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ABSTRACT

Accurate and automated anomaly segmentation is critical for assisting clinicians
in detecting and diagnosing pathological conditions, particularly in large-scale
medical imaging datasets where manual annotation is not only time- and resource-
intensive but also prone to inconsistency. To address these challenges, we propose
SCREENER, a fully self-supervised framework for visual anomaly segmentation,
leveraging self-supervised representation learning to eliminate the need for man-
ual labels. Additionally, we model the conditional distribution of local image
patterns given their global context, enabling the identification of anomalies as pat-
terns with low conditional probabilities and assigning them high anomaly scores.
SCREENER comprises three components: a descriptor model that encodes lo-
cal image patterns into self-supervised representations invariant to local-content-
preserving augmentations; a condition model that captures global contextual in-
formation through invariance to image masking; and a density model that esti-
mates the conditional density of descriptors given their global contexts to compute
anomaly scores.
We validate SCREENER by training a fully self-supervised model on over 30,000
3D CT images and evaluating its performance on four large-scale test datasets
comprising 1,820 3D CT scans across four chest and abdominal pathologies. Our
framework consistently outperforms existing unsupervised anomaly segmentation
methods. Code and pre-trained models will be made publicly available.

Figure 1: Examples of 2D slices of 3D medical CT images (the first row), the ground truth masks of
their pathological regions (the second row) and the anomaly maps predicted by fully self-supervised
SCREENER for pathology segmentation (the third row). Note that, the second image from the left
contains pneumothorax, missed by ground truth annotation mask, but detected by SCREENER.
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1 INTRODUCTION

The accurate and automated segmentation of pathologies in medical computed tomography (CT) im-
ages is crucial for assisting clinicians in diagnosing and treating various conditions. However, devel-
oping supervised models for pathology segmentation faces significant challenges: labeled datasets
are scarce, annotations often cover only a limited range of findings, and manual labelling is not only
resource-intensive but also inconsistent. For example, in Figure 1, pneumothorax is present in the
second column (black region framed by red box) but is not included in the ground truth mask. Hence,
supervised methods for pathology segmentation are often constrained in scope and applicability.

In contrast, large-scale datasets of unlabelled CT images are readily available through public repos-
itories (Team, 2011; Ji et al., 2022; Qu et al., 2024). These datasets remain largely underutilized due
to the lack of annotations, despite their potential to enable fully unsupervised learning approaches.
Leveraging this abundance of unlabelled data, we aim to develop a model capable of distinguishing
pathological regions from normal ones without requiring labeled training data. Our core assump-
tion is that pathological patterns are significantly rarer than healthy patterns in random CT images.
This motivates framing pathology segmentation as an unsupervised visual anomaly segmentation
(UVAS) problem, where anomalies correspond to pathological regions.

While existing UVAS methods have been explored extensively for natural images, their adaptation
to medical imaging remains challenging. A major hurdle is that most CT datasets contain unan-
notated pathological regions, and there is no automatic way to filter these out to ensure a training
set composed entirely of normal (healthy, non-pathological) images — a common requirement for
synthetic-based (Zavrtanik et al., 2021; Marimont & Tarroni, 2023) and reconstruction-based (Baur
et al., 2021; Schlegl et al., 2019) UVAS methods.

Density-based approaches (Gudovskiy et al., 2022; Zhou et al., 2024), which assume anomalies
are rare rather than entirely absent, are better suited for this setting, as they can handle training
datasets with unannotated pathological regions. These methods model normal patterns probabilis-
tically and assign higher anomaly scores to deviations. However, they rely on encoders pre-trained
on ImageNet (Deng et al., 2009), optimized for natural images and not for the unique structures and
textures in medical CT images. This domain shift leads to suboptimal feature representations failing
to capture subtle pathological variations, reducing their effectiveness in medical settings.

To address these challenges, we propose SCREENER, a framework that enhances density-based
UVAS through domain-specific self-supervised learning and learned contextual conditioning. To
avoid domain shift issues and labelling requirement, we pre-train self-supervised encoders (O Pin-
heiro et al., 2020; Wang et al., 2021; Bardes et al., 2022; Goncharov et al., 2023) to produce
dense CT-specific feature maps. We further introduce a second self-supervised encoder that gen-
erates masking-invariant representations, capturing global context without being influenced by local
anomalies. Finally, we train a conditional density model to predict the feature maps of one encoder
based on the outputs of the other. Anomaly scores are assigned to image regions with high prediction
errors, enabling effective segmentation of pathological regions.

