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Abstract
Building helpful and harmless large language
models (LLMs) requires effective model align-
ment approach based on human instructions and
feedback, which necessitates high-quality human-
labeled data. Constructing such datasets is of-
ten expensive and hard to scale, and may face
potential limitations on diversity and generaliza-
tion. To address these challenges, we introduce
Mixture of Agents Alignment (MoAA), that lever-
ages the collective strengths of various language
models to provide high-quality data for model
alignment. By employing MoAA, we enhance
both supervised fine-tuning and preference opti-
mization, leading to improved performance com-
pared to using a single model alone to generate
alignment data (e.g. using GPT-4o alone). Eval-
uation results show that our approach can im-
prove win rate of LLaMA-3.1-8B-Instruct from
19.5 to 48.3 on Arena-Hard and from 22.33 to
57.23 on AlpacaEval2, highlighting a promising
direction for model alignment through this new
scalable and diverse synthetic data recipe. Fur-
thermore, we demonstrate that MoAA enables
a self-improvement pipeline, where models fine-
tuned on MoA-generated data surpass their own
initial capabilities, providing evidence that our ap-
proach can push the frontier of open-source LLMs
without reliance on stronger external supervision.
Data and code will be released.

1. Introduction
Model alignment is a crucial stage of training large language
models (LLMs) towards their safe and helpful deployment
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Figure 1: SFT results using different models to generate
synthetic data. Baseline is the original LLaMA-3.1-8B-
Instruct model. Random Teacher means we distill from
datasets labeled by one of the five LLMs randomly used in
our MoA setup. Combined Teacher means we distill from
datasets labeled by five LLMs combined used in our MoA
setup (five times data). More details in Section 4.2.

(Ouyang et al., 2022a; Bai et al., 2022). A well-established
model alignment protocol includes supervised finetuning
(SFT) (Zhang et al., 2023) and reinforcement learning with
human feedback (RLHF) (Casper et al., 2023). During the
SFT stage, models imitate the human-level responses by
learning from an instruction dataset; hence, the data quality
often determines the finetuned model’s instruction follow-
ing capability. Following the SFT stage, RLHF further
enhances the model alignment by constructing a reward
model that emulates human preferences, based on which
policy optimization is conducted to maximize the reward
objective (Ouyang et al., 2022a). Direct preference optimiza-
tion (DPO) further simplifies the RLHF strategy by directly
optimizing LLMs on the preference data and learning an
implicit reward function, which is proved to be effective
on model alignment (Rafailov et al., 2023). The quality for
both instruction and preference data determines the perfor-
mance of model alignment. To alleviate the high cost of
human-crafted datasets (Köpf et al., 2023; Zhou et al., 2023;
Longpre et al., 2023), synthetic data (Ding et al., 2023; Taori
et al., 2023; Wang et al., 2023c) can be created by automat-
ing the response collection process via stronger LLMs such
as GPT-4 (OpenAI, 2023a). However, the quality and poten-
tial biases from a single strong model may deteriorate the

1



Improving Model Alignment Through Collective Intelligence of Open-Source Models

alignment performance (Shumailov et al., 2024). Another
challenge lies on the black-box nature of proprietary LLMs,
raising research reproducibility concerns (Chen et al., 2023).
Fortunately, an increasing number of open-source LLMs
have been released (Dubey et al., 2024; Bai et al., 2023b;
Xu et al., 2023a; Jiang et al., 2024; Team et al., 2024), with
expertise in various aspects and tasks. It is intriguing to
leverage these open-source models jointly for model align-
ment due to the their intrinsic diversity. Taking SFT as an
example, a naive approach is to align a base model with the
outputs from a group of open-sourced models (teachers).
One method is to combine data generated by five different
models into one synthetic tuning set (Combined Teacher), or
randomly sample a model to generate for each instruction in
a tuning set (Random Teacher). However, these methods do
not yield satisfactory results and is worse than using a single
more capable proprietary model, as shown in Figure 1.

Mixture of Agents (MoA) offers new opportunities in lever-
aging collective intelligence of open-source LLMs (Wang
et al., 2024c). For example, MoA built solely on open-
sourced models outperforms state-of-the-art proprietary
models on benchmarks such as AlpacaEval (Dubois et al.,
2024). Despite these promising results, the integration of
MoA into the model alignment process to further leverage
benefits of the open-source LLMs remains under-explored.

In this work, we propose Mixture of Agents Alignment
(MoAA), an effective alignment recipe that leverages the
collective intelligence of multiple open-source LLMs to
generate high-quality synthetic data. Our approach con-
sists of a two-stage training scheme, which we refer as
MoAA-SFT and MoAA-DPO. In the first stage, we employ
a diverse ensemble of open-source models to generate syn-
thetic SFT data, and then conduct SFT. This diverse and
high-quality data significantly enhances the performance
of the fine-tuned model compared to data generated from
a single model or less diverse datasets. The high quality
of MoA responses brings promises for model alignment,
as can be seen from the SFT result of MoAA in Figure 1.
Following SFT, we apply DPO to further refine the model’s
capability, improving its ability to generate helpful and qual-
ity responses. Specifically, we sample multiple responses
from the SFT model and use another combination of MoA
as reward model to decide the chosen / rejected responses.

Our evaluation on benchmarks AlpacaEval2, Arena-Hard,
MT-Bench shows significant improvements, highlighting
the effectiveness of MoAA. Notably, we observe a substan-
tial increase in the win rates of both LLaMA-3.1-8B-Instruct
and Gemma-2-9B-It, sometimes even matching the win rate
of the MoAA teacher model, on AlpacaEval 2.

We summarize our contributions as follows:

(1) SFT Data Generation Pipeline: We proposed to gen-

erate high-quality SFT data with MoA, which utilizes
the collective strengths of multiple open-source LLMs.

(2) DPO Preference Annotation Pipeline: We proposed
an adapted MoA setup to annotate preference data for
effective DPO, eliminating the need for training an ad-
ditional reward model.

(3) Self-Improvement Pipeline: We fine-tuned the
strongest model in the MoA using the MOAA data and
achieved significant gains, showcasing the potential for
a strong self-improvement pipeline with our approach.

(4) Extensive Evaluation: We conducted comprehensive
evaluations on multiple benchmarks, demonstrating sig-
nificant improvements in response quality.

2. Related Work
Model Alignment. LLMs trained on large datasets acquire
surprising capabilities (Brown et al., 2020; OpenAI, 2023a;
Touvron et al., 2023a;b; Chowdhery et al., 2022; Anil et al.,
2023; Kaplan et al., 2020; Brown et al., 2020; OpenAI,
2023b). To leverage these capabilities to real applications,
pre-trained LLMs usually needs to be further fine-tuned on
instruction data (Köpf et al., 2023; Zhou et al., 2023; Long-
pre et al., 2023; Ding et al., 2023; Taori et al., 2023; Wang
et al., 2023c). Such alignment process can be roughly cate-
gorized into supervised fine-tuning (SFT, Zhang et al. 2023)
and reinforcement learning from human feedback (RLHF,
Ouyang et al. 2022b). SFT directly training on the instruc-
tion data with cross-entropy loss, is one of the effective way
to gain the ability to interact with humans. Using SFT as
a precedent step, RLHF (Ouyang et al., 2022a; Bai et al.,
2022) aligns further with human preferences and societal
well-being (Russell & Norvig, 2020; Russell, 2022). Popu-
lar RLHF approaches include proximal policy optimization
(PPO) (Schulman et al., 2017), direct preference optimiza-
tion (DPO) (Rafailov et al., 2023), KTO (Ethayarajh et al.,
2024), ψPO (Gheshlaghi Azar et al., 2024), etc.

