

et al., 2020), MATH401 (Yuan et al., 2023), and 534

Math23K (Wang et al., 2017) provide diverse prob- 535

lem sets ranging from elementary to undergraduate 536

levels, assessing foundational to advanced reason- 537

ing skills. In pursuit of more rigorous assessments, 538

the Advanced Reasoning Benchmark (Sawada 539
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et al.) sourced from graduate-level exams and540

professional resources, covering topics from un-541

dergraduate to early graduate curricula. Olympiad-542

Bench (He et al., 2024), FrontierMath (Glazer et al.,543

2024), PutnamBench (Tsoukalas et al., 2024), and544

OmniMATH (Gao et al., 2024) focus on olympiad-545

level mathematics, curating problems from interna-546

tional competitions like IMO and AMC. However,547

these benchmarks do not fully capture the limita-548

tions of LLMs’ capabilities. For example, when549

models provide incorrect answers, it remains un-550

clear whether the failure stems from computational551

errors or misinterpretation of the question. Some552

efforts, such as LILA (Mishra et al., 2022), attempt553

to address this by breaking down tasks into sub-554

tasks. Akhtar et al. (2023) introduced a framework555

to probe LLMs’ numerical reasoning at various556

levels. But these frameworks lack cross-task corre-557

lations, testing LLMs’ abilities in isolation.558

The mathematical ability of MLLM is also a fo-559

cus in both academia and industry, MathVista (Lu560

et al., 2023) is a benchmark designed to combine561

challenges from diverse mathematical and visual562

tasks and systematically analyze the mathematical563

reasoning capabilities of SOTA MLLMs in visually564

complex scenarios. MathVerse (Zhang et al., 2024)565

meticulously collects 2,612 high-quality, multi-566

subject math problems with diagrams to assess567

whether and how much MLLMs can truly under-568

stand the visual diagrams for mathematical reason-569

ing. However, these evaluation benchmarks primar-570

ily emphasize image comprehension, neglecting571

a detailed exploration of text modality’s role in572

numerical reasoning.573

9 Conclusion574

This paper proposes PyraMathBench, a comprehen-575

sive hierarchical benchmark that includes 27,215576

questions derived from 7,404 math word prob-577

lems, covering 4 key cognitive aspects, 14 subcat-578

egories, and 2 modalities, ensuring a comprehen-579

sive evaluation. Our evaluation of multiple LLMs580

and MLLMs highlights their limitations in prob-581

lem abstraction, equation solving, and image-based582

information extraction, which impede accurate in-583

ferences on complex mathematical tasks. These584

findings underscore the need for improved logical585

reasoning and the reduction of multimodal halluci-586

nations. Through quantitative analysis, we assess587

the deficiencies of each LLM and the influence of588

individual subtasks on high-level task performance.589

We also propose the plug-and-play math model, a 590

dynamic toolkit designed to enhance the mathe- 591

matical capabilities of LLMs. Experimental results 592

demonstrate that this model significantly improves 593

LLMs’ performance in computational and complex 594

reasoning tasks. 595

10 Limitations 596

This study annotates subtasks by decomposing the 597

MWP and VRQ problems, though it is important to 598

note that this decomposition is not the only possible 599

approach regarding task types and content. While 600

various strategies have been employed to mitigate 601

the impact of this issue during evaluation, it might 602

still influences the results, particularly in the Un- 603

derstanding aspect. Furthermore, our task decom- 604

position method does not independently evaluate 605

the full range of LLM language capabilities, which 606

means our classification system does not include 607

all atomic tasks. This is a direction for our future 608

work. Moreover, the current study focuses on En- 609

glish only. Additional research could be conducted 610

on a diverse range of further languages. 611

While the plug-and-play math model is de- 612

signed to enhance LLMs’ performance on Pyra- 613

MathBench’s subtasks, it is primarily optimized for 614

these specific tasks. Consequently, its effectiveness 615

may not be as pronounced in other mathematical 616

domains, such as formula proofs or algebraic cal- 617

culations, which are not part of the current subtask 618

set. 619
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A Details of the Plug-and-Play Math 822