We demonstrate the effectiveness of SCREENER by training it on over 30,000 3D CT volumes span-
ning chest and abdominal regions and evaluating its performance on four large-scale test datasets
comprising 1,820 scans with diverse pathologies. As shown in Figure 1, our model successfully
segments pathological regions across different organs and conditions. We summarize the key con-
tributions of this work:

• Self-Supervised Representations for UVAS: We demonstrate that dense self-supervised
representations outperform supervised feature extractors in visual anomaly segmentation,
enabling a fully self-supervised framework applicable in domains with limited labeled data.

• Learned Conditioning Variables: We introduce self-supervised condition variables for
density-based models, simplifying the estimation of conditional distributions and achieving
remarkable segmentation performance using a simple Gaussian density model.

• First Large-Scale Study of UVAS in 3D CT Images: This work presents the first large-
scale evaluation of UVAS methods for 3D CT images, showing state-of-the-art performance
on unsupervised semantic segmentation of pathologies in diverse anatomical regions, in-
cluding lung cancer, pneumonia, liver and kidney tumors.
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2 BACKGROUND & NOTATION

Density-based UVAS methods assign high anomaly scores to image regions with rare patterns using
two models, which we call a descriptor model and a density model. The descriptor model encodes
image patterns into vector representations, while the density model learns their distribution and
assigns anomaly scores based on the learned density.

In existing methods (Gudovskiy et al., 2022; Zhou et al., 2024), the descriptor model fθdesc is a
fully-convolutional neural network pre-trained on ImageNet. For a 3D image x ∈ RH×W×S , it
produces feature maps y ∈ Rh×w×s×ddesc

, where each position p ∈ P corresponds to a descriptor
y[p] ∈ Rddesc

. Here, position set P = {p | p ∈ [1, . . . , h]× [1, . . . , w]× [1, . . . , s]}.

The density model qθdens(y) estimates the marginal density qY (y) of descriptors. For an abnormal
pattern at position p, the descriptor y[p] is expected to lie in a low-density region, yielding a low
qθdens(y[p]). Conversely, normal patterns produce high densities. During inference, the negative log-
density values, − log qθdens(y[p]) are used as anomaly segmentation scores. Density models we use
in SCREENER are simple Gaussian model and more expressive normalizing flow (see Appendix E).

This framework can be extended using a conditioning mechanism. For each position p, an auxiliary
variable c[p], referred to as a condition, is introduced. Let C denote the condition at a random posi-
tion in a random image. Instead of modelling the complex marginal density qY (y), the conditional
density qY |C(y|c) is learned for each condition c. During inference, the negative log-conditional
densities, − log qθdens(y[p] | c[p]), are used as anomaly scores. State-of-the-art methods (Gudovskiy
et al., 2022; Zhou et al., 2024) adopt this conditional framework and use sinusoidal positional en-
codings as conditions. See detailed descriptions for positional condition alternatives in Appendix D.

Self-supervised learning leverages unlabelled data to learn representations invariant to transforma-
tions through auxiliary tasks. SSL objectives align embeddings of augmented views x(1), x(2) of the
same image x while avoiding trivial solutions (mapping all images to the same vector). In vision do-
main, augmentations typically include color jitter and random crops. Representations are derived by
feeding inputs x to an encoder fθ (a neural network), yielding z = fθ(x). We employ adaptations of
SimCLR (Chen et al., 2020) and VICReg (Bardes et al., 2021) to dense feature learning (O Pinheiro
et al., 2020; Wang et al., 2021; Bardes et al., 2022; Goncharov et al., 2023) in our approach. For
detailed description of these methods, please refer to Appendix C.

3 METHOD

Here we present our method for unsupervised semantic segmentation of pathological regions in
3D medical CT images, illustrated in Figure 2. Our method introduces two key innovations to the
density-based UVAS framework: self-supervised descriptor model (Section 3.1), and self-supervised
condition model (Section 3.2). Section 3.3 describes the training pipeline for density modelling.

3.1 DESCRIPTOR MODEL

The descriptor model fθdesc is critical to our method. It must produce descriptors y[p] that distinguish
between pathological and normal positions p, as this differentiation directly determines the anomaly
scores in the density-based UVAS framework. Simultaneously, descriptors should minimize irrele-
vant information; for instance, if they capture noise from CT images, the density model may assign
high anomaly scores to healthy regions with extreme noise, leading to false positives.