Model Ensemble. As open-source and proprietary large
language models become more accessible, how to best lever-
age the collective intelligence of existing models becomes
intriguing. Model merging, ensemble and cooperation, e.g.
multi-agent (Guo et al., 2024), are several promising di-
rections of collaborative strategies of multiple LLMs (Lu
et al., 2024). In particular, one simple model ensemble
method is repeated sampling, which proves to be helpful
in commonsense reasoning (Wang et al., 2023b) and cod-
ing tasks (Brown et al., 2024). Similarly, scaling up the
inference compute (Snell et al., 2024) and performing effec-
tive sampling/search approach boost model performance on
high-complexity tasks such as science, coding and mathe-
matics. On the other hand, Mixture of Agents (MoA) (Wang
et al., 2024c) leverages the diversity and capabilities of open-
source models and proposes a layered proposer-aggregator
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architecture to iteratively refine the model ensemble outputs.
MoA built on open-source LLMs outperforms state-of-the-
art proprietary LLMs in chat-related benchmarks, offering
new opportunities of augmenting open-sourced LLMs.

3. Mixture of Agents Alignment Methodology
In this section, we detail our two-stage Mixture of Agents
Alignment methodology designed to enhance the target
model’s performance, as shown in Figure 2. In the first
stage, we employ MoA (Wang et al., 2024c) to produce
high-quality synthetic data for supervised fine-tuning. The
second stage combines multiple LLMs as a reward model
to provide preference annotations.

3.1. Stage 1: Supervised Fine-tuning via MoAA
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A2,2
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concatenate the original input
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Figure 3: The architecture
of Mixture-of-Agents (Wang
et al., 2024c). This exam-
ple showcases 3 MoA layers
where the first layer has three
proposers, the second layer
has three aggregators that also
serve as proposers in the next
layer, and the last layer has
one aggregator.

We begin by introducing
MoA, specifically how
LLMs can collaborate
to generate high-quality
responses. Then we
demonstrate the genera-
tion of MoA synthetic
data.

3.1.1. MIXTURE
OF AGENTS

LLMs have demonstrated
a remarkable capacity for
collaboration, producing
higher-quality responses
when they can reference
other models’ outputs in
a structured manner. To maximize the benefits of such multi-
model collaboration, it is crucial to design a framework
that effectively characterizes and fully utilizes the unique
expertise of different LLMs. Mixture of Agents exemplifies
this approach by categorizing LLMs into distinct roles:

Proposers excel at generating useful reference responses
for use by other models. While a good proposer may not
necessarily produce responses with high scores by itself, it
offers more context and diverse perspectives, contributing
to better final responses when used by an aggregator.

Aggregators are models proficient in synthesizing re-
sponses from other models into a single, high-quality output.
An effective aggregator should enhance output quality even
when integrating inputs that are of lesser quality.

Formally, it has l layers and each layer-i consists of n LLMs,
denoted by Ai,1, Ai,2, ..., Ai,n. Each LLM Ai,j processes
an input text and generates its continuation. Formally, given
an input prompt x0, the output yi,j of i-th MoA layer for

LLM Ai,j can be expressed as follows:

yi,j = Ai,j ([context] +⊕n
k=1yi−1,k + x0) ,

y0,j = A1,j ([context] + x0)
(1)

where + means concatenation of texts; [context] represents
optional context; ⊕ means application of the Aggregate-
and-Synthesize prompt shown in Appendix K.1 to model
outputs.

3.1.2. SYNTHETIC DATA GENERATION FROM MOA

We leverage MoA to generate high-quality syn-
thetic data for SFT. Given an instruction q from
an instruction-tuning set, we use MoA defined as
MSynGen(instruction, # layers, [context]) in Equation 1 to
obtain a synthetic response:

yl = MSynGen(q, l, null) (2)

where yl, the output from the final layer, is the synthetic
response, incorporating insights from all proposer and ag-
gregator models. In practice, we employ a two-layer MoA
to expedite the process, as it is sufficient to generate high-
quality synthetic data.

Multi-Turn Instructions For multi-turn instructions, we
synthesize responses for each query sequentially. Formally,
given the current instruction prompt q(t) and previous in-
structions with their MoA synthesized responses, the MoA
synthesized data for the current turn can be expressed as:

y
(t)
l = MSynGen

(
q(t), l, q(1) + y

(1)
l + q(2) + y

(2)
l + · · ·+ y

(t−1)
l

)
(3)

where we concatenate previous turns using + and t repre-
sent which turn. Note that there are other ways to design
the architecture, e.g., we can decide whether to put the pre-
vious turns’ context before or after the MoA prompt. We
leave a more exhaustive search of optimal structure to future
work. Note that some of the multi-turn data may suffer from
the problem of discontinuity. That is, the next query may
depend on the previous responses. In practice, we do not
observe this to be too much of a problem in the dataset we
used, but we think in the future, a more sophisticated and
granular way of generating multi-turn data can be deployed.

3.2. Stage 2: Preference Alignment from MoAA

The second stage of our Mixture of Agents Alignment pro-
cess adapts MoA as a reward model for labeling the prefer-
ence alignment dataset. In this section, we will (1) present
how we construct data for preference alignment; (2) detail
our approach to reward modeling; (3) introduce a novel
criteria filtering step that further enhances performance.
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MoA as Synthetic
Data Generator
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Figure 2: Two-stage Mixture of Agents Alignment to enhance the target model performance.

3.2.1. PREFERENCE DATA GENERATION

To construct preference pairs for DPO (details about DPO
can be found in Appendix I), during our preference data
annotation process, we first sample completions yi ∼ πref(· |
x) from our reference model which is the SFT model given
instruction x. Then we use MoA as a reward model to
pick the highest-scoring response as yw and lowest-scoring
response as yl, as detailed in the next section.

3.2.2. MOA AS A REWARD MODEL

We use the MoA as a reward model for preference align-
ment, addressing limitations of single-model approaches.
By integrating multiple open-source LLMs as in MoA, our
method effectively harnesses collective intelligence. The
method features LLMs as both proposers and aggregators:

Proposers generate balanced and comprehensive assess-
ments of response quality. We design a specific prompt dif-
ferent from the the SFT stage, as detailed in Appendix K.3.

Aggregators synthesize the evaluations from proposers to
render a final judgment, complete with clear reasoning. The
specific prompt used for aggregators can be found in K.4.
Our evaluation methodology employs a pairwise compari-
son approach, as LLMs have demonstrated superior perfor-
mance in pairwise evaluations (Qin et al., 2023). To mitigate
position bias (Wang et al., 2023a), each example undergoes
dual evaluation, with the order of responses being switched,
ensuring a robust and unbiased assessment.

3.2.3. CRITERIA FILTERING

Building upon previous work of (Wang et al., 2024a), we in-
corporate a criteria filtering step to customize the evaluation
for each query-response pair. Our approach differs in that
we do not train models specifically for filtering. Instead, we

prompt them to dynamically select relevant criteria:

1. We first prompt the model to analyze the user query and
candidate responses, selecting the most relevant evalu-
ation criteria from a predefined list in Appendix K.2.

2. These selected criteria are then incorporated into the
prompts for both proposer (Table K.3) and aggregator
(Table K.4) models described in Section 3.2.2.