Model 823

The Plug-and-Play Math Model supports several 824

functions, including 1) Arithmetic, 2) Equation 825

Solving, 3) Sorting, 4) Knowledge Point Explana- 826

tion, 5) Constant Storage, and 6) Numerical Cor- 827

rection. Here are the detailed descriptions of each 828

function: 829

• Arithmetic. Detects arithmetic operations re- 830

quested by LLMs, such as addition, subtraction, 831

multiplication, division, roots, and exponents, 832

and computes the corresponding results. 833

• Equation Solving. Identifies equation-solving 834

tasks involving multiple unknowns or variable 835

definitions and provides numerical solutions for 836

each unknown after solving. 837

• Sorting. Sorts a set of numbers, which may 838

be expressed in various formats, and returns the 839

ordered result. 840

• Knowledge Point Explanation. Supplies math- 841

ematical knowledge (e.g., formulas, definitions, 842

and theorem proofs) in response to LLM queries 843

from a local database. 844

• Constant Storage. Stores frequently used math- 845

ematical constants (e.g., e, π), retains data 846

from the questions and previous problem-solving 847

steps, providing this information upon request. 848

• Numerical Correction. Automatically com- 849

pares the LLM’s reasoning process with stored 850

constants and alerts the model of potential nu- 851

merical inaccuracies. 852
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B Detailed Description of each Subtask853

In this section, we provide detailed information on854

each subtask, including 1) aspects, 2) whether it is855

a multimodal task, 3) size, 4) design rationale and856

description, and 5) all versions of the prompt we857

used.858
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Subtask Aspect Multi-modal Size
Math Word Problem (MWP) Complex Reasoning No 5476

Description
Assesses the model’s ability to solve mathematical problems presented in natural language and

reasoning through complex, real-world problems and translating them into mathematical solutions.
Prompt

System Human
You are a helpful AI robot, you can solve mathematical problem

accurately.\nThink step by step and answer the following math
word problem.

**Question**: \n{question}

Table 2: Detailed description of subtask Math Word Problem.

Subtask Aspect Multi-modal Size
Visual Reasoning Porblem (VRP) Complex Reasoning Yes 1928

Description
This subtask evaluates the model’s ability to combine textual and visual information for solving

mathematical problems. MLLMs need to reason across multiple modalities and extract relevant
insights from both text and images. The tasks include various types such as geometry problems,
VQA, and statistic reasoning.

Prompt
System Human

You are a helpful AI robot, you can solve mathematical problem
accurately.\nThink step by step and answer the following visual
reasoning problem based on the following image.

**Question**: \n{question}

Table 3: Detailed description of subtask Visual Reasoning Problem.
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Subtask Aspect Multi-modal Size
Question Abstraction (QA) Understanding No 5459

Description
This subtask requires LLMs to convert natural language problems into solvable structured

mathematical representations, including arithmetic, equations, and sorting numbers.
Prompt

System (arithmetic) Human
You are a helpful AI robot, you can solve mathematical problem

accurately.\nThe Math Word Problem(MWP), as a manifestation
of questions, can be understood as the process of solving it by
computing an operational expression. The following will provide
a math word problem that you need to abstract into an arithmetic
expression that can be directly interpreted by Python, such as 6 *
(5+3).\nYou can use functions from the m̈aths̈tandard library.

**Math Word Problem**:
\n{MWP}

System (equation) Human
You are a helpful AI robot, you can solve mathematical problem

accurately.\nYou are a helpful AI robot, you can solve mathemat-
ical problem accurately, The Math Word Problem(MWP), as a
manifestation of questions, can be understood as the process of
solving a equation or system of equations. The following will
provide a math word problem that you need to abstract into a
equation or system of equations. Specifically, you need to first
list the unknown variable(s) that need to be used after abstraction.
If there are multiple unknown variables, use commas to separate
them. Then list the abstract equation, and if there are multiple
equations, list them in multiple lines.\nYou can use functions from
the m̈aths̈tandard library.