To pre-train dense descriptors, we use dense joint embedding SSL methods (Section 2 and Ap-
pendix C), which allow explicit control over the information content of the representations. Specifi-
cally, we penalize descriptors for failing to distinguish between different positions within or across
images, ensuring they capture spatially discriminative features. Simultaneously, we enforce invari-
ance to low-level perturbations, such as cropping and color jitter, to eliminate irrelevant information.

The descriptor model training pipeline is illustrated in the upper part of Figure 2. From a random
image x, we extract two overlapping 3D crops of random size, resize them to H ×W × S, and
apply random augmentations, such as color jitter. The augmented crops, denoted as x(1) and x(2),
are fed into the descriptor model, producing feature maps y(1) and y(2).
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Figure 2: Illustration of SCREENER. First, we train a self-supervised descriptor model to produce in-
formative feature maps invariant to image crops and color jitter. Second, we train a self-supervised
condition model similarly but also enforce invariance to random block masking, ensuring its fea-
ture maps are insensitive to anomalies and reflect only contextually inferable information. Finally,
the density model learns the conditional distribution pY |C(y | c) of feature vectors Y = y[p] and
C = c[p] from the descriptor and condition models at a given position p. Anomaly score maps are
obtained by applying the density model pixel-wise, efficiently implemented by 1× 1× 1 convolu-
tions.

From the overlapping region of the two crops, we randomly select n positions. For each position
p, we compute its coordinates p(1) and p(2) relative to the augmented crops and extract descriptors
y(1) = y(1)[p(1)] and y(2) = y(2)[p(2)]. These descriptors form a positive pair, as they correspond
to the same position in the original image but are predicted from different augmentations.

Repeating this process for m seed images yields a batch of N = n ·m positive pairs, denoted as
{(y(1)i , y

(2)
i )}Ni=1. This strategy for sampling dense positive pairs follows the approach in (Gon-
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charov et al., 2023). Using this batch, we optimize the descriptor model with SSL objectives. In
this work, we employ two prominent objectives: InfoNCE (Chen et al., 2020) and VICReg (Bardes
et al., 2021), detailed in Appendix C.

3.2 CONDITION MODEL

Our self-supervised condition model is inspired by a thought experiment: suppose a region of a CT
image is masked, and we attempt to infer its content based on the visible context (as shown in the
upper masked crop in Figure 2). In most cases, we would assume the masked region is healthy unless
there is explicit evidence to suggest otherwise. This assumption reflects a model of the conditional
distribution over possible inpaintings given the context. If the actual content significantly deviates
from this expectation –indicating low conditional probability– it is classified as an anomaly.

Building on this intuition, we propose that the condition c[p] in the conditional density-based UVAS
framework should capture the global context of the image position p. Global implies that c[p] must
be inferable from various masked views of the image. At the same time, conditions may vary across
different regions of the image to encode position-specific information, such as anatomical location
or tissue type.

To achieve these properties, we learn conditions c[p] through a self-supervised condition model
gθcond , which has a fully-convolutional architecture similar to the descriptor model. The model gen-
erates feature maps c ∈ Rh×w×s×ddesc

that are invariant to image masking, providing a condition
for each position in the input image. The training process mirrors that of the VICReg descriptor
model (Section 3.1), with the addition of masking as part of the augmentations. An illustration of
this approach is shown in the middle part of Figure 2.

The learned conditions c[p] are designed to ignore the presence of pathologies, as such information
cannot be consistently inferred from masked views. Instead, the condition model likely encodes
patient-level attributes (e.g., age, gender) and position-specific attributes (e.g., anatomical region,
tissue type) that are predictable from masked contexts. Conditioning on these variables simplifies
density estimation, as conditional distributions are often less complex than marginal distributions.

Moreover, conditioning can improve fairness: for instance, if certain anatomical regions or demo-
graphic groups are underrepresented in the training data, an unconditional density model might treat
these as anomalies. In contrast, a model conditioned on gender or anatomical region would handle
such cases more appropriately by treating them within their specific context.

3.3 DENSITY MODELS

To train a conditional density model, qθdense(y | c), we sample a batch of m random crops, {xi}mi=1,
each of size H × W × S, from different CT images. Each crop is passed through the pre-trained
descriptor and condition models to produce descriptor maps, {yi}mi=1, and condition maps, {ci}mi=1,
both of size h× w × s. We then optimize the conditional negative log-likelihood loss:

min
θdense

1

m · |P |

m∑
i=1

∑
p∈P

− log qθdense(yi[p] | ci[p]).