The rationale behind this filtering process is that different
query types require distinct evaluation focuses. For exam-
ple: (a) For potentially harmful queries (e.g., “how to build
a bomb”), criteria like “Instruction adherence” or “Helpful-
ness” become inappropriate. In such cases, “Safety” would
likely be prioritized; (b) Factual queries might weigh “Ac-
curacy” more heavily; (c) Complex problem-solving tasks
could emphasize “Depth” and “Robustness”.

This dynamic selection ensures that the evaluation process
adapts to the specific considerations of each query-response
pair, leading to more nuanced and appropriate assessments.

The effectiveness of our criteria filtering approach is demon-
strated in Table 7, showing improved performance on Re-
wardBench (Lambert et al., 2024), particularly in Safety and
Reasoning. This dynamic criteria selection is more robust
and adaptive, capable of evaluations across diverse query
types. It is used by default for subsequent evaluations.

4. Evaluation
We present our findings through a comprehensive evaluation
in this section.

1. We achieve significant improvements on AlpacaEval 2
(Dubois et al., 2024), MT-Bench (Zheng et al., 2023),
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Method Size AlpacaEval 2 (LC) MT-Bench Arena-Hard

MoA-Data-Generator (Reference) - 62.50 9.17 75.9

Llama-3.1-8B-Instruct 8B 22.33 8.01 19.5
Llama-3.1-8B-Instruct-MoAA-SFT 8B 43.77 8.33 40.8
Llama-3.1-8B-Instruct-MoAA-DPO 8B 57.23 8.58 48.3

Gemma-2-9B-it 9B 47.43 8.48 42.0
Gemma-2-9B-it-MoAA-SFT 9B 53.79 8.65 47.6
Gemma-2-9B-it-MoAA-DPO 9B 63.75 8.91 55.6

Mistral-7B-instruct-v0.3 7B 19.88 7.59 16.3
Qwen2.5-7B-Instruct 7B 19.91 8.22 24.6
Gemma-2-27B-it 27B 52.28 8.86 54.4
Llama3.1-70B-Instruct 70B 37.26 8.99 55.2
Qwen2-72B-Instruct 72B 38.10 8.88 45.0
Qwen1.5-110B-Instruct 110B 43.90 8.96 56.4
WizardLM-8x22B 8x22B 51.30 8.78 71.3
Llama3.1-405B-Instruct 405B 40.19 9.18 61.5

Table 1: Model performances after applying our MoA alignment approach. We demonstrate MoAA-SFT and MoAA-DPO
performances for both Llama and Gemma models. MoA-Data-Generator row showcases the performance of MoA directly
on the benchmarks. We also include performances of other models for reference.

and Arena Hard (Li et al., 2024) benchmarks, with
contributions from both SFT and DPO stages.

2. Extensive ablations are conducted to demonstrate the
efficacy of our approach and provide insights into the
relative contribution of each stage.

4.1. Setup

Models We constructed MoA for data synthesis and re-
sponse evaluation using various open-source LLMs and
fine-tuned open-source models to enhance their capabilities.
Our approach is not limited to open-source models and can
be easily extended to closed-source models or a combination
of both. In the first stage (supervised fine-tuning, SFT), we
utilize a two-layer MoA architecture that uses WizardLM-
8x22B (Xu et al., 2023b), Qwen2-72B-Instruct (Yang et al.,
2024), Gemma-2-27B-it (Team et al., 2024), LLaMA-3.1-
70B-Instruct (Dubey et al., 2024) as proposers and Qwen1.5-
110B-Chat (Bai et al., 2023a) as aggregator. For the second
stage (Direct preference optimization, DPO), a different
two-layer mixture is used. Proposers include Gemma-2-
27B-it, LLaMA-3.1-70B-Instruct, Qwen2-72B-Instruct and
we use Qwen2-72B-Instruct again as the aggregator. We
empirically search for an optimal architecture (selection of
models in each layer) detailed in Appendix B. A smarter
discrete optimization method can be used to further increase
performance but is out of the scope of this work. For open-
source models, all inferences were run through Together
Inference Endpoint.1

We apply our approach to two off-the-shelf instruction-tuned
models: LLaMA-3.1-8B-Instruct, and Gemma-2-9B-it. We

1https://api.together.ai/playground/chat

pick these open-source models to demonstrate that our ap-
proach can generalize to the state-of-the-art models.

Training setups During SFT in the first stage, we use
a learning rate of 8.0e-6 and batch size of 128 for both
llama and gemma models. For LLaMA-3.1-8B-Instruct, we
train for 6 epochs, and for Gemma-2-9B-it we train for 5
epochs. Packing is used as we found that it offers better
improvement. In terms of the instruction set, we mainly
utilize Ultrafeedback (Cui et al., 2023) for both models. We
also add a 5,000 subset of Ultrachat-200k (Ding et al., 2023)
to improve multi-turn capability. We limited the UC subset
to 5,000 samples to prioritize efficiency while maintaining
the desired performance improvements. We later present an
ablation study on different mixtures of instruction tuning
sets which can provide insights into our chosen setup.

For DPO in the second stage, we use a learning rate of
8.0e-7 for the llama model and a learning rate of 3.0e-7
for the gemma model. We use a β value of 0.01 for both
models. More details about hyperparameters can be found
in Appendix A. We subsampled 6,000 instructions from Ul-
trafeedback as the preference optimization set for DPO. To
mitigate the distribution shift between SFT models and the
preference alignment process, we generate the preference
responses using the SFT models tuned by our MoA methods,
following (Meng et al., 2024). For each instruction, we gen-
erate 5 responses using the SFT model with a temperature
of 0.8. We then use our MoA reward model to score the 5
responses, selecting the highest-scoring one as the chosen
response and the lowest-scoring one as the rejected response.
Since our MoA reward model does pairwise evaluation, we
compare all possible pairs out of 5 responses to acquire a
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Model MOAA Data AlpacaEval 2 (LC) MT-Bench Arena-Hard

Llama-3.1-8B-Instruct
Ultrafeedback 39.92 8.10 39.8
Ultrachat 43.86 8.39 39.5
UF + UC 43.77 8.33 40.8

Gemma-2-9B-it
Ultrafeedback 51.56 7.88 45.4
Ultrachat 51.43 8.67 45.1
UF + UC 53.79 8.65 47.6

Table 2: The influence of instruction tuning set compositions
on the model performance. We pick three different sets:
Ultrafeedback (UF), Ultrachat (UC), and a mixture of the
two (UF + UC). UF has roughly 61,000 data points. For UC
we sampled 60,000 data points. And for the mixture, we
include all UF data and 5,000 UC samples.

ranking – a total of 10 comparisons each instruction.

Benchmarks Our evaluation primarily focuses on two
benchmarks for assessing LLM alignment with human pref-
erences: AlpacaEval 2 (Dubois et al., 2024) and Arena-Hard
(Li et al., 2024). Both benchmarks directly compare each
model’s response against GPT-4. Specifically, AlpacaE-
val utilizes gpt-4-1106-preview, while Arena-Hard
employs GPT-4-0314. A GPT-4-based evaluator then
determines the preferred response, ensuring a high-quality
assessment.

AlpacaEval 2 comprises 805 instructions that closely mir-
ror real-world use cases. It implements length-controlled
(LC) win rates to effectively neutralize length bias, a com-
mon confounding factor in LLM evaluation. This metric
has demonstrated remarkable alignment with human prefer-
ences, achieving a Spearman correlation of 0.98 with human
evaluations (Dubois et al., 2024). Arena-Hard-Auto con-
tains 500 challenging instructions submitted by real users in
Chatbot Arena, maintaining a strong correlation with human
preferences in complex scenarios.