**Math Word Problem**:
\n{MWP}

System (sorting) Human
You are a helpful AI robot, you can solve mathematical prob-

lem accurately.\nThe following will provide a math word prob-
lem(MWP) that you have to compare or sort some numbers in the
MWP to solve it.\nExtract the numbers that need to be compared
or sorted from the questions.

**Math Word Problem**:
\n{MWP}

Table 4: Detailed description of subtask Question Abstraction.
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Subtask Aspect Multi-modal Size
Task Decompisition (TD) Understanding No 4175

Description
The LLMs are required to analyze the MWP and determine the necessary steps for solving

it. The LLMs must have a sufficient understanding of the text and mathematical logic to answer
correctly. This subtask has a certain degree of openness..

Prompt
System Human

You are a helpful AI robot,
you can solve mathematical
problem accurately.\nThe Math
Word Problem(MWP), as a type
of comprehensive mathematical
problem, it may require various
mathematical operations such as
calculations and solving equa-
tions during to solve it.\n"Based
on the MWP provided below,
choose what mathematical opera-
tions are needed to solve it.

**Math Word Problem**: \n{MWP}\n\n**Mathematical oper-
ation list**: \nA: Additional information such as mathematical
formulas, constants, theorems, etc. that are not directly provided
in the question.\nB: Solve an equation or system of equations.\nC:
Perform mathematical arithmetic.\nD: Sort or compare the data in
the question.\nE: Identify and only identify the numbers in various
formats provided in the information that are needed to solve the
problem.\nF: Identify the numerical unit(s) required to obtain the
answer.\nG: Identify and only identify the numbers in various
formats provided in the image that are needed to solve the prob-
lem.\nH: Quantify data in images that are not directly presented
in numerical terms.\nI: Count the number of certain objects in the
picture.

Table 5: Detailed description of subtask Task Decompisition.

Subtask Aspect Multi-modal Size
Math Knowledge (MK) Understanding No 58

Description
This subtask evaluates the model’s ability to leverage fundamental mathematical knowledge,

such as approximations of constants and geometric formulas that are not explicitly provided in the
problem. For example, the approximation of e or applying the quadratic formula for the root of an
equation.

Prompt
System Human

You are a helpful AI robot, you can solve mathematical prob-
lem accurately.\nThe following will provide a math word prob-
lem(MWP). To solve this MWP, an additional knowledge point,
such as a theorem or formula, is required. Please answer the name
of this knowledge point.

**Math Word Problem**:
\n{question}

Table 6: Detailed description of subtask Math Knowledge.

Subtask Aspect Multi-modal Size
Arithmetic Calculation No 3499

Description
This subtask evaluates the model’s proficiency in performing basic mathematical operations

such as four operations, root operation, exponential operation, etc.
Prompt

System Human
You are a helpful AI robot, you can solve mathematical problem

accurately.\nPlease calculate the provided arithmetic expression.
**Arithmetic Expression**: {ex-
pression}

Table 7: Detailed description of subtask Arithmetic.
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Subtask Aspect Multi-modal Size
Equation Solving (EQ) Calculation No 1571

Description
Require LLMs to solve both single-variable and systems of equations. It evaluates the model’s

algebraic skills and its capacity for handling more advanced mathematical structures.
Prompt

System (equation) Human
You are a helpful AI robot, you can solve mathematical problem

accurately.\n"Please solve the provided equation.
**Unknown Variable**: {vari-
able}\n**Equation**: {equa-
tion}"

System (system of equations) Human
You are a helpful AI robot, you can solve mathematical problem

accurately.\n"Please solve the provided system of equations.
**Unknown Variable**: {vari-
ables}\n**System of Equa-
tions**: {equations}"

Table 8: Detailed description of subtask Equation Solving.

Subtask Aspect Multi-modal Size
Sorting Calculation No 581

Description
This subtask evaluates a model’s ability to arrange numbers or objects in a specific order,

assesses its understanding of order relationships and computational reasoning.
Prompt

System Human
You are a helpful AI robot, you can solve mathematical problem

accurately.\nPlease sort the following numbers in ascending order.
**Numbers**: {numbers}

Table 9: Detailed description of subtask Sorting.