At inference, an input CT image is divided into M overlapping patches, {xi}Mi=1, each of size
H × W × S. For each patch, we apply the descriptor, condition, and conditional density models
to compute the anomaly map, {− log qθdense(yi[p] | ci[p])}p∈P . These patch-wise anomaly maps are
upsampled to H × W × S and aggregated into a single anomaly map for the entire CT image by
averaging predictions in overlapping regions.

We explore two parameterizations for the marginal and conditional density models: Gaussian dis-
tributions as a straightforward baseline and normalizing flows as an expressive generative model
enabling tractable density estimation. For further details, please refer to Appendix E.
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Table 1: Summary information on the datasets that we use for training and testing of all models.

Dataset # 3D images Annotated
pathology

# 3D images w/ non-zero
pathology mask

NLST (Team, 2011) 25,652 – –
AMOS (Ji et al., 2022) 2,123 – –
AbdomenAtlas (Qu et al., 2024) 4,607 – –

LIDC (Armato III et al., 2011) 1017 lung cancer 603
MIDRC (Tsai et al., 2020) 115 pneumonia 115
KiTS (Heller et al., 2020) 298 kidney tumors 298
LiTS (Bilic et al., 2023) 117 liver tumors 107

4 EXPERIMENTS

4.1 DATASETS

We train all models on three CT datasets: NLST (Team, 2011), AMOS (Ji et al., 2022) and Abdom-
enAtlas (Qu et al., 2024). Note that we do not use any image annotations during training. Some of
the datasets employed additional criteria for patients to be included in the study, i.e. age, smoking
history, etc. Note that such large scale training datasets include diverse set of patients, implying
presence of various pathologies.

We test all models on four datasets: LIDC (Armato III et al., 2011), MIDRC-RICORD-1a (Tsai
et al., 2020), KiTS (Heller et al., 2020) and LiTS (Bilic et al., 2023). Annotations of these datasets
include segmentation masks of certain pathologies. Any other pathologies that can be present in
these datasets are not labeled. We summarize dataset statistics and pathology information in Table 1.

4.2 EVALUATION METRICS

We use standard quality metrics for assessment of visual anomaly segmentation models which are
employed in MVTecAD benchmark (Bergmann et al., 2021): pixel-level AUROC and AUPRO cal-
culated up to 0.3 FPR. We also compute area under the whole pixel-level ROC-curve. Despite,
our model can be viewed as semantic segmentation model, we do not report standard segmentation
metrics, e.g. Dice score , due to the following reasons. As we mention in Section 4.1, available
testing CT datasets contain annotations of only specific types of tumors, while other pathologies
may be present in the images but not included in the ground truth masks. It makes impossible to
fairly estimate metrics like Dice score or Hausdorff distance, which count our model’s true positive
predictions of the unannotated pathologies (see second image from the left in the Figure 1 for exam-
ple) as false positive errors and strictly penalize for them. However, the used pixel-level metrics are
not sensitive to this issue, since they are based on sensitivity and specificity. We estimate sensitivity
on pixels belonging to the annotated pathologies. To estimate specificity we use random pixels that
do not belong to the annotated tumors which are mostly normal, thus yielding a practical estimate.

Table 2: Quantitative comparison of our best model and the existing unsupervised visual anomaly
segmentation methods on pathology segmentation in 3D medical CT images.

Model AUROC AUROC up to FPR0.3 AUPRO up to FPR0.3

LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS

Autoencoder 0.71 0.65 0.66 0.68 0.31 0.21 0.24 0.25 0.59 0.24 0.26 0.37
f-AnoGAN 0.82 0.66 0.67 0.67 0.52 0.21 0.24 0.22 0.46 0.18 0.24 0.22
DRAEM 0.63 0.72 0.82 0.83 0.21 0.31 0.50 0.51 0.17 0.20 0.50 0.57
MOOD-Top1 0.79 0.79 0.77 0.80 0.43 0.43 0.40 0.46 0.32 0.29 0.40 0.32
MSFlow 0.70 0.66 0.64 0.64 0.26 0.20 0.18 0.17 0.21 0.14 0.19 0.17
Screener (ours) 0.96 0.89 0.90 0.94 0.89 0.68 0.69 0.80 0.66 0.46 0.68 0.66
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Figure 3: Qualitative comparison of baseline UVAS methods and SCREENER anomaly maps on
chest and abdomen regions. First column contains CT slices, columns 2 to 6 are baseline methods,
column 7 is SCREENER. Last column depicts ground trught annotation mask.

Table 3: Ablation study of the effect of conditional model for the fixed descriptor model (VICReg)
and different conditional density models (gaussian and normalizing flow). None in Condtion model
column means that results are given for a marginal density model.