To comprehensively assess multi-turn capabilities and per-
formance across diverse domains, we additionally employ
MT-Bench (Zheng et al., 2023). Unlike the comparative ap-
proach of AlpacaEval 2 and Arena-Hard-Auto, MT-Bench
utilizes GPT-4 to grade model responses directly, without
comparison to human-generated answers. This benchmark
encompasses multi-turn instructions spanning eight distinct
domains, including reasoning, writing, and knowledge. By
incorporating MT-Bench, we gain deeper insights into our
model’s proficiency in handling extended dialogues.

4.2. MoAA Supervised Fine-tuning Results

MoAA SFT significantly improves model alignment As
shown in Table 1, applying SFT with our MoA synthetic
generated data significantly improves performances on both
models. After SFT, Llama-3.1-8B-Instruct’s win rate for
both AlpavalEval 2 and Arena-Hard roughly doubled against
GPT-4 baselines. MT-Bench also achieves significant perfor-

mance gains (8.01 vs. 8.33, maximum score is 10.0) despite
the scores of MT-Bench being more saturated than others.
Improvements on Gemma-2-9b-it is still significant albeit
to a lesser degree. We posit this to be the Gemma family
being heavily distilled already on these benchmarks consid-
ering their original high benchmark scores. We observed
a 6.36 and 5.6 points increase from the original model for
AlpacaEval 2 and Arena-Hard respectively. Note that our
two-layer MoA framework MoA-Data-Generator achieves
impressive performance across all benchmarks, contributing
to the high SFT results. Notably, Gemma-2-9B-it-MoAA-
DPO outperforms MoA-Data-Generator on AlpacaEval 2,
highlighting the exceptional quality of the generated data.
These consistent and significant improvements demonstrate
the robustness and effectiveness of MoAA.

Selection of instruction datasets matters Table 2 illus-
trates the influence of instruction tuning set compositions
on model performance. We evaluated three configurations:
Ultrafeedback (UF), Ultrachat (UC), and a combination of
the two (UF + UC). The Ultrafeedback dataset comprises
roughly 61,000 training instructions, while from the larger
Ultrachat dataset of 200,000 instructions, we subsampled
60,000 to maintain scale parity with Ultrafeedback. The
combined set, UF + UC, integrates all Ultrafeedback instruc-
tions with an additional 5,000 from Ultrachat.

Our findings reveal that the combined UF + UC dataset
generally yields the highest performance across both Llama
and Gemma models. It closely matches or marginally trails
the Ultrachat set in some benchmarks while outperforming
it in others. The Ultrafeedback set, while the least effective
overall, demonstrates efficacy in the Arena-Hard bench-
mark. Notably, the Ultrachat set enhances performance on
MT-Bench, likely due to its inclusion of multi-turn conversa-
tional data. It’s important to note that this analysis does not
represent an exhaustive search for the optimal instruction
set combination. We posit that a more meticulous selection
of datasets, encompassing diverse domains and difficulty
levels, could further enhance SFT performance.

Superior quality of MoAA synthesized data We con-
ducted an ablation study to compare SFT performance using
data synthesized by MoAA against data generated by indi-
vidual models (Figure 4). The x-axis represents the teacher
model’s original performance, while the y-axis shows the
SFT performance using data from that teacher. All mod-
els are fine-tuned on Llama-3.1-8B-Instruct. Notably, the
model fine-tuned with MoAA-synthesized data (labeled as
bolded MoA) consistently outperforms those trained on data
from individual open-source models.

To further underscore the advantages of our method, we
extended our comparison to include data generated by
GPT-4o-05-13, one of the most powerful closed-source
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Figure 4: Model performances comparison by SFT on the data generated by single models and MoA. All models are tuned
on the original Llama-3.1-8B-Instruct. The x-axis shows the teacher’s original performance for each benchmark, whereas the
y-axis presents the performance of the Llama-3.1-8B-Instruct model fine-tuned by the corresponding teacher model. We use
UF + UC as the dataset for all experiments. The dashed red line indicates the original Llama-3.1-8B-Instruct performance.

Method AlpacaEval 2 (LC) MT-Bench Arena-Hard

Llama-3.1-8B-Instruct 22.33 8.01 19.5
Combined 5 27.23 8.17 26.7
Random 5 25.30 8.19 26.4
Best of 5 35.62 8.36 38.6
Llama-3.1-8B-Instruct-MoAA-SFT 43.77 8.33 40.8

Table 3: SFT baseline comparisions. We finetune Llama-
3.1-8B-Instruct with the same training setups as MoAA-SFT
including the dataset. Combine 5: including all 5 responses
generated by each individual model. Random 5: random
sampling of one response from the five models for each
instruction. Best of 5: choosing the best response out of five
models for each instruction via ArmoRM-Llama3-8B-v0.1.

models currently available. Notably, models fine-tuned
on our synthesized data demonstrate superior performance
benchmarks compared to those trained on GPT-4o-05-13
data, with the exception being MT-Bench. The strength
of our approach is particularly noteworthy given that our
method exclusively utilizes open-source models. Note that
MoA can incorporate closed-source model to further im-
prove performance (Wang et al., 2024c). Furthermore, we
demonstrated that MoAA doesn’t degrade other tasks such
as math or coding in Appendix D.

Effectiveness of MoA Architecture over Naive Model
Mixtures To validate the efficacy of our Mixture of
Agents (MoA) architecture and distinguish it from simple
multi-model aggregation, we conducted an ablation study
comparing MoA against two naive mixture approaches and
one approach that utilizes one state-of-the-art reward model
to pick the best response. The first approach, which we term
“Combined 5,” combined all datasets labeled by the five
LLMs used in our MoA setup. Specifically, each LLM will
generate responses for the entire dataset and we combine all
of them into one big SFT set that is five times the original

Model AlpacaEval
(LC) Arena-Hard MT-Bench

Mistral-7B-Instruct-v0.3 19.88 16.3 7.59
Llama-3.1-8B-Instruct 26.06 28 8.34
Gemma-2-9b-it 48.54 40.6 8.49
SFT on MoA-Small-Scale 54.19 44 8.78
MoA-Small-Scale 58.62 48.1 8.65

Table 4: Performance of Gemma-2-9b-it model fine-tuned
by small-scale MoA setup (SFT on MoA-Small-Scale). It
outperforms the best individual model that comprises the
MoA.

size. The second approach, term “Random 5,” randomly
sampled one response from five models and maintained the
same data size. Lastly, “Best of 5” uses a strong reward
model ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024a) to
rank responses from these five models and pick the best one
as the training response. For multi-turn data, we average the
score of each turn for each conversation.

As illustrated in Figure 1 and detailed in Table 3, both
naive mixture methods significantly underperform our MoA
approach across all three benchmarks. This substantial
performance gap underscores that MoA’s success is not
merely a result of utilizing multiple models. The “Best of
5” method, while marginally better on MT-Bench, under-
performs MoA on AlpacaEval2 and Arena-Hard. Despite
ArmoRM-Llama3-8B-v0.1 being a state-of-the-art reward
model and top-scoring on the RewardBench, our MoA ap-
proach performs better on average. These results demon-
strate that our architecture goes beyond simple aggregation,
organically combining and refining proposer responses to
generate high-quality data.