Subtask Aspect Multi-modal Size
Formula Application (FA) Calculation No 246

Description
This subtask requires the LLMs to recognize and apply specific formulas to solve problems and

tests the LLMs’ familiarity with mathematical relationships.
Prompt

System Human
You are a helpful AI robot, you can solve mathematical prob-

lem accurately.\nChoose the correct definition for the following
theorem or formula.

**Theorem or Formula**: for-
mula\n**Options**:\noptions

Table 10: Detailed description of subtask Formula Application.
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Subtask Aspect Multi-modal Size
Number Conversion (NC) Numerical Parsing No 2877

Description
This subtask evaluates an LLM’s ability to recognize and interpret important numbers in different

formats, such as Arabic numerals, written words, and scientific notation. For example, "one hundred
and three" or "1.13e+2" should be converted into "113". LLM also needs to avoid identifying
invalid information.

Prompt
System Human

You are a helpful AI robot, you can solve mathematical problem
accurately.\nThe Math Word Problem(MWP), as a type of com-
prehensive mathematical problem, it requires identify important
information in the question to solve the problem.\nThe following
will provide a math word problem, and you need to identify and
**ONLY** identify "the numbers in various formats provided in
the information that are needed to solve the problem.

**MWP**: {MWP}

Table 11: Detailed description of subtask Number Conversion.

Subtask Aspect Multi-modal Size
Unit Conversion (UC) Numerical Parsing No 1089

Description
In MWP, especially in physics-related problems, unit conversion is extremely important. This

subtask measures an LLM’s understanding of various units of measurement and its ability to convert
between them. For example, converting "5 kW·h" to J or "100°C" to Fahrenheit.

Prompt
System Human

You are a helpful AI robot, you can solve mathematical problem
accurately.\nThe Math Word Problem(MWP), as a type of com-
prehensive mathematical problem, it requires identify important
information in the question to solve the problem.\nThe following
will provide a math word problem, and you need to identify the
number with unit(s) required to solve the MWP. (Ignore numbers
without units.)

**MWP**: {MWP}

Table 12: Detailed description of subtask Unit Conversion.

16



Subtask Aspect Multi-modal Size
Numeral Recognition (NR) Numerical Parsing Yes 133

Description
This task assesses an LLM’s ability to extract mathematical content like numbers, variables, and

formulas from images. The model may need to extract and interpret a formula from an image of
handwritten notes. LLM also needs to avoid identifying invalid information.

Prompt
System Human

You are a helpful AI robot, you can solve mathematical problem
accurately.\nThe Visual Reasoning Problem(VRP), as a type of
comprehensive mathematical problem, it requires identify impor-
tant information in the image to solve the problem.\nThe following
will provide a visual reasoning problem and a image, you need to
identify and **ONLY** identify the numbers in the image that
are needed to solve the problem.

**VRP**: {VRP}

Table 13: Detailed description of subtask Numeral Recognition.

Subtask Aspect Multi-modal Size
Visual Data Quantification (VDQ) Numerical Parsing Yes 38

Description
In the image, some data is not directly presented in numerical form, such as the time pointed

by the clock or the length of an object. This subtask evaluates the model’s ability to understand
instructions and quantify nonvalue data in images.

Prompt
System Human

You are a helpful AI robot, you can solve mathematical problem
accurately.\nIdentify the specified data from the following image.
If the data is not presented directly in numerical form, you need to
quantify it.

**Question**: \n{question}

Table 14: Detailed description of subtask Visual Data Quantification.

Subtask Aspect Multi-modal Size
Object Counting (OC) Numerical Parsing Yes 85

Description
This subtask requires models to count specified objects in an image based on a given description.

It tests the models’ visual reasoning and object recognition skills.
Prompt

System Human
You are a helpful AI robot, you can solve mathematical problem

accurately.\nIdentify the number of specified objects from the
following image.

**Target Object**: \n{question}

Table 15: Detailed description of subtask Object Counting.
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