Descriptor model Condition model Density model AUROC AUROC up to FPR0.3 AUPRO up to FPR0.3

LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS

VICReg, ddesc = 32 None Gaussian 0.81 0.81 0.61 0.71 0.41 0.47 0.12 0.22 0.46 0.62 0.13 0.28
Sin-cos pos. Gaussian 0.82 0.80 0.74 0.77 0.45 0.42 0.26 0.34 0.40 0.50 0.27 0.32

VICReg, ddesc = 32 APE Gaussian 0.88 0.80 0.78 0.86 0.67 0.46 0.34 0.56 0.43 0.38 0.35 0.55
VICReg, ddesc = 32 Masking-equiv. Gaussian 0.96 0.84 0.87 0.90 0.90 0.58 0.58 0.71 0.64 0.41 0.57 0.48

VICReg, ddesc = 32 None Norm. flow 0.96 0.89 0.88 0.93 0.89 0.68 0.62 0.78 0.67 0.46 0.62 0.65
VICReg, ddesc = 32 Sin-cos pos. Norm. flow 0.96 0.89 0.90 0.94 0.89 0.68 0.69 0.80 0.66 0.46 0.68 0.66
VICReg, ddesc = 32 APE Norm. flow 0.96 0.88 0.89 0.94 0.87 0.65 0.67 0.80 0.64 0.43 0.66 0.66
VICReg, ddesc = 32 Masking-equiv. Norm. flow 0.96 0.87 0.90 0.93 0.88 0.64 0.68 0.80 0.65 0.40 0.67 0.63

4.3 MAIN RESULTS

We compare our best model (VICreg descriptor model, sin-cos positional encodings condition model
and conditional normalizing flow density model) with baselines that represent different approaches
to visual anomaly segmentation. Specifically, we implement 3D versions of autoencoder (Baur
et al., 2021), f-anoGAN (Schlegl et al., 2019) (reconstruction-based methods), DRAEM (Zavrtanik
et al., 2021), MOOD-Top1 (Marimont & Tarroni, 2023) (methods based on synthetic anomalies) and
MSFlow (density-based method on top of ImageNet features). Quantitative comparison is presented
in table 2. Qualitative comparison is shown in Figure 3.

The analysis of the poor performance of the reconstruction-based methods is given in Appendix B.
Synthetic-based models yield many false negatives because during training they were penalized to
predict zero scores in the unlabeled real pathological regions which may appear in training images.
Meanwhile, MSFlow heavily relies on an ImageNet-pre-trained encoder which produces irrelevant
features of 3D medical CT images. Our density-based model with domain-specific self-supervised
features outperforms baselines by a large margin.

4.4 CONDITION AND DENSITY MODELS’ ABLATION

Table 3 demonstrates ablation study of our proposed condition model. We compare our condition
model with two baselines: vanı̈la sin-cos positional encodings and anatomical positional embed-
dings (Goncharov et al., 2024), described in Appendix D. We evaluate condition models in combi-
nation with different density models, described in Section 3.3. We use the VICReg descriptor with
ddesc = 32 as it shows slightly better results than contrastive objective as reported in Section 4.5.

All conditioning strategies yield results similar to the unconditional model when using expressive
normalizing flow density model. However, in experiments with simple gaussian density models,
we see that the results significantly improve as the condition model becomes more informative.
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Table 4: Ablation study of the effect of descriptor model. In these experiments we do not use condi-
tioning and use normalizing flow as a marginal density model. We include MSFlow to demonstrate
that descriptor model pre-trained on ImageNet is inappropriate for 3D medical CT images.

Descriptor model Condition model Density model AUROC AUROC up to FPR0.3 AUPRO up to FPR0.3

LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS

ImageNet Sin-cos pos. MSFlow 0.70 0.66 0.64 0.64 0.26 0.20 0.18 0.17 0.21 0.14 0.19 0.17
SimCLR, ddesc = 32 None Norm. flow 0.96 0.87 0.87 0.91 0.90 0.65 0.58 0.71 0.68 0.43 0.58 0.60
VICReg, ddesc = 32 None Norm. flow 0.96 0.89 0.88 0.93 0.89 0.68 0.62 0.78 0.67 0.46 0.62 0.65

VICReg, ddesc = 128 None Norm. flow 0.96 0.90 0.87 0.93 0.90 0.72 0.60 0.77 0.70 0.52 0.60 0.65

Noticeably, our proposed masking-invariant condition model allows Gaussian model to compete
with complex flow-based models and achieve very strong anomaly segmentation results.