Strengthening the Strongest Model in MoA We found
that when the strongest model in the MoA mix is trained on
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Model Type Method/Model Chat Chat Hard Safety Reasoning Average

Open-Source
Llama-3.1-70B-Instruct 97.2 70.2 82.8 86.0 84.0
Gemma-2-27B-it 94.8 59.1 86.4 83.3 80.9
Qwen2-72B-Insutrct 96.2 64.6 86.0 86.1 83.2
MoA as reward model 94.7 69.4 90.6 87.7 85.6

Fine-Tuned ArmoRM-Llama3-8B-v0.1 96.9 76.8 90.5 97.3 90.4
PairRM 90.2 52.2 47.7 49.0 59.8

Closed-Source GPT-4o-2024-05-13 96.6 70.4 86.5 84.9 84.6

Table 5: Performance comparison of the MoA reward model and other widely-used reward models on Rewardbench.

MoA-generated data, it achieves a substantial performance
boost. We think this is a non-trivial finding because improv-
ing the strongest model in the mix provides evidence that
our method can potentially push the frontier open-source
models further without the supervision of stronger LLMs.
Specifically, we evaluated a small-scale MoA (MoA-Small-
Scale) setup with Gemma-2-9B-it, Llama-3.1-8B-Instruct,
and Mistral-7B-Instruct-v0.3 (Jiang et al., 2023a) as pro-
posers, and used a two-layer MoA with Gemma-2-9B-it as
the aggregator to generate the data mix. You can find more
evaluation metrics of this MoA setup in Appendix F.

In Table 4, the fine-tuned Gemma (SFT on MoA-Small-
Scale) shows better performance than the strongest individ-
ual model (itself) in the mix by a large margin. This is s
very promising result since we are improving LLMs to be
better than the teachers.

4.3. MoAA Preference Alignment Results

MoAA DPO improves model alignment further To fur-
ther enhance model alignment, we align our SFT mod-
els with the widely used direct preference optimization
method. Models tuned by DPO on our MoA alignment
dataset (termed MoAA-DPO at the end) outperforms MoAA-
SFT tuning significantly on all three benchmarks, for both
Llama and Gemma models, as evidenced in Table 1.

MoA as a Reward Model: Comparison with State-of-
the-Art To evaluate the effectiveness of our MoA reward
model, we compared it against state-of-the-art reward mod-
els and open-source generative-LLM-based reward models.
On RewardBench, MoA achieves a notable 1.6-point im-
provement over the best open-source model incorporated in
our setup, as shown in Table 5. Its advantage is particularly
pronounced in the Safety category, where it outperforms the
strongest open-source model by 4.2 points. Notably, this per-
formance gain is achieved without any task-specific tuning
for reward modeling, highlighting the inherent strength of
our MoA approach. See Appendix G for more evaluations.

Interestingly, despite scoring lower than ArmoRM on Re-
wardBench, the model DPO-tuned on our MoA preference

Reward Model AlpacaEval 2 (LC) MT-Bench Arena-Hard

Llama-3.1-70B-Instruct 55.35 8.36 45.1
Qwen2-72B-Instruct 55.80 8.31 43.5
Gemma-2-27B-it 56.81 8.31 48.8
GPT-4o-2024-0806 55.05 8.76 44.1
MoA as reward model 57.23 8.58 48.3

ArmoRMLlama3-8B-v0.1 57.79 8.56 42.3
PairRM (Jiang et al., 2023b) 50.17 8.33 42.2

N/A (SFT Reference) 43.77 8.33 40.8

Table 6: Performance comparison of models using differ-
ent reward models. All settings generate five candidate
responses with a temperature of 0.8 and use the reward
model to pick chosen and rejected responses as the prefer-
ence pair. We use the same Llama-3.1-8B-Instruct-SFT as
the base model for DPO across all setups.

alignment dataset delivers highly competitive performance
(Table 6). It surpasses ArmoRM-tuned models on both
MT-Bench and Arena-Hard, with only a slight deficit on
AlpacaEval 2. Additionally, our approach outperforms in-
dividual LLMs that serve as components within the MoA
framework when used as reward models. This highlights
the synergistic advantage of MoA, demonstrating its ability
to effectively integrate the strengths of multiple models.

5. Conclusion
This paper presents Mixture of Agents Alignment, a model
alignment recipe that leverages multiple LLMs’ expertise
at the two stages of the alignment process. By harnessing
the collective intelligence of open-sourced LLMs, MoA is
proven to be a powerful synthetic data generator during the
SFT stage, and a competitive reward model during DPO.
Models fine-tuned on our MoA generated synthetic data
achieves significant improvement on evaluation benchmarks
such as AlpacaEval 2, MT-Bench, and Arena-Hard. Utiliz-
ing our MoA as a reward model with criteria filtering also
proves to be able to produce competitive models compared
to DPO models using state-of-the-art reward models. Ex-
tensive ablation studies demonstrate the efficacy and careful
design of our MoAA strategy.
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Impact Statement
This paper presents work whose goal is to advance the field
of Large Language Model capabilities. We specifically
focus on distilling multi-agent setup into a single model,
achieving better performances while lowering computa-
tional cost. There are many potential societal consequences
of our work, none which we feel must be specifically high-
lighted here.
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Method Chat Chat Hard Safety Reasoning Average

MoA without Filtering 95.5 68.8 88.1 85.6 84.5
MoA with Filtering 94.7 69.4 90.6 87.7 85.6

Table 7: Performance comparison of MoA with and without criteria filtering on Rewardbench.

A. Hyperparameters
SFT hyperparameter settings For both the Llama model and Gemma model, we use learning rate of 8.0e-7 and gradient
accumulation of 128. For the Llama model we train for 6 epochs whereas for Gemma we train for 5 epochs. All experiments
are done on one node of 8xA100.

DPO hyperparameter settings Hyperparameters are crucial for preference optimization methods. For Llama model, we
use learning rate of 8.0e-7. For Gemma model, we use a learning rate of 3.0e-7. For both setups, we train for 5 epochs with
a beta of 0.01 and gradient accumulation of 128. All experiments are done on one node of 8xA100.

B. MoA architecture selection
MoA architecture for Stage 1 data synthesis We use a two-layer MoA framework with WizardLM-8x22B, Qwen2-72B-
Instruct, Gemma-2-27B-it, LLaMA-3.1-70B-Instruct as proposers and Qwen1.5-110B-Chat as the aggregator. This specific
choice is based on insights from previous work (Wang et al., 2024c) and some empirical search. Specifically, previous
work has shown that WizardLM-8x22B is a great proposer whereas Qwen1.5-110B-Chat is a great aggregator. Then we
just add strong open-source models that have decent performances such as Qwen2-72B-Instruct, Gemma-2-27B-it, and
LLaMA-3.1-70B-Instruct as proposers to get our final architecture. We have tried a bunch of other setups, e.g., using only
three proposers, or using Qwen2-72B-Instruct, Gemma-2-27B-it, or LLaMA-3.1-70B-Instruct as the aggregator. Even
though the current setup as shown in Table 8 doesn’t yield the highest performance out of other setups, it is the most balanced
across three benchmarks. Note that a more explicit and intelligent search method can be used to find potentially better
architecture. We leave this interesting exploration to future work. To balance efficiency and performance, we set the number
of layers to two. Our model pool is limited to the most capable general-purpose models available at the time, ensuring broad
generalization, while domain-specific fine-tuned models (e.g., for code) were not included. Regarding the robustness of
ensemble composition, an early observation was that the order of proposers has minimal impact, so we generally arrange
them from strongest to weakest.

MoA architecture for Stage 2 preference ranking We select our architecture in a similar manner during this stage.
Notably, Qwen2-72B-Instruct appears to be a better aggregator at evaluating model responses than others. Hence after some
empirical search, the MoA architecture has proposers including Gemma-2-27B-it, LLaMA-3.1-70B-Instruct, Qwen2-72B-
Instruct, and Qwen2-72B-Instruct as the aggregator.

Aggregator Proposers AlpacaEval 2 (LC) MT-Bench Arena-Hard

Qwen2-72B-Instruct WGQL 59.81 9.19 79.3
Gemma-2-27B-it WGQL 63.47 9.19 70.8
LLaMA-3.1-70B-Instruct WGQL 45.30 9.29 70.8
Qwen1.5-110B-Chat WGQ 61.80 8.93 76.4
Qwen1.5-110B-Chat (chosen) WGQL 62.50 9.17 75.9

Table 8: Performance of different MoA architecture. WGQL stands for those four models: WizardLM-8x22B, Qwen2-72B-
Instruct, Gemma-2-27B-it, LLaMA-3.1-70B-Instruct. WGQ stands for the first three models shown before.

Can we automatically search for an architecture? To be more efficient than conducting a manual sweep, we did an
early investigation on whether we can use an automatic optimization pipeline to find a good LLM mixture. We will include
some details on how we do that here.

Setup: Specifically, we fix the number of layers to be two and the aggregator to be Qwen-1.5-110b-Chat, and set the number
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Model Aggregate AlpacaEval (LC) Arena-Hard MT-Bench

MoA-Lite 74.1 59.3 71.3 9.18
MoA-Lite–searched 75.0 62.0 71.8 9.11

Table 9: Performance comparison of MoA-Lite and MoA searched using our proposed optimization method. Note that this
MoA-Lite mixture is taken from the original MoA paper and has lower performances than our mixture.

of models and which model in proposers to be variables for optimization. We utilized Broyden–Fletcher–Goldfarb–Shanno
algorithm (BFGS) for this unconstrained optimization problem. We use the LLMs used in the original MoA-Lite from (Wang
et al., 2024c) as a starting point. This means the MoA has Qwen-1.5-110b-Chat as aggregator and Qwen1.5-110B-Chat (Bai
et al., 2023b), Qwen1.5-72B-Chat, WizardLM-8x22B (Xu et al., 2023a), LLaMA-3-70B-Instruct (Touvron et al., 2023b),
Mixtral-8x22B-v0.1 (Jiang et al., 2024), dbrx-instruct (The Mosaic Research Team, 2024) as proposers. Note this mixture
has a lower score than the mixture we used in this paper.

Validation Data: It is important to have a good set of validation data. We randomly sampled 50 problems from AlpacaEval
and 50 from Arena-Hard. The combined size of 100 enables us to verify architecture performances quickly. We averaged
the scores of AlpacaEval and ArenaHard to be our final metric.

We ran the optimization and found the best mixture to be WizardLM-2-8x22b, Qwen-1.5-110b-Chat, Qwen-1.5-72b-Chat,
and three Llama-3-70b-Instruct as proposers and Qwen-1.5-110b-Chat as aggregator. The resulting mixture outperforms our
MoA-Lite on two out of the three benchmarks as shown in Table 9.

C. Cost Efficacy of MoA
Data generation cost In this section, we compare the cost efficacy of our MoA data generation process vs using a strong
closed-source model such as GPT-4o-05-13. To make this a fair comparison, we measure the cost of generating synthetic
data using Ultrafeedback for both MoA and GPT-4o-05-13. MoA requires around $365.9 whereas GPT-4o-05-13
requires $429.4 as demonstrated in Table 10. MoA saves about 17.3% and achieves much higher performance. The MoA
cost is computed using the cost detailed on Together Endpoint and the GPT-4o-05-13 cost is taken from their website.

Model $ per Million Tokens Cost to Generate Dataset

Qwen1.5-110B-Chat 1.8 -
WizardLM-2-8x22B 1.2 55.53
Llama-3-70b-Instruct 0.9 30.07
Qwen2-72B-Instruct 0.9 25.12
gemma-2-27b-it 0.8 23.85
Gemma-2-9B-it-MoAA-DPO 0.3 -
MoA 5.6 365.95
gpt-4o-2024-05-13 7.5 429.45

Table 10: Cost comparison across models for generating instruction tuning dataset. MoA saves 17.3% of the cost compared
to GPT-4o-05-13 while achieves higher performance shown in Table 6

Inference efficiency of MoAA One of the key motivations for developing MoAA is to address the practical limitations of
using MoA for cost/latency-sensitive scenarios. As model sizes increase and inference lengths grow, optimizing inference
efficiency becomes crucial for the scalable deployment of reasoning agents (Wang et al., 2024b). Compared to standalone
LLMs, deploying MoA at inference time is computationally expensive and incurs high latency due to the need to generate
and aggregate responses from multiple large models. This motivates us to align its knowledge to a smaller standalone model,
while ensuring that the MoAA-trained model retains response quality comparable to the aggregated outputs of MoA. In our
inference efficiency analysis in Table 11, Gemma-2-9B-it-MoAA-DPO achieves 90.6% of the MoA performance with only
5.4% of the cost of MoA.
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AE (LC) AH MT-Bench Avg. % of MoA $/M tokens

Gemma-2-27b-it 52.3 52.3 8.86 64.4 83.9% 0.8
Llama-3-70b-Instruct 37.3 55.2 8.99 60.8 79.3% 0.9
Qwen2-72B-Instruct 38.1 45.0 8.88 57.3 74.7% 0.9
WizardLM-2-8x22B 51.3 71.3 8.78 70.1 91.4% 1.2
Qwen1.5-110B-Chat 43.9 56.4 8.96 63.3 82.5% 1.8

Llama-3.1...-MoAA-DPO 57.2 48.3 8.58 63.8 83.2% 0.2
Gemma-2...MoAA-DPO 63.9 55.6 8.91 69.5 90.6% 0.3
MoA 62.5 75.9 9.17 76.7 100% 5.6

Table 11: Inference efficiency analysis comparison of our methods and MoA. We show that with only 5.4% of the cost of
MoA, our method can achieve 90.6% of the MoA performance.

D. Reasoning Evaluations
We conducted extensive testing on math, coding, knowledge, and complete reasoning benchmarks. The datasets evaluated
include MMLU (Hendrycks et al., 2020), HumanEval (Chen et al., 2021) and GPTQA (Rein et al., 2023) and MATH
(Hendrycks et al., 2021).Even though we did not explicitly add any of those data in our instruction dataset or preference
alignment dataset, we want to verify if the model tuned can generalize to other domains and not just overfit to the tuning set.
In Table 12, we observed a slight decrease in math, reasoning, and coding ability during SFT with MoAA, followed by
recovery during the DPO stage. Notably, for Gemma, the model fine-tuned with MoAA outperforms the original model in
overall performance. This means our tuned model remain fairly robust and generalize to challenging reasoning tasks despite
not having any explicit reasoning data added. Composing a more balanced dataset mixture with reasoning data is a nice
direction of future work.