4.5 DESCRIPTOR MODELS’ ABLATION

We also ablate descriptor models in Table 4. We compare contrastive and VICReg models with
ddesc = 32. To ablate the effect of the descriptors’ dimensionality, we also include VICReg model
with ddesc = 128. To demonstrate that our domain-specific self-supervised descriptors are better
than descriptors pre-trained on general-domain we compare with MSFlow (Zhou et al., 2024).

5 RELATED WORK

5.1 VISUAL UNSUPERVISED ANOMALY LOCALIZATION

In this section, we review several key approaches, each represented among the top five methods
on the localization track of the MVTec AD benchmark (Bergmann et al., 2021), developed to stir
progress in visual unsupervised anomaly detection and localization.

Synthetic anomalies In unsupervised settings, real anomalies are typically absent or unlabeled
in training images. To simulate anomalies, researchers synthetically corrupt random regions by
replacing them with noise, random patterns from a special set (Yang et al., 2023), or parts of other
training images (Marimont & Tarroni, 2023). A segmentation model is trained to predict binary
masks of corrupted regions, providing well-calibrated anomaly scores for individual pixels. While
straightforward to train, these models may overfit to synthetic anomalies and struggle with real ones.

Reconstruction-based Trained solely on normal images, reconstruction-based approaches (Baur
et al., 2021; Kingma & Welling, 2013; Schlegl et al., 2019), poorly reconstruct anomalous regions,
allowing pixel-wise or feature-wise discrepances to serve as anomaly scores. Later generative ap-
proaches (Zavrtanik et al., 2021; Zhang et al., 2023; Wang et al.) integrate synthetic anomalies. The
limitation stemming from anomaly-free train set assumption still persists—if anomalous images are
present, the model may learn to reconstruct anomalies as well as normal regions, undermining the
ability to detect anomalies through differences between x and x̂.

Features pre-trained on ImageNet + density estimation Density-based methods for anomaly
detection model the distribution of the training data. Density estimation can be done in a non-
parametric way by the collection of a memory bank of objects (Roth et al., 2022; Bae et al., 2023).
As modeling of the distribution of raw pixel values is infeasible, these methods usually model the
distribution of their deep features.

Unsupervised anomaly detection has seen the rise of flow-based methods (Serrà et al., 2019; Yu
et al., 2021), which leverage normalizing flows to assign low likelihoods to anomalies. However,
these methods struggle with high-dimensional raw RGB images, often assigning higher likelihoods
to anomalies than normal data (Kirichenko et al., 2020). To address this, flow-based methods have
been adapted to operate on high-dimensional features extracted from images. Multiscale feature
processing, as seen in DifferNet (Rudolph et al., 2021) and CFlow-AD (Gudovskiy et al., 2022),
enhances defect detection by handling variations in defect size. However, CFlow-AD’s independent
estimation of each feature vector lacks contextual awareness, resulting in fragmented and inaccurate
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localization. MSFlow (Zhou et al., 2024) addresses this limitation by concurrently estimating fea-
tures at all positions, incorporating contextual information through 3x3 convolutions and employing
a fusion flow block for information exchange across scales.

Our method is related to FastFlow (Yu et al., 2021), CFlow (Gudovskiy et al., 2022) and MS-
Flow (Zhou et al., 2024) methods for anomaly segmentation. Besides some technical differences
(e.g. working with 2D natural images), there are several substantial differences: 1) these methods
are based on a supervised encoder, pre-trained on ImageNet; 2) we show that density-based anomaly
segmentation in medical images can be improved using data-driven condition variables.

From this family, we selected MSFlow as a representative baseline, because it is simpler than PNI,
and yields similar top-5 results on the MVTec AD.

5.2 MEDICAL UNSUPERVISED ANOMALY LOCALIZATION

While there’s no standard benchmark for pathology localization on CT images, MOOD (Zimmerer
et al., 2021) offers a relevant benchmark with generated anomalies. Unfortunately, this benchmark
is currently closed for submissions, preventing us from evaluating our method. We include the
top-performing method from MOOD (Marimont & Tarroni, 2023) in our comparison, that relies on
synthetic anomalies.

Other recognized methods for anomaly localization in medical images are reconstruction-based:
variants of AE/VAE (Baur et al., 2021; Shvetsova et al., 2021), f-AnoGAN Schlegl et al. (2019), and
diffusion-based (Pinaya et al., 2022). These approaches highly rely on the fact that the the training
set consists of normal images only. However, it is challenging and costly to collect a large dataset of
CT images of normal patients. While these methods work acceptable in the domain of 2D medical
images and MRI, the capabilities of the methods have not been fully explored in a more complex
CT data domain. We have adapted these methods to 3D.