Model MMLU HumanEval GPQA MATH Average
(pass@1)

Llama-3.1-8B-Instruct 0.7089 0.6671 0.2273 0.51 0.527
Llama-3.1-8B-Instruct-MoAA-SFT 0.6854 0.5793 0.2626 0.48 0.502
Llama-3.1-8B-Instruct-MoAA-DPO 0.6864 0.5354 0.3434 0.49 0.514

Gemma-2-9B-it 0.7382 0.6341 0.2929 0.50 0.541
Gemma-2-9B-it-MoAA-SFT 0.7356 0.6085 0.2828 0.52 0.537
Gemma-2-9B-it-MoAA-DPO 0.7382 0.6329 0.3081 0.52 0.549

Table 12: Reasoning evaluations of different models across MMLU, HumanEval , GPQA, MATH.

E. Additional Baselines
In this section, we present a comparison with several additional baselines to strengthen the effectiveness of our method.
Specifically, we compare with

• MagPie (Xu et al., 2024), a contemporary method that follows a similar SFT and DPO process with its generated data.

• Meta-Rewarding LLM (Wu et al., 2024), an iterative alignment method that utilizes self-judgment to self-improve.

• Original Ultrafeedback (contains 61135 data points) + same 5000 data subsampled from Ultrachat

• MOAA-SFT Ultrafeedback samples (contains 60000 data points) and MoAA-DPO on same 6000 Ultrafeedback data.

As shown in Table 13 and Table 14, our Llama-3.1-8B-Instruct-MoAA-DPO achieves competitive performance compared to
all the baselines above, demonstrating the effectiveness of our approach. Because both MagPie and Meta-Rewarding LLMs
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are built based on Llama-3, we tuned a Llama-3-8B-Insutrct with MoAA-SFT to compare. Our approach still show stronger
performances.

Model Base Model Data Size AlpacaEval (LC) Arena-Hard

Llama-3-8B-Instruct - - 24.01 20.6
Llama-3.1-8B-Instruct - - 26.06 28.0

MAGPIE-Pro-SFT Llama-3-8B-Base 300k 25.08 18.9
MAGPIE-Pro-DPO MAGPIE-Pro-SFT 100k 50.10 25.7

Meta-RewardingLM Iter4 - - 39.44 29.1

Llama-3...MoAA-SFT Llama-3-8B-Instruct 61k+5k 42.61 31.9
Llama-3.1...MoAA-SFT Llama-3.1-8B-Instruct 61k+5k 43.77 40.8
Llama-3.1...MoAA-DPO Llama-3.1...MoAA-SFT 6k 57.23 48.3
Gemma-2...MoAA-DPO Gemma-2...MoAA-SFT 6k 63.75 55.6

Table 13: Comparison of our method and MagPie and Meta-Rewarding LLM on AlpacaEval and Arena-Hard. MagPie’s
result was taken directly from the paper. Our method achieves superior performance on both benchmarks. For Meta-
Rewarding LLM, we selected the scores from the last iteration (iteration 4) which is the highest in the paper.

Model AlpacaEval2 (LC) Arena Hard MT-Bench

SFT on Ultrachat and Ultrafeedback 14.50 11.7 7.73
Llama-3.1-8B-Instruct-MoAA-SFT 43.77 40.8 8.33

Llama-3.1-8B-Instruct-MoAA-SFT (UC) 43.86 39.5 8.39
Llama-3.1-8B-Instruct-MoAA-DPO (UC) 58.15 42.6 8.64

Table 14: Performance metrics of two other baseliens. 1) Llama-3.1-8B-Instruct tuned on the original responses from
Ultrafeedback and Ultrachat. 2) MoAA-SFT on a 60,000 subsample of Ultrachat. Here we chose sample size to be 60,000
because we want to maintain a similar data scale to our original MoAA-SFT setup. Then we perform MoAA-DPO with the
same setup as the original MoAA-DPO in the paper, using the same 6,000 Ultrafeedback data, but generated on policy with
the Ultrachat SFT model.

F. Strengthening the Strongest Model in MoA
In Table 4, we found that the fine-tuned Gemma model shows better performance than the strongest individual model (itself)
in the mix by a large margin. We also provide a study on the performances of this MoA architecture in Table 15. We see that
performances in general increase with the increase of layers, although the plateau is starting to occur.

Aggregator Layer AlpacaEval2
(LC) AlpacaEval2 Arena-Hard MT-Bench

Gemma-2-9b-it 2 56.62 47.91 48.1 8.63
3 55.75 48.72 51.0 8.65

Llama-3.1-8b-Instruct 2 30.73 39.47 36.4 8.16
3 30.06 39.55 38.3 8.33

Mistral-7b-instruct-v0.3 2 26.75 24.55 25.4 8.01
3 29.97 29.55 29.4 8.38

Table 15: Model performances of small-scale MoA across different models as final aggregator.
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G. More MoA as a Reward Model Evaluation
In this section, we provide additional benchmarking on MoA as a reward model on the PPE benchmark (Frick et al., 2024).
PPE consists of 18k diverse data points spanning human preference and reasoning tasks. Table 16 show that MoA as a
reward model outperforms the best individual model in its mix by a significant margin and also exceeds GPT-4o-mini in
overall performance. Compared to Skywork-Reward-Gemma-2-27b, which scores 9 points higher on the Reward Bench,
MoA achieves 9.5 points higher on the PPE benchmark. We believe this performance difference highlights an issue with the
Reward Bench: it has become overspecialized due to fine-tuning efforts since its launch, making fine-tuned models appear
more capable than they actually are. PPE, as a newer and more diverse benchmark, provides a clearer evaluation of model
capabilities and further demonstrates the effectiveness of MoA as a robust reward model.

Model
MMLU

Pro
MATH GPQA

MBPP
Plus

IFEVAL
Human

Pref.
AVG

MoA as reward model 0.76 0.79 0.58 0.62 0.57 0.6465 0.661

Qwen-2-72b-Instruct 0.72 0.73 0.56 0.58 0.54 0.6135 0.624

Llama-3.1-70b-
Instruct

0.73 0.73 0.56 0.58 0.56 0.6429 0.634

Gemma-2-27b-it 0.68 0.73 0.54 0.58 0.52 0.6169 0.611

GPT-4o-mini-
2024-07-18

0.71 0.81 0.57 0.54 0.56 0.6646 0.642

Claude-3.5-
Sonnet-20240620

0.81 0.86 0.63 0.54 0.58 0.6733 0.682

Skywork-Reward-
Gemma-2-27b

0.54 0.63 0.53 0.59 0.54 0.5662 0.566

ArmoRM-
Llama3-8B-v0.1

0.66 0.71 0.57 0.54 0.58 0.6057 0.610

Table 16: Our MoA as reward model’s performance on PPE, compared with other LLM as a judge and reward model.

H. Generalization to other Architecture and Model Size
To verify if our method can generalize to other architecture or model sizes, we fine-tuned a Llama-3.2-3b-Instruct using our
MoAA-SFT pipeline. Llama-3.2 is the newest model in the Llama family at the point of writing. In addition, we picked
the size to be 3B to verify if it would work on smaller LLMs. Table 17 shows the result of our MoAA-SFT. We found
convincing improvements on all three benchmarks. Possibly due to model size, the improvements are not as big as what we
saw in 8b/9b models. Nonetheless, our method is able to train a very competitive 3B LLM.

Model
AlpacaEval

(LC)
Arena-Hard MT-Bench

Llama-3.2-3b-Instruct 19.9 14.2 7.64

Llama-3.2-3b-Instruct-
MoAA-SFT

35.4 21.9 8.11

Table 17: Performance Comparison of Llama-3.2-3b Model fine-tuned on MoAA-SFT.

I. Details on Direct Preference Optimization
DPO (Rafailov et al., 2023) is one of the most commonly used offline preference optimization methods. Instead of learning a
reward model and then optimizing it via reinforcement learning like the conventional RLHF methods, DPO reparameterizes
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the reward function that enables the extraction of its optimal policy in a closed form:

r(x, y) = β log
πθ(y | x)
πref(y | x)

+ β logZ(x) (4)

where β is a hyperparameter, πθ is the policy model and πref is the reference policy model. By incorporating this into
Bradley-Terry model, we can get the DPO objective to be:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(5)

where x is the instruction, yw is the winning response and yl is the losing response from preference data D.

J. Ablation Study on MoA Alignment Paradigms
We conducted an extensive exploration of alternative approaches to utilize the MoA framework during Stage 2 of our
alignment process. Two additional primary variants were investigated: MoA-OnPolicy and MoA-OffPolicy. In the MoA-
OnPolicy approach, we incorporated the MoAA-SFT model from Stage 1 as the aggregator in an MoA setup. We
use the same proposers as in Stage 1 and the MoAA-SFT model as the aggregator to generate candidate responses.

Figure 5: Performance comparison of models using different
DPO settings. MoA-OnPolicy uses the SFT model to generate
on-policy responses in a MoA style, with the SFT model as
the aggregator and unchanged proposers. MoA-OffPolicy uses
the MoA architecture in stage 1 to generate responses.

Conversely, the MoA-OffPolicy method utilized the iden-
tical MoA architecture (including the aggregator) from
Stage 1 to generate candidate responses, with the same
reward model selecting preference pairs. Both settings
generate five candidate responses with a temperature of
0.8 and use ArmoRM-Llama3-8B-v0.1 as the reward
model. The preference pairs were then selected using
the ArmoRM-Llama3-8B-v0.1 reward model.

The results of this ablation study, as presented in Figrue 5,
reveal insights into the efficacy of these approaches. The
MoA-OffPolicy method demonstrated lower performance
scores, which can be attributed to a potential distribution
mismatch between the generated data and the model, as
the responses were not directly generated by the SFT
model. While MoA-OnPolicy leveraged the SFT model
as an aggregator to generate “on-policy” data, it failed to
exhibit the anticipated benefits of the MoA structure in
this context. We hypothesize that this limitation stems
from the SFT model’s training as a response generator
rather than an aggregator designed to combine and refine
responses. Collectively, these findings provide evidence
that the MoA framework is more effectively employed as
a reward model during the DPO stage.
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K. Prompt Templates
K.1. MoA Template

Aggregate-and-Synthesize Prompt to integrate responses from other models

You have been provided with a set of responses from various open-source models to the latest user query. Your task
is to synthesize these responses into a single, high-quality response. It is crucial to critically evaluate the information
provided in these responses, recognizing that some of it may be biased or incorrect. Your response should not simply
replicate the given answers but should offer a refined, accurate, and comprehensive reply to the instruction. Ensure
your response is well-structured, coherent, and adheres to the highest standards of accuracy and reliability.

Responses from models:
1. {Model Response from Ai,1}
2. {Model Response from Ai,2}
...
n. {Model Response from Ai,n}
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K.2. Criteria Filtering Template

Prompt to select evaluation criteria for responses from reward modeling

Analyze the following user query and two AI assistant responses. Your task is to determine the three most relevant
evaluation criteria for assessing these responses. Choose exactly 3 criteria from the list below that are most
applicable to this specific query and responses:

1. Instruction adherence: How well the response follows the user’s instructions.
2. Relevance: How directly the response addresses the user’s query.
3. Accuracy: The correctness and up-to-date nature of the information provided.
4. Depth: The comprehensiveness and level of detail in the answer.
5. Clarity: How well-structured and easy to understand the response is.
6. Helpfulness: How useful the response is in solving the user’s problem or answering their question.
7. Safety: How well the response handles potentially sensitive or dangerous requests.
8. Robustness: How well the response handles nuanced or ambiguous aspects of the query.

Here’s an example to guide your selection and output formatting:
Example User Query: ”What are the health benefits of drinking green tea?”
Example Assistant A Response: ”Green tea has many health benefits. It contains antioxidants that can improve brain
function and fat loss. It may also lower the risk of certain cancers and cardiovascular diseases.”
Example Assistant B Response: ”Green tea is good for you. It has stuff that helps your brain and makes you lose
weight. It might also stop you from getting sick.”

Example Output:
Selected Criteria:
1. Accuracy
2. Depth
3. Clarity

Explanation: For this query about health benefits of green tea, accuracy is crucial to ensure the informa-
tion provided is correct. Depth is important to cover the range of potential benefits comprehensively. Clarity
is necessary to ensure the information is presented in an understandable manner, especially when dealing with
scientific health information.

Now, please analyze the following actual query and responses:
User query: {question}
Assistant A response: {answer a}
Assistant B response: {answer b}

Output your selected criteria strictly using the following format:
Selected Criteria:
1. [Criterion 1]
2. [Criterion 2]
3. [Criterion 3]

Explanation: [Briefly explain why you chose these three criteria]

20



Improving Model Alignment Through Collective Intelligence of Open-Source Models

K.3. Reward Modeling Proposer Template

Proposer prompt for reward modeling

As an impartial expert evaluator, your task is to critically assess the responses provided by two AI assistants (A and
B) to a user query. Follow these steps:

1. Understand the Query: Carefully analyze the user’s question or request to grasp its specific nature and
requirements.

2. Criteria: Focus your evaluation on these three criteria. For each criterion, provide a brief assessment
of how well each assistant performed, and then compare them directly.
{criteria}

3. Evaluation: For each selected criterion, provide a qualitative assessment using natural language. Con-
sider using the following phrases:
- Exceptional
- Strong
- Satisfactory
- Needs improvement
- Inadequate

4. Evaluation Process:
- Provide assessment and brief explanation for each criterion
- Summarize key strengths and weaknesses of each response
- Comparative Analysis:
- Compare the overall performance of both responses
- Explain your reasoning process, referring to specific aspects of each response
- Do not let factors such as response length, assistant names, or the order of presentation influence your decision
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K.4. Reward Modeling Aggregator Template

Aggregator prompt for reward modeling

As an expert meta-evaluator, your task is to analyze and synthesize multiple evaluations comparing two AI assistants’
responses (A or B) to a user query. Your role is crucial in determining the final assessment. Please consider the
following:

1. Assess the consistency and validity of arguments across all evaluations.
2. Identify any potential biases, errors, or oversights that may have influenced individual evaluations.
3. Consider the strengths and weaknesses of each AI response as highlighted across all evaluations.
4. Synthesize a final, comprehensive evaluation that:
a) Provides a clear comparison of the two AI responses.
b) Addresses any conflicting opinions among the evaluations.
c) Offers a well-reasoned, definitive judgment on which response better addresses the user query.
d) Strictly using ”[[A]]” if assistant A is better, or ”[[B]]” if assistant B is better to indicate your preferred response.

Do not let factors such as response length, assistant names, or the order of presentation influence your de-
cision.

The evaluation should be based on the following criteria:
{criteria}

User query: {question}
Assistant A response: {answer a}
Assistant B response: {answer b}

Individual evaluations:
{proposer evaluations}

Final Meta-Evaluation:
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