6 CONCLUSION

This work explores fully self-supervised approach to anomaly detection and localization in medical
3D images. Previously, methods relied on supervised approaches and anomaly-free training datasets
assumption, which hardly holds in typical medical scenarios. We propose SCREENER as a three
component model, comprised of (i) self-supervised representation learning descriptor for image
features, (ii) density-based anomaly detection model that learns distribution of the features, and (iii)
conditioning model containing auxiliary information which boosts simpler density models.

Domain-specific and self-supervised SCREENER is no longer inhibited by limitations of the earlier
methods and outperforms them by a large margin, which can be seen from empirical results obtained
on the large-scale collection of computed tomography datasets. As our framework is modular, we
learned and tested several model choices for each of the component, resulting in a comprehensive
ablation study.

Limitations We note that this work is largely a proof of concept for SSL in 3D medical imaging
as there are still limitations to the proposed approach. Density based anomaly detection poses a
limitation in that rare patterns can be flagged as pathological. Since rareness is highly predictive of
anomaly, applying to pathology segmentation SCREENER may yield false positive errors on healthy
but rare patterns. Another limitation concerns representativeness of the training sample. Our training
dataset contains chest and abdominal CTs with much more chest samples. This causes more false
positive errors in abdominal region. To work in other anatomical regions, our model needs to be
trained on the corresponding images.

Future work While the performance gains compared to baselines are already significant, we note
that further improvements might be achieved from increasing descriptors and conditions dimension-
ality and experiments with multi-scale representations (e.g. by building feature pyramids). Another
possible avenue for future work is to study scaling laws, i.e. self-supervised models typically scale
well with increasing pretraining dataset sizes. Distillation of SCREENER into UNet at a pre-training
stage is also possible and might prove effective for pathology segmentation tasks.
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A ANALYSIS OF RECONSTRUCTION-BASED MODELS

Figure 4: The figure shows 2D slices of CT images (first column) alongside reconstructions and
anomaly maps generated by two methods: an Autoencoder (Baur et al., 2021) (second and third
columns) and f-AnoGAN (Schlegl et al., 2019) (last two columns). Autoencoder overfits for pixel
reconstruction, so it generates pathologies and fails to segment them. Also Autoencoder produces
blurry generations, leading to inaccurate reconstructions of fine details and high anomaly scores on
these details (e.g., vessels in the lungs). f-AnoGAN, on the other hand, avoids generating patholo-
gies, but the generation quality still is insufficient for precise segmentation of only pathological
voxels. GANs are known to be unstable and sensitive to hyperparameters, necessitating careful
tuning and experimentation to achieve optimal results.
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B ANALYSIS OF RECONSTRUCTION-BASED MODELS

Figure 5: The figure shows 2D slices of CT images (first column) alongside reconstructions and
anomaly maps generated by two methods: an Autoencoder (Baur et al., 2021) (second and third
columns) and f-AnoGAN (Schlegl et al., 2019) (last two columns). Autoencoder overfits for pixel
reconstruction, so it generates pathologies and fails to segment them. Also Autoencoder produces
blurry generations, leading to inaccurate reconstructions of fine details and high anomaly scores on
these details (e.g., vessels in the lungs). f-AnoGAN, on the other hand, avoids generating patholo-
gies, but the generation quality still is insufficient for precise segmentation of only pathological
voxels. GANs are known to be unstable and sensitive to hyperparameters, necessitating careful
tuning and experimentation to achieve optimal results.

C SELF-SUPERVISED LEARNING

Below, we outline two representative methods: SimCLR and VICReg.

SimCLR In contrastive models, the key objective is to maximize the similarity between embed-
dings of positive pairs (augmented views of the same input) while minimizing their similarity with
negative pairs (views from other inputs). To this end, InfoNCE loss on embeddings is minimized:

min
θ

N∑
i=1

∑
k∈{1,2}

− log
exp(⟨z(1)i , z

(2)
i ⟩/τ)

exp(⟨z(1)i , z
(2)
i ⟩/τ) +

∑
j ̸=i

∑
l∈{1,2} exp(⟨z

(k)
i , z

(l)
j ⟩/τ)

, (1)

where z
(1)
i and z

(2)
i form a positive pair (i.e. augmentations of the same image xi).

VICReg Non-contrastive learning avoids explicit negative pairs by structuring the embedding
space directly. Specifically, VICReg objective enforces invariance among positive embeddings while
constraining covariance matrix of features to be diagonal and variance to be equal to some constant:

min
θ

α · Linv + β · Lvar + γ · Lcov, (2)

The first term Linv = 1
N ·D

∑N
i=1 ∥z

(1)
i − z

(2)
i ∥2 penalizes embeddings to be invariant to augmen-

tations. The second term Lvar =
∑

k∈{1,2}

1
D

D∑
i=1

max

(
0, 1−

√
C

(k)
i,i + ε

)
enforces individual em-

beddings’ dimensions to have unit variance. The third term Lcov =
∑

k∈{1,2}
1
D

∑
i ̸=j

(
C

(k)
i,j

)2

encourages different embedding’s dimensions to be uncorrelated, increasing the total information
content of the embeddings.
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D BASELINE CONDITION MODELS

Sin-cos positional encodings The existing density-based UVAS methods Gudovskiy et al. (2022);
Zhou et al. (2024) for natural images use standard sin-cos positional encodings for conditioning. We
also employ them as an option for condition model in our framework. However, let us clarify what
we mean by sin-cos positional embeddings in CT images. Note that we never apply descriptor,
condition or density models to the whole CT images due to memory constraints. Instead, at all the
training stages and at the inference stage of our framework we always apply them to image crops of
size H ×W × S, as described in Sections 3.1, 3.3. When we say that we apply sin-cos positional
embeddings condition model to an image crop, we mean that compute sin-cos encodings of absolute
positions of its pixels w.r.t. to the whole CT image.

Anatomical positional embeddings To implement the idea of learning the conditional distribu-
tion of image patterns at each certain anatomical region, we need a condition model producing
conditions c[p] that encode which anatomical region is present in the image at every position p.
Supervised model for organs’ semantic segmentation would be an ideal condition model for this
purpose. However, to our best knowledge, there is no supervised models that are able to segment
all organs in CT images. That is why, we decided to try the self-supervised APE Goncharov et al.
(2024) model which produces continuous embeddings of anatomical position of CT image pixels.

E DENSITY MODELS

Below, we describe simple Gaussian density model and more expressive learnable Normalizing Flow
model.

Gaussian Gaussian marginal density model is written as

− log qθdens(y) =
1

2
(y − µ)⊤Σ−1(y − µ) +

1

2
log detΣ + const, (3)

where the trainable parameters θdens are mean vector µ and diagonal covariance matrix Σ.

Conditional gaussian density model is written as

− log qθdens(y | c) = 1

2
(y−µθdens(c))⊤ (Σθdens(c))

−1
(y−µθdens(c))+

1

2
log detΣθdens(c)+const, (4)

where µθdens and Σθdens are MLP nets which take condition c ∈ Rdcond
as input and predict a condi-

tional mean vector µθdens(c) ∈ Rddesc
and a vector of conditional variances which is used to construct

the diagonal covariance matrix Σθdens(c) ∈ Rddesc×ddesc
.

As described in Section 3.3, at both training and inference stages, we need to obtain dense negative
log-density maps. Dense prediction by MLP nets µθdens(c) and Σθdens(c) can be implemented using
convolutional layers with kernel size 1× 1× 1. In practice, we increase this kernel size to 3× 3× 3,
which can be equivalently formulated as conditioning on locally aggregated conditions.

Normalizing flow Normalizing flow model of descriptors’ marginal distribution is written as:

− log pθdens(y) =
1

2
∥fθdens(y)∥2 − log

∣∣∣∣det ∂fθdens(y)

∂y

∣∣∣∣+ const, (5)

where neural net fθ must be invertible and has a tractable jacobian determinant.

Conditional normalizing flow model of descriptors’ conditional distribution is given by:

− log pθdens(y | c) = 1

2
∥fθdens(y, c)∥2 − log

∣∣∣∣det ∂fθdens(y, c)

∂y

∣∣∣∣+ const, (6)

where neural net fθ : Rddesc × Rdcond → Rddesc
must be invertible w.r.t. the first argument, and the

second term should be tractable.
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We construct fθ by stacking Glow layers Kingma & Dhariwal (2018): act-norms, invertible linear
transforms and affine coupling layers. Note that at both training and inference stages we apply fθ
to descriptor maps y ∈ Rh×w×s×ddesc

in a pixel-wise manner to obtain dense negative log-density
maps. In conditional model, we apply conditioning in affine coupling layers similar to Gudovskiy
et al. (2022) and also in each act-norm layer by predicting maps of rescaling parameters based on
condition maps.
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